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Abstract: In this work a novel measurement technique for pseudo-2D fluidised beds is developed. The objective is to give an estimation of the overall 
frictional force between the solids and the front and rear walls of the bed. For doing this, the measured pressure signal in the bed is processed in 
combination with the solids distribution (i.e. centre of mass position, velocity and acceleration) obtained from digital image analysis of the optically 
accessible front view of the bed. This is performed by acquiring the pressure signal in the bed simultaneously to the digital images. Both the pressure and 
the digital images are connected through a simple force balance in the bed, and a particle–wall interaction coefficient is obtained assuming that the overall 
frictional force is proportional to the centre of mass velocity. The particle–wall interaction coefficient found using this technique is of the order of 40–120 
kg/m2 s in the bed tested, and the standard deviation of the frictional forces reaches more than 70% of the weight of the bed. Therefore, the results indicate 
that the contribution of the particle-to-wall friction on the fluctuation of the pressure drop in a pseudo-2D bed is not negligible.

1. Introduction

Fluidised beds have various applications in industry, such as
fluid catalytic cracking (FCC), gasification, combustion of solid fuels, 
and Fischer–Tropsch synthesis (Kunii and Levenspiel, 1991). 
Despite the fact that fluidised beds have been used in

industry since the 1920s and great progress has been made, some
aspects of fluidised bed dynamics are still far from being fully
understood.

Beds having small thickness, i.e. pseudo two-dimensional (2D)
beds, have been crucial for the understanding of the dynamics of
gas-particle systems. In this regard, pseudo-2D fluidised bed systems
typically have a transparent wall, in order to allow optical access to
the system, and possess a small thickness to ensure that the
visualisation is representative of the whole system. In this kind of
systems, Digital Image Analysis (DIA) or Particle Image Velocimetry
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(PIV) can be applied to characterise the bubble phase and the solids

motion, respectively. Such studies have been proved to be a valuable

tool for the understanding of fluidised bed systems (Shen et al.,

2004; Santana et al., 2005; Almendros-Ibáñez et al., 2006; Müller

et al., 2007; Laverman et al., 2008; Busciglio et al., 2008; Sánchez-

Delgado et al., 2010; Hernández-Jiménez et al., 2011a,b; Soria-

Verdugo et al., 2011a,b; Sánchez-Delgado et al., 2013).

Alternatively, pressure signal analysis is widely used in the

literature to characterise the dynamics of fluidised bed systems.

Many works have been done in this field and nowadays the

pressure signal is routinely employed to obtain a large amount

of information concerning the dynamics of a fluidised bed, c.f. the

review by van Ommen et al. (2011).

Computational Fluid Dynamics (CFD) can be a very effective

complementary tool to the experiments for achieving a detailed

analysis of hydrodynamics in complex gas-solids flows. Note that,

in these pseudo-2D beds, the front and the rear walls restrict the

solids motion, leading to a different flow behaviour compared to

fully three- dimensional (3D) systems. For thin bed thicknesses,

the effect of the front and the rear wall on the particle motion can

be significant and should not be neglected in numerical simula-

tions of pseudo-2D beds (Li et al., 2010; Hernández-Jiménez et al.,

2011a). However, there is a lack of experimental quantification of

the wall frictional forces in pseudo-2D beds. Knowledge of the wall

frictional forces in thin beds can be useful in the understanding of

fluidised beds and will facilitate the development of particle–wall

interaction models and the validation of the different simulation

approaches such as two-fluid models.

The gas pressure field in the bed can be inferred from the solids

distribution since these two parameters are inextricably linked in

bubbling fluidisation (Davidson and Harrison, 1963; Baskakov

et al., 1986; van Ommen et al., 2011). This was verified by

Croxford and Gilbertson (2011), who estimated the spatial dis-

tribution of the pressure in a pseudo 2-D bubbling bed by

numerically solving the Davidson and Harrison (1963) quasi-

steady potential flow equations of the gas phase. They used, as

an input for the equations, the bubbles size and location experi-

mentally measured with a digital camera. Their simulation suc-

cessfully reproduced the pressure field when the bubbles over a

wide region of the bed were considered.

In the present work, a different approach for the pressure drop

prediction in the bed is followed noticing that the dynamics of the

bed is also described by its centre of mass. In particular, a novel

methodology is proposed for coupling the pressure signal analysis

with the digital image acquisition of a fluidised pseudo-2D bed in

order to give an estimation of the frictional forces exerted by the

front and rear walls on the bed particles. Using a force balance, the

frictional force between the bed and the walls is estimated here as

a function of the instantaneous pressure drop in the bed, the bed

weight, and the velocity and acceleration of the centre of mass of

the bed. Additionally, results from a pure 2D simulation, i.e.

without incorporating the front and rear walls, have been included

to show that in the absence of the front and rear walls the pressure

and the acceleration of the centre of mass of the bed are perfectly

correlated.

