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Expectation Propagation Detection for High-Order
High-Dimensional MIMO Systems

Javier Céspedes, Pablo M. Olmos, Member, IEEE, Matilde Sánchez-Fernández, Senior Member, IEEE, and
Fernando Perez-Cruz, Senior Member, IEEE

Abstract—Modern communications systems use multiple-
input multiple-output (MIMO) and high-order QAM constella-
tions for maximizing spectral efficiency. However, as the number
of antennas and the order of the constellation grow, the design of
efficient and low-complexity MIMO receivers possesses big tech-
nical challenges. For example, symbol detection can no longer rely
on maximum likelihood detection or sphere-decoding methods,
as their complexity increases exponentially with the number of
transmitters/receivers. In this paper, we propose a low-complexity
high-accuracy MIMO symbol detector based on the Expectation
Propagation (EP) algorithm. EP allows approximating iteratively
at polynomial-time the posterior distribution of the transmitted
symbols. We also show that our EP MIMO detector outperforms
classic and state-of-the-art solutions reducing the symbol error
rate at a reduced computational complexity.

Index Terms—High-dimensional MIMO communication sys-
tems, high-order QAM, low complexity, expectation propagation.

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) sys-
tems are getting to a mature stage with a significant

deployment in several wireless communication systems [1].
MIMO systems increase capacity (throughput) through the
multiplexing gain, improve reliability (reduced symbol error
rate and outage) and augment transmission range thanks to
the diversity (or array) gain [2], [3]. These gains scale with
the dimension of the MIMO system, roughly with the number
of transmit/receive elements. However, some limitations pre-
vent the widespread deployment of high-dimensional MIMO
systems. Specifically, spatial restrictions due to deploying a
large number of radiating elements close by and the complexity
(energy consumption) of the signal processing at both ends.
Despite these issues, novel studies [4], [5] suggest benefits from
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incorporating a very large number of transmitting/receiving
elements and they point out some feasible solutions for its
practical implementation.

Symbol estimation and detection is a particularly sensitive
process in high-order high-dimensional systems. Even in an
additive white Gaussian noise MIMO scenario, assuming per-
fect channel state information (CSI), a memoryless channel and
uniformly distributed transmitted symbols, the maximum like-
lihood (ML) detector needs to explore all possible transmitted
vectors, i.e.,

ûML = arg max
u∈An

p(u|y) = arg min
u∈An

‖Hu− y‖2 (1)

where u is the transmitted symbol vector taken from an n-
dimensional alphabet An of order |A|, H is the m× n MIMO
complex channel matrix and y is channel observation vector.
The ML detector in (1) is NP-hard [6] and constitutes a bottle-
neck for high-order high-dimensional MIMO systems. Sphere
decoding (SD) methods try to replicate the performance of
ML by solving the minimization in a sub-space of An [7]–
[12]. However, the dimension of this sub-space must grow
rapidly with n, the modulation order and the inverse of the
signal-to-noise ratio (SNR) to maintain the good performance,
making prohibitive its computational complexity in very large
MIMO systems. In particular, the genetic soft-heuristic algo-
rithm (GSA) detector recently proposed in [11], despite out-
performing some of the best sphere decoding methods such
as SUMIS [12], is only effective for low-order constellations
(BPSK and QPSK).

Linear detectors (LD), such as the minimum-mean-squared
error (MMSE) [13], have been widely adopted, because of their
polynomial-time complexity (an n× n matrix inversion is the
leading computational complexity term). MMSE detection per-
formance can be significantly improved in large MIMO systems
following a divide-and-conquer approach, namely successive
interference cancellation (MMSE-SIC) [14], [15], at a higher
computational complexity but still O(n3). The performance of
LD detectors and LD-SIC detectors can be further improved
with lattice reduction techniques (LR) [16].

Random step methods such as Tabu Search (TS) [17] typi-
cally require to compute the MMSE solution to then perform an
iterative descend method by evaluating ‖Hu− y‖2 in a certain
neighborhood. While TS has been shown to achieve near-ML
performance for large n and low order constellations (QPSK)
with a complexityO(n3L), where L is the number of iterations,
it shows poor performance for high-order constellations even
for unboundedL. Layered Tabu Search (LTS) [18] improves the
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TS performance for higher-order constellations by performing
detection in a layered manner, where the TS algorithm is
applied at each one of the n-th layers, but its complexity scales
as O(n4L). Besides, to keep good performance, the number of
iterations L has to grow rapidly with the constellation order,
e.g. it is set to L = 20 for QPSK and L = 200 for 64-QAM
in [18].

