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Ranking Edges and Model Selection in
High-Dimensional Graphs

Ginette Lafit∗,† , Francisco J. Nogales† and Ruben H. Zamar‡

Department of Statistics, Universidad Carlos III de Madrid† and

Department of Statistics, University of British Columbia‡

Abstract: In this article we present an approach to rank edges in a
network modeled through a Gaussian Graphical Model. We obtain a
path of precision matrices such that, in each step of the procedure, an
edge is added. We also guarantee that the matrices along the path are
symmetric and positive definite. To select the edges, we estimate the
covariates that have the largest absolute correlation with a node condi-
tional to the set of edges estimated in previous iterations. Simulation
studies show that the procedure is able to detect true edges until the
sparsity level of the population network is recovered. Moreover, it can
add efficiently true edges in the first iterations avoiding to enter false
ones. We show that the top-rank edges are associated with the largest
partial correlated variables. Finally, we compare the graph recovery
performance with that of Glasso under different settings.

Keywords: High-dimensional statistics; Precision Matrix; Covariance
Selection; Gaussian Graphical Models; Edge Ranking; Least Angle Re-
gression.

1 Introduction

Consider the problem of estimating high-dimensional undirected graphs. Given
n independent samples of a p-dimensional random vector (X1, . . . , Xp), we can

∗Corresponding author
Email address: glafit@est-econ.uc3m.es
Acknowledgements: The research of Ginette Lafit and Francisco J. Nogales is supported by the
Spanish Government through project MTM2013-44902-P.

1



represent the linear dependency between variables by an undirected graph. The
undirected graph establishes that if the variables Xi and Xj are connected, they
are adjacent (Lauritzen, 1996). Statistically, we can measure linear dependencies
by estimating partial correlations to infer whether there is an association between
a pair of variables, conditionally to the rest of them. Furthermore, we can relate
the nonzero entries in the precision matrix, denoted by Ω, with the nonzero partial
correlation coefficients (Edwards, 2000). This procedure is known as covariance
selection and it is widely used to identify the linear relations that may appear in a
set of random variables (Dempster, 1972). In particular, under a Gaussian distri-
bution, the nonzero entries of the precision matrix imply that each pair of variables
are conditional dependent when controlling for the rest of them (Lauritzen, 1996).
This is known in the literature as Gaussian Graphical Models (GGM).

In a high-dimensional framework, the estimation of Ω is not straightforward
because of the lack of a pivotal estimator like the empirical covariance matrix.
Moreover, when the dimension p is larger than the number of available observa-
tions, the sample covariance matrix is not invertible. And even when the ratio
p/n is approximately (but less than) one, the sample covariance matrix is bad
conditioned and its inverse tends to amplify the estimation error, which can be
observed by the presence of small eigenvalues (Ledoit and Wolf, 2004). From the
asymptotic point of view, when both n and p are large (i.e. p = O(n)), the sample
covariance matrix is not a consistent estimator (Karoui, 2008).

To deal with this problem, several covariance selection procedures have been
proposed based on the assumption that Ω is mostly composed by zero elements.
This suggests that even when p = O(n), the dimension of the problem may be still
tractable since the number of edges will grow slower than the number of observa-
tions (Peng et al., 2009). Meinshausen and Bühlmann (2006) propose the neigh-
borhood selection procedure that consistently estimate sparse high-dimensional
graphs, by estimating a lasso regression for each node in the graph. This method
does not directly compute the precision matrix and imposes the same `1 penalty
to each node. Peng et al. (2009) present a procedure that simultaneously perform
neighborhood selection for all variables to estimate joint sparse regressions apply-
ing an active-shooting to solve lasso. Yuan (2010) replace the lasso regression by
a Dantzig selector. Liu and Wang (2012) proposed an asymptotically tuning-free
procedure that estimates the precision matrix in a column-by-column fashion.

