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ABSTRACT: Bridge dynamic properties measured under a given vibration intensity 
condition would give a true picture of the behaviour for that particular condition. 
However, the use of the model derived from such data may not be reliable when applied 
for the prediction of response under a different vibration intensity condition. Therefore, it 
is necessary to investigate the structural dynamic behaviour at different levels of 
excitation in detail. This paper focuses on the experimental investigation of modal 
property variability at different levels of excitation. Both weak ambient vibration tests 
(induced by nearby traffic, wind and possibly microtremors) and forced vibration tests 
with different applied input force induced by eccentric mass shakers were performed on 
the Nelson St off-ramp bridge (an 11-span post-tensioned concrete, box girder structure 
forming a part of the motorway network in Auckland’s CBD). Three separate system 
identification methods, namely peak-picking (PP), the frequency domain decomposition 
(FDD) and the data-driven stochastic subspace identification (SSI) method, were applied 
for accurate structural modal parameter identification. It was found that the three output 
only identification techniques are able to extract natural frequencies of the structure 
reliably, while the time domain SSI method yields the best mode shape estimates and PP 
may not be able to give accurate mode shape estimates for some modes. The variability of 
the dynamic properties for the 1st vertical and lateral bending modes was examined.  A 
general trend of decreasing natural frequencies and increasing damping ratios was 
observed with increased level of vibration intensity. 

1 INTRODUCTION 

Dynamic properties of bridge structures, i.e. natural frequencies, damping ratios and mode shapes, are 
of significant importance in accurately predicting the dynamic response of structures at the design and 
reassessment stage. A majority of dynamic analysis procedures are developed around the assumption 
that the structure systems studied are time-invariant, and linear-elastic. However, it has been 
repeatedly demonstrated that these assumptions are disputable for many applications, and even small 
amplitude excitations can bring out non-linear features of the system (Trifunac et al. 2001; Butt and 
Omenzetter 2014; Butt and Omenzetter 2014), leading to erroneous analytical results. Therefore, it is 
necessary to investigate the structures dynamic behaviour at different levels of excitation in detail. For 
bridge structures, Shepherd and Charleson (1971) investigated the relationship between the eccentric 
weight of mechanical large shaker and the natural frequency of the tested abutment of a multi-span 
continuous deck bridge at the construction stage. Farrar et al. (2000) noted that the modal frequencies 
and mode shapes extracted from different vibration intensity tests on the Alamosa Canyon bridge were 
almost consistent, but there were significant changes in the damping ratios which were correlated with 
excitation amplitude. Fujino et al. (2000) observed that the fundamental frequency of a suspension 
bridge reduced as the wind speed increased. Zhang (2002) found the natural frequencies of the studied 
cable-stayed bridge can exhibit as much as 1% variation within a day due to different vibration 
intensity under normal traffic operation conditions. The damping ratios however are sensitive to the 
vibration intensity, especially when the deck vibration exceeds a certain level. These researches help 
us gain insight into the vibration intensity related dynamic behaviour of bridge structures preliminary. 

However, a comprehensive and systematic exploration for the magnitude-dependent dynamic property 
of a bridge system is still inadequate, due to the relative lack of adequate field testing data on their 
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dynamic behavior at different levels of vibration intensity, especially for long, multi-span, short-span 
highway/motorway concrete bridges. Another aspect is that significant uncertainties involved in 
vibration testing such as frequently unavoidable measurement noise, and this may hinder a more 
routine adoption of the structure identification results in support of bridge operational and 
maintenance management decisions. Thus, different parameter identification techniques need to be 
implemented to verify the reliability of the identified results and provides a bridge owner more 
confidence in using the identified results for decision making. 

This paper is intended to check the variability of dynamic properties of a typical eleven-span 
motorway bridge at different levels of excitation. A series of varying input force within a relative wide 
range was applied to the bridge, which was generated by using dual-arm contra-rotating eccentric 
mass shakers. Three separate structure identification methods, including peak-picking (PP) (Bendat 
and Piersol 1993), the frequency domain decomposition (FDD) (Brincker et al. 2000) and the data-
driven stochastic subspace identification (SSI) (Van Overschee and De Moor 1996), were 
implemented. Correlation analysis among these methods was carried out to reveal their advantage and 
disadvantage of dealing with in situ testing data contaminated by noise. The variability of dynamic 
property for 1st vertical and lateral bending mode was addressed preliminarily.  A general trend of 
decreasing natural frequencies and increasing damping ratios was observed with increased level of 
vibration intensity. The research result is expected to assist in evaluating current design and analytical 
assumptions. 