The GTA algorithm in [19] constructs a Gaussian tree ap-
proximation of the posterior distribution and relies on Belief
Propagation (BP) for approximating the posterior distribution
of the transmitted symbol, i.e. p(u|y). The GTA enhanced by
successive interference cancellation (GTA-SIC) [20], at similar
complexity to MMSE-SIC, improves GTA, MMSE-SIC and the
improved MMSE-SIC using lattice reduction techniques [16]
and it can be considered one of the state-of-the-art solution for
efficient detection in large MIMO systems.

In this paper, we propose the Expectation Propagation (EP)
algorithm [21]–[23] as a low-complexity and high-accuracy
solution for symbol detection in high constellation order, high-
dimensional MIMO systems. EP generalizes BP in two ways.
First, EP can naturally and efficiently work with continuous
distributions by moment matching (BP needs to propagate the
full distribution) and it powerfully deals with more complex
and versatile approximating functions, e.g., tree or forests. For
instance, in the context of LDPC channel decoding, we have
proposed EP to construct a Markov-tree discrete approximation
to the posterior distribution of the coded bits, obtaining accu-
rate estimates to the marginal probability for each coded bit
and improving the BP solution for finite-length LDPC codes
[24]–[27].

To the authors’ best knowledge this is the first time EP is
applied to MIMO detection. Using EP, we construct a Gaussian
approximation to the posterior distribution of the transmitted
symbol vector, i.e. qEP(u) ≈ p(u|y). EP follows an iterative
procedure to construct qEP(u) that aims to match the first
two moments for each MIMO dimension, whose direct com-
putation from p(u|y) becomes computationally prohibitive for
large n. The EP convergence, as in BP, is not guaranteed for
loopy graphs, but it has never been an issue in our numerous
simulations. Even for a very large MIMO order, like n = 250
transmitting antennas, an excellent approximation is achieved
with less than 10 iterations and the complexity per iteration
is dominated by a n× n matrix inversion. Simulation results
show that the number of required iterations does not scale as
we increase the dimension or the constellation order, and thus
the total algorithm complexity remains O(n3). Performance
evaluation of the proposed EP algorithm shows remarkable
improvement compared to GTA-SIC and other approaches in
the literature with comparable complexity. In addition, EP is
a soft-output algorithm that additionally provides a posterior
probability estimate for each received symbol, which can be
naturally fed to modern channel decoders [28], while the ap-
proaches proposed in the previous paragraph cannot provide
such an estimate (or would not be accurate).

In this paper, we focus on high-order constellation, high-
dimensional MIMO systems. The proposed detector does not
impose any specific relation between the number of antennas
or any channel statistics. However, for performance evaluation

we focus on a single-user MIMO scenario with n = m. If we
keep constant one of the channel matrix dimensions and we
let the other go to infinity, it is known that the simplest
linear processing techniques are optimal [4], [29] under cer-
tain channel conditions. For instance, if the channel matrix
can be considered orthogonal, in the uplink the receiver can
simply apply a matched filter to decouple the information of
each of the transmitting antennas, and drastically reduce the
complexity of the detector. However, the convergence to this
behavior has been shown to be slow [30] requiring that the
number of transmitting antennas is significantly smaller than
the number of receiving antennas (n � m). Besides, in many
realistic channel environments an infinitely large number of
antennas in one of the communication sides does not lead to
fully orthogonal channels [30]. For all of the above, complex
detectors would be needed and thus EP can be regarded as
an alternative to MMSE or any other proposed detector in the
literature.

The paper proceeds as follows. In Section II we show the
system model and present previous approaches in the literature.
In Sections III and IV we detail the EP algorithm, and specifi-
cally tailor it to detecting the symbols in a MIMO system, and
analyze its computational complexity. In Section V exhaustive
experimental results are presented. We conclude the paper in
Section VI.

II. LOW COMPLEXITY MIMO SYMBOL DETECTION

Let n be the number of transmitters and assume all of
them transmit symbols from the same M-QAM constellation1,
where A denotes the set of symbols of the constellation and
Es the mean symbol energy. The transmitted symbol vector
is a n× 1 i.i.d. vector u = [u1, u2, . . . , un]

� = a+ jb, where
each component ui = ai + jbi ∈ A.

