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Abstract: Scanning-Transmission and Transmission Electron Microscopy techniques (STEM 
and TEM) have been applied to the characterization of nanostructured gadolinium oxides 
doped with europium synthesized by spray pyrolysis. The High Angle Annular Dark Field 
(HAADF) – Scanning Transmission Electron Micros-copy (STEM) tools have been used to 
perform a tomographic study to identify morphological character-istics of nanostructured 
particles, and to differentiate them according to the heat treatments to which these have been 
subjected. With these techniques it has been possible to confirm the hollowness and por-ous 
nature of samples subjected to low temperature annealing (900 ºC). Moreover, the beginning of 
the densification and sintering processes in samples subjected to thermal treatment at higher 
temperature (1100 ºC) have been evaluated. Chemical analysis by electron energy loss 
spectroscopy (EELS) and X ray energy dispersive spectroscopy (EDS) carried out in STEM 
mode have allowed to confirm the high uni-formity and the expected chemical composition. 
The high resolution tools either allowed to confirm the presence of a cubic (Ia3 symmetry) and 
the monoclinic (c2/m symmetry) phases in the nanostructured particles.

1. Introduction

The development of several bottom up synthesis methods, in re-
cent years, has stemmed from the increasing interest in obtaining
nanostructured particles with improved properties. Of these meth-
ods, the so-called Spray Pyrolysis (SP) is arguably one the most
useful [1]; this method enables the production of non-agglomer-
ated spherical particles with a large surface area and narrow parti-
cle size distribution [2]. A precursor solution is atomized producing
fine droplets that are transported to a high temperature reactor.
Several processes occur, including solvent evaporation, solute dif-
fusion, droplets drying, precipitation, and reactions between the
precursor/gas [1,2]. Depending on the atomizing technique, pro-
cessing parameters (carrier gas flow rate, residence time, decom-
position temperature) and physicochemical properties of the
precursor solution (concentration, pH, surface tension, viscosity)
lead to obtain particles ranging from few nanometers to several
micrometers [3]. Several authors [4,5] have focused on the forma-
tion and growth mechanism of nanoparticles. This process involves

tives are mainly focused on making hollow or filled particles with 
rough or smooth surfaces [4].

Many progresses in the field of nanostructured ceramic materi-
als with functional applications depend on the particle morphol-
ogy, structure and composition. These properties are highly
sensitive to the specific aspects of particle geometry, local crystal
structure or variations in the chemical composition. Most research,
however, has been undertaken using characterization techniques
mainly based in conventional Scanning Electron Microscopy
(SEM) or Transmission Electron Microscopy (TEM). However, char-
acteristics such as the porosity or roughness of nanoparticles re-
quire the use of specific tools.

The advances in nanotechnology related to the decrease of the
particle size and improvement of their functional properties also
bring new challenges for materials characterization and defect
analyses [6]. These include surface roughness measurements, char-
acterization of defects or understanding three dimensional (3D)
geometries [7,8]. The characterization of the 3D structure is essen-
tial to understand the morphology of materials [9]. The method of
3D tomography is based on the processing of images which are ta-
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the nucleation, growth and aggregation of primary nanoparticles 
leading to the formation of a spherical assemblage of secondary 
particles. Among the different application requirements, the objec-
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ken in sections using penetrating waves. This maximizes the view-
ing directions, allows the internal structure of to be observed and
can provide quantitative 3D information on material characteris-
tics [10].

The 3D image is the volumetric reconstruction of an object from
many sequential views; with each view the angle of incidence with
respect to the sample surface is varied [11]. This approach was first
successfully applied in the field of life sciences [12,13]. In materials
science, nanoscale tomography is a vibrant and multifaceted re-
search field that is currently in a period of rapid development. It
provides important material information on surface analysis, for
example, the porosity or geometry of materials [14].

The use of HRTEM, HRSTEM and electron diffraction in combi-
nation with highly sensitive spectroscopic techniques (EELS–EDS)
provides insights into the relationship between microscopic struc-
ture, chemical variations and functional properties with greater
ease. EDS can give elemental information and EELS, on the other
hand, can not only give elemental information but can also be used
to obtain information on chemical and physical properties [14].

In the present study, the goal was to carry out a detailed char-
acterization that contributes to understand the growing mecha-
nisms during SP. The three characterization tools addressed were
morphology, structure and chemical composition. The morphology
was studied using the tomography by STEM. The chemical analysis
was studied using two complementary techniques, EELS and EDS.
Finally, the structural control was assessed by combining high res-
olution techniques (HRTEM, HRSTEM) and electron diffraction.

