WH Perkin Patent AD 1856 No 1984: A review on authentic mauveine and related compounds
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Abstract

A failed attempt to make  pseudo-mauveine from 10 g of aniline led the author into an on-going 6 year research programme. Drawing inspiration from the collective work of many others, recent results cast doubt on Perkin’s stated  method for making authentic mauveine. Uncovering an improved route into synthetic derivatives of mauveine, which contain a 3-[(N-alkyl)aryl] substituent, has led by chance to a removable and traceless 3-(N-alkyl) protecting group which alters the composition of mauveine to closely match that of the museum archived samples. The possibility that W. H. Perkin or others exploited this method to make mauveine is considered.
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1. Introduction

Reading the four volumes1-2 of the British patent index Bleaching, Dyeing and Printing Calico, 1617-1876, and Bleaching, Dyeing and Printing Calico and other Fabrics, 1877-1883,3  gives an insight into the historical changes that occurred with the discovery of the coal-tar dyes. Prior to 1856, the year in which Perkin patented mauveine,4 dyestuffs were usually prepared from plant, animal or mineral sources. For example, the red dye alizarin came from the root of the madder plant,5 indigo came from the cotton plant6 and Tyrian purple came from certain shellfish.7 From 1856 many patents appear on dyes made by chemical synthesis, for which mauveine was the first to be commercialised. This mauveine patent marks the beginning of the coal-tar dye industry which spread rapidly through Britain, France, Germany and Switzerland.8 It has had numerous celebrations and reviews.9-13 

Perkin oxidised aniline in sulphuric acid with potassium dichromate and obtained the purple dye, mauvine. The aniline, however, came from coal tar and was a mixture of aniline, o-toluidine, and p-toluidine, and his product was not a single compound but a mixture of compounds with a common polycyclic chromophore substituted with methyl groups at various positions. 


This raises the question, what was the precise constitution of Perkin’s mauveine, and can his preparation be reproduced? Our own activities in this field are summarised in this review.
Perkin did not know the structure of mauveine but he correctly estimated it to contain four aromatic amines from studies on the molecular formula.14-16 By the turn of the century Nietzki established the structure of the chromophore to be that shown in compound 3, called pseudo-mauveine, by performing syntheses from pre-formed building blocks17-18 This is the best way to synthesise the chromophore in higher yields (Scheme 1). The dimer 5 16,18 and trimer 7 19  can also be used with aniline 6.
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 Scheme 1 Syntheses of pseudo-mauveine.
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Scheme 2 Oxidation of pseudo-mauveine  with PbO2/HOAc/H2O

Perkin also reported the oxidation of pseudo-mauveine 3 to give pink safranin 8 which had been prepared by other methods (Scheme 2).8,15 This study is helpful in characterising the chromophore structure since safranin 8 is symmetrical.21
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Figure 1  Left: The bottle of authentic mauveine from the Museum of Science and Industry. Right: The blue front cover of patent WH Perkin AD 1856 No 1984.

Luckily there are some samples of mauveine remaining11,22 which have been analysed and their composition has been determined. We refer to these as authentic mauveine. There are no polar or non-polar impurities, but just a mixture of mauveine chromophores. The MOSI (Museum of Science and Industry, Manchester)  bottle is large (15 cm tall)  and may contain about 300 g of authentic mauveine (Figure 1). A scan of the blue front cover of Perkin’s patent is also shown. The full structure of the key mauveine chromophores A and B from MOSI mauveine was determined by NMR spectroscopy in 1994 by Meth-Cohn and Smith,21  then in 2007 the de Melo group spectroscopically characterised mauveine A, B2, B and C from mauveine they made by Perkin’s stated  method.22 (Figure 2). Mauveine made by Perkin’s stated method, or historical method, refer’s to Perkin’s method for making mauveine by the oxidation of a mixture of aniline, o-toluidine and p-toluidine which always gives a composition rich in all four of these chromophores.  
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Figure 2 Drawing of mauveine A, B, B2 and C