`1 penalized likelihood methods to estimate GGM were also proposed (Yuan
and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008). Friedman et al.
(2008) proposed the Glasso procedure to estimate sparse precision matrices fitting
a modified lasso regression to each variable and solving the problem by coordinate
descent algorithm. Rothman et al. (2008) estimate convergence rates under the
Frobeniuos norm and Yuan and Lin (2007) estimate convergence rates for subgaus-
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sian distributions. Lam and Fan (2009) and Fan et al. (2009) propose methods to
diminish the bias imposed by the `1 penalty by introducing a non-convex SCAD
penalty. Cai et al. (2011) estimate precision matrices for both sparse and non-
sparse matrices, without imposing a specific sparsity pattern solving the dual of
an `1 penalized maximum likelihood problem.

In this article, we propose an approach to perform model selection in high-
dimensional undirected graphs. Our main interest is in obtaining the ranking of
edges that are most probable in a GGM. Thus, we are able to estimate a path
of undirected graphs and identify which are the edges that will appear firstly to
obtain a ranking of the top partially correlated variables. Hence, the procedure
estimates a path of precision matrices such that in each step an edge is added. As
a consequence, in each step we obtain a precision matrix with a pair of additional
non-zero elements outside its principal diagonal.

For the variable associated with a node, an edge is selected by estimating
the covariate that has the largest absolute correlation conditional to the set of
edges obtained in the previous steps. To perform this task, we apply Least Angle
Regression (LARS) proposed by Efron et al. (2004) which is a stylized version of
Foward Stagewise Linear Regression, and is closely related with Foward Selection
(see Weisberg, 2005) and Lasso (Tibshirani, 1996). LARS provides an ordering in
which the covariates enter a regression model. It starts with all coefficients equal to
zero, and finds the covariate most correlated with the response. In the next steps,
the additional covariate is added by moving in an equiangular direction between
the active predictors until a new variable has as much correlation with the current
residual. In our procedure, we only estimate the first LARS step, this is equivalent
to estimate a Foward Stagewise Linear Regression, in which the variable that enters
the correlation set is the one that produces the highest absolute correlation with
the residual.

To illustrate the idea, consider the following example from Sachs et al. (2005)
that contains data of a flow cytometry with p = 11 proteins and n = 7466 cells.
The authors estimated a directed acyclic graph (DAG) to the data and found active
17 edges. Figure 1 shows the result of applying the proposed iterative procedure
to rank edges. In the initial step, Step 0, all partial correlations are equal to zero.
Then, at each iteration, the procedure estimates an edge which is incorporated
to a set of active edges. Only p×(p−1)

2
iterations are necessary to obtain a full

connected graph. The first edges that enter the graph evidence the largest partial
correlations. As shown in Figure 1, at Step 17, there are 10 edges that agree with
the directed acyclic graph estimated by Sachs et. al. (Sachs et al., 2005).

The rest of the article is organized as follows. In the next section we present
the iterative procedure to estimate the GGM, which exploits the relation between
the elements of the precision matrix and the partial correlations. We also present
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(a) Directed acylic graph from cell-signaling data
(Sachs et al., 2005)
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(f) Step 55 (Full connected undirected graph)

Figure 1: Cell-signaling data: undirected graphs. Steps corresponds to the number
of active edges in each iteration of the procedure.

4



modifications to ensure that, in each step, the associated estimation of the precision
matrix is symmetric and definite positive. In section 3, we show simulation results
and introduce measures to evaluate the ranking performance of the procedure, and
we also compare the classification performance of the method with that of Glasso.
Finally, we provide further discussions on the connections and differences between
our results and existing methods and possible future directions.

