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A Random Walk Test for Functional
Time Series

Nicola Mingotti, Rosa E. Lillo, Juan Romo

April 30, 2015

Abstract

In this paper we introduce a Random Walk test for Functional
Autoregressive Processes of Order One. The test is non para-
metric, based onBootstrap and Functional Principal Components.
The power of the test is shown through an extensive Montecarlo
simulation. We apply the test to two real dataset, Bitcoin prices
and electrical energy consumption in France.

Key Words. Autoregressive Process, FAR(1), unit root, Boot-
strap, Computational Statistics, hypothesis test, Principal Com-
ponents.

1 Introduction

Testing if an Autoregressive Process of order one is a Random Walk is
a well known subject of classical Time Series analysis that was intro-
duced firstly by [Box and Jenkins, 1970] and then improved in posterior
works as for example [Dickey and Fuller, 1979], [Phillips and Perron, 1988]
and [Ferretti and Romo, 1996]. Random Walks are of especial interest in
Economics, they were used since [Bachelier, 1900] to model stock prices.
The works of [Nelson and Plosser, 1982] and [Meese and Rogoff, 1983] have
shown Random Walks can be found not only stock prices but even in
unsuspected time series, as unemployment rate, gross domestic product or
currency exchange. In this article we export this classic test to a functional
context and introduce an algorithm to check if Functional Autoregressive
Process of order one can be considered a Random Walk.

The transposition of Time Series techniques to the Functional Data context
is motivated by the same arguments as Functional Data Analysis in gen-
eral: continuous nature of the data, dimension reduction and an expected
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improvement in the predictive power of the model. Anyway, in Time Series,
FDA can bring some notable simplification in the models, we will show
it with an example. Suppose you are going to model the daily electricity
consumption in a country, the classic way to do it is to join a deterministic
trend with a more or less complex stochastic model, for example an ARIMA.
One of the main difficulties is that there are many important periodic factors
to take into account occurring in a year, for example all weekends but also
special occasions as Christmas, Easter and summer holidays. Every one of
these special events has to be separately taken into account and this make
the model complex and loaded with exceptions. One of the desiderata in
using a Functional Model is that it could be able to cope automatically
with many of the recurring periodic events. Indeed, if we model electricity
consumption as a function that cover one full year, then year-2 will take into
account at least what happened in the previous year, year-1, where all of the
holidays and weekends were already present so, in principle, we would not
need to adjust for many of the seasonalities. One exception to this scheme
are moving holidays, like Easter, that would need still manual correction.

The last ten years have seen a lot of advances in Functional Time Series
and Functional Autoregressive processes, both in theory and in applica-
tions. For example, [Horváth et al., 2010] proposed a method to check
if a model can be considered constant in time, [Battaglia, 2005] pro-
posed a method to identify outliers, [Kokoszka and Reimherr, 2013] a
method to establish the order of an autoregressive process. In applica-
tions, [Damon and Guillas, 2002] used functional autoregressive processes
for Ozone forecasting, [Besse et al., 2000] to forecast ocean temperatures,
[Guillas et al., 2011] to forecast the seabed evolution and maintain navi-
gability channels. As of today, [Bosq, 2000] is the de facto reference for the
theoretical aspects of Functional Autoregressive Processes while the recent
[Horváth and Kokoszka, 2012] collects many recent results and is directed
to the researcher as well as to the practitioner in FDA.

In this article we are going to focus on a very special topic of Functional
Time Series. We present a Random Walk test for Functional Autoregressive
Processes of order one. As always in Functional Data, the first impulse is
to start by looking at what was done in the past to solve the unfunctional
problem. Some of the classical methods to test the Random Walk hypothesis
in an AR(1) process were cited at the beginning of the article, all of them,
in one way or another, try to estimate the value ρ in Xi+1 = ρ Xi +
εi+1 and compare it against the condition H0: ρ = 1. We choose not to
follow this direct approach in the functional context because the ruling
equation for a FAR(1) process is Xi+1(t) = Ψ Xi(t) + εi+1(t) and the
available estimator for Ψ converges very slowly and in an unexpected1 way,
see [Horváth and Kokoszka, 2012, pg.240], [Kokoszka and Zhang, 2010].