The characterization was carried out over nanoparticles of rare
earth oxides of Gadolinium doped with Europium synthesized by
SP. Gadolinium or Yttrium doped with Europium oxides are impor-
tant due to their luminescent properties [15,16]. Higher lumines-
cence efficiency and long-term stability of this material are
mostly associated with investigating optimum doping concentra-
tion, nanostructuring and obtaining overall morphology control.
In comparison to phosphor particles obtained by conventional
methods that have micron-sized grains and irregular morpholo-
gies, the use of fine submicronic spherical particles increases the
screen brightness and improves the resolution because of lower
scattering of light and higher packing densities [17,18]. It is evident
that the control over morphology and size; stoichiometry and com-
position; and surface characteristics must be established during
synthesis process in order to obtain the desirable objectives of im-
proved powder phosphors [19].

Both the morphology and structure affect the quality of their
luminescent properties. Luminescence studies carried out in Gd2-

O3:Eu3+ phosphor system have demonstrated that annealing and
crystalline phases control both the thermoluminescence and
radioluminescence signals [15]. Characteristic bands in the
emission spectra are assigned to Eu3+ ion radiative 5D0 ?

7Fi
(i = 0,1,2,3,4) transitions. In all the samples maximum intensity
peak is at 611 nm wavelength belonging to 5D0 ?

7F2 transition
[20]. All observed transitions are due to the Eu3+ in C2 and S6
crystallographic sites. In Y2O3:Eu, the lifetime measurements re-
vealed the quenching effect with the rise of dopant concentration
and its more consistent distribution into host lattice due to the
thermal treatment [16]. However, there are currently a number
of doubts concerning the specific morphological characteristics
(roughness, porosity) that affect the quality of the luminescent re-
sponse. Here, Gd2O3:Eu3+ phosphors were obtained through spray
pyrolysis from pure nitrate solution. Host gadolinium/yttrium
oxides exhibit two polymorphic forms, cubic (low temperature)
and monoclinic (high temperature) structures [21,22]. This
paper aims to provide the results from new techniques to clarify
in detail the morphological, chemical and structural aspects
related to the synthesis and post-treatments performed by the
SP method.

2. Materials and methods

2.1. Powder processing

Powder samples were prepared by the SP method from water
solution of Gd(NO3)3�6H2O and Eu(NO3)3�5H2O as precursors in or-
der to obtain ‘‘as-prepared’’ particles having 0.07/0.03 Gd-to-Eu
molar ratio. The common water solution (0.1 mol dm�3) was ultra-
sonically atomized with a device working at 2.1 MHz and subse-
quently decomposed in a high-temperature tubular flow reactor
(length 1.6 m, radio 22 � 10�3 m) at 700 �C. Dried air was used as
a carrier gas (flow rate 2.5 � 10�5 m3/s). The drop velocity was
0.00657 m/s in order to obtain a residence time in the entire tube
of 24.33 s and a residence time in the reaction zone of 7.6 s. Sam-
ples were subjected to post thermal treatments in air atmosphere
at 900 �C (nn-900) and 1100 �C (nn-1100) for 12 h.

2.2. Microscopic characterization

The tomographic study was conducted over two representative
samples annealed at 900 �C and 1100 �C/12 h. The tilt-series were
automatically acquired on a TEM Tecnai G2 F20 X-Twin (FEI Com-
pany) used in STEM mode with a Fischione model 3000 HAADF
detector for Z contrast imaging. A Fischione single-tilt tomography
holder with a maximum tilt range of ±80� was used. Samples were
tilted around the a-tilt axis of the goniometer from �76� to +76� at
regular intervals of 2�. This minimizes artifacts due to the limited
tilt range during acquisition known as missing-wedge artifacts
(part of the tilt-range not covered during the tilt-series acquisition)
[23].

Seventy-seven micrographs 1024 � 1024 pixels in size were ac-
quired automatically at a nominal magnification of 160.000 times.
The magnification typically corresponds to a pixel size of 1.6 nm2

with a field of view of 1.64 lm2 and voxel size of 1.6 nm3 Align-
ment was done using cross correlation between successive images
in the tilt series, sequentially compensating for image shifts
through the entire tilt series, thus making marker tracking unnec-
essary [8]. After that, the alignment of the 3D volume was recon-
structed using iterative weighted back projection [24]. The
simultaneous iterative reconstruction algorithm (SIRT) [23] with
15 interactions using Inspect 3D v 2.5 X press edition software
suite (FEI Company) and the Resolve RT (Mercury Computer Sys-
tems, FEI edition) software have been used for visualization and
rendering.