2. Experimental setup

The experimental facility employed in this work is a pseudo-2D

cold fluidised bed of dimensions 0.3 m 1 m 0.01 m (width W,

height H, and thickness Z). The bed was filled with ballotini glass

particles of 2500 kg/m3 density. The experiments were carried out

for three different particle sizes: Geldart's classification type B of

0.4–0.6 mm diameter, type B-D particles of 0.6–0.8 mm diameter,

and type D particles of 1–1.3 mm diameter. The air distributor

consists of a perforated plate with two rows of 30 holes of 1 mm

diameter arranged in a triangular configuration with 1 cm pitch.

The front and rear walls of the bed were made of glass and the rear

wall was painted in black to increase contrast in the front images.

A sum up of the experimental parameters is included in Table 1.

A pressure probe was used to carry out the measurements. The

probe was placed inside the bed at 5 cm above the distributor

plate. The pressure fluctuations in the bed were measured with an

ELLISON (PR 3110) differential pressure transducer. The transducer

was connected to the probe by means of a silicon tube with a total

length of 50 cm and an inner diameter of 4 mm. According to van

Ommen et al. (2004) pressure waves in a bubbling bed at 2Umf can

be detected at radial distances up to 0.3 m from their origin. Also,

Croxford et al. (2005) reported that for a small-scale fluidised bed

one probe is sufficient, in principle, to characterise the bed

hydrodynamics. Therefore, only the pressure probe at 5 cm above

the distributor will be used in the bed studied here. In addition,

two spotlights were used to get a uniform illumination of the front

of the bed. A digital camera, Basler A640, took images of the front

view of the fluidised bed at 100 frames per second and, simulta-

neously, the pressure transducers recorded the pressure signal at

2000 Hz. Fig. 1 shows a scheme of the facility and an example of a

greyscale image acquired with the digital camera.

3. Theory

A simple balance of vertical forces in a control volume com-

prising the gas and particles in a fluidised bed is shown in Fig. 2.

The balance indicates that the force exerted by the pressure drop

in the bed, ΔP, just over the area AT ¼WZ of the distributor, i.e.

FΔP ¼ ATΔP, must compensate to the inertia force due to the

acceleration of the centre of mass of the bed, Fa, plus the force due

to the weight of the bed, Fg, (i.e. hydrostatic pressure) and the

frictional force of the bed walls on the gas and solids phases, Ffric:

FΔP ¼ FaþFgþF fric ¼m
d
2
ycm

dt
2
þmgþF fric ð1Þ

wherem¼ AT ð1%ϵ0Þρsh0 is the mass of the bed particles, ycm is the

vertical position of the centre of mass of the bed, and d
2
ycm=dt

2 is

the acceleration of the centre of mass.

In Eq. (1) the inertia and weight of the gas have been neglected

since the gas density is much smaller than the particle density.

Also, the contribution of the gas phase to the frictional force Ffric is

expected to be very reduced compared to the frictional force

between particles and wall. Note that FΔP is equivalent to the force

produced by the gas on all the bed particles.

In general, the frictional force is equal to the shear stress, τ,

times the surface area of the lateral walls in contact with the bed,

AL ¼ ð2Wþ2ZÞhfb & 2Whfb, where hfb is the time-averaged height

of the fluidised bed. Following the classical Coulomb's friction

Table 1

Experimental setup.

Parameter Value

Bed height, H (m) 1

Bed width, W (m) 0.3

Bed thickness, Z (m) 0.01

Aspect ratio, h0/W (-) 0.75, 1, 1.25

Particles density, ρs (kg/m
3) 2500

Small particles dp (mm) 0.4–0.6

Umf (m/s) 0.27

Medium particles dp (mm) 0.6–0.8

Umf (m/s) 0.44

Big particles dp (mm) 1–1.3

Umf (m/s) 0.67
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model, it will be assumed that the force due to the shear stress is

proportional to the normal force times the Coulomb coefficient of

friction, F fric  μFN .

According to the kinetic theory of granular flows, the normal

force is a function of the granular temperature of the particles,

FN  f ðΘÞ, and the granular temperature is proportional to the

gradient of the particle velocity in perpendicular to the wall ∂v=∂n,

(Johnson and Jackson, 1987). The velocity gradient depends on the

bed dynamics of the particles in the bed. In the present work, it is

postulated that, as a first approximation, the velocity gradient is

proportional to the local value of either the velocity of the

particles, the acceleration of the particles, or a constant indepen-

dent of the particle movement. Integrating τ all over the area of

the bed walls AL:

F fric ¼

Z

AL

τ dA$ cALΩ ð2Þ

where the frictional form, Ω, can be the instantaneous velocity,

dycm=dt, or the acceleration, jd2ycm=dt
2
jξ, of the centre of mass of

the bed. Frictional forces oppose the direction of the centre of

mass velocity, which is mathematically expressed in Ω with

ξ¼ signðdycm=dyÞ. If the frictional force is considered constant (i.

e. independent of the bed dynamics), then Ω¼ ξ. In Eq. (2) c is a

proportionality constant that can be interpreted as a new particle–

wall interaction coefficient that multiplies ALΩ instead of FN.