A comparison of HPLC traces was made of authentic mauveine and mauveine made by repeating Perkin’s historical method of preparation.22 This showed that authentic mauveine was rich in mauveine A and B whereas mauveine made by the historical method was more complex, typically rich in mauveine A, B2, B and C. In 2008 a comprehensive study of mauveine samples from the Science Museum in London, the Museum of Science and Industry  (MOSI) Manchester, and the Chandler Museum in Arizona was published.23 These samples of mauveine are similar and are all rich in mauveine A and B, and deficient in mauveine B2 and C. Both Schunck’s mauveine, in the Museum of Science and Industry, and Caro’s mauveine in the Deutsche Museum, Germany, are the same and are both rich in pseudo-mauveine.24 These were probably prepared by Dale and Caro’s method using CuCl2 as oxidant.25 In their patent they only describe the use of commercial aniline, which was not enriched with toluidines, which could explain this sysnthesis. The provenance of authentic mauveine is still disputed,11 although MOSI mauveine, from Blakely, is sealed with a Perkin & Sons cork so most likely came from Perkin’s factory. There are numerous other early reports of attempts to make dyestuffs from the oxidation of aniline with different oxidants, following on from Perkin’s discovery. These are the use of MnO2  or PbO2 with H+,26-27 KMnO4,28 Cl2/H2O,29 K3Fe(CN)6,30 CaOCl,31 Cu(II)(NO3)2 or many other oxidants claimed in this patent.32
Our studies have centered upon the preparation of derivatives similar to or related to those found in mauveine,16,18,33 and upon the synthesis of mauveine which has the same composition as authentic mauveine.20,34 Finally we performed a detailed study on the oxidation products of p-toluidine to verify early literature studies.35
2. Mauveine and its synthetic derivatives

Our entrance into the field of mauveine chemistry was marked by a series of repeated synthetic failures as we were adding to much acid in the reactions.16,36  Initially 10 g of aniline was oxidised and gave no purple product upon extraction of the filtered precipitate with MeOH. Others to have noted the difficulty of making mauveine.19,36 Perkin patented the use of sulphate salts which keeps the conditions mild. Although more acid than this can be used, which improves the poor yield, it should be monitored carefully. In our work it is easiest to purify chromophores from reactions where just one chromophore is formed, so a chromophore separation is not required. An initial column eluting with aqNH3/MeOH (20:80) can give pure material, whereas a second column of secBuOH/EtOAc/H2O/HOAc (60:30:9.5:0.5) is required to separate chromophores. Fractions can be collected and each analysed by NMR to get good data. Bright shades on silk require pure mauveine, which is normally purified with two columns, in the above order. A small quantity (a few %) of a purple chromophore 13 was formed by oxidising phenosafranin 8 and an excess of aniline (Scheme 3).33 Low yields characterise this programme of work (< 10%) although higher yields can be obtained by using preformed building blocks.16-18
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Scheme 3  The synthesis of p-hydroxypseudo-mauveine 13.

The product is unusual in having a potentially oxidisable group in it. This was rationalised by the low yield and by the precipitate by-product which could have reducing properties. The oxidation of a mixture of bis(4-methylphenyl)amine 14 and aniline gave mauveine derivative 15 (Scheme 4).  This was rationalised by assuming that mauveine synthesis begins from radical 16 which has greater stability. 
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Scheme 4 The oxidation of bis(4-methylphenyl)amine 14 and a proposed radical 16 which begins the synthesis in water.
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Scheme 5  A synthesis of mauveine N-methyl-C25b 18 from the oxidation of N-methyl-p-toluidine 17 and a proposed radical 19 which begins the synthesis.

Scheme 5  shows a synthesis using N-methyl-p-toluidine. The addition of an alkyl group onto the nitrogen atom of p-toluidine, and its use in mauveine sysnthesis, was new and we considered this an inventive step.  The methyl group allows more ready formation of the radical 19 which can begin the synthesis. The para methyl group must be present or the synthesis does not work . This is an interesting indicator of the role for the methyl group for stabilising the radical. 
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Scheme 6 A synthesis of N-methylmauveine A 20 and N-methylmauveine B 21.

Scheme 6 shows a synthesis using N-methyl-p-toluidine 17 and a mixture of both aniline and o-toluidine. This allows a mixture of chromophores to form, in similar yield, which were separated and characterised. 
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Scheme 7 The synthesis of N-Et 25, N-iPr 26 or N-tBu 27 substituted mauveine C25b chromophores.

