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ABSTRACT
This paper addresses an uplink power control dynamic game
where we assume that each user battery represents the system
state that changes with time following a discrete-time version
of a differential game. To overcome the complexity of the
analysis of a dynamic game approach we focus on the concept
of Dynamic Potential Games showing that the game can be
solved as an equivalent Multivariate Optimum Control Prob-
lem. The solution of this problem is quite interesting because
different users split the activity in time, avoiding higher inter-
ferences and providing a long term fairness.

1. INTRODUCTION

Dynamic Games and in particular Differential Games play a
very important role in Game Theory (GT) in many applica-
tions as economic and management science [1]. As already
stated, solutions are very complicated and just few simplistic
examples are known to have closed expressions while in most
of the cases, only approximate solutions by discretizing state
/ actions spaces or parameterizing value / utility functions are
affordable. On the other hand, there are few publications on
Electrical Engineering [2]-[4] that consider some dynamic ef-
fect on standard scenarios, and few tools to characterize the
solutions, such as uniqueness of Nash equilibrium, or algo-
rithms for finding them. In this work we consider an uplink
scenario where a set of independent users need to define in-
dividually the power that they are going to allocate at each
discrete time instant in order to maximize its achievable rate.
It should be noted that if a subset of users decide to transmit
at time t they are going to interfere to each other, thus sig-
nificantly decreasing the achievable rate of every user. Also,
each user has a limited battery for the transmission over time.
This scenario describes a dynamic game where users try to

∗This work was supported in part by the program CONSOLIDER-
INGENIO 2010 under the grant CSD2008-00010 COMONSENS
†This work was supported in part by the Spanish Ministry of Science and

Innovation under an FPU doctoral grant.
‡This work has been partly funded with the project GRE3N (TEC 2011-

29006-C03-01/02/03) and in the program CONSOLIDER-INGENIO 2010
under project COMONSENS (CSD 2008-00010).

transmit, the remaining battery represents the “state” of each
user, and the state together with the achievable rate define the
“utility” of each user. Finally the power that each user de-
cides to allocate at each time t is the “action”. The discrete
time domain can be assumed in this scenario without loss of
generality since the users are not going to change their power
in a continuous way given that most communications system
define time intervals where the transmitted power need to be
fixed, for example time symbol or more generally frame du-
ration. In our case, this allows us to get closer relationships
between the problem formulation and the algorithmic imple-
mentation. Furthermore we consider an infinite (discounted)
horizon problem because our scenario is not constrained in
time, being the remaining energy of the battery the limitation
that will finish the game.

Our approach to solve the game is based on reformulat-
ing the game as an equivalent Multivariate Optimum Control
Problem (MOCP). This procedure, known as Dynamic Po-
tential Games [5], follows the same spirit as Static Potential
Games where the objective is to find an optimization control
problem whose solution coincides with the Nash equilibria of
the game. In many cases, it also provides information, un-
der certain hypothesis, about the uniqueness of the solution.
In dynamic scenarios, although the idea is similar, the verifi-
cation of the conditions needed by the game is not a simple
issue. The idea of Dynamic Potential Games has been very
recently formulated in [5] although the basic principles are
much older and originally developed by Dechert [6]-[9]. The
rest of the manuscript is organized as follows. Sec. 2 intro-
duces the dynamic game framework and presents the game as
a MOCP. Sec. 3 formulates our uplink power game and pro-
vides the potential function to solve the game as a MOCP. Sec.
4, presents different approaches to solve the uplink power
MOCP and finally Sec. 5 and 6 show the simulation results
and the conclusions.
2. GAME AS A CONTROL THEORETIC PROBLEM

In a dynamic game we have a set of players Q = {1 . . . Q},
where for each player i its utility function at discrete time
t is given by πi (xt,ut), and it depends both on the sys-
tem state xt = (x1t . . . xit . . . , xQt), with xit ∈ Xi, and on
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the set of actions of all players, denoted in vector form as
ut = (u1t . . . uit . . . uQt) with uit ∈ Ui. The discrete time
Dynamic Game can be represented as:

V i (x0) = max
{uit}

∞∑
t=0

βtπi (xt,ut)

s.t. xt+1 = f (xt,ut) , gi (xt,ut) ≤ 0

∀i (1)