The whole balance of forces Eq. (1) can be divided by the

transversal area AT of the bed in order to work with pressures

instead of forces:

ΔP ¼ΔPaþΔPgþΔPfric ¼ 1'ϵ0ð Þρsh0
d
2
ycm

dt
2
þg

!

þc
AL

AT
Ω ð3Þ

Note that the term ð1'ϵ0Þρsh0g in Eq. (3) corresponds to the

mass of solids in the bed. This term is kept constant in the

calculations.

4. Data processing

4.1. Initial processing

Pressure signals and front-view digital images of the pseudo-

2D bed were acquired simultaneously, at 2000 Hz and 100 Hz

respectively, during T¼300 s using the software LabViews. The

pressure signal was resampled to 100 Hz to make its temporal

resolution equal to the digital images. All the processing described

in this section was programmed using the software MATLABs.

The procedure employed to measure the pressure drop in the

bed, ΔPmeas, is to use the pressure acquired at yP ¼ 5 cm over the

distributor, ΔPP , and scale it using the averaged weight of the

column of particles within this measurement point and the

distributor.

ΔPmeas $ΔPPþρsð1'ϵmf ÞgyP ð4Þ

In Eq. (4) ϵmf is employed because the number of bubbles close to

the distributor is very reduced and, according to the two fluid

theory, the void fraction in the dense phase takes the value for the

minimum fluidisation conditions.

DIA was applied to the acquired images of the bed in order to

distinguish between bubbles and dense phase. This allowed for the

calculation of the vertical position of the centre of mass of the bed,

ycm, at each time instant. The centre of mass is calculated with the

grey scale images recorded by the camera using the grey level of

each pixel. In the bubbles αs ¼ 0, and the grey level pixels of the

image is minimum ($ 0). Also, in the emulsion phase αs $ αmf and

the grey level of the pixels is close to the maximum ($ 255).

Following Almendros-Ibáñez et al. (2010), a linear relationship

between grey levels and solids volume fraction is assumed.
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Fig. 1. (a) Sketch of the experimental facility and (b) example of a front view image of the fluidised bed.

Fig. 2. Balance of forces acting on the bed material. Arrows indicate the direction of

the forces when their value is positive in Eq. (1).
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Therefore:

ycm ¼

R

αsy dA
R

αs dA
!
∑N

i ¼ 1yiGLi

∑N
i ¼ 1GLi

ð5Þ

where y is the vertical distance relative to the distributor, i is the

pixel number, N is the total number of pixels in the image and GL is

the grey level of each pixel in the images.

4.2. Estimation of the particle–wall interaction coefficient

The force balance presented previously can be employed to

make an estimation of the particle–wall interaction coefficient c.

The result of applying Eq. (5) at each time instant is a discrete

time series of ycm that is numerically differentiated, using second

order finite differences, to obtain the time series of the centre of

mass velocity, dycm=dt, and acceleration, d2ycm=dt
2.

The particle–wall interaction coefficient is obtained by compar-

ing the time evolution of the pressure drop in the bed, ΔPmeas (i.e.

pressure drop measured), with the right-hand side of Eq. (3)

representing the pressure drop calculated only with the vertical

position of the centre of mass of the bed, ycm, in Eq. (3). Therefore,

the most probable value of c is estimated by performing the

following least square minimisation over the total time period of

measurement (T):

min
c

Z T

0
ðΔPmeas$ΔPcalculatedÞ

2 dt

" #

ð6Þ

where ΔPcalculated is expressed according to Eq. (3) as a function of

ycm and Ω.

ΔPcalculated ¼ 1$ϵ0ð Þρsh0
d
2
ycm

dt
2
þg

" #

þc
AL

AT
Ω ð7Þ

The algorithm used to calculate c is described in Fig. 3. The

calculus starts with an estimation of c that is used to obtain the

pressure drop calculated, ΔPcalculated (Eq. (7)). Despite the images

and the pressure were acquired simultaneously, their synchroni-

sation is not initially perfect because of a hardware delay produced

by differences in the response time of activation of the pressure

and the digital image measurement systems. This hardware delay,

td ¼ dΔt, is estimated with the maximum of the cross-correlation

of the two signals, ΔPmeas and ΔPcalculated. The delay, lower than 10

time points, may be different every time the systems are activated

so it has to be calculated for each measurement data set. After

adjusting the delay between the two signals, the particle–wall

interaction coefficient, c, is obtained from Eq. (6, whose integral is

computed using a summation extended over all the signal terms.

min
c

∑
N$d

i ¼ 1

ðΔPmeas;i$ΔPcalculated;iÞ
2
Δt

" #

ð8Þ

The whole procedure is repeated starting with the obtained

value for c until convergence, which requires over 10 iterations.