The symbols are transmitted over a flat-fading complex
MIMO channel defined by the m× n matrix H, where each
coefficient is drawn according to a proper complex zero-mean
unit-variance Gaussian distribution and m is the number of
receiving antennas. The channel output y = [y1, y2, . . . , ym] ∈
C

m is given by

y = Hu+w (2)

where w is an additive white circular-symmetric complex
Gaussian noise vector w = [w1, w2, . . . , wm]� with indepen-
dent zero-mean components and σ2

w-variance.
Given the model above, the posterior probability of the

transmitted symbol vector u has the following expression:

p(u|y) = p (y|u) p(u)
p(y)

∝ N (y : Hu, σ2
wI)

n∏
i=1

Iui∈A (3)

where Iui∈A is the indicator function that takes value one
if ui ∈ A and zero otherwise. Note that p(u) ∝ ∏n

i=1 Iui∈A
is uniform across all points in An, although non-uniform
signaling could be handled by any of the proposed or

1None of the reviewed or proposed algorithms need the input constellations
to coincide across inputs, but we assume so to simplify the notation.2



reviewed algorithms in this paper. The signal-to-noise ratio is
defined as

SNR = 10 log10

(
nEs

σ2
w

)
. (4)

Inference in graphical model is typically presented using
real-valued random variables, instead of complex-valued vari-
ables used in signal processing for communications, and we
believe the EP algorithm is better understood that way. Con-
sequently, we first reformulate the complex-valued MIMO sys-
tem into a real-valued one, before presenting the EP detector.
The system model in (2) can be translated into an equiva-
lent double-sized real-valued representation that is obtained
by considering the real R(·) and imaginary parts I(·) sep-

arately. We define ũ = [a� b�]�, ỹ = [R(y)� I(y)�]�,
w̃ = [R(w)� I(w)�]� and

H̃ =

[R(H) −I(H)
I(H) R(H)

]
. (5)

The channel model can now be written as follows:

ỹ = H̃ũ+ w̃, (6)

p(ũ|ỹ) ∝ N
(
ỹ : H̃ũ, σ2

w̃I
) 2n∏

i=1

Iũi∈Ã, (7)

where σ2
w̃ = σ2

w/2 is the variance of the real and imaginary
components of the noise, Ã is the alphabet for the real and
imaginary components of the symmetric M-QAM signal with
energy Ẽs = Es/2. In the rest of this paper we adopt the real-
valued channel model formulation in (6) and (7) and we drop
the model indicator (̃·) to keep the notation uncluttered.

In the rest of the paper, the operator diag(·) when applied to
a vector, e.g. diag(x), returns a diagonal matrix with diagonal
given by x and for a given square matrix X, e.g. diag(X),
denotes its diagonal vector (just as Matlab would do it).

A. MMSE Detector and Successive Interference Cancellation

The MMSE detector [13] first proceeds by computing

μMMSE =

(
H�H+

σ2
w

Es
I

)−1

H�y (8)

and it then performs a component-wise hard decision by pro-
jecting each component of μMMSE into the corresponding
QAM constellation:

ûi,MMSE = arg min
ui∈A

|ui − μi,MMSE|2 (9)

The complexity is dominated by the matrix inversion in (8),
given by O(n3) [13]. To intuitively relate the MMSE solution
with the GTA and EP detectors, it is interesting to present the
MMSE solutionμMMSE in (8) as the mode of an approximation
to the posterior probability p(u|y) in (3)[31], that we denote by
qMMSE(u). The posterior approximate is directly obtained by

replacing the discrete uniform prior p(u) in (3) by a zero-mean
and Es-variance independent Gaussian distribution:

qMMSE(u) ∝ N (
y : Hu, σ2

wI
)∏

i

N (ui : 0, Es). (10)

Since qMMSE(u) is now Gaussian distributed the mode and the
mean coincide and a simple calculation shows that

EqMMSE
[u] = μMMSE. (11)

The MMSE detector provides poor performance, because the
multidimensional Gaussian approximation in (10) is not a
sensible model for large MIMO systems with high-order con-
stellations. The MMSE performance is significantly improved
by successive interference cancellation, yielding the so-called
MMSE-SIC [14], [15]. Iteratively, we only decide over the
component with the smallest diagonal element in the covariance
matrix in (8) and remove its effect in the channel output. After
each iteration, we update the received vector

y(�+1) = y(�) − hiû
(�)
i,MMSE (12)

where hi denotes the i-th column of H and its effect is
removed from the channel matrix given the current decision, i.e.
û
(�)
i,MMSE, and we drop hi from H. In a nutshell, MMSE-SIC

improves the MMSE detector, because we use a one-
dimensional Gaussian approximation per iteration and we
decide only over the component that we have more certainty.
Despite MMSE-SIC requires to perform n times a MMSE ma-
trix inversion similar to that of in (8), the algorithm’s complex-
ity can be lower down to O(n3)[15] by efficiently computing
the matrix inversion at each iteration using the matrix inversion
lemma (a rank-one update given the inverted matrix from the
previous iteration).