2 The proposed method

In this section, we describe an iterative method to rank edges in a Gaussian
Graphical Model (GGM). We use the following notation. Suppose that X =
(X1, . . . , Xp)

T ∈ Rp has a joint normal distribution with mean 0 and covariance
Σp. The conditional independence structure of the distribution can be repre-
sented by a graphical model G = (Γ, E) where Γ = {1, . . . , p} represents the
set of nodes, and E the set of edges in Γ × Γ. A pair (i, j) is contained in E
if and only if Xi is conditionally dependent to Xj, given all the remaining vari-
ables X−(i,j) = {Xr : 1 ≤ r 6= i, j ≤ p}. Let Ω = Σ−1 denotes the precision
matrix. If a pair of variables is not contained in E, then they are conditionally
independent, given all the remaining variables, and corresponds to a zero entry in
Ω (Lauritzen, 1996; Meinshausen and Bühlmann, 2006). Finally, we denote by ρij
(1 ≤ i < j ≤ p) the partial correlation between Xi and Xj, which is defined as the
correlation between εi and εj, where εi and εj are the prediction errors of the best
linear predictors of Xi and Xj based on X−(i,j) respectively.

The following Lemma (see Peng et al., 2009) relates the estimation of the
elements of the precision matrix to a regression problem.

Lemma 1. For 1 ≤ i ≤ p, Xi is expressed as Xi =
∑

j 6=i βijXj + εi, such that εi
is uncorrelated with X−i = {Xr : 1 ≤ r 6= i ≤ p} if and only if

βij = −ωij
ωii

= ρij

√
ωjj
ωii

, (2.1)

where Var(εi) = 1
ωii

, Cov(εi, εj) =
ωij

ωiiωjj
, and ρij = − ωij√

ωiiωjj
.

The proposed iterative procedure to rank the edges of the GGM is as follows.
Given an independently and identically distributed distributed random sample
X = {X1, . . . ,Xn} from the distribution of X. Define the empirical covariance
matrix as

S =
1

n

n∑
t=1

XtX
T
t (2.2)
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Let k ∈ {0, 1, . . . , K} be the number of possible edges of a GGM with K ≤ p×(p−1)
2

,
and let Ω(k) be the corresponding proposed precision matrix at iteration k. The
procedure starts with a graph where the set of edges E is empty and hence, the
initial precision matrix (Ω(0)), is a diagonal matrix where its elements are the
inverse of the diagonal elements of S.

In the next step, k = 1, the procedure estimates an undirected graph with
k + 1 edges. The optimal edge is selected by estimating p matrices, denoted by
Ω

(k+1)
i (1 ≤ i ≤ p), each of them having an additional pair of non-zero elements

outside its principal diagonal corresponding to variable Xi. These non-zero ele-
ments are estimated applying the results in Lemma 1. The additional covariate,
Xj, is selected in a way that it has the largest absolute correlation with variable Xi

conditional to the set of edges selected in the previous step k. Thus, in iteration
k + 1, the estimated p matrices satisfy the following recursive expression:

Ω
(k+1)
i = Ω̂(k) + αkD

(k+1)
i , i = 1, . . . , p (2.3)

where D
(k+1)
i contains the pair of additional non-zero elements, ωij and ωji, and

αk is a parameter that makes Ω
(k+1)
i positive definite (see Subsection 2.3).

Given the previous set of p positive-definite matrices, the proposed precision
matrix at iteration k, Ω̂(k), is selected by minimizing a negative log-likelihood
function, i.e.

Ω̂(k) = argmin
Ω

(k)
i �0

{
−log(det(Ω

(k)
i )) + tr(Ω

(k)
i S).

}
(2.4)

As an illustration, consider an undirected graph with p = 4 variables and the
following AR(1) structure for Ω: ωii = 1, ωi,i+1 = ωi−1,i = 0.5 and 0 otherwise.
We apply the iterative procedure to simulated data with n = 100. Equation 2.5
shows two consecutive iterations. In step k = 2, we estimate a positive definite
matrix, given by Ω̂(k=2), that represents a GGM with two edges. In the next step
(i.e. k = 3) an additional edge is added and Ω̂(k=3) will have a new pair of non-zero
elements outside its principal diagonal, following the expression in 2.3, we obtain
a positive definite matrix that represents a GGM with three edges.