1. The estimator depends on principal components but increasing the number of principal
components reduces the performance of the estimator.
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More precisely, in the functional context, the model corresponding to the
Autoregressive Process of order one, AR(1), defined by

Xi+1= ρXi+ εi+1, (1)

is the Functional Autoregressive Process of order one, denoted for short as
FAR(1) and defined by

Xi+1(t)=Ψ(Xi)(t)+ ϵi+1(t), (2)

where Xi have mean zero. In the general setting of [Bosq, 2000], Xi(t) are
functions in an Hilbert space, Ψ is a bounded linear operator from H to H
and ϵi(t) are H-white noise. In this work we will restrict our attention to the
framework most used in applications, as in [Horváth and Kokoszka, 2012].
H will be L2[0,1], the space of functions in [0,1] which are square integrable
according to Lebesgue. The scalar product is the common <f , g> :=

∫
0

1
f g,

ϵi(t) are i.i.d. with E(ϵi(t)) = 0 and E (|| ϵi(t)||2) <∞ for all i. As Ψ, we
consider only integral operators of type

Ψ(f)(t) =

∫

0

1

ψ(t, s) f(s) d s, (3)

which are always linear and bounded if the kernel function ψ(t, s) is contin-
uous. It might be useful to consider this operator as an integral average of f
respect to a set of weight functions ψt. These operators are not too restrictive
on what we can express, on the contrary, they are quite general. Indeed,
quoting from [Gohberg et al., 1990, ch.7], they are like an universal model
for Hilbert-Schmidt2 operators because for each H-S operator A: H → H
there exists a unitary operator U such that UAU−1 is an integral operator
as Eq.3.

We want to check if the datasetX1, ..., Xm, which we suppose was generated
by a process as Eq.2, can be considered a Random Walk. The idea is to
compare the covariance of the original data set with the covariance of the
same dataset resampled under the null hypothesis that Ψ is the Identity
operator, using the Empirical Functional Principal Principal Component
(EFPCA).

Further in this article, Section 2 contains a detailed description of the test
and of how to apply it in practice. In Section 3 is explained the Montecarlo
simulation scheme and presented and analysis of its results. Section 4 shows

2. An operator A on an Hilbert space, is an Hilbert-Schmidt operators if it is linear,
continuous and such that

∑
i=1
∞ ||A φi||2<∞ for an orthonormal basis φ1, φ2, ... . There

are also other equivalent definitions, see [Gohberg et al., 1990, pg.140].
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two applications to real datasets, we check for Random Walk the series of
yearly electricity consumption in France and diary prices of Bitcoin. It also
clarifies the procedure given in section 2 and can be red just after it by the
reader most interested in the test deployment. In Section 5 there are the
conclusions and finally in the Appendix are collected the simulation results.

2 Test Procedure

We start with a functional data set X1(t), ..., Xm(t) and compute its first
p ≤ m − 1 Empirical Functional Principal Components . The EFPC are
eigenfunctions and eigenvalues of the empirical covariance operator and they
will be denoted with with ( ξ̂i, λ̂i)i=1..p, see [Ramsay and Silverman, 2005,
ch.8]. It is known that, under mild conditions, when m goes to infinity,
λ̂i converges to λi, the eigenvalues of the populational covariance oper-
ator, see [Horváth and Kokoszka, 2012, pg.31], [Bosq, 2000, sec.4.2],
[Dauxois et al., 1982].

The Schmidt Norm of an Hilbert-Schmidt operator A can be computed as

||A||S2 =
∑

j=1

∞

||Aφj ||2 (4)

where φ1, φ2, ... is an orthonormal basis, see [Gohberg et al., 1990, pg.141-
143]. In our case A is the covariance operator KΨ and choosing as ortho-
normal basis its eigenfunctions given by PCA: ξ1, ξ2, ... we get

||KΨ||S2 =
∑

j=1

∞

||KΨ ξj ||2=
∑

j=1

∞

||λi ξj ||2=
∑

i=1

∞

λi
2. (5)

In applications we will use λ̂i as estimator for λi so we will actually compute

||KΨ||S
2
but, using the aforementioned result of convergence and the conti-

nuity of the norm, for large values of m, ||KΨ||S
2
converges to || KΨ||S2 . It

must be stressed that there are not problems of convergence for the series in
Eq.5 since we are summing only a finite number of terms λ̂i for i=1...m−1.