The structural and chemical characterization was carried out in
a TEM Titan 80-300™ operated at 300 kV combined with selected
area electron diffraction (SAED). Chemical composition was as-
sessed by line scan EDS–STEM and STEM–EELS.

3. Results and discussion

3.1. Morphological analysis

The conventional TEM in bright field mode (Fig. 1a) allows iden-
tification of spherical and disaggregated nanoparticles (78–
500 nm) in the sample after a thermal treatment at 900 �C/12 h.
However, the HAADF–STEM mode (Fig. 1c) suggests a porous sur-
face as revealed by contrast. Visual inspection of the tilt series
(HAADF–STEM, Fig. 1b) allows identification of bright and dark
areas in a spherical particle (500 nm). Dark contrast observed in
the tilt series indicates the presence of voids (between 44 and
200 nm), and rough particle surfaces. The reconstructed images
(Fig. 1d) with enhanced contrast confirm porous and rough sur-
faces. The particle cross-section (Fig. 1e) indicates the presence
of a crust on the particle surface with pores on the external shell.
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It shows a difference in thickness of the crust (25–78 nm). These
results confirm the hollowness observed in the reconstructed
images. The crust formation, particle hollowness and pores result
from the concentration/temperature gradient formed at the drop-

let level in the evaporation/drying stage. These mainly depend on
the solute concentration/properties and the processing parameters
[3,25]. During the evaporation/drying period, the temperature dif-
ference between the droplet surface and the interior leads to the

Fig. 1. TEM and STEM images of the nn-900 sample. Conventional TEM image in bright field mode (a), Visual inspection of the tilt series in HAADF–STEM mode (b). HAADF-
STEM image (c). Reconstructed images of the tilt series (d). Details of the reconstructed cross section (e).
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formation of a concentration gradient. It causes faster evaporation
from the droplet surface than solvent diffusion towards the sur-
face. The prevailing surface precipitation consequently leads to
the formation of a crust. This crust prevents further solvent

diffusion and leads to an increase in pressure inside the dried
particles and shell porosity. Particle roughness is presumably a
consequence of the crystallization of the primary particles,
whereas aggregation and growth of the secondary particles are

Fig. 2. TEM and STEM Images of the nn-1100 sample. Conventional TEM image in bright field mode (a). Visual inspection of the tilt series in HAADF–STEMmode (b). HAADF–
STEM image (c). Details of one HAADF–STEM image showing the inter and intra particular porosity (d and e).
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caused by the temperature increase [1,21]. STEM–HAADF results
confirm the presence of non-agglomerated spherical particles pro-
duced after a low temperature thermal treatment (nn-900 – Fig. 1)
indicating high content of surface porosity.

With the temperature increase (1100 �C – Fig. 2), the beginning
of the particle aggregation and initial stage of the sintering process
are evident. The porous particle surface still persists implying the
lack of particle densification even at increased temperature and
for reasonable time (12 h). The observations carried out in the
higher temperature sample shows that increasing the annealing
temperature causes interparticle collision and sintering among

the particles (Tem image Fig. 2a, STEM image Fig. 2c). The tomog-
raphy tilt-series (Fig. 2b) shows further particle densification, a de-
crease in porosity and more agglomeration among the particles.
Both inter- and intra-particle sintering occurs among the particles
– this affects the particle morphology (Fig. 2d and e).

3.2. Chemical results

Chemical information about the local atom coordination is ob-
tained from EELS spectra. Fig. 3a shows a HAADF–STEM image of
the sample with Gd/Eu: 0.07/0.03 M ratio heated at 900 �C. The line

Fig. 3. HAADF–STEM image of the sample with Gd/Eu: 0.07/0.03 M ratio heated at 900 �C (a). Line profile of the Gd/Eu ratio (b), EELS spectrum (c).