Each user i intends to find the optimum sequence of actions
{uit} that maximizes its value function V i (x0) expressed in
terms of its own current and future (discounted) utility func-
tion πi (xt,ut). Parameter β < 1 is the discount factor. Very
importantly, there is one constraint related to the time evolu-
tion of the sequence of states {xt} typically depending on the
previous state and current actions (Markovian model). Also,
some extra constraints are included gi (xt,ut) ≤ 0 because
in most of the applications, states and actions are constrained.
Solving these problems requires finding the sequence of ac-
tions {u∗t } that provide a Nash equilibrium. Using similar
concepts as in static games:

∞∑
t=0

βtπi
(
xt,u

∗
−it, u

∗
it

)
≥
∞∑
t=0

βtπi
(
xt,u

∗
−it, uit

)
∀i

where the equation must hold ∀uit ∈ Ui and where u∗it ∈ Ui
represents the optimum action of user i at time t and u∗−it
is the same concept for all users except i . We will see next
that in practice, this optimization procedure is very compli-
cated because each user has to solve a constrained optimum
control problem where several coupled differential (or differ-
ence) equations are involved. Typically, for open loop solu-
tions, that is, u∗it = ϑ (t) can be solved using the Maximum
(or Pontryagin) Principle and for the closed loop (Feedback
Markovian u∗it = φ (x (t))) by solving the Euler Equation.
We should note that ϑ (t) and φ (x (t)) are precisely the opti-
mal trajectories (actions) to be determined.

We could solve the dynamic game in (1) by defining the
Lagrangian for each agent and optimizing. Then for the i-th
player, including the corresponding multipliers we have:

Li
(
xt,ut, p

i
t, λ

i
t

)
=
∑∞
t=0 β

t
(
πi (xt,ut) +

+pit (f (xt,ut)− xt+1) + λitgi (xt,ut)
) (2)

The first order condition for the optimization is given ∀t:

∂
∂ui

πi (xt,ut) + pit
∂
∂ui

(f (xt,ut)− xt+1)

+λit
∂
∂ui

g (xt,ut) = 0
(3)

and getting the dynamical equations by taking the Lagrangian
derivatives with respect pit and xt+1:

xt+1 = f(xt,ut)
β−1pit = ∂

∂xt+1
πi(xt+1,ut+1)

+pit
∂

∂xt+1
(f (xt+1,ut+1)− xt+2)

+λit
∂

∂xt+1
gi (xt+1,ut+1)

(4)

including the complementary slackness condition and the
positiveness of multipliers λit. It should be noted that the way
to solve the game through the Lagrangian is by solving eqs.
(3), (4) ∀t and ∀i.

An alternative to this approach is to define the game as an
equivalent Multivariate Optimum Control Problem. For this,
we consider the following control problem for a yet unspeci-
fied function Π (xt,ut):

max
{ut}

∞∑
t=0

βtΠ (xt,ut)

s.t. : xt+1 = f (xt,ut) , g (xt,ut) ≤ 0

(5)

Similarly to what is done in the game, we can find the optimal
solution from the Lagrangian

J (xt,ut, pt, λt) =
∑∞
t=0 β

t (Π (xt,ut) +
+pt (f (xt,ut)− xt+1) + λtg (xt,ut))

(6)

by getting the partial derivatives in the Lagrangian variables.
In order for the game in (1) to be equivalent to (5), functions
πi must satisfy the following conditions ∀i, j [6, 7]:

C1.
∂2πi

∂ui∂xj
=

∂2πj

∂xj∂ui

C2.a
∂2πi

∂ui∂uj
=

∂2πj

∂uj∂ui
,C2.b

∂2πi

∂xi∂xj
=

∂2πj

∂xj∂xi

C3.a
∂

∂xj

∫ Q∑
i=1

∂πi

∂ui
dui =

∫ Q∑
i=1

∂2πi

∂ui∂xj
dui

C3.b
∂

∂uj

∫ Q∑
i=1

∂πi

∂xi
dxi =

∫ Q∑
i=1

∂2πi

∂xi∂uj
dxi

If these conditions are fulfilled, the equivalent control
problem is finally given by:

Π (x,u) =

∫ Q∑
i=1

∂πi

∂xi
dxi +

∫ Q∑
i=1

∂πi

∂ui
dui (7)

including the same set of constraints as in the original prob-
lem. Note that Π (x,u) is expressed in terms of line integrals.

