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Hybrid Optimal Control Approach to Commercial Aircraft Trajectory Planning

Nomenclature

CD = coefficient of drag
CD0

= coefficient of parasite drag
CL = coefficient of lift
CLmax

= maximum coefficient of lift
CTc;4 = first thrust temperature coefficient
CVmin

= minimum speed coefficient
D = drag force, 0:5�V2SCD
Gt = temperature gradient on maximum altitude
GW = mass gradient on maximum altitude
g = acceleration due to gravity
h = altitude
hM0

= maximum operating altitude
hmax = maximum altitude at maximum takeoff weight under

Instrument Society of America conditions
hu = maximum dynamic altitude
K = coefficient of induced drag
L = lift force, 0:5�V2SCL
M = Mach number
MM0 = maximum operating Mach number

m = mass
_m = fuel flow
mmax = maximum mass (maximum takeoff weight)
mmin = minimum mass (operating empty weight)
_mmin = minimum fuel flow
S = reference wing surface area
T = thrust
Tmax = maximum thrust
V = true airspeed
VCAS = calibrated airspeed
VM0

= maximum operating calibrated airspeed
Vstall = stall speed
x = distance
� = angle of attack
�TISA = temperature deviation from International Standard

Atmosphere
� = thrust specific fuel flow
� = flight-path angle
� = atmospheric density

I. Introduction

A SUBSTANTIAL change in the current air traffic management
(ATM) paradigm is needed, because this system (which is

responsible for sustainable, efficient, and safe operations in civil
aviation) is reaching the limit of its capabilities. Its capacity, effi-
ciency, environmental impact, and flexibility should be improved to
accommodate airspace users’ requirements.‡ The need to fit aircraft
trajectories to ATM system requirements makes them difficult to be
optimized, and therefore suboptimal flight profiles are generally
being flown.

With this aim, this paper presents an approach to commercial
aircraft optimal trajectory generation in which different flight phases
and operational procedures can be combined so that a single optimal
control problem is solved. The coupling of these discrete flight
phases with the continuous aircraft dynamics results in a hybrid
system [1–3]. In particular, the flight of an aircraft intrinsically has
the characteristics of a controlled switched dynamic system [4,5].
Indeed, several flight modes can be distinguished for climbing,
cruising and descent, each with an associated dynamic model and a
set of path constraints.

[12]). Such knotting methods need knotting conditions to
connect adjacent phases. In our approach we convert the hybrid
optimal control into an equivalent, conventional optimal control
problem, making the unknown switching times part of the state
by using a method similar to those presented in [13,14]. In this
way, we do not need to connect adjacent phases with linkage
constraints. The resulting optimal control problem is then solved
using a Simpson collocation method [15,16].

The fundamental prior research work on aircraft trajectory
optimization within the current ATM concept was presented in [17].
The flight of an aircraft was modeled as a collection of phases and
procedures in which continuity of the state variables was imposed in
order to link phases, permitting discontinuities in control variables
and flight-path angle. Moreover, concatenating optimal phase-by-
phase solutions does not lead to an overall optimal trajectory.
Recently, in [18], a method to compute overall optimal trajectories
has been presented. Modeling the actual ATM paradigm, as in [18],
enforces the specification of two operative procedures per phase, for
instance, to climbwith constantVCAS and constant throttle setting, or
to perform a steady cruise: i.e., with constant Mach and constant
altitude. On the contrary, in this work we set only one operative
procedure per phase: e.g., to climb with constantVCAS, or to cruise at
constant altitude as in [19]. This assumption increases the complexity
of aircraft dynamic equations, but also gives more room for planning
more efficient flight profiles.

An application of our method to the trajectory optimization of a
vertical-point-mass model of an Airbus A-320 is reported. The
results show the efficiency of our approach.
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On the whole, it is difficult to find all the components for the
solution to hybrid optimal control problems because the optimal

sequence of discrete states is very difficult to determine. In our case,
the phase sequence is given, but optimal switching times must be
determined. Problems with known phase sequence have been
frequently solved in aerospace engineering as multiphase problems
[6–9], most of them were solved using pseudospectral methods
[10,11]. However, none of these works focused on commercial
aircraft. Pseudospectral knotting methods have been developed for
solving multiphase optimal control problems (see, for instance,
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II. Optimal Control Problem

A switched dynamic system is composed of a set of dynamic
systems:

