
Combining similarities with regression based

classifiers for Entity Linking at TAC 2010

César de Pablo-Sánchez, Juan Perea, Paloma Mart́ınez

{cdepablo,jiperea,pmf}@inf.uc3m.es
Computer Science Department

Universidad Carlos III de Madrid
28911 Leganés, Spain

Abstract

The UC3M team has sent three runs for each Entity Linking task
proposed in the Knowledge Base Population (KBP) track at TAC 2010.
The skeleton system presented in 2009 has evolved in 2010 by incor-
porating some new tools, new algorithms for candidate retrieval and
feature extraction, and two new stages that use regression based clas-
sifiers for candidate filtering. These improvements have allowed the
UC3M team overall values to almost reach the median values of all
participants in the Entity Linking tasks.

1 Introduction

The Knowledge Base Population task aims at advancing the state of
the art for systems that automatically populate the Knowledge Base
(KB) of an ontology with facts about their instances. The task focuses
on acquiring knowledge for Named Entities (NE) from a large docu-
ment collection and is further divided in two key tasks, Slot Filling and
Entity Linking. The goal of Slot Filling is to update the KB with new
information extracted from the collection given a set of important at-
tributes (or slots) for a query that is a person or an organization. The
second task, Entity Linking is aimed at solving the problem of finding
the correct entity to update given a mention in context. The task in-
cludes particularly difficult cases like ambiguous mentions (e.g George
Bush), aliases (e.g Angela Kasner, more known as Angela Merkel) or
even examples of both (e.g ABC).

This year, our team (UC3M) focused only on the second task, En-
tity Linking, and made significant improvements to our last year sys-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29407286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Type Count Percentage
Person PER 114.523 14.0%
Organization ORG 55.813 6.8%
Geo Political Entity GPE 116.499 14.2%
Unknown UNK 531.907 65.0%
All 818.741

Table 1: KB nodes by entity types

tem. Our approach is based on indexing information from the KB to
find a list of candidates that includes a correct link for every mention
with high recall. In sucessive steps the set of candidates is filtered using
contextual and name similarity clues to produce a single candidate or
NIL if no adequate candidate is found. The filters are implemented as
regression based machine learning classifiers that combine the different
similarity metrics and numeric scores to produce a final ranked list of
candidates with their scores.

2 The Task: Entity Linking

The Entity Linking task assumes that we have a large list of entities
organized in a Knowledge Base (KB) and a large document corpus.
In TAC2010 the KB is semi-automatically derived from Wikipedia. It
is composed by four types of entities: persons (PER), organizations
(ORG), geo-political entities (GPE) and those whose type is unknown
(UNK). Each entity in the knowledge base contains title, name, type,
id, some wiki text, and several facts of different types in the form of a
[name, value] pair. Table 1 summarizes data from the KB as presented
in [4].

The document collection is composed of two different parts, a 1.3
million English newswire articles and 488.240 webpages. Newswire
documents were published between 1994 and 2008 and were used also
TAC 2009. In contrast, webpages have been introduced this year.

The evaluation is performed with a list of queries composed by
[name-string, document, type]. Each name-string is mentioned in the
document and may refer to one of the entities of the KB . An Entity
Linking system will have to determine, for each of the queries, which
of the entities in the KB, if any, is being referred to by the name-string
in the given document. If the KB does not contain the referred entity
then the correct answer is NIL to indicate that it does not appear.
So far in TAC 2010, it is not required “create” a new KB entity that
groups all the mentions or name-strings that co-refer but do not have

Eval Data 2009 Training Data 2010 Eval Data 2010
GS2009 TR2010 GS2010

document genre news web news + web
queries 3904 1500 2250
non-NIL queries 1675 1074 1020
NIL queries 2229 426 1230

Table 2: Data sets outline

an entity in the KB.
There are several datasets available for training the system, the

gold standard from TAC 2009 has been complemented with additional
training data in 2010 created by LDC which used web documents.
Table 2 summarizes the characteristics of each dataset including the
evaluation data for TAC 2010. Systems are compared using Accuracy
(micro-Accuracy) in their prediction, usually breaking down for non-
NIL queries and NIL queries.

Besides, an optional Entity Linking task has been enabled this yeat
which aims at building systems that do not use the wikitext available
for KB entities, as large document text are rare in lots of practical
KBs.

3 System description

The UC3M system for entity linking is composed of three main stages
that work online: candidate entity retrieval, candidate filtering and
NIL classification. It is based on the combination of several similarity
measures and scores using logistic regression. Additional processing
is required for indexing, scoring and normalization to create the fea-
tures for each instance or candidate pair. Figure 1 depicts the main
components of the system and the required offline processing.