Solving both the optimization control problem (5) or the
system of equations (3), (4) would yield the solution of the
game, but its complexity may still be high enough to prevent
obtaining it through the Lagrangian in both cases. However,
the MOCP presents an easier structure to exploit, allowing a
representation through Dynamic programming, as we will see
in section 4.2.
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3. UPLINK POWER DYNAMIC GAME AS A
POTENTIAL DYNAMIC GAME

Let us now analyze the following particular game in the form
of equation (1):

max
{uit}

∞∑
t=0

βt

log

1 +
|hi|2 uit

1 +
∑
j 6=i
|hj |2 ujt

+ αxit


s.t. :xit+1 = xit − uit, xi0 = Xmax

i ,

0 ≤ uit ≤ Umax
i , 0 ≤ xit ≤ Xmax

i , ∀i

(8)

assuming t as an integer variable. It can be noticed that the
first term corresponds to maximizing a capacity term associ-
ated to each user, where hi is the channel coefficient of user
i and uit is the power used by user i at time t. The second
term (parameter α is just a scaling parameter as a degree of
freedom to weight properly both terms) corresponds to the
state of that user defined as the battery level measured as the
remaining power/energy left in the battery. Clearly, at ev-
ery time step, the more power is used, the less energy is left.
Also, standard constraints on the instantaneous power and en-
ergy level apply. This problem is inspired by [10] but adding
in this case one time-varying term representing energy con-
sumption.

In Annex A we show that (8) fulfills the conditions to be
solved as a MOCP where:

Π (xt,ut) = log

(
1 +

Q∑
m=1

|hm|2 umt

)
+ α

Q∑
i=1

xit (9)

Thus the equivalent control problem to the game in (8) is
given by:

max
{ut}

∞∑
t=0

βt

(
log

(
1 +

Q∑
m=1

|hm|2 umt

)
+ α

Q∑
i=1

xit

)
s.t. :xit+1 = xit − uit, xi0 = Xmax

i ,

0 ≤ uit ≤ Umax
i , 0 ≤ xit ≤ Xmax

i ∀i
(10)

Therefore, we have shown that if we are able to solve the
MOCP given by (10), we can guarantee that its solution is a
Nash equilibrium of the original problem given by equation
(8). We will solve this problem with a centralized algorithm
and with perfect channel state information.

4. SOLVING THE GAME

We will show next two approaches to solve the control prob-
lem avoiding the Lagrange approach explained in Sec. 2.

Algorithm 1 Multi-level Waterfilling Algorithm
1. Initialize uit for all i ∈ Q and t ∈ {0 . . . N − 1}, k ← 0

and tolerance ε.

2. For each i ∈ Q, do

(a) Compute Sit =
1+

∑
j 6=i |hj |2ujt

|hi|2 , t ∈ {0 . . . N − 1}

(b) Set µi0 = maxt
{
Umax
i + Sit

}
and µi

0
= 0

i. Calculate µi0 (k) =
µi
0+µ

i

0

2 and determine µit+1 (k)
for all t ∈ {0 . . . N − 2}.

ii. Apply the waterfilling rule

uit (k) =
[
µit (k)− Sit

]Umax
i

0
t ∈ {0 . . . N − 1}

iii. If
∑N−1
t=0 uit ≥ Xmax

i set µi0 ← µit (k), otherwise
µi
0
← µit (k).

iv. Set k ← k + 1

v. Repeat from step (2(b)i) until µi0 − µi0 ≤ ε
(c) Set uit ← uit(k) for player i

3. Repeat from step (2) until stopping criteria is met.

4.1. Waterfilling Algorithm

We propose first to solve the MOCP for a finite horizon for
a sufficiently large time limit, allowing this way an efficient
solution. Forming the Lagrangian from problem (10) with
finite time horizon yields