Ω̂(k=3) =


1.03 0.64 0.00 0.00
0.64 1.23 0.51 0.00
0.00 0.51 1.09 0.44
0.00 0.00 0.44 1.10

 = (2.5)


1.04 0.64 0.00 0.00
0.64 1.23 0.58 0.00
0.00 0.58 0.91 0.00
0.00 0.00 0.00 0.74

 +


0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.44
0.00 0.00 0.44 0.00
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In the next subsections, we explain in detail how we perform the estimation of
the additional edge that enters the precision matrix in step k+1, and how we guar-
antee that, in each step, the proposed precision-matrix estimates are symmetric
and positive definite.

2.1 Estimation of the additional edge

In this subsection we show how we compute the elements of matrix D
(k+1)
i , that

contains the pair of additional non-zero elements ωij and ωji.

Assuming we are at iteration k + 1, an additional edge is added to Ω̂(k). For
a variable Xi (1 ≤ i ≤ p) we select the covariate applying a foward stagewise
linear regression. This is equivalent to estimate the first LARS step, in which the
variable that enters the correlation set is the one that produces the largest absolute
correlation with the current residual (see Efron et al., 2004).

Given variable Xi, we define the active set of indexes A(k)
i ⊆ {1, 2, . . . , i −

1, . . . , i + 1, p} corresponding to covariates with the largest absolute correlations
and the matrix that contains these covariates

XA(k)
i

= (· · ·Xr · · · )r∈A(k)
i

To select the index of the covariate that will enter the active set A(k)
i , we select

the variable that has the largest absolute correlation with the current residual ĉ
(k)
i ,

given by

ĉ
(k)
i = Xi −

∑
r∈A(k)

i

β̂irXr (2.6)

At iteration k+ 1, let j /∈ A(k)
i be the index of the new variable Xj that enters

the active set . We update A(k+1)
i = A(k)

i ∪ {j} and the variable Xj is added to

matrix XA(k)
i

. To estimate the new non-zero element of Ω
(k+1)
i , we apply Lemma 1

Xi =
∑

r∈A(k+1)
i

βirXr + εi, (2.7)

We compute the additional non-zero element as ωij = − βij
Var(εi)

and update the

diagonal element ωii = 1
Var(εi)

.
We summarize the main result the following proposition.

Proposition 1. At iteration k of the proposed framework, if Ω(k) denotes the
corresponding GGM with k edges, the for every i = 1, . . . , p, the position of the ad-
ditional non-zero elements outside its principal diagonal corresponds to the variable
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that has the largest absolute correlation with the current residual ĉ
(k)
i of variable

Xi.

2.2 Symmetrization

For the new variable that enters the equicorrelation set Xj, we set ωji = ωij and

update A(k+1)
j = A(k)

j ∪ {i}. Then, we estimate a regression where the covariates
are given by the variables that belong to the equicorrelation set of Xj in step k
and variable Xi

Xj =
∑

r∈A(k+1)
j

βjrXr + εj (2.8)

the element that corresponds to the diagonal of Xj is computed as the inverse of
the variance of the regression residuals ωjj = 1

Var(εj)
.

2.3 Positive Definiteness

The iteration law of the proposed framework has the following form

Ω
(k+1)
i = Ω(k) + αkD

(k+1)
i ,

where αk is a positive parameter that guarantees Ω
(k+1)
i is positive definite for all

i = 1, . . . , p. We propose the following approach to guarantee this property.
Given Ω

(k+1)
i = Ω(k) +αkD

(k+1)
i that contains the new pair of non-zero elements

ωij and ωji. Define λ
(k+1)
min to be the minimum eigenvalue of

Ω(k) +D
(k+1)
i (2.9)

Given a tolerance ε > 0, if λ
(k+1)
min < ε we have to correct equation 2.9 to be positive

definite.
We propose to add a scalar αk > 0 to the elements in the principal diagonal of

Ω
(k+1)
i . We select αk such that the minimum eigenvalue of Ω

(k)
i is at least equal to

the tolerance ε.