The candidate retrieval stage adresses the first problem in the en-
tity linking task, matching mentions to KB entities despite not being
mentioned with the same name. Acronyms, aliases, name variants and
typographical errors are among the reasons to expand the candidate
list beyond exact string matchings.

The goal of the second stage is to reduce the size of a potentially
large candidate list. It helps to perform the second problem in EL,
disambiguation. We have cast the problem as a simple classification
problem to decide if a pair (query,entity node) is correct. We integrate
similarities between the contexts available for the query, its document,
and the KB entity: the wiki document, the infobox and the article

Figure 1: Entity Linking architecture

links. A classifier may provide several links to the KB and the proba-
bility of the classification is used to rank them. On the other hand if
no pair is identified as a link the final answer is NIL. The third step is
another classifier but, in this case, it is specialized in detecting if the
link between the pair is correct or not.

We have used a similar architecture for the main EL task and the
optional task although details on how training data is generated and
features differ. We have test the use of different training sets for the
main EL task. In the optional task we introduced additional name
similarities as features for the two classifiers.

3.1 Indexing

Before any query can be run, the knowledge base entities and the article
corpus need to be indexed using Lucene 1. For each query, it can return
a scored list of matching documents, so it fits our needs quite nicely.
Searches are executed only against the KB index; the article corpus
index is created solely for storage purposes, as locating an article in
the file system could be quite tedious given the amount of directories.

Four indices are created from the knowledge base: the KB index,
the ALIAS index, the NER index and the WIKIPEDIA index. For

1 http://lucene.apache.org

each entity in the knowledge base, a document is created containing
the following fields:

• For all indices: id and wikiTitle are extracted from the supplied
knowledge base.

• For the KB index: name, type, wikiText and factValueList. This
information is extracted directly from the supplied knowledge
base. This index is used only to get a fast access to entity data.

• For the ALIAS index: nameList, acronymList and domainList.
This information is extracted with no or little processing from
facts in the KB, and each field can contain different names that
can be used to reference the given entity. For example, facts
alias, abbreviation and website will be used to populate nameList,
acronymList and domainList respectively with no processing at
all, and fact name can be used to populate acronymList with
some processing. This index will be used during the candidate
retrieval stage.

• For the NER index: only the namedEntityNameList field is ap-
pended. This field contains the NE found by the Stanford Named
Entity Recognizer 2 [?] in the knowledge base text. Named en-
tities found will be matched against named entities found in the
articles.

• For the WIKIPEDIA index: fields anchorList, categoryList, redi-
rectList, outLinkList and inLinkList are appended if the corre-
sponding record is found in the Wikipedia snapshot. Informa-
tion in this index can be used to complement information in the
ALIAS and NER indices.

3.2 Candidate retrieval

For an entity to be a candidate, it needs to have some similarity in any
relevant field with the name-string in the query. This similarity could
also be with any synonym, alias or acronym extracted from the name-
string itself or from the document text. The candidate list is obtained
by running simple Lucene searches on the search fields of the ALIAS
index (nameList, acronymList and domainList). Each of this searches
returns a list of [document, score] pair, each representing a candidate
entity. Lucene can return huge document lists for each search, so we
need to filter candidate lists to save processing time. A threshold score,
which can be different for each of the three searches, is defined based
on the training data. Scores for the correct answers are sorted, and
we choose a threshold that would let most of these correct answers

2http://nlp.stanford.edu/ner/index.shtml

in the candidate list. Entities in each list with a score over the given
threshold are merged into an overall list.

3.3 Feature Extraction

Once a candidate list for a given [entity name, document] query has
been populated, we need to choose which of the candidates in the
list is the best option. During the candidate retrieval stage, we got
some scores (index-based features) that might show how good each
candidate is.

However, these scores are only related to the entity name in the
query, and more numerical features need to be calculated to show the
correlation between each candidate and the document text. For ex-
ample, it is expected that some values in the factValueList field and
some names in the namedEntityNameList field (names that appear in
the knowledge base text) will also be present in the document text.
The system implements two algorithms that extract some context
similarity features:

• Lucene search using the document text - First, a single-document
Lucene index is built using the document text. Then, given some
data from the candidate, a simple search is constructed and run
against such index, and the resulting score is stored as a feature.

• Cosine distance - Given some data from the candidate, the cosine
distance is used to get a value that shows how much this data
matches the document text.

Data used to feed these algorithms include the following fields in
the knowledge base indices: nameList, acronymList, domainList, fact-
ValueList and namedEntityNameList. Finally, once the candidate list
has been scored we produce for every of the above scores two values,
a raw one and a normalized one. The last one is normalized with the
highest value in the candidate list.