The methodology was developed to  synthesise other N-alkylated derivatives. (Scheme 7). The  isopropyl group was still stable even though it has a more readily oxidised hydrogen atom. The conditions are mild, with little acid, which activates the oxidant. Attempts to remove the isopropyl group were unsuccessful.33 Interestingly the tert-butyl group is also stable in compound 27. Only a small quantity of the deprotected product 28 eluted initially from the column. Compound 27 is easily deprotected with strong acid to give mauveine C25b 28 (Scheme 8).
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Scheme 8 The deprotection of N-tert-butyl mauveine C25b 27 with strong acid.

3. Mauveine A and B via N-tert-butyl-p-toluidine

At first N-tert-butyl-p-toluidine 24 was difficult to prepare by the literature method of purification.37 Only small quantities were isolated pure. However when we scaled the reaction up to 10 g of starting material, the reaction product was easily diluted with a small quantity of water, and filtered to give the hydrochloride salt of N-tert-butyl-p-toluidine 30 free from residual p-toluidine (Scheme 9). A single crystal structure determination was carried out on the salt (Figure 3).
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Scheme 9  Synthesis of N-tert-butyl-p-toluidine hydrochloride 30  
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Figure 3  Top: Drawing of compound 30 determined by X-ray single crystal structure determination. Colourless blocks were obtained by recrystallisation from water. Bottom: Drawing showing the H-bonded chains with the chloride anions
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Scheme 10  The synthesis of mauveine A 9   and B 10  from N-tert-butyl-p-toluidine hydrochloride 30. 
The oxidation of a mixture of N-tert-butyl-p-toluidine hydrochloride 30, aniline and o-toluidine (1.0:1.5:1.5) and deprotection of the intermediate tert-butylated chromophores, gives mainly mauveine A and B, identical to the data reported previously (Scheme 10).21,22 The intermediate tert-butylated chromophores are always isolated as a pure mixture, but  have not yet been characterised by NMR.  Recently they were analysed by HPLC, and showed two strong signals with a longer retention time than  that of either mauveine A or B. There was no mauveine A or B present by HPLC. A spiking experiment with an A/B mixture was also done. TLC plates were photographed to compare mauveine made by Perkin’s historical method with that made here, and to compare authentic mauveine  with mauveine made here (Figure 4). Since the compounds are purple, visual comparison shows the striking differences, and the difference between mauveine made by the historical method and authentic mauveine. As stated before, mauveine made by Perkin’s historical method, or stated method, is taken to be mauveine made by the oxidation of a mixture of p-toluidine, o-toluidine and aniline, and it typically consists of four compounds, A, B2, B and C.22 Authentic mauveine is mainly mauveine A and B which our work suggests may be  made by a different method. These compounds stain silk, from hot water, the same shade as authentic mauveine. This is best described as a red-mauve shade. It is different to the colour which mauveine made by the historical method stains silk, which has a bluer tone.  Compound 28, mauveine C25b, stains silk a blue-mauve shade.33 Perkin first introduced these descriptions of shade for mauveine made with a higher or lower percentage of toluidines in the mix.15 W. H. Cliffe, in attempting a repeat of mauveine synthesis by the historical method, also commented on the dull and bluer shade of the mauveine that they prepared.9 Mauveine needs to be of high purity to get a bright shade on silk, and is difficult to purify like this.
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Figure 4 Top: Comparison of authentic mauveine, left, with mauveine made by the historical method (four spots are present). Bottom: Comparison of authentic mauveine, left, with mauveine made using N-tert-butyl-p-toluidine hydrochloride 30 (middle and right).

In figure 2 the structure of mauveine A can be compared with mauveine B2, and the structure of mauveine B can be compared to mauveine C. The pathways to each look similar, except that in mauveine B2, the central aryl ring came from p-toluidine, but from aniline in mauveine A. In mauveine C, the central aryl ring came from p-toluidine, but from aniline in mauveine B. Hence in authentic mauveine, and mauveine made by using N-tert-butyl-p-toluidine hydrochloride 30, the formation of mauveine B2 and C is blocked because the p-toluidine is substituted with a tertiary butyl group. 