Besides, a moving average filter was applied to ycm in order to

reduce the spurious high frequencies created by the measurement

noise that can be amplified during the differentiation of ycm. As the

moving average smooths the signals, it must be applied not only to

ycm but also to ΔPmeas on each calculation. However, the resulting

coefficient c is sensitive to the number of points chosen for the

moving average filter, Nf. Alternative filtering strategies were

studied (e.g. Butterworth filtering, etc.) and the results were still

sensitive to other parameters present in the filters. To solve this

issue, c is estimated here for a value of Nf not larger than 200 that

minimises the error between the signal measured and the signal

calculated, ΔPcalculated;i.

4.3. Discrepancy factors

The functional form of the frictional force, Ω in Eq. (2), will be

chosen on the basis of a discrepancy factor, δ, that accounts for the

differences between the pressure measured, ΔPmeas, and the

pressure calculated, ΔPcalculated. Fig. 4 shows an illustration of the

pressure measured and calculated, and the distance between a

point on one signal and the other signal. Depending on the way

the distance is calculated, two ways of defining the discrepancy

factor arise. The vertical discrepancy, δV , is a function of dV which

considers only the vertical distance between both signals. The total

discrepancy, δT , is function of dT which considers the minimum

distance between both signals through any possible direction (see

Fig. 4).

δV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N$d
∑
N$d

i ¼ 1

d
2
V ;i

s
2
ΔPmeas

v

u

u

t ð9Þ

δT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N$d
∑
N$d

i ¼ 1

d
2
T ;i

s
2
ΔPmeas

v

u

u

t ð10Þ

where sΔPmeas
is the standard deviation of ΔPmeas and dV and dT

have been calculated as follows:

dV ;i ¼ΔPmeas;i$ΔPcalculated;i

d
2
T ;i ¼min

j
d
2
i;j

d
2
i;j ¼ ðΔPmeas;i$ΔPcalculated;jÞ

2þ
sΔPmeas

Δtc

* +2

ðði$jÞ=f Þ2

Δtc !
1

f 0
¼

π
ffiffiffiffiffiffiffiffiffiffi

g=h0
p

where f is the acquisition frequency, 100 Hz, f0 is the characteristic

frequency of the bed oscillation as determined by Baskakov et al.

(1986), and i, j are data points for ΔPmeas and ΔPcalculated, respec-

tively, (see Fig. 4).

As mentioned previously, δT has two contributions: the vertical

and the horizontal discrepancies. The quadratic vertical contribu-

tion of the discrepancy is given in Eq. (10) in relative form by

dividing it with the square of a characteristic value that ranges the

pressure oscillations (i.e. the square of the standard deviation of

the pressure oscillations s
2
ΔP

). The quadratic horizontal contribu-

tion of the discrepancy is normalised with the square of period of

the oscillation,Δt2c , which is the characteristic value that ranges an

oscillation along the horizontal axis (i.e. the time). Since Eq. (10)

has only s
2
ΔP

in the denominator, the scaling factor ðsΔP=ΔtcÞ
2 is

multiplying the quadratic horizontal contribution instead of

ð1=ΔtcÞ
2.

Also, it has to be noticed that the estimation of c (Eq. (8))

considers only the vertical displacements, δV , otherwise the

comparison between ΔPmeas and ΔPcalculated in Eq. (8) would be

insensitive to the delay between both signals and could not be

correctly calculated in the iterative algorithm described in Fig. 3.

5. Results

5.1. Dependence of the frictional forces

The first part of the results focuses on the dependence form of

the frictional forces. The aim of this section is to find the best

choice for Ω in Eq. (2). Recall that the functional forms of Ω

considered are the velocity of the centre of mass, dycm=dt, the

acceleration of the centre of mass, jd2ycm=dt
2
jξ, or the unity, ξ, if

the frictional forces are considered to be constant.
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Fig. 5 shows the discrepancy factors, δV and δT , versus the 
number of points used in the moving average filter, Nf, for the 
different choices of the functional form, Ω, and one configuration 
of the experiments. Analogous results were found for the rest of 
configurations.

            According to Fig. 5,   values of δV in the range 50–100% are 
obtained depending on the functional form, Ω. It may seem that
the signals ΔPmeas and ΔPcalculated are very different since the 
values found for δV are large. However, a small relative displace-
ment of the curves along the horizontal axis (i.e. time in Fig. 4) can 
substantially increase δV even if these signals are identical. To 
avoid this problem, a better quantification of the discrepancy is the 
total discrepancy, δT , d e fined in Eq. (10), which takes into account 
the local difference of the signals in both axes of Fig. 4. Using δT , the 
observed discrepancy between ΔPmeas and ΔPcalculated is reduced to 
the range 20–85%.