αk = ε− λ(k+1)
min (2.10)

As a result λ
(k+1)
min ≥ ε.

The following proposition summarizes these result.

Proposition 2. In each step a positive definite matrix is estimated. Given a
matrix Ω

(k+1)
i and a positive tolerance ε. It is possible to apply a penalization

αk > 0 to the elements of the principal diagonal such that the minimum eigenvalue
λ

(k+1)
min ≥ ε.
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2.4 Summary of proposed framework

We finish the Section 2 summarizing the algorithm to estimate the precision-matrix
path:

Algorithm

1. Start with k = 0 edges and set Ω(0) = diag( 1
s11
, . . . , 1

spp
), where sii denotes

the corresponding diagonal values of the empirical covariance matrix, S.

2. Estimate p matrices, Ω
(k+1)
i (1 ≤ i ≤ p), each of them associated to vari-

able Xi, respectively, and containing an additional pair of non-zero elements
outside its principal diagonal. The computation for each matrix satisfies the
following recursive expression:

Ω
(k+1)
i = Ω(k) + αkD

(k+1)
i

where D
(k+1)
i contains the pair of additional elements ωij and ωji and αk

is the positive parameter that makes Ω
(k+1)
i positive definite (see equation

2.10).

The additional non-zero element ωij associated with variable Xi is estimated
as follows,

2.1 Given the active set of indexes A(k)
i associated with variable Xi and the

matrix of active covariates XA(k)
i

. let j /∈ A(k)
i be the index of the new

variable Xj that has the largest absolute correlation with the current

residual ĉ
(k)
i = Xi −

∑
r∈A(k)

i
β̂irXr.

2.2 Update the active set of indexesA(k+1)
i = A(k)

i ∪{j} and add the variable
Xj to matrix XA(k)

i

2.3 Apply Lemma 1 to estimate the new non-zero element as ωij = − βij
Var(εi)

and update the diagonal element ωii = 1
Var(εi)

.

3. Among all the p matrices, Ω
(k+1)
i (1 ≤ i ≤ p), select the optimal one that

minimizes the negative log-likelihood function in equation 2.4.

4. Obtain the corresponding representation of the GGM with k+1 edges, Ω(k+1),
set k := k+1, and repeat Steps 2 and 3 untilK ≤ p×(p−1)

2
edges are estimated.
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3 Simulation experiments

In this section we present simulation experiments to examine the performance of
the proposed method to rank edges in high-dimensional GGMs. We first investigate
the ranking performance of our procedure. Then, we compare the classification
performance with that of Glasso (Friedman et al., 2008).

We consider four different specifications for the population precision-matrix Ω:

• AR(1) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.5 and 0 otherwise.

• AR(2) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.4, ωi,i+2 = ωi−2,i = 0.2 and 0
otherwise

• AR(3) Model: ωii = 1, ωi,i+1 = ωi−1,i = 0.4, ωi,i+2 = ωi−2,i = 0.2, ωi,i+3 =
ωi−3,i = 0.2 and 0 otherwise

• Hub Model: 16 hub nodes are randomly choose, each of them connects with
5 distinct nodes with wij = 0.2. Nodes not associated with the hub nodes
are set are not considered. The diagonal is ωii = 1.

Table 1 shows the sparsity level for each model, given as the proportion of non-zero
elements outside the diagonal over the total number of elements of the network.
We observe that the Hub structure increases its sparsity level more rapidly as p
increases compared with the others models. This is due to the fact that the number
of edges do not depend on the size of the network. We also report in Table 1 the
associated condition numbers for each model. Note these numbers are moderate
except for the AR(1) model.

Next, we draw n independent samples from a multivariate normal distribution
with mean 0 and covariance matrix Σ = Ω−1. We fix n = 100 and consider different
values of p = {30, 60, 90, 120}. We replicate each simulation experiment 100 times.
To make the precision matrix positive definite we add in each iteration a positive
scalar in order to make the minimum eigenvalue greater than a given tolerance.
The tolerance was defined in a decreasing logarithm scale.