B. GTA and GTA-SIC

The Gaussian tree approximation was first proposed in [19]
as a feasible method to improve the MMSE-SIC solution for
MIMO detection. GTA is based on the following idea: given
the posterior (3), we first ignore the discrete nature of the prior
p(u) and replace it by a non-informative prior:

pn−i(u|y) ∝ N (
y : Hu, σ2

wI
)

=N (
u : z, σ2

w(H
�H)−1

)
, (13)

where z = (H�H)−1H�y. Consider the family of all possible
Gaussian distributions with probability density functions that
factorize according to a certain tree graph, i.e. any Gaussian
distribution with pdf g(u) such that

g(u) =
∏
i

g
(
ui|up(i)

)
, (14)

where p(i) is the set of parents of ui and the associated
factor graph is cycle-free. Now, GTA finds the distribution
in such family that minimizes the Kullback-Leibler diver-
gence DKL(pn−i(u|y)‖g(u)). Provided that pn−i(u|y) is also
Gaussian, the solution for gGTA(u) is known in closed-form3



[19] and it can be computed at cost O(n2). Finally, we go back
to the original posterior p(u|y) in (3) and replace the Gaussian
term by the Gaussian tree distribution gGTA(u):

qGTA (u|y) ∝
∏
i

gGTA

(
ui|up(i)

)∏
i

Iui∈A. (15)

Since qGTA(u) is a tree factor graph, we can use Belief
Propagation to compute the symbol marginals that are then
used for decision. BP over the factor graph qGTA(u) has a
complexity O(n2|A|2). While the overall complexity is dom-
inated by the matrix inversion (H�H)−1, the overhead in-
curred to compute the tree approximation gGTA(u) and running
BP is not negligible for typical-sized MIMO systems. While
the GTA performance is similar to MMSE-SIC for low and
medium signal-to-noise ratio (SNR), GTA outperformsMMSE-
SIC for high SNR and it has a significant lower computational
complexity [19].

Recently, Goldberger has shown in [20] that successive in-
terference cancellation substantially improves the GTA perfor-
mance, in line with MMSE-SIC improvements. The procedure
described before is repeated n times, since per iteration we
only decide over the symbol that has the least uncertainty and
its effect is canceled from the system as in (12). Evaluating
the n matrix inversions during GTA-SIC, using the techniques
proposed in [15] to efficiently implement MMSE-SIC, requires
O(n3) iterations and performing n times the Gaussian tree
approximation and running BP have a cost of O(

∑n
k=1 k

2) ≈
O(n3) operations for sufficiently large n. Results reported for
GTA-SIC in [20] shows that it is able to outperform the best
linear detectors for MIMO detection proposed in the literature
in the past years, such as MMSE and MMSE-SIC with lattice
reduction using the Lenstra-Lenstra-Lovász (LLL) algorithm
[32], [33].

III. EXPECTATION PROPAGATION

Expectation Propagation [21]–[23], [34] is a technique in
Bayesian machine learning for approximating posterior beliefs
with exponential family distributions2. Suppose we are given
some statistical model with latent variables x ∈ Ωd that factors
in the following way

p(x) ∝ f(x)

I∏
i=1

ti(x), (16)

where f(x) belongs to an exponential family F with suffi-
cient statistics Φ(x) = {φ1(x), φ2(x), . . . , φS(x)} and ti(x)
i = 1, . . . , I are nonnegative factors. For instance, if F is the
multivariate Gaussian family,Φ(x) = {xi, xixj}di,j=1. Assume
now that performing inference over the distribution p(x) in
(16) is analytically intractable or prohibitively complex. In this
scenario, EP provides a general-purpose framework to construct
a tractable approximation to p(x) by a distribution q(x) from

2A comprehensive introduction to exponential families and their properties
can be found in [35].

F . The resemblance between q(x) and p(x) is achieved by
designing q(x) such that

Eq(x) [φj(x)] = Ep(x) [φj(x)] j = 1, . . . , S, (17)

where Eq(x)[·] denotes expectation with respect to the distri-
bution q(x). Equation (17) is known as the moment matching
condition. When both q(x) and p(x) are defined over the same
support space and measure, the moment matching condition
in (17) is equivalent to finding q(x) in F that minimizes the
Kullback-Leibler divergence with p(x), i.e.

q(x) = arg min
q′(x)∈F

DKL (p(x)‖q′(x)) . (18)

One naïve approach to find q(x) would be to first compute
the moments Ep(x)[φj(x)] for j = 1, . . . , S and second to
construct q(x) according to them. By assumption, this is not a
viable option since we cannot do inference over p(x). To over-
come this problem, Minka proposed a sequential EP algorithm
to iteratively approach the solution in (17) at polynomial time
complexity [21], [36]. The main idea behind the sequential EP
algorithm is the fact that, while performing inference over p(x)
in (16) is intractable, we typically are able to perform inference
over a distribution of the form

p̂i(x) ∝ f(x)ti(x), (19)

in which there is only present one of the factors ti(x) i =
1, . . . , I in (16) that do not belong to the exponential family
F . The sequential EP algorithm is as follows. First, assume the
following factorization for q(x) ∈ F

q(x) = f(x)