From Fig. 5 it can be seen that the best functional form of the 
frictional forces is considering that Ω is proportional to dycm=dt, 
since this leads to the smallest discrepancy factor, δV and δT . 
Furthermore, the choice of the functional form as a function of the 
velocity of the particles is in concordance with the fluid-like 
nature of the dense phase in a fluidised bed. Wall friction forces 
in a real fluid moving in a parallel-plate channel are proportional

Fig. 4. Illustration of the discrepancy factor calculation.

Fig. 3. Iterative loop for the calculation of the particle–wall interaction coefficient, c.
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to the bulk velocity of the fluid. When the velocity of the fluid is
increased, the velocity gradients are more pronounced and hence
the friction forces are higher. Therefore, the force balance that will
be considered hereafter is

ΔP ¼ 1�ϵ0ð Þρsh0
d2ycm
dt2

þg

!
þc

AL

AT

dycm
dt

ð11Þ

Also, a qualitative argument for the choice of Ω proportional to 
dycm=dt is presented in Section 5.3 showing the time evolution of 
the different pressure signals.

5.2. Simulation evidence

Fig. 5. Discrepancy factor, δ, versus Nf for the different forms of Ω, (a) δV , (b) δT .
Experimental data for U=Umf ¼ 2:5, h0=W ¼ 1 and dp ¼ 0:4–0:6 mm.

Fig. 6. Pressure signals at the bottom of the bed (ΔPmeas;bottom) and extrapolated from 5 cm above the distributor (ΔPmeas), and pressure calculated using the centre of mass of
the bed (ΔPcalculated). Simulation 2-D results for U=Umf ¼ 2:0, h0=W ¼ 1, dp¼0.5 mm, Ω¼ ðdycm=dtÞ.

This part shows the results obtained from a two-fluid model 2D

simulation of the fluidised bed employed in the experiments. The

simulation results are used to check the consistency of the force

balance and the algorithms proposed in Section 4. In the simula-

tion, the two-fluid model equations based on the conservation of

mass and momentum, together with the balance of granular

temperature, were solved using the MFIX code (Multifluid Flow

with Interphase eXchanges). The governing equations can be

found in Syamlal et al. (1993) and Benyahia et al. (2007).

A second order accurate scheme was selected to discretise the

convective derivatives of the governing equations, and the 2D

computational domain was meshed using square cells of length

5 mm. The distributor was modelled as a uniform velocity inlet

and a fixed pressure boundary condition was chosen at the top of

the freeboard. The particle–wall interaction on the lateral walls of

the bed was modelled as partial-slip boundary condition, with

specularity coefficient equal to 0.6, using the Johnson and Jackson

boundary condition for solids (Johnson and Jackson, 1987). The

drag model employed for the particle–air interactions was the one

proposed by Gidaspow (1994).

The simulation considered particles of 0.5 mm diameter, which

corresponds to the average diameter of the particles within the

range 0.4–0.6 mm tested in the experiments. The superficial gas

velocity was 2Umf. It has to be noted that the front and rear walls

are not presented in the simulation since the numerical domain is

2D, which is equivalent to having front and rear walls with null

particle–wall interaction coefficient.

Fig. 6 shows the simulation results concerning (i) the instanta-

neous pressure of the gas, spatially averaged along the width W, at

the bottom of the bed (ΔPmeas;bottom), (ii) the pressure calculated

(ΔPcalculated), and (iii) the pressure measured by a virtual probe at

5 cm above the distributor (ΔPmeas). In Fig. 6, the simulated pressure

signal obtained at y¼5 cm above the distributor is extrapolated to

y¼0 using the same procedure as in the experimental results, i.e. Eq.

(4). It can be clearly seen that both signals,ΔPmeas andΔPcalculated, are

almost perfectly correlated. The particle–wall interaction coefficient

estimated is negligible due to absence of the front and rear walls, and

the fact that c is referred per unit area AL. The little differences

between the pressure curves in Fig. 6 can be attributed to the moving

average filter employed to soft the acceleration signal and the small

friction produced by the lateral walls of the simulated bed.

The experimental ΔPmeas;bottom is quite difficult to measure due

to the local variation of pressure created by the jet effect of the

orifices of the distributor. However, as the simulation shows in

Fig. 6 the pressure measured at 5 cm above the distributor, ΔPmeas,

6



also represents fairly well the fluctuations of the pressure at the
bottom and can be used as a substitute of ΔPmeas;bottom. Discre-
pancies between ΔPmeas;bottom and ΔPmeas are due to the pressure
perturbation produced by the passing of small bubbles through
the sampling point. Note that in the simulation results the
correction of the delay of the signals is not needed since they
are perfectly synchronised, and the position of the centre of mass
is calculated from the instantaneous snapshots of the void fraction,

αs, instead of the grey level (Eq. (7)).
Therefore, on view of the similitude between ΔPmeas and

ΔPcalculated, the simulation indicates that the force exerted by the
pressure drop in the bed is directly linked with the force due to the
acceleration of the mass centre of a pure 2D bed (i.e. null front and
rear wall frictional forces). The simulations also show that the use
of the local pressure measured at 5 cm is a good alternative for
estimating the pressure drop in the bed.