_x� fk�x�t�; u�t�; t�; k 2 f1; 2; . . . ; NDg (1)

where x represent the n-dimensional state vector, and the set
f1; 2; . . . ; NDg represents the different dynamic systems. To control a
switched dynamic system, both anm-dimensional control input u�t�
and a switching sequence � have to be specified.We suppose that the
set of admissible control inputs is a set of piecewise-continuous
functions in t 2 �tI; tF�. A switching sequence in �tI; tF� is defined as
the timed sequence of N � 1 active dynamic systems:

� � ��tI; kI�; �t1; k1�; . . . ; �tN; kN�� (2)

where 0 � N <1, tI � t1 � � � � tN � tF, and kj 2 f1; 2; . . . ; NDg.
In this sequence, the pair �tj; kj� indicates that at time tj the dynamic
equation of the switched system changes from kj	1 to kj, with t0 � tI
and tN�1 � tF. As a consequence, in the time interval �tj; tj�1� the
system evolution is governed by the dynamic equation kj. In the
interval �tN; tF� the active dynamic system is kN .

The pairs �tj; kj� can be classified in two categories: those
corresponding to autonomous switches and those corresponding to
controlled switches. For instance, an autonomous switch may occur
when the aircraft reaches a prescribed altitude. On the contrary, a
controlled switch takes place in response to control inputs estab-
lished by the solution to the optimal control problem. In thiswork,we
assume that the sequence of phases is given by aflight profile; i.e., the
untimed sequence of active systems �� �kI; k1; . . . ; kN� is known.

The hybrid optimal control problem can be stated as follows:
Consider the switched dynamic system (1) whose state and control
variables are subjected to a set of equality and inequality constraints:

gk�x�t�; u�t�; t� � 0; hk�x�t�; u�t�; t� � 0

k 2 f1; 2; . . . ; NDg (3)

Given an initial state x�tI�, a final state x�tF�, a time interval �tI; tF�,
and a prescribed untimed sequence of active dynamic systems �,
find a piecewise-continuous input u�t�, the switching instants
�t1; . . . ; tN�, and the corresponding piecewise smooth trajectory x�t�
between x�tI� and x�tF� that fulfill Eqs. (1) and (3), and minimize

J� ��x�tF�� �
Z
tF

tI

L�x�t�; u�t�; t� dt (4)

The final time tF may be fixed in advance or left free.We assume that
fk, gk, hk, and � are smooth enough functions.

This hybrid optimal control problem is converted into an optimal
control problem, making the unknown switching times part of the
state and introducing a new independent variable with respect to
which the switching times are fixed [13,14]. In this reformulated
problem, there is a linear relation between the new variable and time,
but the slope of this linear relation changes on each interval between
two switches. These slopes, which are part of the solution to the
optimal control problem, are actually time scaling factors that
determine the optimal switching times (see Fig. 1).

As previously stated, the number of switches N and the sequence
of discrete states �, which the system evolves through, are known.
Without loss of generality, we can assume that tI � t0 � 0 and

tF � tN�1 � 1. The first step is to introduce the new state variables
xn�1; . . . ; xn�N , which correspond to the switching times ti for
i 2 f1; 2; . . . ; Ng: i.e., xn�i � ti, with _xn�i � 0.

We then introduce the new independent variable �. The relation
between � and t changes on each interval �ti; ti�1�. We establish
piecewise-linear correspondence between time t, and the new
independent variable �, so that for every chosen fixed point �i
(i� 1; . . . ; N), t equals ti. Any monotonically increasing sequence
ofN numbers on interval [0, 1] could be used.We set �i � i=�N � 1�.
As a result, we obtain the following expression:

t�

8<
:
�N � 1�xn�1�; 0 � � � 1

N�1
�N � 1��xn�i�1 	 xn�i�� � �i� 1�xn�i 	 ixn�i�1; i

N�1< � � i�1
N�1

�N � 1��1 	 xn�N�� � �N � 1�xn�N 	 N; N
N�1< � � 1

By introducing the new independent variable �, the evolution
equation on the interval �ti; ti�1� given by Eq. (1) becomes

x0 � �N � 1��xn�i�1 	 xn�i�f̂i�x; u; �� (5)

where prime denotes the derivative of ��� with respect to the new
independent variable � and

f̂ i�x; u; �� � fi�x; u; t����

Let x̂ be the extended state vector

x̂� �x1; . . . ; xn; xn�1; . . . ; xn�N �T

Then define on each interval

i

N � 1
< � � i� 1

N � 1

L̂�x̂; u; �� � �N � 1��xn�i�1 	 xn�i�L�x; u; t����

We can rewrite the functional (4) as

J� ��x̂�1�� �
Z 1

N�1

0

L̂�x̂; u; �� d� � � � � �
Z

1

N
N�1

L̂�x̂; u; �� d�

� ��x̂�1�� �
Z

1

0

L̂�x̂; u; �� d� (6)

and the task is tominimize J in the extended state space, subject to the
parameterized system given in Eq. (5), and to the corresponding path

t

τt1

t2

tN

tN+1

0 1
(N+1)

2
(N+1)

N
(N+1) 1

Fig. 1 Relation between scaled time � and real (unscaled) time t.
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constraints in Eq. (3). The new equivalent problem is a conventional
optimal control problem. The last N components of the optimal
solution of this problem, x̂
, will be the optimal switching times ti for
i� 1; . . . ; N.