Fig. 4. STEM images of the sample after a thermal treatment at 900 �C (a), EDS results (b and c) taken along a line scan.
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(0–100 nm) indicates the direction of the sequence of acquisition
of the EELS spectrum. The line profile (Fig. 3b) shows that the ratio
between the Gd/Eu remains constant indicating a homogeneous
mixture of the elements in the particles. The spectrum (Fig. 3c)
has been taken in the area delineated with a cross (point 1). There
are two prominent signals, equivalent to the 3d electron transition
to the 4f empty states (M5: 3d5/2? 4F7/2, M4, 3D3/2? 4F5/2)
[26,27]. Normally, the energy loss spectra of the rare earths are
characterized by sharpM4,5 edges [28]. The Energy Loss Near Edge
Spectrum (ELNES) confirms the signals of Eu in the M5 (�1129–
1140 eV) and Eu M4 (�1158–1169 eV) edges, and the Gd in its
M5 (�1182–1198 eV) and M4 (�1215–1230 eV M4) edges respec-
tively. With the ELNES information it is possible to obtain informa-
tion about the local atom coordination. The M4/M5 ratio is
normally calculated to establish the oxidation state. Measurements
made on different particles allow the determination of the M4/M5
relationship, which varies between 0.83 and 0.9. These values are
in the range observed for rare earth indicating a 3+ oxidation state
[29]. These results confirm previous studies carried out by EELS–
EFTEM [30]. The atomic contrast provided by STEM shows darker
and brighter regions in the particles (Fig. 4a). The EDS measure-
ments confirm that the contrast change is not a result of changes
in chemical composition but is that it is instead due to the porosity
of the material. The EDS results (Fig. 4b and c) taken along a line

scan in the nn-900 particle confirm the uniform distribution of
the Eu in the gadolinia matrix. This leads to the conclusion that
the distribution of the Gd/Eu ratio is also uniform. EDS also con-
firms the same Gd/Eu ratio both for the darker and brighter con-
trast regions. A small signal of Cu comes from the copper grid.
Semi-quantitative EDS-STEM results provide the Gd/Eu atomic ra-
tio (Gd – 73 at.%, Eu – 27 at.%) which is in accordance with the pre-
cursor solution nominal value (Gd – 70 at.%, Eu – 30 at.%).

3.3. Structural analysis

Structurally, both the HRTEM and HRSTEM taken in the nn-900
sample confirm the presence of crystalline domains of both cubic
(Fig. 5a and c) and monoclinic (Fig. 5d) phases. The Ia3 cubic phase
is confirmed in the TEM image (Fig. 5a) showing the (002) atomic
distances, and also in the corresponding electron diffraction pat-
tern (as inset) oriented along the [100] zone axis. The scattering
of the HAADF–HRSTEM image (Fig. 5c) provides different intensity
contrast. The (022) and (222) atomic planes are resolved. The cor-
responding fast fourier transformed (fft, as inset) confirms the
[110] direction of the Ia3 phase. The existence of the monoclinic
phase (Fig. 5d) is observed by HRTEM. The (002) and (110) atomic
planes along the [220] zone axis with the corresponding fft (shown
as inset) are in agreement with the c2/m phase. Changes in the

Fig. 5. HRSTEM and HRTEM images of the nn-900 sample. The cubic phase along the [100] zone axis (HRTEM- electron diffraction, (a) and [110] orientation (HRSTEM-fft (c).
The monoclinic phase along the [220] zone axis, (HRTEM, fft, d). Crystalline domains observed by HRTEM and HRSTEM (b).

6



atomic plane orientation and local boundaries between the crystal-
lites (HRTEM – Fig. 5b and HRSTEM – Fig. 5b as inset) enable def-
inition of the crystalline domains.

4. Conclusions

In view of the results, some relevant aspects of the nanoparti-
cles synthesized by SP and the subsequent heat treatments have
been obtained. The use of STEM-tomography techniques have clar-
ified some morphological aspects related to the synthesis and post
thermal treatments. Given the synthesis conditions applied, it was
possible to determine that the nanoparticles subjected to heat
treatment to 900 �C/12 h kept their spherical morphology being
hollow, rough and porous. These conditions change with a heat
treatment at a higher temperature. It is confirmed that at
1100 �C/12 h particles tend to agglomerate, become denser and
less porous. HRTEM images, HRSTEM and electron diffraction con-
firm the presence of the Ia3 cubic and the c2/m monoclinic phases.
Also, the STEM–EDS technique has confirmed that the particles are
chemically homogeneous. The STEM–EELS tool provides informa-
tion about the oxidation state confirming the 3+ for both the Gd
and Eu.

It is expected that the results obtained here provide a basis for
users of SP synthesis technique to establish a new routine for the
morphological, chemical and structural characterization. Likewise,
it is expected that the experimental conditions that have been used
be useful to tailor nanoparticles with desired characteristics.
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