Fig. 7. Pressure signals measured with a probe (ΔPmeas), calculated with digital image analysis without considering the frictional forces (ΔPaþΔPg) and considering them
(ΔPcalculated). Experimental results for U=Umf ¼ 2:5, h0=W ¼ 1, dp ¼ 0:4–0:6 mm, Ω¼ ðdycm=dtÞ.

Fig. 8. Pressure signals measured with a probe (ΔPmeas), calculated with digital image analysis without considering the frictional forces (ΔPaþΔPg) and considering them
(ΔPcalculated). Experimental results for U=Umf ¼ 2:5, h0=W ¼ 1, dp ¼ 0:4–0:6 mm, Ω¼ jd2ycm=dt2jξ.

Fig. 9. Pressure signals measured with a probe (ΔPmeas), calculated with digital image analysis without considering the frictional forces (ΔPaþΔPg) and considering them
(ΔPcalculated). Experimental results for U=Umf ¼ 2:5, h0=W ¼ 1, dp ¼ 0:4–0:6 mm, Ω¼ ξ.
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5.3. Experimental quantification of the particle–wall interaction
coefficient

Turning now to the experimental results, Fig. 7 shows an 
illustrative example of the time evolution of the pressure drop 
measured in the experimental pseudo-2D bed at 5 cm above the
distributor (extrapolated using Eq. (4)), ΔPmeas, the pressure drop 
calculated with DIA without considering the frictional forces,

ΔPa þΔPg , and considering them, ΔPcalculated. F o r ΔPcalculated the 
particle–wall interaction coefficient, c, is estimated with the 
algorithm proposed in Fig. 3. Clearly, the calculation of the pressure 
drop in the bed with DIA considering the frictional forces is able to 
reproduce reasonably well most of the oscillations experienced by 
the pressure measured in the experiment.

Additionally, in Fig. 7 the pressure calculated without consider-
ing the frictional forces (c¼0) in Eq. (11) is also depicted to 
illustrate that skipping the frictional forces from the calculation 
of the pressure produces a wrong prediction of the pressure signal. 
This shows that the frictional forces are relevant in the force 
balance in the pseudo-2D bed studied here.

Besides, a qualitative argument for the choice of Ω proportional 
to dycm=dt is presented in Figs. 8 and 9, which show the results 
when considering the functional form proportional to the accel-
eration of the centre of mass of the bed, or as a constant, 
respectively. It can be clearly seen that the pressure calculated in 
these cases cannot reproduce as satisfactorily the oscillations of the 
pressure measured as the case of Ω ¼ dycm=dt (Fig. 7). Further-
more, the calculated signal has an unrealistic and discontinuous 
behaviour, which can be even worse than the pressure calculated 
without including the frictional forces.

The particle–wall interaction coefficient estimated for the
biggest particle size studied in the experiments (dp ¼ 1–1:3 mm)
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Fig. 10. Experimental particle–wall interaction coefficient, c, versus U=Umf for
dp ¼ 0:4–0:6 mm and the three different aspect ratios studied.
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Fig. 11. Experimental particle–wall interaction coefficient, c, versus U=Umf for
dp ¼ 0:6–0:8 mm and the three different aspect ratios studied.
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Fig. 12. Experimental particle–wall interaction coefficient, c, versus U=Umf for
dp ¼ 1–1:3 mm and the three different aspect ratios studied.

The particle–wall interaction coefficient, c, can be estimated

under the different operative conditions presented in Table 1. For

that purpose a set of experiments were done for a range of

superficial gas velocities (U=Umf ¼1.5, 2, 2.5 and 3), static bed

aspect ratio (h0/W¼0.75, 1 and 1.25) and particle sizes, dp¼0.4–

0.6 mm, 0.6–0.8 mm and 1–1.3 mm. The values of the particle–

wall interaction coefficient, c, resulting from these experiments are

presented in Figs. 10–12.

Fig. 10 contains the results for the smaller particles (dp ¼

0:4–0:6 mm) studied in the experiment. It can be seen a small

increment of c with the superficial gas velocity for U42Umf . Also,

Fig. 10 shows that the particle–wall interaction coefficient, c, is almost

insensitive to the bed aspect ratio. The cases with low velocity

(U ¼ 1:5Umf ) are more disperse and deviate from the latter tendency.

Fig. 11 shows the particle–wall interaction coefficient for the

medium size particles (dp ¼ 0:6–0:8 mm). In the medium size

particles, the small sensitivity to the aspect ratio is observed

again, excepting the results for the high gas velocity (U ¼ 3Umf ),

which may be attributed to a change in the fluidisation regime.