III. Case Study

We consider a three-degree-of-freedom dynamic model that
describes the point variable-mass motion of the aircraft over a flat-
Earth model. We consider the vertical motion of the aircraft. A
standard atmosphere is defined with �TISA � 0. CL is, in general, a
function of the angle of attack and the Mach number: i.e.,
CL � CL��;M�. The lift coefficient is used as a variable rather than
the angle of attack. We assume a parabolic drag polar: i.e., CD�
CD0
� KC2

L.
These hypotheses lead to the following set of differential algebraic

equations (DAEs) for aircraft performance:

m _V � T 	D	mg sin �; mV _� � L 	mg cos �

_x� V cos �; _h� V sin �; _m�	�T (7)

where T and CL are the control inputs, and V, x, h, �, and m are the
state variables.

Given a commercial flight profile as a sequence of phases, initial
and final conditions, and a set of path constraints, our goal is to find
the minimum-fuel-consumption trajectory of the aircraft. Optimal
switching times between phases and total flight time are also to be
determined. The seven-phase flight profile used for the numerical
simulation with its corresponding aerodynamic configurations and
the operative procedures are given in Table 1. Note that according to
our purpose of planning more efficient flight profiles within the
current ATM paradigm, just one procedure per phase has been
defined and the constant value of performance has been left free.

The characteristics of an Airbus A-320 have been taken from the
Base of Aircraft Data (BADA) database.§ The different aerodynamic
configurations, the corresponding thresholds of use, and the value of
the aerodynamic parameters are listed in Table 2. The boundary
conditions of the flight are the following: xtI � 0, htI � 0, vtI�
115 m=s, �tI � 0:1 rad, mtI

�mmax � 77; 000 kg; xtF � 2000 km,
and htF � 0.

The path constraints of the problem are those that conform the
aircraft’s flight envelope and have been taken from the BADA
database manual [20]. CLmaxi

and Vstalli
, for i� 1; . . . ; 7, vary

depending on the aerodynamic configuration. The rest of the con-
straints are equal for all phases:

0 � h � min�hM0; hu�; CVmin
Vstalli

� V � VMo
M � MM0; mmin � m � mmax; 0 � CL � CLmax

i

T � Tmax; _mmin � _m (8)

where

hu � hmax �Gt��TISA 	 CTc;4� �GW�mmax 	m�

and CVmin
� 1:2. Regarding the landing phase, � has also been

constrained according to the typical values of an aircraft’s final
descent path: i.e.,

	 6 deg � �landing � 	3 deg (9)

The reformulated optimal control problem is stated as follows:

min J�
Z 1

N�1

0

L̂�x̂; u; �� d� � � � � �
Z

1

N
N�1

L̂�x̂; u; �� d� (10)

Subject to dynamic constraint

x0 � �N � 1��xn�i�1 	 xn�i�f̂i�x; u; �� (11)

switching dynamic constraint

x0n�1 � � � � � x0n�N � 0 (12)

initial boundary condition

x�tI� � xtI (13)

final boundary condition

 �x�tF�; tF� � 0 (14)

and path constraints

�li � �i�x; u� � �ui (15)

where i� 1; . . . ; 7 corresponds to the sequence of phases of the
flight given in Table 1, N � 6 is the number of switches, and

L̂�x̂; u; �� �m0. Equation (11) corresponds to the aircraft DAE
system given in Eq. (7), parametrized and particularized to the
dynamic mode of each phase. Equation (12) are dynamic constraints
associated to the switching variables. Equations (11) and (12)
constitute the DAE system for the extended vector x̂ and Eqs. (13)
and (14) are the initial and final conditions. Finally, Eq. (15)
corresponds to the set of constraints of each phase given in Eqs. (8)
and (9).

To solve the optimal control problem (10–15) a Simpson
collocation method [15,16] has been used. The resulting sparse
nonlinear programming problem (NLP), has been solved using
IPOPT [21]. It had 1795 variables, 1525 equality constraints, and
1599 inequality constraints. The total computational time on a
2.56 GHz laptop with 4 GB RAM was 80.9005 s, showing the high
computational efficiency of the method.