The values of the maximum iteration K were set to account for the sparse
structure of the four proposed models. For p = 30, p = 60, p = 90 and p = 120,
K was set recover a sparsity level of 45%, 30%, 20% and 10% respectively.

In the next section we introduce performance measures to obtain the ranking of
most probable edges and to evaluate the classification assessment of our procedure.

3.1 Performance measures

The aim of the simulation experiment is to analyze whether the edges that appear
in the first iterations are related with true edges in the population network, and

10



Table 1: Sparsity level and Conditioned Number for the considered networks
n Sparsity Level Condition Number

AR(1) Model

30 0.067 605.368
60 0.033 2481.008
90 0.022 5678.965

120 0.017 10220.410

AR(2) Model

30 0.131 5.549
60 0.066 5.668
90 0.044 5.706

120 0.033 5.725

AR(3) Model

30 0.193 12.056
60 0.098 12.561
90 0.066 12.714

120 0.050 12.788

Hub Model

30 0.163 16.432
60 0.044 8.815
90 0.020 11.932

120 0.011 5.983

evaluate if they are associated with the largest partial correlations. To evaluate
the performance of the method to rank edges in a GGM, we study assessment
metrics specific to evaluate ranking procedures (see Tomal et al., 2013). For the

maximum iteration K ≤ p×(p−1)
2

, let M ≤ K be the iteration that recovers the
true active edges in Ω.

Assuming we are in iteration k, we define 0 ≤ H(k) ≤ M to be the number
of edges of the GGM decoded by Ω̂(k). We consider the following performance
metrics.

Hit Curve. The hit curve is a plot of H(k) versus k or equivalently a plot of
the proportion of true edges, H(k)/M versus the proportion of true edges in Ω,
p(k) = k/K. The hit curve shows the ranking performance of a procedure at all
possible iterations, k.

Average Precision. A summary of the hit curve can be obtained computing
the average precision (AveP), which gives a single summary for a hit curve. For
iteration k ≤ K, we define the hit rate of precision for the top k ranked edges,

h(k) =
H(k)

k
∈ [0, 1] (3.1)

Let 1 ≤ t1 ≤ t2 ≤ . . . ≤ tM ≤ K be the position of the M edges in the ranked
list. AveP is defined as the average of the hit rates at the points of the hit curve
where true edges are found:

11



AveP =
1

M
[h(t1) + h(t1) + . . .+ h(tM)] (3.2)

When all true edges are ranked before all the non-true edges, AveP reaches the
maximum value 1.

Heat maps. We are also interested in determine the frequency of detected
active edges in the iteration that recovers the true sparsity level of the population
precision matrix, given by M . To do that we build heat maps that counts the
average number of times an edge is hit. Therefore, we are able to determine which
edges are estimated more frequently.

ROC curves. To evaluate the classification performance of the procedure we
compute the ROC curves. Let TP be the true non-zero elements and TN be the
true zero elements estimated by Ω̂ and FP be the false non-zero elements and
and FN be the false zero elements estimated by Ω̂. The classification performance
measures are given by

Specificity =
TN

TN + FP
(3.3)

Sensitivity =
TP

TP + FN
(3.4)

The ROC curve is a plot where the x-axis has the proportion of the false detected
non-zero elements, given by 1−Specificity, and in the y-axis the proportion of the
correctly true positive edges given by Sensitivity.

For each Ω̂(k) (1 ≤ k ≤ K) we obtain the Specificity and Sensitivity and we
plot the ROC curves.

We now compare the classification performance of our method with Glasso.
Friedman et al. (2008) proposed an estimator of ΩGlasso by solving the following `1

penalized-likelihood problem

min
Ω�0
−log(det(Ω)) + tr(SΩ) + θ ‖ Ω ‖1 (3.5)

where θ ≥ 0 is the regularization parameter and ‖ Ω ‖1=
∑

j 6=i | ωij | the element-
wise `1 norm.