I∏
i=1

t̃i(x), (20)

where t̃i(x) ∈ F for i = 1, . . . , I . Note that we have simply
replaced each one of the ti(x) factors in (16) by a member t̃i(x)
ofF . Given an initial proposal q(0)(x) and being q(�)(x) the ap-
proximation to q(x) in (18) at iteration �, q(�+1)(x) is obtained
by updating each one of the t̃i(x) factors independently. For
i = 1, . . . , I ,

1) Compute the cavity distribution

q(�)\i(x) .
=

q(�)(x)

t̃i(x)
∈ F . (21)

2) Compute the distribution p̂i(x) ∝ ti(x)q
(�)\i(x), and find

Ep̂i(x) [φj(x)] (22)

for j = 1, . . . , S.
3) The refined factor t̃newi (x) is obtained so that

Et̃new
i

(x)q(�)\i(x) [φj(x)] (23)

coincides with (22) for j = 1, . . . , S.

The sequential EP algorithm is run until a convergence crite-
rion is met or a maximum number of iterations is reached. As
shown in [34], this algorithm can be interpreted as a coordinate4



gradient descent over the parameter space of the q(x) distri-
bution to find a saddle point of a certain energy function. As
such, the convergence to a saddle point is not guaranteed [37].
Nonetheless, sequential EP has been shown to achieve accurate
results, typically close to the moment matching solution, in a
wide range of applications [21], [23].

As shown in [22] and [23], if a factor ti(·) in (16) only
depends on a subset xi ∈ Ωdi of the x components, di < d,
then the approximate factor t̃i(xi) in (21) is defined over the
same domain and its update at each iteration can be alternatively
performed over the marginal distribution q(xi). An example of
this alternative procedure is the EP approximation to the MIMO
symbol posterior distribution p(u|y) in (3) that we present in
detail in the next section.

IV. THE EXPECTATION PROPAGATION MIMO DETECTOR

The MMSE approximation to the true posterior distribu-
tion in (10) replaces the prior over the transmitted symbols
by a zero-mean independent component-wise Gaussian whose
variance equals the QAM symbol mean energy. Intuitively it
might make sense to chose the parameters of the Gaussian
prior this way, because it matches the first two moments of the
input distribution. However it is certainly not the best choice,
as we are interested in matching the posterior distribution to
optimally detect the transmitted symbols. In this paper we pro-
pose to approximate the symbol posterior distribution p(u|y)
by a Gaussian approximation qEP(u) = N (u : μEP,ΣEP) that
is optimized using the EP framework. Thus, the optimal EP
solution will be

μEP =Ep(u|y)[u], (24)

ΣEP =CoVarp(u|y)[u]. (25)

While the direct computation of the p(u|y) moments requires
|A|n operations, the sequential EP update rules [22], [23]
allows to iteratively approximate (24) and (25) at polynomial
complexity with n. Once the iterative method has stopped, the
EP detector (EPD) computes the hard output ûEP by indepen-
dently deciding on each component:

ûi,EP = arg min
ui∈A

|ui − μi,EP|2 (26)

for i = 1, . . . , 2n.

A. Parallel EP Iterative Method

In the following we present the formulation of the EP update
rules according to [22], [23]. Given the factorization of the
posterior in (3), we replace each one of the non-Gaussian
factors by an unnormalized Gaussian:

q(u) ∝ N (
y : Hu, σ2

wI
) 2n∏
i=1

eγiui− 1
2Λiu

2
i , (27)

where γi and Λi > 0 are real constants. For any vector γ ∈ R
2n

and Λ ∈ R
2n
+ , q(u) is a Gaussian with mean vector μ and

covariance matrix Σ

Σ =
(
σ−2
w H�H+ diag(Λ)

)−1
, (28)

μ =Σ
(
σ−2
w H�y + γ

)
, (29)

The EP iterative method approximates the solution in (24)
and (25) at polynomial complexity by recursively updating
the pairs (γi,Λi), i = 1, . . . , 2n. For each input dimension,
we use a single non-Gaussian factor from the posterior (3)
at each iteration. We initialize γi = 0 and Λi = E−1

s for all i
(this would give the MMSE solution). At each EP iteration all
pairs (γ(�+1)

i ,Λ
(�+1)
i ) for i = 1, . . . , 2n are updated in parallel,

where � denotes the EP iteration. Given the i-th marginal of the
distribution q(�)(u), namely q

(�)
i (ui) = N (ui : μ

(�)
i , σ

2(�)
i ), the

pair (γ(�+1)
i ,Λ

(�+1)
i ) is computed as follows:

1) Compute the cavity marginal

q(�)\i(ui) =
q(�)(ui)

exp
(
γ
(�)
i ui − 1

2Λ
(�)
i u2

i

) ∼ N
(
ui : t

(�)
i , h

2(�)
i

)
,

(30)
where

h
2(�)
i =

σ
2(�)
i(

1− σ
2(�)
i Λ

(�)
i

) , (31)

t
(�)
i =h

2(�)
i

(
μ
(�)
i

σ
2(�)
i

− γ
(�)
i

)
. (32)

2) Compute the mean μ
(�)
pi and variance σ

2(�)
pi of the

distribution

p̂(�)(ui) ∝ q(�)\i(ui)Iui∈Ai
. (33)

3) Finally, the pair (γ(�+1)
i ,Λ

(�+1)
i ) is updated so that the

following unnormalized Gaussian distribution

q(�)\i(ui) exp

(
γ
(�+1)
i ui − 1

2
Λ
(�+1)
i u2

i

)
, (34)

has mean and variance equal to μ
(�)
pi and σ

2(�)
pi . A simple

calculation shows that the solution is given by

Λ
(�+1)
i =

1

σ
2(�)
pi

− 1

h
2(�)
i

, (35)

γ
(�+1)
i =

μ
(�)
pi

σ
2(�)
pi

− t
(�)
i

h
2(�)
i

. (36)

The parameter update in (35) may return a negative Λ
(�+1)
i ,

which should be positive, because it is a precision (inverse
variance) term. This result just means that there is no pair
(γ

(�+1)
i ,Λ

(�+1)
i ) that places the variance of the Gaussian in (34)

at σ2(�)
pi . In this case, we simply keep the previous values for

these parameters, i.e. γ(�+1)
i = γ�

i and Λ(�+1)
i = Λ�

i , and update

all the other pairs, (γ(�+1)
j ,Λ

(�+1)
j ) for j 
= i.

Note that the update rules described above only need the
marginal for each component. Given γ(�) and Λ(�) and once5



Fig. 1. Evolution of each component of the EP mean μ(�) in (29) as EP
iterates for a n = m = 2 scenario with a 256-QAM constellation and SNR =
15 dB. In blue dashed lines, we indicate the mean of the true posterior p(u|y).

we have computed Σ(�) and μ(�) using (28) and (29), then
all (γ(�+1)

i ,Λ
(�+1)
i ) pairs for i = 1, . . . , 2n can be updated in

parallel. Finally, to improve the robustness of the algorithm, in
[22] and [38] it is suggested to smooth the parameter update
(i.e., a low-pass filter) in (35) and (36) by a convex combination
with the former value, namely

γ
(�+1)
i =β

(
μ
(�)
pi

σ
2(�)
pi

− t
(�)
i

h
2(�)
i

)
+ (1− β)γ

(�)
i , (37)

Λ
(�+1)
i =β

(
1

σ
2(�)
pi

− 1

h
2(�)
i

)
+ (1− β)Λ

(�)
i , (38)

for some β ∈ [0, 1] and we have set in our experiments β =
0.2. We halt the algorithm when the mean and covariance
component-wise variation is less than 10−4 between two con-
secutive iterations or a maximum number of iterations has
been reached. Also, to avoid numerical instabilities, we have
set σ2(�)

pi = max(ε,Varp̂i
[ui]), where ε = 5× 10−7 in our ex-

periments is a small constant that sets the minimum variance
allowed per component.

B. Matching the Posterior Moments

To illustrate the EP ability to match the moments of the
true posterior p(u|y), we consider a low dimensional scenario
where we are able to compute mean and covariance matrix of
p(u|y). In Fig. 1, in solid red lines we show an example of the
evolution of the components of the EP mean vector μ(�) in (29)
as EP iterates for a given channel observation y in a n = m = 2
scenario with a 256-QAM constellation and SNR = 15 dB.
Note that the MMSE estimate would be the EP solution at
iteration 1. In blue dashed lines, we indicate the mean of the
posterior p(u|y) (real and imaginary parts). As shown, in 10
iterations, the EPD already provides an accurate estimate of
the mean of the posterior distribution p(u|y) in (3). For the
same scenario, Fig. 2 shows an example of the evolution of
the diagonal components of the EP covariance matrix Σ(�) in

Fig. 2. Evolution of each component of the EP covariance Σ(�) in (28) as EP
iterates for a n = m = 2 scenario with a 256-QAM constellation and SNR =
15 dB. In bue dashed lines, we indicate the variance of the marginal symbol
posterior p(ui|y).

(28) as EP iterates. In blue dashed lines, we indicate the real
and imaginary values of the variance of the marginal symbol
posterior p(ui|y).