TLC plates give a helpful and striking visual comparison, but they do not analyse the minor chromophores so readily. We therefore studied a large number of reactions by HPLC.39 Many control experiments have been performed, examining the mauveine products obtained by the historical method. In our hands this method always gives a different composition to authentic mauveine, and we have never been able to convert it into authentic mauveine. We already knew that the ratio of mauveine A to B was not optimum,34  and this was verified with HPLC. By lowering the pH slightly with more sulphuric acid, and lowering the excess of aniline from 3.0 equivalents to 1.5 equivalents, the ratio of A and B can be adjusted to match closely that in authentic mauveine. 

Figure 5 shows the HPLC analysis of authentic mauveine, a standard made by Perkin’s historical method, and the two spiked together. Authentic mauveine is dominated by mauveine A and B, as reported previously,22-23  and the standard has four main peaks of A, B2, B and C. It is clear, however, from chart 3 that in authentic mauveine Bx and Cx are not B2 and C respectively.
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Figure 5  HPLC charts 1-3 of mauveine samples or spiked samples. 

Chart 1: Authentic mauveine.

Chart 2: Standard of mauveine A, B2, B and C.

Chart 3: Standard mixed with authentic mauveine.
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Figure 6  HPLC charts 4-6 of modern  mauveine  or spiked samples. 

Chart 4: Modern mauveine made from N-tert-butyl-p-toluidine hydrochloride 30
Chart 5: Standard of mauveine A, B2, B and C mixed with modern mauveine.

Chart 6: Authentic mauveine mixed with modern mauveine.

Figure 6 shows an analysis of mauveine made using N-tert-butyl-p-toluidine hydrochloride 30 (modern mauveine), a standard of mauveine A, B2, B and C mixed with it, and authentic mauveine mixed with modern mauveine. These charts, as in figure 4, and others run on a longer 25 cm column show that the fingerprint peak, marked here as Bx, has the same retention time in modern mauveine and in authentic mauveine, but is definitely not mauveine B2 from the standard sample, made by Perkin’s historical method, as claimed before.22 As yet we do not know the identity of mauveine Bx. The retention time is correct for a B group chromophore, but this is not proven. In modern mauveine (chart 4) the C group chromophores are weaker, although sometimes they appear depending upon the conditions. The full set of charts and analyses are published in a recent paper.39 

4. The original synthesis of authentic mauveine?

The comparison casts doubt that the historical method was used for making authentic mauveine. In light of the above result, it would help to be certain of the fingerprint composition of the mauveine dyed onto early garments, as this could indicate the type of mauveine used with them,23 and hence how early authentic mauvine dates back to. Presumably the first mauveine, which has a different composition,22-23 was manufactured as described by Perkin, but later methods may be different to this and are reflected in the work here. However, without an experimental record from Perkin that fits the picture properly, or a record from some other manufacturer, it is likely to be difficult to give a final verdict on the true provenance of authentic mauveine which all can accept and see. For many no doubt, it may always be easier to believe that somehow the historical method can give the mauveine that we see in the modern composition. There are some good reasons for this, as well as Perkins testimony. One being the lack of an early industrial synthesis of tertiary butanol, say back in the late 1850’s. Butlerow prepared tertiary butanol on a small scale using Me2Zn in 186340 and then in 1869 a larger scale synthesis from 1-iodo-2-methylpropane with base was published.41 Nevertheless, the illuminating gas industry was large scale and millions of tons of coal were pyrolysed per annum. There were many by-products, and fusel oil, which contained isobutanol, was readily available from distillery’s. Secondly, tertiary butanol is a logical discovery from selectively protonating a mixture of alkenes, containing some isobutene, because protonation gives the stable tertiary butyl carbocation. Perkin makes one brief referal to illuminating gas in his 1868 Cantor lecture,8
‘I am here distilling some coal in a small glass retort, the beak of which is inserted into one of the openings of a three-necked receiver. The second opening is connected with a tube, so that the gaseous products may be examained, whilst the third and lower one is fitted to a small bottle, in which you see we have already obtained a quantity of an oily fluid. This is our coal tar.’