2 DESCRIPTION OF THE BRIDGE 

The in situ dynamic testing was undertaken on the Nelson St off-ramp bridge (Figure 1), which links 
the Northern Motorway to Auckland’s port and North-Western Motorway. The construction of the 
structure includes a total of 137 pre-cast concrete beams. These were delivered to the site and placed 
in their final position. Once in place, construction of the superstructure work and capping beams began 
using the moveable scaffold system. The bridge is a horizontally curved, post-tensioned, continuous 
concrete structure with a hollow box section girder. An elevation sketch showing span lengths and pier 
heights is displayed in Figure 2. 

 

Figure 1. Views of the Nelson St off-ramp bridge  

 

Figure 2. Elevation sketch of the bridge 
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3.2 Operational modal analysis 

The extraction of modal parameters from in situ dynamic testing was carried out by using three 
different techniques: PP, FDD and SSI methods. The PP is considered to be the simplest and the most 
popular method used in civil engineering to estimate the modal parameters of a structure. The method 
is based on the identification of the natural frequencies from the peaks of power spectrum estimates. 
Mode-shape components are then determined by the values of the transfer functions at the natural 
frequencies. The FDD method is based on the evaluation of the output spectral matrix. After this, the 
singular value decomposition of the spectral matrix is conducted. The obtained singular values are 
related with the natural frequencies, while singular vectors represent the corresponding mode shapes. 
Both PP and FDD techniques are implemented in the frequency domain, while SSI is a time domain 
method that directly works with time data, without the need to convert them to correlation functions or 
spectra. The data driven SSI algorithm extracts a system model in the state space using the measured 
output data directly. After the identification of the state space model, the modal parameters are 
obtained from the system matrices using eigenvalue analysis. The three methods referred to above are 
amongst the most widely used methods in civil engineering applications at the current state of the art 
and were applied to the Nelson St off-ramp bridge data for comparison of their performance. The data 
processing for modal identification was carried out by a modal parameter identification toolbox 
developed at the University of Auckland for civil engineering applications (Beskhyroun 2011). Figure 
4 shows the stabilization diagram for AVT data showing identified stable frequencies. 

 
Blue line: PP power spectrum; Green line: FDD identified frequencies; Red circles: SSI stable poles, A: identified 

frequencies 

 Figure 4. Stabilization diagram for AVT data. 

4 COMPARISON OF PP, FDD AND SSI 

Table 1 shows the identified natural frequencies and damping ratios from field testing data based on 
PP, FDD and SSI for AVT and FVT, respectively. The labels V and L stand for vertical bending and 
lateral bending mode, respectively. (Note not all modes were identified from AVT). The identified 
frequencies agree well among these three techniques. It is demonstrated that natural frequencies can be 
extracted from field dynamic testing reliably. A small difference of the identified natural frequencies 
between AVT and FVT can be observed, possibly due to a frequency-response amplitude relationship 
or testing environmental temperature variation etc. Damping ratios of between 0.4% and 2.6% were 
identified using SSI alone. These damping ratios are broadly in the range expected for concrete 
bridges. Differences between AVT and FVT damping results are clearly visible but are not larger than 
commonly encountered in experimental modal analysis. Figures 5 shows parts of identified mode 
shapes from AVT and FVT based on PP, FDD and SSI. Overall, a good agreement can be observed 
among the three methods, which means that the identified results have a relatively high reliability. 
However, the FDD and SSI yield more mutually similar mode shape estimates and PP cannot give 
good mode shape estimates for some modes, which can be clearly observed in Figures 5 c-l. In terms 
of the mode shape comparison between FDD and SSI, it can be observed from AVT that the estimates 
by SSI are more accurate than those by FDD, since the identified mode shape curves from SSI are 
typically much smoother than those from FDD. Especially for the 3L mode (Figure 5a, j), SSI gave 
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much better identified results without the discontinuity seen in the FDD results. It can be concluded 
that SSI has stronger ability to capture the latent signal characteristics in a noisy environment. On the 
other hand, for FVT both algorithms performed well and gave consistent mode shape identification 
results for the majority of modes, since the FVT data had a much higher signal-to-noise ratio 
compared to the AVT data due to the greater excitation force level. 

Table 1. Modal parameters obtained with PP, FDD and SSI. 