We estimate ΩGlasso(θ) for values of the `1 penalty θ, that recover undirected
graphs under different levels of sparsity, and compute the Specificity and Sensitivity
to plot the ROC curve.

3.2 Simulation results

The simulation results of the ranking performance are summarized in Figures 2-5,
where the hit curves for each model are shown. For the AR(1) Model, the hit curves
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show that for small p (i.e. p = 30 and p = 60) the proportion of true detected
edges increases rapidly up to the iteration that corresponds with the number of
true edges, M . At iteration M , most of the true edges were ranked before the
false ones. As expected, this performance is deteriorated when p increases, before
reaching M . There is an increment in the proportion of false edges when k ≤ M
(see Panel (c) and (d) from Figure 2), but the procedure is able to satisfactory
detect the true edges before the false ones. This is confirmed in Table 2, where
the AveP averaged over 100 replications is shown.

Figure 7 shows the heat maps of the AR(1) Model associated to the frequency of
non-zero edges up to iteration M over 100 replications. For moderate dimensions,
p = 30 and p = 60, the procedure estimates true edges with high frequency, and
this frequency decreases for larger dimensions.

For the second simulated model, AR(2), Figure 3 presents the hit curves for
different values of p. Similarly to the previous model, the proposed methodology
shows a good ranking performance, even for high dimensions. The heat maps, in
Figure 8, shows that the largest partial correlated nodes have the highest frequency
over the 100 replications. Moreover, up to iteration M , the procedure is able to
recover the majority of the largest partial correlated variables (see Figures 8 panel
(c) and (d)).

The ranking performance results of the third model, AR(3), in Figure 4, show
that when an additional partial correlated covariate is added to a node, the pro-
cedure diminishes its ability to detect true edges for k ≤ M . As p increases,
the procedure estimates first the true edges associated with the largest partial
correlations, although the number of non-true edges also increases in the first it-
erations, as Table 2 shows. In any case, from the heat maps (see Figure 9), we
observe that the largest partial correlated nodes have the highest frequency over
100 replications.

Figure 5 presents the hit curves of the Hub model. This is a particularly
difficult model to estimate due to the random nature of the network structure.
But even in this case, the proposed methodology is able to recover satisfactory the
true edges in the the first iterations, although the general performance is worse
than previous models as expected, see Figure 9 and Table 2.

Table 2: AveP averaged over 100 replications.
p = 30 p = 60 p = 90 p = 120

AR(1) Model 0.927 0.832 0.706 0.594
AR(2) Model 0.754 0.667 0.606 0.312
AR(3) Model 0.685 0.551 0.495 0.454
Hub Model 0.606 0.429 0.361 0.243

Finally, regarding the GGM recovery performance, Figures 10-13 show the
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ROC curves for each of the four considered network configurations, respectively,
associated with the proposed methodology and Glasso. We can observe that our
procedure obtain a better performance than Glasso, especially in high dimensions,
except for the Hub random network configuration where Glasso outperforms the
proposed methodology.

4 Conclusions

In this article we presented an approach to rank edges in a high dimensional
Gaussian Graphical Model (GGM) to perform model selection. To do this, we
proposed and algorithm to estimate an iterative path of precision matrices. Thus,
in each step a symmetric and positive matrix with an additional edge was added
to the path. The position of the new non-zero elements in Ω corresponded to
the covariate that has the largest absolute correlation with the node conditional
to the set of edges estimated in the previous step. For each step, the optimal
graph is selected by minimizing a negative log-likelihood function. Our approach
did not directly imposed any type of penalty into the likelihood function when
estimated the precision matrix and was able to estimate a set of undirected graph
that recover different levels of sparsity. We presented measures to asses the ranking
performance of our procedure and we were able to obtain the ranking of edges that
appear first.