Under the null hypothesis that the FAR(1) process is a Random Walk we
can estimate its innovations as

ϵ̂i+1(t) :=Xi+1(t)−Xi(t). (6)
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Resampling ϵ̂i(t) and applying again the null hypothesisH0 we can compute
B Bootstrap copies of the observations set {Xi(t)}i as

Xi+1
b,∗ (t) :=Xi

b,∗(t)+ ϵi+1
b,∗ (t) for b in 1 ... B. (7)

For each set of resampled observations {Xi
b,∗(t)}i we compute the estimated

Schmidt norm of its covariance (||KId ||S
b,∗
)2 through principal components

as done before. Then, build its empirical distribution function E . Finally,

we compute ||KΨ||S
2
for the original data set and reject the null hypothesis

that Ψ is Id if E(||KΨ||S
2
) is smaller than some predefined threshold α.

From the Bootstrap structure and the statistic involved it is apparent the
nature of the test is

{
H0:Ψ= I d
H1: ||Ψ||< 1.

(8)

Indeed, if Ψ has norm one then there will be no reduction on the impact
of all old innovations (ϵj with j ! i) on Xi, so Xi could grow very fast and
consequently also the covariance matrix and its eigenvalues, just as in the
case of Ψ= I d. This condition make Ψ and Id indistinguishable to our test.

Suppose now our dataset comes as a matrix Mn,m where data to be con-
sidered functions are the columns c1, ..., cm. We take for granted here that
data are already aligned and equispaced, techniques to make a dataset in
this form are discussed in [Ramsay and Silverman, 2005].

Before starting the Random Walk test, by our understanding of the real
phenomenon underlying the data, we check if there is a structure that can
be considered deterministic and remove it applying a proper transformation.
Bosq suggests to remove trend but not seasonality, if the seasonality com-
ponent can be modeled through a FAR(1), see [Bosq, 2000, pg.152, 240].

Perhaps, to appreciate the importance of the previous step the following
imaginary experiment can be of help. Suppose, you are studying the daily
phone calls functions in the Italian mobile telephone network. It is well
known to all Italian people, that on New Year’s Eve night the mobile network
collapses, and it becomes difficult to send the important “Happy new year!”
messages. This will happen every year, it is a deterministic structure and
you need to remove it because the FAR(1) model has no way to get it
straight since it looks only at what happened on the night before, that is
on the not so special night of 30 December. On the contrary, suppose now
you are studying the yearly phone calls functions. In this case you should
not, in principle, adjust for New Year’s Eve because the previous year also
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contains it.

To apply the Random Walk test the following steps must be performed.

1. Smooth the dataset fitting each column c1 ... cm to a base of your pref-
erence. We used BSpline and Fourier. The number of basis functions
is largely to be selected depending on the nature of the problem but
a good starting point could be n

√
. At the end of this step we will

have the set of functional observations X1(t) ... Xm(t).

2. Choose a number of principal components you want to use for your
analysis. We suggest to start with p=3 and adjust it ex post if nec-
essary. There are classical ways of selecting the number of principal
components based for example on the scree plot or on the explained
variance but, according to our simulations, the power of the test is
concentrated only on the first eigenvalue. Using p>1 is instrumental
in showing if the sequence of eigenvalues displays a continuous decay,
which is characteristic of ordinary FAR(1) processes. Or a sudden
extreme drop after the first eigenvalue, which is a characteristic of
a Random Walk. A graphical representation of this phenomenon is
presented in the Applications section.

3. Find the Empirical Functional Principal Components of your dataset
and their associated eigenvalues λ̂1 ... λ̂p, then compute the estimated

(squared) Schmidt Norm ||KΨ||S
2
←

∑
i=1
p λ̂i

2. It is important to
observe that we compute the EFPC always on the centered3 dataset,
in this case it is {Xi|Xi: =Xi− X̄ for i=1 ... m}.