Despite the fact that the EP iterative method does not guar-
antee convergence to the exact moment matching solution,
the distribution q(u) constructed is able to present moments
very close to the posterior true mean and variance. As shown
in Fig. 1 and Fig. 2, the EP algorithm, besides accurately
matching the posterior mean, provides a reliable measure of
the uncertainty per symbol, identifying which symbols can be
decided with high grade of confidence and for which ones the
risk of error in hard decision is large. Neither GTA-SIC nor
MMSE-SIC provide such kind of soft-output information.

C. EPD Complexity

The complexity of EP per iteration is dominated by the com-
putation of the covariance matrix in (28) and the mean vector in
(29). The complexity of this step is identical to the MMSE and
GTA posterior covariance matrix computation and mean vector
in, respectively, (11) and (13). Once the EP marginals q(�)(ui)
for i = 1, . . . , 2n have been computed, the parallel update of
all pairs (γ�

i ,Λ
�
i) ← (γ

(�+1)
i ,Λ

(�+1)
i ) for i = 1, . . . , 2n has a

small computational complexity, linear in n|A|. Thus, if EP
is run L iterations, the final complexity is O(n3L+ n|A|L).
The comparison of this complexity with the complexity of
GTA-SIC and MMSE-SIC depends on the channel time varying
characteristics:

• In a static block fading channel where the channel matrix
H is constant during T consecutive symbol times, the
MMSE-SIC matrix inversion only has to be computed
once and thus the complexity of detecting the T blocks
of n symbols is given by O(n3 + Tn2)[4]. The compu-
tation of the tree approximations in (15) for GTA-SIC
has to be done for each channel observation y and thus,
the complexity to detect the T blocks of n symbols is
O(Tn3). Similarly, all the EPD processing depends on6



the channel observation vector and, hence, its complexity
is O(n3LT + n|A|LT ). Then, the EP detector is approx-
imately L times more complex than GTA-SIC and LT
times more complex than MMSE-SIC and MMSE.

• In a quasi-static block fading channel model where the
fading coefficients do not change within one time symbol,
but vary every symbol time [39], namely T = 1 in the
former scenario, the EP complexity to detect each block
of n symbols is approximately L times more complex than
GTA-SIC, MMSE-SIC, and MMSE.

As we show in the next Section, regardless the dimension
of the MIMO scenario, the EP detector is able to provide a re-
markable performance improvement with respect to GTA-SIC.
Regarding the actual number of EP iterations required, we also
show that EPD only needs a few iterations and no improvement
can be observed between L = 10 and L = 100. Furthermore,
in high-dimension scenarios, a noticeable performance gain
with respect to GTA-SIC is already reported with only L = 2
iterations. Namely, twice the complexity of GTA-SIC.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the EPD
algorithm for MIMO detection in high-order high-dimensional
scenarios. We have averaged our results for 5000 realizations of
the channel matrix. We consider five scenarios of increasing di-
mension: n = m = 12, n = m = 32, n = m = 64, n = m =
100 and n = m = 250. The detector performance is shown in
terms of the symbol error rate (SER) as a function of the SNR
defined in (4).

In all scenarios we compare EPD with MMSE, GTA and
GTA-SIC3. Scenario n = m = 12 also allows an implemen-
tation of ML based on the Schnorr-Euchner variant [40] of
sphere decoding. In our analysis, we do not include comparison
with respect MMSE-SIC since its tends to overlap with GTA
in most of the SNR range [19]. Besides, we do not include
performance results for MMSE and MMSE-SIC detectors with
LR techniques. In [20], it is shown that GTA-SIC is able
to improve MMSE-SIC with lattice reduction using the LLL
algorithm, which achieves the best results to date among LR
based MIMO detection methods [32], [33], [41].

We first consider a scenario with n = m = 12 antennas and
16-QAM modulation. In Fig. 3, we compare the performance
of EPD with L = 100 iterations (EPD 100), L = 10 iterations
(EPD 10) and with only L = 2 iterations (EPD 2) with GTA-
SIC, GTA and MMSE. Also, ML performance is provided to
show how far we are from the optimal solution. First, note that
running EPD for 100 iterations does not result in an appreciable
gain in performance with respect to the case L = 10. We can
observe that EPD 100 only outperforms EPD in 0.1 dB for
SER = 10−3 and its complexity is ten times higher. Compared
to the ML solution we are far about 3 dB for SER = 10−3.
Compared to other sub-optimal methods, EPD with 10 itera-
tions is able to improve the GTA-SIC performance in 1 dB for
SER = 10−3.

3The C code for GTA and GTA-SIC can be accessed in the author’s web site,
see [20] for details.

Fig. 3. SER performance of EPD with L = 100, L = 10 and L = 2 it-
erations, GTA-SIC, GTA MMSE and ML for the case n = m = 12 and a
16-QAM constellation.