Table 1 Flight profile

Phase Name Configuration Procedure

1 Takeoff TO � � c1a
2 Initial climbing IC � � c2
3 Climb CR VCAS � c3
4 Cruise CR h� c4
5 Descent CR M� c5
6 Approach AP M� c6
7 Landing LD � � c7
aWith ci, for i� 1; . . . ; 7, being undetermined constant values.

Table 2 A-320 aerodynamic configurations

Configuration Flap CLmax
Threshold, fta CD0 K

TO 1� F 1.48 400 0.0393 0.0396
IC 1 1.35 2000 0.0242 0.0469
CR Clean 1.17 - 0.024 0.0375
AP 2 1.84 8000 0.0456 0.0381
LD Full 1.88 3000 0.0838 0.0371

aThreshold altitude for configuration change.

Table 3 Results

Phase Switches, s Consumption, kg Value

Takeoff 11.00 22.63 � given a

Initial climbing 50.43 104.951 � given
Climb 1186.16 1502.27 VCAS � 129:57 m=s
Cruise 7498.67 4728.21 h� 10; 780:1 m
Descent 8924.89 4896.79 M� 0:52
Approach 9037.08 4912.26 M� 0:52
Landing 9162.37 4930.51 � �	3:24 deg

aGiven by the initial condition.

§Data available online at http://www.eurocontrol.int/eec/public/standard_
page/proj_BADA.html [retrieved 15 March 2010].
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A. Results

Table 3 shows the six switching times between phases and the total
flight time (9162.37 s), the accumulated consumption at the end of
every phase (4930.51 kg total consumption), and the constant values
that describe aircraft performance in the different flight procedures.
These values are also part of the optimal solution.

The optimal control law, the optimal switching instants, and the
evolution of the state variables are represented in Figs. 2–5. For the
sake of clarity, both control inputs and state variables are represented
in terms of scaled time � and in terms of real time t. Scaled time �
ranges from 0 to 1. A discretization grid has been defined for � with
n� 270: phases 1, 2, 4, 6, and 7withni � 30 and phases 3 and 5with
ni � 60.

In Figs. 2–5 the seven phases are clearly distinguishable in both
timescales. Switches between phases 1–2, 2–3, 5–6, and 6–7 are
autonomous; i.e., they occur when the aircraft reaches the respective
threshold altitudes. On the contrary, switches between phases 3–4
and 4–5 are controlled, since they are given by the control lawwithin
the optimal solution. Both the cruise altitude and the starting point of
descent (respectively, switches 3 and 4) are not prefixed, but are set
by the optimal solution, leading the system to the overall minimum
fuel consumption.

Figures 2–4 show the state variables. In general, except for the case
of � (Fig. 4), all state variables vary smoothly, and � exhibit high-
frequency dynamics in phases 3 and 5, but are within reasonable
values for aircraft performance. Figure 5 shows the expected
behavior of control inputs.

B. A Posteriori Verification

Direct-transcription methods do not use the calculus of variations
first-order necessary conditions [22]. However, it has been demon-
strated that Karush–Khun–Tucker NLP necessary conditions
approach the optimal control necessary conditions as the number
of variables grows [23].

Therefore, we first mapped the discrete solution to the continuous
domain using spline polynomials. The continuous control and state
variables satisfy the normalized dynamic equations with a tolerance
between 10	4 and 10	6 in most of the time domain. However, in
small intervals close to the switching times they are not fulfilled, due
to spurious wiggles in the interpolant polynomial.

Additionally, it is necessary to check that our solution fulfills the
calculus of variations first-order necessary conditions. For this
purpose, we compared the direct-transcription solution with the first-
order necessary conditions [24].Weused thefinal values of states and
costates obtained from the direct solution to backward integrate the
state and costate dynamics together with the control algebraic
equations. If initial state xI is accurately recovered, the first-order
necessary conditions are fulfilled, thus verifying the optimality of the
direct-transcription discrete solution (see [16,25] for more details).

Using this procedure, we recovered the normalized initial state, as
shown in Table 4.

IV. Conclusions

The hybrid optimal control approach herein presented provides an
overall optimal solution for a realistic seven-phase complete flight in
which total fuel-consumption is minimized and switching times are
obtainedwithin the extended problem.We show that another concept
of operation in air traffic management is possible, planning more

efficient flight profiles toward cost-effectiveness, environmental
sustainability, and, at the same time, meeting safety requirements.
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