Due to the high gas velocity and high fill level, the bubbles in the

upper part of the bed cover the whole width of the bed and they

produce a regime closer to the slugging operation.

Note that Fig. 11 and, more clearly, Fig. 10 indicate that an increase

of the bed aspect ratio produces a growth of the obtained particle–

wall interaction coefficient for small superficial gas velocities

(U=Umf ¼ 1:5). This may be explained considering that the smaller

particles tend to create bubbles of small size. As the size of bubbles

growths with the distance to the distributor, bubbles are smaller in

average in beds of reduced aspect ratio, h0/W, than in beds of larger h0/

W. Note that the smaller bubbles are more difficult to capture with the

DIA because of the rain of particles inside the bubbles. The missing of

bubbles reduces the apparent fluctuation of the centre of mass of the

bed, which has to be compensated by slightly greater values of c in

order to fulfil the force balance used in the method.

To provide an indication of the error associated with the values

of c in the figures, the standard deviation of c can be estimated. To

do that, the signal recorded can be split in five different signals of

60 s each one to check the repeatability of the measurements. The

value obtained for the most unfavourable case (small particles,

1.5Umf , H0=W ¼ 0:75) was 12.3 kg/m2s. Besides, an indirect indi-

cator of the total error (random plus bias error) in the estimation of

the coefficient c is given by the value obtained for the total

discrepancy, δT , (see for example Fig. 5b), which is around 20% for

all the experiments performed. These error estimations can be

considered acceptable due to the complexity of the experimental

data processing.
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Fig. 14. Experimental mean particle–wall interaction coefficient, c , versus dp and
fitting curve. The vertical bars denote the standard deviation of the experimental
data from the mean.

Fig. 15. Normalised standard deviation of the pressure terms versus U=Umf .
Experimental data for h0=W ¼ 1, dp ¼ 0:6–0:8 mm.
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Fig. 13. Comparison of the experimental mean particle–wall interaction coefficient,
c , versus U=Umf for the different particle sizes studied.

is shown in Fig. 12. As for the previous particles, the results for the

biggest particles are relatively insensitive to the bed aspect ratio

and limitedly sensitive to the superficial gas velocity. Nevertheless,

the case for the higher aspect ratio seems to slightly deviate from

the tendency of the other two aspect ratios tested.

The previous results suggest that the particle–wall interaction

coefficient, c, is weakly affected by the aspect ratio of the bed.

Exception of this is, perhaps, the data dispersion observed at low

or high superficial velocities. Therefore a robust estimation of the

particle–wall interaction coefficient can be made by averaging the

particle–wall interaction coefficient obtained for the three aspect

ratios, keeping constant U=Umf and dp. Fig. 13 shows the results of

this mean particle–wall interaction coefficient, c .

In general, the particle–wall interaction coefficient, c , for the

particles of dp ¼ 1–1:3 mm is almost the double than for the other

particles. The medium size particles (dp ¼ 0:6–0:8 mm) give values

of the mean particle–wall interaction coefficient slightly higher

than for the small particles (dp ¼ 0:4–0:6 mm).

Therefore, the experiments indicate that the particle–wall

interaction coefficient defined as Eq. (2), with Ω¼ dycm=dt,

increases substantially with the particle size. The growth of the

particle–wall interaction coefficient with the size of the particles

may be attributed to the enhancement of the wall effects produced

when the number of particles that can be allocated along the

transversal direction, Z, of the bed is reduced. In contrast, the

variation of c with the superficial gas velocity in Fig. 13 is

comparatively small and without a defined trend.

Considering that the mean particle–wall interaction coefficient,

c , in Fig. 13 is relatively insensitive to both the aspect ratio and the

superficial gas velocity, a simple dependence in terms of the

particle diameter can be retained, i.e. c ¼ f ðdpÞ, in this first

experimental characterisation of the value of c . Fig. 14 plots the

mean particle–wall interaction coefficient versus the particle

diameter, which is used to fit a function that models c versus dp.

In view of Fig. 14 it seems that c does not depend linearly on dp but

rather quadratically. Thus, based on the trend found for the

present results, a second order polynomial of the form

a2dp
2
þa1dpþa0, is selected as a simple example of model function.

According to the constitutive relations for granular materials by

Johnson and Jackson (1987), the particle–wall frictional force is not a

strong function of the particle diameter. These authors developed their

theory considering that the particles were immersed in a very large

volume compared to the particle size and that the walls are not close

to each other. For the pseudo-2D fluidised bed studied here, the

frictional forces clearly depend on the particle diameter. This can be

explained considering that in the pseudo-2D bed the volume is not

very large since the thickness is in the order of 10 times dp. Making dp
much smaller than Z, the bed thickness will be seen by a particle as

infinitely large. Thus, in order to make the quadratic function model

more consistent with the Johnson and Jackson friction constitutive

relations, the derivative of c with regard dp must vanish when dp=Z

tends to zero (i.e. 2a2dpþa1-0 when dp-0). This implies that the

coefficient a1 ¼ 0 and the polynomial to be fitted is a2dp
2
þa0. The

result of the least square regression of this quadratic function to the

frictional force data in Fig. 14 is

c ¼ 48:6ðdp½mm%Þ2þ43:8 ð12Þ

Note that in Eq. (12), the particle diameter, dp, must be introduced in

mm.