Fig. 4. SER performance of EPD with L = 100, L = 10 and L = 2 itera-
tions, GTA-SIC, GTA and MMSE for the case n = m = 32 and a 16-QAM
constellation.

A similar study is done in Fig. 4 for a scenario with n =
m = 32 antennas and 16-QAM modulation, excluding the ML
solution, which we are now unable to compute. First, note
that again running EPD for 100 iterations does not result in
an appreciable gain in performance with respect to the case
L = 10. Besides, with 10 iterations, EPD is able to improve the
GTA-SIC performance in 1.8 dB for SER = 10−3. Compared
with the n = m = 12 scenario, the gap between EPD 10 and
GTA-SIC is significantly augmented. Indeed, for SNRs above
20.5 dB and with only two iterations, the EP detector outper-
forms GTA-SIC. For SER = 10−3 and L = 2, it exhibits a gain
of 0.8 dB. Therefore, for SNR above 20.5 dB, we can modulate
the number of iterations in EP between L = 2 and L = 10
according to our complexity constraints without degrading the
performance above the GTA-SIC curve.

Now we examine the case n = m = 64. In Fig. 5(a), we
include performance results for the case of 16-QAM constel-
lation. As in the 32 × 32 scenario, EPD 10 achieves the same7



Fig. 5. SER performance of EPD with L = 100, L = 10 and L = 2 itera-
tions, GTA-SIC, GTA and MMSE for the case n = m = 64 and (a) 16-QAM
constellation and (b) 64-QAM constellation.

performance that EPD 100 while clearly improving GTA-SIC.
For SER = 10−3, gains in SNR of 2.1 dB for L = 10 and of
1.3 dB for L = 2 are reported. In Fig. 5(b), we increase the
constellation to a 64-QAM with similar performance results.
In this case, the measured gain with respect to GTA-SIC is of
1.6 dB when L = 10 and 0.9 dB when L = 2 at a SER = 10−3.

Similar conclusions can be drawn from Fig. 6, where per-
formance results are shown for the case n = m = 100 (a)
and n = m = 250 (b) with 16-QAM constellation. The gain
between EPD with 10 iterations and GTA-SIC is of 2 dB. For
the n = m = 250 case, despite GTA-SIC outperforms EPD 2 in
most of the SNR range, with 4 iterations the EP detector already
exhibits a gain of 1.7 dB with respect to GTA-SIC. Besides, for
this scenario, we can appreciate a small gap, close to 0.1 dB,
between EPD with L = 100 and L = 10 iterations. We have
observed this gap vanishes by running EP up to 15 iterations.

The EP detector is not only to be the best detector in all
scenarios, but, for fixed constellation, it is able to increase
the gain with respect to GTA-SIC as the number of antennas
grows, achieving gains up to 2 dB for hundreds of antennas. The

Fig. 6. SER performance for the case (a) n = m = 100 and (b) n = m =
250 and 16-QAM constellation.

best results are achieved within 10 iterations, namely ten times
the GTA-SIC complexity, but performance gains at moderate
SNRs can be achieved with only 2–4 iterations. Note also that,
compared to other alternatives in the literature such as random
step methods [17], [18], the EP detector exhibits an excellent
performance even though the the number of iterations does
not scale with the number of antennas or the constellation
size. Consequently, EPD emerges as a powerful and efficient
method to implement the receiver detector in high-order high-
dimensional MIMO scenarios.

VI. CONCLUSION

The design of efficient large MIMO digital receivers is a
challenging open problem. In this paper, we focus on symbol
estimation and detection in MIMO systems when the num-
ber of antennas is very large and we work with high-order
constellations. Classical methods such as Zero Forcing and
MMSE present poor performance. Modern detection meth-
ods based on Successive Interference Cancellation, such as
MMSE-SIC, or lattice reduction techniques using the LLL
algorithm achieve a significant improvement, yet they are still8



far from the optimal maximum likelihood performance. Re-
cently, the GTA-SIC algorithm has been proposed to outper-
form MMSE-SIC-LLL and it provides remarkable results in
large MIMO low-cost detection. In this paper, we put forward
a symbol detector based on the Expectation Propagation al-
gorithm to solve this problem. EP is a powerful approximate
inference technique to construct tractable approximations to a
given probability distribution. We have shown that in a few
iterations EP converges to a Gaussian distribution whose mean
and covariance matrix are close to the corresponding moments
in the true posterior distribution of the transmitted symbol
vector, thus constituting an excellent tool to perform symbol
decision. The EP method is robust and fast: regardless the
number of antennas or the constellation order, EP with only ten
iterations is able to outperform GTA-SIC, achieving SNR gains
that grow with n for fixed constellations. Even with only two
iterations, EP outperforms GTA-SIC at moderate SNR.
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