We also included a number of name similarity features in some
of the experiments for the optional task. Though index-based features
measure name similarity, they are global measures. For instance, they
take TF.IDF weights into account to downweight common terms like
George in comparison to uncommon ones like Bush. We used sim-
ple similarity measures and some string similarity measures provided
in the SecondString 3 package between the query and the entity ti-
tle . We used equal, QcontainsE (the entity is a substring of the
query), EcontainsQ, Jaccard, Jaro, JaroWinkler, MongeElkan
and SLIM.

3http://secondstring.sourceforge.net/

3.4 Candidate Filtering

The Candidate Retrieval stage provides a large set of candidate pairs
(query,KB entity) but on the optimal situation only one of them should
be selected as the correct link. We have relaxed this problem by mod-
elling it as a classification problem that aims at filtering those pairs
that are not related taking into account contextual features. The clas-
sifier may decide that several pairs are good candidates and then the
prediction confidence is used to rank the rest of candidates.

Training sets were generated with the subset of queries that were
linked to a KB entity (non-NIL). For each query, a candidate list is
retrieved and a vector of features generated for each pair. An obvious
problem with this approach is that the datasets are highly imbalanced.
At best, there is one correct pair in a list of dozens or even hundred
candidates. We have attempted to overcome this problem by using
cost-sensitive classifiers. Our cost matrix assigns 10 times higher cost
to filter out a correct candidate (false negative) than to let an incorrect
one pass (false positive). We seek here to maximize the recall and leave
part of the work for the next step, the NIL classifier.

On the other hand, an advantage of this approach is that we can
use several standards classifiers like those provided by Weka 4 [5]. We
tested several classifiers that used to perform well with numeric values
like Logistic Regression and Support Vector Machines but found dur-
ing system development that the Classification via Regression scheme
[2] outperformed both in terms of Recall with similar Precision. The
Classification via Regression algorithm uses model trees, decision trees
with linear regression functions at the leaves, as the basis for classifi-
cation.

During the experiments we found that the document (web or news)
had a larger influence on the results, specially when tested in cross-
genre comparisons. Our three main-task runs use different training
sets with the Classification via Regression scheme.

3.5 NIL classification

In contrast, the last classifier is aimed at detecting with high precision
candidate pairs that are incorrect and therefore should not be linked
to the KB. In this module, we have used a Logistic Regression classifier
trained with a different subset of the queries. Positive examples were
extracted from candidate pairs that are correct and found. Negative
examples were create from the top ranked entities for those queries
that do not have a link in the KB (NIL queries). Although the set is
not perfectly balanced there is no such large as skew as the candidate
filter classifier.

4http://www.cs.waikato.ac.nz/ ml/weka/

UC3M1 UC3M2 UC3M3
2250 queries 0.6742 0.6507 0.6742
1020 non-NIL 0.5127 0.5873 0.4941
1230 NIL 0.8081 0.7033 0.8236

Table 3: Main task results

UC3M1 UC3M2 UC3M3 Highest Median
750 ORG 0.6867 0.6653 0.6667 0.8520 0.6767
749 GPE 0.5180 0.5287 0.5087 0.7957 0.5975
751 PER 0.8176 0.7577 0.8469 0.9601 0.8449
2250 ALL 0.6742 0.6507 0.6742 0.8680 0.6836

Table 4: Main task results breakdown by NE class

4 Results

Our team submitted three runs for each of the tasks. Runs for the main
Entity Linking task have focused on the use of training data from differ-
ent genres. In the UC3M1 run we used both datasets (GS2009+TR2010)
while the other runs used only dataset from a single genre. Run UC3M2
used web dats (TR2010) and UC3M3 used only news data (GS2009).

Table 3 summarizes the results for these three runs that obtain
quite similar overall micro-Accuracy. The first and the third runs have
similar performance, with higher results for correctly assigning NIL
queries than detecting correct links. Run UC3M2, trained only with
web data, obtained higher accuracy for identifying correct links but
also is more prone to provide spurious ones. Candidate retrieval is
exactly the same for the three runs, which indicates that the second
run achieves better recall on correct links. In comparison, our results
are slightly below the median value (0.6836) but much lower than the
highest accuracy (0.8680).

Linking results vary widely across different NE classes as shown
in Table 4. PER are the class with less linkable entities but on the
other hand they are considerably easier to link than GPE and ORG.
It is also clear that the advantage of the UC3M2 is due to their better
performance disambiguating non-NIL GPE entities and ORG entities.