L (xt,ut,pt) =
N−1∑
t=0

βt

(
log

(
1 +

Q∑
m=1

|hm|2 umt

)
+

+α

Q∑
i=1

xit +

Q∑
i=1

pit (xit+1 − xit + uit)

)
s.t. 0 ≤ uit ≤ Umax

i , 0 ≤ xit ≤ Xmax
i , ∀i, t

and solving for the control variables with the KKT condition
∂L/∂uit = 0 for all i ∈ Q results into

uit =

[
1

pit
−

1 +
∑
j 6=i |hj |

2
ujt

|hi|2

]Umax
i

0

(11)

where [z]ba := min {max {z, a} , b}, t ∈ {0 . . . N − 1} and
where pit represents the inverse of a water level to be deter-
mined. To calculate these dual variables, the KKT condi-
tion ∂L/∂xit+1 = −βt+1

(
α+ pit+1

)
+ βtpit = 0 of the

state variables provide the relation pit+1 = 1
β p

i
t − α, t ∈

{0 . . . N − 2} which forms a recursive set of equations, for
a given first value pi0. The interpretation behind this result is
graphically understood with water levels which are different
from each other at all instants, but that are related with the
adjacent slots as the steps of a staircase would be, where the
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position of every step is given by pit+1. This multi-level wa-
terfilling is novel in its result, and can be formalized in Algo-
rithm 1, where we have introduced water level variables µit =
1
pit

for numerical reasons, that transform pit+1 into µit+1 =

βµit/1 − αβµit. We have solved the MOCP by applying a
Gauss-Seidel sequence of updates, where each control vari-
able determines the interference parameters on step (2a) with
the last known control variables from previously optimized
players. In addition to this, we have used a bisection algo-
rithm to determine the unknown water levels µi0 and recur-
sively solved for t ∈ {0 . . . N − 2}. The convergence of
Algorithm 1 is guaranteed due to the strict concavity of the
MOCP and boundness of the variable sets.

4.2. Iterative solutions based on Dynamic Programming

The control problem in (10) can be rewritten in a more com-
pact way following Dynamic Programming Principles as:

V (x0) = max
u0

Π (x0,u0) + βV (f (x0,u0))

s.t. : g (xt,ut) ≤ 0
(12)

where Π (xt,ut) follows the definition in (9) and g (xt,ut)
represent the boundary restrictions in (10). We can solve the
previous problem iteratively by following a value function it-
erative approach assuming that we are able to solve the right
hand side of equation (12) obtaining the optimal trajectory
u∗0 = φ(x0) and substituting back in (12) we get:

V (x0) = Π(x0, φ(x0)) + βV (f(x0, φ(x0))) (13)

Given that V (·) is unknown in a first stage, we propose to
iterate as shown in Algorithm 2. In practice, the loop ends
when a certain condition on the stability of the solution is
fulfilled. Policy iteration procedures can also be applied in a
very similar way. Note the solution is stationary, and that for
every state there is an optimal strategy.

Algorithm 2 Value function iterative algorithm
1. Initialize V0 (x) = 0

2. for k = 0 to∞, do
(a) find φk(x) = argmaxu Π(x,u) + βVk(g(x,u))

(b) Vk+1(x) = Π(x, φk(x)) + βVk(g(x, φk(x)))

5. RESULTS

In our simulation scenario we have consideredQ = 4 players,
a maximum transmit power level of Umax

i = 5, total battery
power Xmax

i = 33, forgetting value β = 0.95 and weight-
ing value α = 0.001. We have simulated both alternatives
given in previous section and they provide similar results, for
that reason we just show here results for the waterfilling al-
gorithm with time horizon N = 100. Channels are randomly

0 10 20 30 40 50 60 70 80
0

2

4

Time

Po
w

er

User 1
User 2
User 3
User 4

Fig. 1. Power Allocation of players

1 2 3 4
0

20

40

60

User

Su
m

of
in

st
an

tr
at

es

Taking the battery into account
Not taking the battery into account [10]

Fig. 2. Comparison according to battery considerations

obtained with zero mean gaussian complex distribution. We
can observe in Figure 1 that players transmit in strict order
where users that have better channels transmit first, and then
the rest. It seems, that this division in time avoids interference
to other users, and allows to achieve the highest value in the
potential function, and equivalently, in the game. This is the
case, because the utility considers that running out of battery
is detrimental towards the device’s performance and so users
decide to save battery until the channel becomes empty, coor-
dinating to avoid collisions in time. Note that the delay shown
among users appears naturally in the game and has not been
introduced in any equation. This is a feature that could be
taken into account with a different formulation in the future.