When Perkin sold his factory in December 1874, records show that it contained 7,000 tons of pitch, some of which would have been bought, 500 tons of coal, and many other chemicals including alumina, mauve paste and paste in work.39 Read Holliday also began his business distilling ammoniacal liquid from the illuminating gas industry, some of which presumably came from the ammonia scrubbers which contained dilute sulphuric acid, but so far no reports surface of tertiary butanol in this water.42 Isobutene is described, from tar gas, and that concentrated sulphuric acid will absorb isobutene.42 The absorption of alkenes into concentrated sulphuric acid is an old reaction noted by Faraday.43
5. 1-(Phenylamino)pseudo-mauveine 

In the authors research group a 10 g batch of 1,3,5-tris(phenylamino)benzene 31 was available from a previous project on aromatic amines. It bears resemblance to 1,3-bis(phenylamino)benzene used by Nietzki to make pseudo-mauveine 3.17 Oxidation of a mixture of  para-phenylenediamine 1 and 1,3,5-tris(phenylamino)benzene 31 with K2Cr2O7/H+ in a water : acetone solvent gave 1-(phenylamino)pseudo-mauveine 32 in good yield (Scheme 11). Acetone must be used with water as the solvent to solubilise the starting material 31, otherwise the reaction does not work. Typical mauveine chromophores have a λmax of 550-555 nm, the wavelength of light which the eye is the most sensitive to. However, compound 32 has a λmax of 535 nm which is shifted hypsochromically. The expectation was that extra conjugation would cause a bathochromic shift in the λmax. Clearly the effects of the two phenylamino groups are not additive.
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Scheme 11 Synthesis of 1-(phenylamino)pseudo-mauveine 32
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Scheme 12  Synthesis of 1,3,7-tris(phenylamino)-5-phenylphenazinium sulfate 33
Oxidation of a mixture of N-phenyl-para-phenylenediamine 5 and 1,3,5-tris(phenylamino)benzene 31 under similar condititons gave the expected compound 33 (Scheme 12). The compound was less soluble than compound 32 and had a λmax of 562 nm. It was blue, rather than purple, with a broad absorption extending into the red end of the spectrum, which may account for this. The compound 33 was characterised by proton NMR, but not  13C NMR, and this lower solubility did not encourage us to prepare more substituted derivatives such as a 1,3,7,9-tetrakis(phenylamino) substituted derivative. Our work on a suitable building block was diverted into a different hydrogen-bonded paddle-wheel project.44
6. Barsilowsky’s base and Perkin’s base

These two bases have a fascinating history, which was reviewed in detail in our paper.35  They are formed from the oxidation of p-toluidine with different oxidants, including the enzyme peroxidase by Saunders,45-47 but the oxidant and the conditions affects the relative amount of the two bases which form. KMnO4, used originally by Barsilowsky,48 gives only a trimer 35, whereas K2Cr2O7, used by Perkin,15 and Green,50 can give almost exclusively a trimer 35, just a tetramer 36, or a mixture of both (Scheme 13). 
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Scheme 13 The trimer 35 and tetramer 36 formed by the oxidation of p-toluidine.

To help clear up any confusion in the literature we characterised the trimer 35 and tetramer 36 by X-ray single crystal structure determination (Figure 7).
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Figure 7 Top: Structure of trimer 35. Bottom: Structure of tetramer 36.
A detailed study of the product ratio’s from different oxidants, concentrations, pH and temperatures allowed a mechanistic scheme to rationalise the pathway’s by which the different products can form (Scheme 14).35

[image: image26.emf]N

H

N

N

38

N

N

HN

H H

36

N

N

37

H H

p-toluidine (Michael addition)

p-toluidine

oxidant

oxidant

N

N

NH

2

35

NH

2

39

H

N

p-toluidine

oxidant

(Imine exchange

reaction)


Scheme 14  Short summary scheme showing how dimer intermediate 37  could give trimer 35 or tetramer 36 with K2Cr2O7 as oxidant. Dimer 39 gives exclusively trimer 35 with KMnO4 as oxidant.
The proposed chemistry involves some condensations which are classical Michael type additions, imminium salt exchanges, and of course oxidation. When the p-toluidine is less concentrated, intermediate 38 is more likely to convert to trimer 35, but when the p-toluidine is more concentrated it is more likely to give tetramer 36. Dimer 39 must form exclusively using KMnO4 as oxidant and only converts to the trimer 35. Cross-over experiments demonstrated that the trimer 35 does not convert to the tetramer 36 and visa versa. The bases are an interesting curiousity arising from the spontaneous assembly of p-toluidine. Likewise p-toluidine is thought to begin mauveine synthesis by initial oxidation and coupling to aniline or o-toluidine forming a para-phenylenediamine derivative.
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