UC3M1 UC3M2 UC3M3
2250 queries 0.5844 0.6622 0.6978
1020 non-NIL 0.3520 0.3980 0.4735
1230 NIL 0.7772 0.8813 0.8837

Table 5: Optional EL task results

UC3M1 UC3M1 difference UC3M3
nowikitext UC3M1 nowikitext

2250 queries 0,6742 0,5844 0,0898 0.6978
1020 non-NIL 0,5127 0,3520 0,1607 0.4735
1230 NIL 0,8081 0,7772 0,0309 0.8837

Table 6: Comparison of main and pilot runs

4.1 Optional task: Entity Linking without text de-
scriptions

The first run submitted for the pilot task (UC3M1) is equivalent to
its main task counterpart but all features that use the wiki text have
been removed. In contrast, the second and third run try to assess
the usefulness of additional name similarity features that we added
during the last week before the evaluation. UC3M2 includes the name
similarity features only in the NIL classifier while UC3M3 includes
them in both classifiers.

An outline of the three pilot runs is depicted in Table 5 and clearly
shows that the name similarity features help to improve results in both
runs. The NIL classifier on the second run reduces the number of
incorrect links improves candidate ranking as it is deduced from the
increase of non-NIL and NIL queries accuracy. Furthermore, adding
name similarity measures to candidate filtering also produces a better
filtering and reranking of candidates.

The analysis of the result by NE type provide a similar conclusion,
GPE are the more ambiguous type and therefore the most difficult to
link. Figure 2 shows that our name similarity features are specially
helpful for the GPE and PER queries. Nevertheless, these features are
useful in both classifiers for GPE queries, while for PER queries they
provide the major improvement when added to the Candidate Filter.

Finally, Table 6 compares the two first runs of both tasks that
are similar except for the removal of features based on the similarity
of wikitext. As expected, the textual context have a great influence
disambiguating entities as reflected by the loss in non-NIL accuracy.

Figure 2: Results for non-NIL queries in the optional EL task

A similar decrease is shown across different types. However, when we
add name similarity measures we achieve accuracy results similar to the
main task, so we probably may expect to have a similar improvement
by adding such features for main task classifiers.

5 Conclusion and Future Work

The UC3M Entity Linking system has combined a number of numeric
scores and similarity metrics using machine learning classifiers based
on regression. The system performs candidate retrieval on title, aliases
ad domains exrtracted from the KB to find a large number of candidate
pairs. Those are filtered based on contextual clues and finally validated
by a NIL classifier. The goal is to achieve first high recall and then by
filtering in succesive stage to achieve the desired precision. Runs were
submitted for the main task and the pilot task and achieved results
around the median performance. Good results were achieved for PER
queries while the performance is lower for GPE and ORG queries.
A direction for further research consists on the specialization of the
classifiers in different NE types as has been carried in [3]. Most of
our experiments have focused on the last stage classifiers and further
research is required on the best way to integrate the retrieval module.

Besides, there are a large number of additional features that would
work in our approach like a-priori information on linking [1] or trying

to perform collective entity linking for all the mentions of a document.
Finally, the issue of document genre have shown to be important in
our experiments and requires also detailed analysis of our results.

6 Acknowledgements

This work has been partially supported by the Regional Government of
Madrid by means of the Research Network MAVIR2CM (S2009/TIC-
1542) and by the Spanish Ministry of Education by means of the
project BRAVO (TIN2007-67407-C3-01)

References

[1] Eneko Agirre, Angel X Chang, Daniel S Jurafsky, Christopher D
Manning, Valentin I Spitkovsky, and Eric Yeh. Stanford-UBC at
TAC-KBP. In TAC2009 Working Notes, Gaithersburg, 2009.

[2] Eibe Frank, Yong Wang, Stuart Inglis, Geoffrey Holmes, and Ian H.
Witten. Using Model Trees for Classification. Machine Learning,
32(1):63, 1998.

[3] Fangtao Li, Zhicheng Zheng, Fan Bu, Yang Tang, Xiaoyan Zhu,
and Minlie Huang. THU QUANTA at TAC 2009 KBP and RTE
Track. In TAC 2009 Working Notes, Gaithersburg, 2009.

[4] Paul McNamee and Hoa Dang. Overview of the TAC 2009 Knowl-
edge Base Population Track (DRAFT). In TAC 2009 Working
Notes, number Ldc, Gaithersburg, 2009.

[5] Ian H Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2nd edition,
2005.

	Introduction
	The Task: Entity Linking
	System description
	Indexing
	Candidate retrieval
	Feature Extraction
	Candidate Filtering
	NIL classification

	Results
	Optional task: Entity Linking without text descriptions

	Conclusion and Future Work
	Acknowledgements