4. Resample the dataset under the null hypothesisH0 that Ψ= Id. First
compute the estimated innovations,

ϵ̂i+1(t)←Xi+1(t)−Xi(t) for i=2 ... m

Center the ϵ̂i+1(t) subtracting their common mean and find the
resampled observations. From here on all the ϵ̂i will be considered
centered.

{
X1
b,∗(t)←Mean(X1(t), ..., Xm(t))

Xi+1
b,∗ (t)←Xi

b,∗(t) + ϵ̂i+1
b,∗ (t) for i=2 ... m

3. If youuseRwith fda package for your computations, this can be achievedautomatically
setting the parameter centerfns=TRUE in function pca.fd .
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Compute the associated Schmidt norm (||KΨ||s
b,∗
)2 as in step (3).

Some observations about the choice of the mean as first bootstrapped
observations will be given at the end of the procedure.

5. Repeat step (4) for the necessary amount of iterations until you get

B estimations of (||KΨ||s
b,∗
)2 . We usually start start with B = 200.

Find the empirical distributions E of all the (||KΨ||s
b,∗
)2 . Let P-value

be E(||KΨ||s
2
). Traditionally rejectH0 if P-value<0.05, or some other

threshold of your choice.

6. Toggle the number of basis functions, principal components and
Bootstrap replications to make sure results are stable.

The initial bootstrapped observation X1
∗,b is a free variable in this problem

because we can estimate only m− 1 innovations. We choose to set it to X̄
following this heuristic. If we want the Bootstrap to replicate something
we have to give it a chance to do it right, the best chance to start seems to
be the middle of the original dataset. Other possibilities are reasonable but
were not tested, for example one could start the simulation picking randomly
one Xi, or the median. A graphical comparison of the initial dataset and
some Bootstrap replications can give some hints about the suitability of the
selected starting point criterion.

3 Simulation Study

In this section we will describe in detail the simulation procedure. It has
been implemented in the programming language R and it uses the external
package fda which is presented in [Ramsay et al., 2009]. Steps in which fda
function library is central will be denoted with (fda).

There are a number of global numerical parameters that control the simu-
lation, they are summarized here in the next table for ease of reference.

n.obs Number of functional observations. X1(t) ... Xn.obs(t).
n.pt Number of raw (x, y) coordinates describing each function Xi(t).
n.basis Number of basis functions used to represent each Xi(t).
n.pc Number of functional principal components to consider.
n.boot Number of bootstrap replications.

sd Raw indicator of error function magnitude. It appears in the
simulation of Brownian Motion and Brownian Bridge .
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The following list will describe all steps to perform in order to simulate a
FAR(1) process and test it against the Random Walk null hypothesis.

1. Define an operator Ψ of type (3) providing a kernel function ψ(s, t).

2. Multiply the kernel function by a constant C to be able to see how
the test performs with kernels that have same algebraic structure but
different size.

3. Compute constant ĈId such that the following relation is satisfied

||Ψ||S2 =
∫ ∫

U
ĈId
2 ψ2(t, s) dt ds=1. (9)

4. Set the random number generator to a fixed value to provide repro-
ducible results.

5. Define a tuple of constants that will multiply CId and vary the kernel
size.

kset← (0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0) (10)

6. For each value K in kset repeat what follows 100 times and store the
final result.

a. Create an initial FAR(1) data set with X0(t) = f0(t) and
Xi+1(t) = Ψ(Xi(t)) + ϵi+1(t). f0 is set initially to f0(t) =
(x2+1)+S i n (8πx). There are no special reasons to choose
this function, but error functions parameters were selected
have a reasonable order of magnitude compared to it, the pre-
cise signal to noise ratio in general depends on applications.
The error functions ϵi(t) can be independent trajectories of
Brownian Bridge (BB) or Brownian Motion (BM). They are
generated from a cumulative sum of 100 Normal independent
random variables with µ=0 and σ to be set to sd. A detailed
discussion can be found in [Iacus, 2009, sec.1.6, 1.8]. We use
ten different kernel functions ψ(s, t), some of them appear
in literature like the the Gaussian, Wiener and Parabolic ker-
nels in [Gabrys et al., 2010], the others were introduced by
the authors.