The novelty of the approach is that we can obtain a ranking of more probable
edges in a GGM. Thus, the first edges that enters in the algorithm are related
with the largest partial correlated variables. In applications to real data, it is
not possible to know the true sparsity level of the graph. Thus, knowing which
are the most probable edges that will appear in a network is a relevant result to
understand the undirected relations between variables. Also, the procedure is able
to obtained the last rank edges in a GGM. These are the edges that will appear in
the last positions of a ranking. Knowing in which iteration this last-ranked edges
are recovered gave information of the sparsity level necessary to recover the true
structure of the network.

Simulation studies show that the procedure is able to detect true edges in each
iteration until the true sparsity level is recovered. Also, when the true precision
matrix has an order structure, the procedure is able to add efficiently true edges in
the first iterations while avoiding to add false edges. We also show that the edges
that are first identified, are the ones associated with the largest partial correlated
variables. The ranking performance shows that in the neighborhood of the true
sparsity level, the procedure is able to add, in average, one true edge. Finally, our
approach also has satisfactory GGM recovery performance compared with Glasso.
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Figure 2: Hit curves for AR(1) Model with n = 100. x-axis: the number of total
detected edges y-axis: the number of correctly identified edges. The vertical line
corresponds to the number of true edges M .
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Figure 3: Hit curves for AR(2) Model with n = 100. x-axis: the number of total
detected edges y-axis: the number of correctly identified edges. The vertical line
corresponds to the number of true edges M .
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Figure 4: Hit curves for AR(3) Model with n = 100. x-axis: the number of total
detected edges y-axis: the number of correctly identified edges. The vertical line
corresponds to the number of true edges M .
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Figure 5: Hit curves for Hub Model with n = 100. x-axis: the number of total
detected edges y-axis: the number of correctly identified edges. The vertical line
corresponds to the number of true edges M .

18



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

123456789101112131415161718192021222324252627282930

(a) p = 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

(b) p = 60

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990

(c) p = 90

12
34
56
78
9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

(d) p = 120

Figure 6: Heat maps of the frequency of non-zero edges up to iteration M over 100 replications
for AR(1) Model with n = 100.
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Figure 7: Heat maps of the frequency of non-zero edges up to iteration M over 100 replications
for AR(2) Model with n = 100.
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Figure 8: Heat maps of the frequency of non-zero edges up to iteration M over 100 replications
for AR(3) Model with n = 100.
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Figure 9: Heat maps of the frequency of non-zero edges up to iteration M over 100 replications
for Hub Model with n = 100.
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Figure10:ROCcurvesforAR(1)Modelwithn=100.
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Figure11:ROCcurvesforAR(2)Modelwithn=100.

24



0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1−Specificity

S
e
ns
iti
vit
y

lllllllllllllllllllllllllllllllllllllllllllllllll ll
l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l
l

RankGGM

Glasso

(a)p

0.00 0.05 0.10 0.15 0.20

0.
2 

0.
3 

0.
4 

0.
5 

0.
6 

0.
7 

0.
8

1−Specificity

S
e
ns
iti
vit
y

llllllllllllllllllllllllllllllllllllllllllllllll lll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

RankGGM

Glasso

=30 (b)p

0.00 0.05 0.10 0.15

0.
2 

0.
3 

0.
4 

0.
5 

0.
6 

0.
7

1−Specificity

S
e
ns
iti
vit
y

llllllllllllllllllllllllllllllllllllllllllllllll lll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

RankGGM

Glasso

=60

(c)p

0.00 0.02 0.04 0.06 0.08

0.
2 

0.
3 

0.
4 

0.
5 

0.
6 

0.
7

1−Specificity

S
e
ns
iti
vit
y

llllllllllllllllllllllllllllllllllllllllllllllll lll
l

l

l

l

l

l

l

l

l

l

l

l

l

RankGGM

Glasso

=90 (d)p=120

Figure12:ROCcurvesforAR(3)Modelwithn=100.
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Figure13:ROCcurvesforHubModelwithn=100.
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