It has to be said that the results presented here were performed

for a pseudo-2D bed of fixed thickness of 1 cm, which means that

the proposed correlation may be valid only for beds of such

thickness. The root mean square difference between Eq. (12) and

all of the individual experimental data in Figs. 10–12 gives a

regression error of Eq. (12) equal to 10.7 kg/m2s, which is a 19% of

c in the most unfavourable case (smallest value of c), and 9% in the

most favourable case, with an average value of 14%.

The last part of this section focuses on the quantification of the

frictional forces relative to the other forces in the bed. Fig. 15 compares

the standard deviation of the pressure signals in the bed, ΔPcalculated,

ΔPa and ΔPfric , normalised with the mean pressure drop in the bed

due to its weight, ρsgh0ð1&ϵ0Þ. The results correspond to the medium

size particles and aspect ratio equal to unity. Similar trends were found

for the other particles and aspect ratios. As expected, the measured

and the calculated standard deviation of the pressure signal depend

linearly on the superficial gas velocity as a result of the growth the

bubbles that produce the pressure fluctuations of the bed. Also, Fig. 15
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shows that the frictional force is not negligible in the force balance,
increasing its relative contribution when the gas velocity is augmen-
ted. The frictional forces reach more than the 70% of the force
produced by the weight of the bed. The standard deviation of the
frictional forces is always superior to the standard deviation of the
internal forces. This important result indicates that the impact of the
frictional force in the pressure drop oscillations in a pseudo-2D bed is
even greater than the contribution of the force produced by the
acceleration of the centre of mass at high superficial gas velocities.

6. Conclusions

In this work, the frictional forces exerted by the front and rear
walls on the solids of a pseudo-2D fluidised bed were experimen-
tally characterised. This was done by linking the pressure drop
measured in the bed with the acceleration and velocity of its
centre of mass obtained from digital image measurements of the
solids distribution. The frictional forces were assumed to be a
function of the bed dynamics and it was found that the best choice
is to consider the friction proportional to the solids velocity
through a particle–wall interaction coefficient, c. The resulting
coefficient was in the range of 40–120 kg/m2s for the operative
conditions studied in the present work. In general the particle–
wall interaction coefficient, c, was found to be very sensitive to the
particle diameter, less affected by the superficial gas velocity and
weakly affected by the bed aspect ratio. The fluctuations of the
frictional forces on the pressure drop in the bed resulted to be
even larger than the fluctuations induced by the acceleration of
the bulk of the bed. These empirical findings evidence that the
friction of particles with the walls plays an important role in the
dynamics of pseudo-2D beds.

Nomenclature

AL lateral area (m2)
AT transversal area (m2)
c particle–wall interaction coefficient (kg/m2s)
d delay points (-)
dp particle diameter (mm)
f acquisition frequency (Hz)
f0 characteristic pressure frequency (Hz)
FΔP force due to the pressure drop in the bed (N)
Fa force due to the acceleration of the centre of mass of

the bed (N)
Fg force due to the bed weight (N)
Ffric frictional forces (N)
FN normal force (N)
GL grey level of the pixels (-)
g gravity (m/s2)
H bed height (m)
hfb mean freeboard height (m)
h0 static bed height (m)
m mass of the bed (kg)
N number of pixels (-)
Nf number of points of the moving average filter (-)
n normal direction to the wall (-)
ΔP pressure drop in the bed (Pa)
ΔPmeas pressure drop measured (Pa)
ΔPcalculated pressure drop calculated (Pa)
ΔPp pressure drop at 5 cm over the distributor (Pa)
T total measurement time (s)
td time delay (s)
Δt sampling time interval (s)
U superficial gas velocity (m/s)

Umf minimum fluidisation velocity (m/s)
v solids velocity (m/s)
ycm vertical position of the centre of mass of the bed

(m)
yp vertical position of the pressure probe (cm)
W bed width (m)
Z bed thickness (m)

Greek letters

αs solids volume fraction (-)
αmf solids volume fraction at minimum fluidisation

conditions (-)
δ discrepancy factor (-)
δv vertical discrepancy factor(-)
δT total discrepancy factor (-)
ϵ0 static bed void fraction (-)
ϵmf bed void fraction at minimum fluidisation

conditions (-)
μ Coulomb coefficient of friction (-)
Ω functional of the frictional force (-)
ρs solids density (kg/m3)
τ shear stress (N/m2)
θ granular temperature (J/kg)
sΔP standard deviation of the pressure (Pa)
ξ direction of the centre of mass velocity
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