b. (fda) Following a common rule of thumb we create a BSpline
or Fourier functions basis with number of elementsn.basis←

8 Section 3



⌊ n.pt
√ ⌋ and fit all the Xi(t) to the new functions space.

c. (fda) Perform a principal component analysis on the func-
tional data set, extract the eigenvalues λ̂1 ... λ̂p corresponding
to the first n.pc empirical principal components and set
||KΨ||S

2
←

∑
i=1
n.pc λ̂i

2.

d. Compute the estimated residuals ϵ̂i(t) under H0 and center
them subtracting their common mean.

ϵ̂i+1(t)←Xi+1(t)−Xi(t) (11)

From here on all occurences of ε̂i will denote centered resid-
uals.

e. Create n.boot copies of the data data set {Xi(t)}i, each time
resampling the residuals with the following rule

Xi+1
b,∗ (t)←Xi

b,∗(t) + ϵ̂i+1
b,∗ (t). (12)

The parameter b is the bootstrap index and varies in
1 ... n.boot.

f. (fda) For each family of bootstrapped observations compute
the first n.pc empirical principal components, with their

respective eigenvalues and set
(
∥KId∥S

b,∗)2←
∑

i=1
p (λ̂i

b,∗)2 .

g. Build the empirical distribution function of the
(
∥KId∥S

b,∗)2

values and name it E .

h. The P-value associated to the current experiment will be
E(||KΨ||S

2
) . We reject H0 that is, we reject that Ψ is the

Identity if P-value<0.05.

7. In the results tables we read the rejection rate for eachK, the number
of experiments in which H0 was rejected divided by 100.

We applied the previous procedure to several possible setups. All exper-
iments results are in tabular format and all tables can be found in the
Appendix. The table following this paragraph (Table 1) is a reference to
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all of the simulation results. In the first column it tells the code of the
experiment, a unique identifier by which it is possible to find the appropriate
table in the Appendix. In the second, it tells if Ψ was a constant, if not, it
reports the formula for its kernel ψ(s, t). “N ” tells the number of Montecarlo
replications used to estimate the power of the test and base specifies if we
are using the BSpline of Fourier basis. Columns n.boot, n.pc and sd have
the same meaning previously defined.

code Ψ N n.boot n.pc base sd
b1 constant 100 200 1 S 0.5
b2 constant 100 200 1 S 0.05
b4 constant 100 1000 1 S 0.5
b5 constant 100 1000 1 S 0.05
b7 constant 100 200 3 S 0.5
b8 constant 100 200 3 S 0.05
b10 constant 100 200 1 F 0.5
b11 constant 100 200 1 F 0.05
k1b1 e−(s

2+t2) 100 200 1 S 0.5
k1b2 e−(s

2+t2) 100 200 1 S 0.05
k1b7 e−(s

2+t2) 100 200 3 S 0.5
k2b1 e(s

2+t2) 100 200 1 S 0.5
k2b2 e(s

2+t2) 100 200 1 S 0.05
k3b1 min(s, t) 100 200 1 S 0.5
k3b2 min(s, t) 100 200 1 S 0.05
k4b1 (t− 1

2
)2+(s− 1

2
)2 100 200 1 S 0.5

k4b2 (t− 1

2
)2+(s− 1

2
)2 100 200 1 S 0.05

k5b1 (t+ 1

2
)2+(s+ 1

2
)2 100 200 1 S 0.5

k5b2 (t+ 1

2
)2+(s+ 1

2
)2 100 200 1 S 0.05

k6b1 S i n (2π t+ s) 100 200 1 S 0.5
k7b1 S i n (2π s+ t) 100 200 1 S 0.5
k8b1 S i n (2π s)S i n (2π t) 100 200 1 S 0.5
k9b1 |S i n (2π s)S i n (2π t)| 100 200 1 S 0.5
k10b1 S i n (8π s)S i n (8π t) 100 200 1 S 0.5

Table 1. Experiments reference.