Finally in Figure 2 we have plotted the total sum of instant
capacities of each player as solved by Algorithm 1 (in blue)
vs. the proposed algorithm in [10] that does not consider the
state of the battery in its formulation (in orange):

uit = argmax
0≤uit≤Umax

i

log

(
1 +

|hi|2uit
1 +

∑
j 6=i |hj |2ujt

)
−γ|hi|2uit
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with γ = 0.1. With this comparison we simply state, that hav-
ing into consideration the battery life of the devices allows to
transmit more information for the life duration of the network.

6. CONCLUSION

This work formulates an uplink power control scenario as a
dynamic game, given that the battery of each user decreases
as they assign power in different time slots. To further solve
the dynamic game, first the game is reformulated as a control
problem, and latter waterfilling and iterative approaches are
proposed to solve the control problem. The results show an
interesting behavior where the users transmit in strict order
following a channel quality criteria.

A. ANNEX

We will prove next that πi (xt,ut) in (8) fullfils C1-C3 and
then solve the line integral in (7) to get the potencial function
Π (xt,ut). C1 is trivial ∂2πi

∂ui∂xj
= ∂2πj

∂xj∂ui
= 0 ∀i, j. To

validate C2.a we proceed as follows:

∂2πi

∂ui∂uj
= − |hi|2 |hj |2(

1 +
∑
m |hm|

2
umt

)2 (14)

and due to the symmetric structure in (14), it is straight-
forward to show that C2.a is satisfied. Identically for C2.b
∂2πi

∂xi∂xj
= ∂2πj

∂xj∂xi
= 0. And finally, for C3.a and C3.b we

have:

∂

∂xj

∫ Q∑
i=1

∂πi

∂ui
dui =

∫ Q∑
i=1

∂2πi

∂ui∂xj
dui = 0

∂

∂uj

∫ Q∑
i=1

∂πi

∂xi
dxi =

∫ Q∑
i=1

∂2πi

∂xi∂uj
dxi = 0

(15)

We solve now (7) in order to obtain the corresponding equiv-
alent optimal control problem. Let us analyze each term in-
dividually by defining ξ : [0, 1] → (U1 × . . .× UQ) like a
piecewise continuously differentiable path in the utility do-
main with ξi (0) = 0 and ξi (1) = ui and η : [0, 1] →
(X1 × . . .×XQ) like a piecewise continuously differentiable
path in the state domain with ηi (0) = 0 and ηi (1) = xi. We
must recall that in this case, initial state conditions would not
be null because batteries start from a full level, but we have
simplified the expression removing a constant term that is also
considered when defining the constraints:∫ Q∑

i=1

∂πi

∂ui
dui =

∫ 1

0

Q∑
i=1

∂πi (x, ξ)

∂ui

dξi(λ)

dλ
dλ =

=

∫ 1

0

∑Q
i=1 |hi|

2

1 +
∑
m |hm|

2
ξm (λ)

dξi (λ)

dλ
dλ =

= log

(
1 +

∑
m

|hm|2 ξm (1)

)
− log

(
1 +

∑
m

|hm|2 ξm (0)

)

The third equality results from the fact that
∑Q
i=1 |hi|

2
ξ′i is

the derivative of the sum term in the denominator of the inte-
gral. For the state term:∫ Q∑

i=1

∂πi

∂xi
dxi =

∫ 1

0

Q∑
i=1

∂πi (η,u)

∂xi

dηi (λ)

dλ
dλ =

= α

∫ 1

0

Q∑
i=1

dηi (λ)

dλ
dλ = α

Q∑
i=1

ηi (1)− α
Q∑
i=1

ηi (0)

Finally with the initial conditions defined before for ξi (·) and
ηi (·) and introducing the time reference we get:

Π (xt,ut) = log

(
1 +

∑
m

|hm|2 umt

)
+ α

Q∑
i=1

xit
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