Mode 

Natural  frequency (Hz)  Damping ratio (SSI) (%) 

AVT FVT (one small mass) 
AVT FVT (one small mass) 

PP FDD SSI PP FDD SSI 

1V 3.17 3.17 3.22 3.20 3.17 3.18 1.8 1.1 
2V 3.83 3.83 3.82 3.83 3.87 3.91 1.4 1.5 
3V ― ― ― 4.14 4.18 4.19 ― 0.5 
4V ― ― ― 4.77 4.77 4.79 ― 1.5 
5V ― ― ― 5.63 5.66 5.66 ― 2.1 
6V ― ― ― 7.11 7.15 7.15 ― 1.6 
7V ― ― ― 7.89 7.93 7.92 ― 1.8 
1L ￣ ― ― 1.88 1.88 1.86 ― 0.4 
2L ― ― ― 2.58 2.54 2.56 ― 0.5 
3L 3.72 3.72 3.77 3.67 3.63 3.65 1.2 1.0 
4L 4.48 4.50 4.46 4.45 4.53 4.54 1.3 1.1 
5L 5.57 5.46 5.47 5.55 5.55 5.57 2.1 1.5 
6L 6.59 6.64 6.63 6.64 6.64 6.61 1.2 1.9 
7L 7.53 7.56 7.50 7.54 7.54 7.61 2.4 2.6 
8L 9.32 9.37 9..38 9.38 9.38 9.32 2.5 1.3 

 

a)  b)  

c) d)  

Figure 5. Mode shape comparison between PP, FDD and SSI: AVT a) 3L, b) 4L, c) 5L, d) 6L, e) 7L, and f) 
8L; FVT g) 2V, h) 3V, i)7V, j) 3L, k) 5L, and l) 7L 
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e) f)  

g) h)  

i) j)  

k) l)  

Figure 5. cont. 

5 MODAL PARAMETER VARIABILITY OF THE BRIDGE STRUCTURE 

In this section, modal property changes with the change of excitation level were investigated for the 
fundamental modes of the structure, i.e. the 1st vertical and lateral bending mode. The estimate of 
natural frequencies and damping ratios was based on PP, i.e. by examining the peaks of the 
normalized displacement response curves for resonant frequency and using the well-known half-power 
method (Chopra, 1995) for damping. Figure 6 shows the change in natural frequency and damping of 
the 1st vertical and lateral bending mode. Generally, it can be observed that the identified natural 
frequencies decrease with the increase of external excitation, while the identified damping ratios have 
an opposite tendency. Note that the natural frequencies and damping ratios have a much bigger 
difference with the loading change from one small mass loading to one big mass loading. Furthermore, 
from Figure 6c it can also be observed that the decreasing rate of the natural frequency for 1L become 
slower gradually with the increasing mass loading, which means the deterioration of structural 
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stiffness slows down. The decline of the natural frequency with the rise of the shaking magnitude can 
be explained in terms of structural stiffness deterioration due to the effects of material and structural 
nonlinearities, cracking, yielding and influence of non-structural element etc. From Figure 6d it can be 
seen the damping ratio of 1L only rise at the beginning, while remaining almost constant for one big 
mass to eight big masses. It is speculated the initial increment of lateral mode damping mainly came 
from the friction of bearing joints mobilization. One big mass loading level has mobilized the bearing 
friction movements fully, and no additional energy dissipation is available despite the higher mass 
loading levels afterwards. The variability of mode shape has also been checked, but no obvious 
difference can be observed. 

a) b)  

 

 

Figure 6. Modal paramter variability: a) 1V natural freuqecy, b) 1V damping, c) 1L natural freuqncy, and 
d) 1L damping 

6 CONCLUSIONS AND FUTURE WORK 

In this paper, both weak AVT and FVT with different applied input force induced by rotating eccentric 
mass shakers were performed on a 11-span contiguous concrete bridge, with a focus on checking the 
variability of dynamic properties of the structure. The following conclusions can be drawn based on 
the presented investigations: 
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1. Reliable natural frequency identification from field dynamic testing data can be achieved from 
either the frequency domain methods PP and FDD or the time domain method SSI. However, 
it is recommended to use PP on site to judge the overall dynamic characteristics of the 
structures quickly because of its fast natural frequency identification speed.  

2. The time domain method SSI yields the best mode shape estimates among the threes methods 
and is more robust for dealing with in-situ dynamic testing data contaminated by noise. It is 
suggested that SSI be applied to carry out detail analysis to obtain mode shapes when one 
comes back to the office, since the computational effort of the SSI technique is significantly 
higher than PP or FDD. 

3. The dynamic property variability was checked for 1st vertical and lateral bending mode, and 
the general trend found is that natural frequencies decrease with the increase of external 
excitation amplitude, while the damping ratios have the opposite tendency with the damping 
ratios initially increasing but later remaining constant. Both the frequency and damping have 
a much bigger change with the loading change from one small mass to one big mass. 

Future investigations will involve checking the variability of dynamic properties of the bridge for 
higher modes and comparing their changes with the lower modes. In addition, a quantitative 
relationship between displacement/acceleration amplitude or excitation force magnitude and natural 
frequencies/damping will be explored. 
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