Suppose we are interested in simulations with aGaussian Kernel so choosing
for example the experiment k1b2 , here below is a copy of what we will find
in the Appendix. In the first column it is stated if error is of type Brownian
Motion or Brownian Bridge . In the second the sample size, that is the
number of simulated functional observationsX1 ... Xm entering the test. The
third column tells Cid was multiplied by 0.5, and the remaining tells Cid was
multiplied by 0.7, 0.8, etc.
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Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.86 0.75 0.64

100 1 1 1 1 0.9 0.64
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.87

bb 50 1 0.96 0.9 0.64 0.36 0.2
100 1 1 1 0.92 0.68 0.33
200 1 1 1 1 0.95 0.36
500 1 1 1 1 1 0.67

Table 2. Tabular output corresponding to experiment k1b2.

It must be noticed that in this table there is not K = 1.00 multiplying CId,
the last value is 0.99. This was made on purpose to stress that when ||Ψ||=1
(||Ψ||S is the best estimator of ||Ψ|| we have) our test has no chances to
determine if Ψ= I d.

3.1 Analysis

There are very different kind of operators in the simulation from which
different results are expected. Experiments with code b1, b2, ..., b11 all
have a constant operator and are a special case to see how the algorithm
perform when H0 is true, when Ψ = I d. Operators kernels in experiments
k1X, k2X, k3X, k4X, k9X are all positive and symmetric. The remaining
kernels in experiments k6X, k7X, k8X, k10X are not positive on all the
domain [0, 1]× [0, 1].

We observe that the power of the test is much higher when there are non
positive kernels. In all corresponding tables the power of the test is very
high, even with a small sample size. This fact is easy to explain intuitively, a
fixed sign kernel is, generally speaking, more similar to the identity operator
than a non fixed sign operator.

All experiments with constant operator and positive definite kernels display
a similar triangular structure in the power distribution. Power of the test
increases increasing the sample size, and decreases when the kernel Schmidt
norm goes near to one. The performance increasing with the sample size
is what we expect from every statistical test, in general, more information
is available, more the decision task is simplified. The identity operator has
uniform4 norm one. The Schmidt norm is an estimator from the top of the
uniform norm. When the Schmidt norm of the kernel is forced by multi-
plicative constant to go near to one then the operator is forced to become,

4. The uniform norm for an operator A is defined as || A||L := s u p
||x||≤1

|| A x||, it is

proved that ||A||L≤ ||A||S, that is, the Schmidt norm dominates the uniform norm, see
[Bosq, 2000] pg.34-35
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from the point of view of the norm, similar to the identity. Consequently,
becoming the operator more similar to Id, it becomes more difficult for the
test to discriminate between them.

There is an operator that is positive definite but gets power much higher
then the other ones. It is the Wiener kernel, k3X. Its power is as high as
the one associated to non-positive kernels. Probably the reason for this
anomaly is that the kernel ψ(s, t) of the Wiener process is just the covariance
of Brownian Motion, which is the model for our innovations.

Changing the error term from Brownian Bridge to Brownian motion had
little influence on the power. Also changing the size of the error, from sd=0.5
to sd= 0.05 had not visible impact.

Comparing k1b7-k1b1 and b1-b8, we do not see an important change in
performance changing the number of principal components. Comparing b1-
b10 and b2-b11 we do not observe important changes in power passing to
Fourier basis. Comparing b1-b4 and b2-b5 again display not important
changes, so also increasing the number of bootstrap resamples does not seem
to increase much the power of the test.

4 Applications to Real Dataset

4.1 Electrical energy consumption in France

We analyze France electrical energy consumption from the beginning of 1996
to the end of 2012. The dataset is available from RTE France one the Web5.
As stated by the provider, data covers power consumption in metropolitan
France area, except Corsica. It includes losses on the network but it does not
take into account power withdrawn by hydroelectric installations. The paper
by [Cho et al., 2013] uses our same dataset and provides supplementary
informations about energy consumption and factors influencing it.

Electricity consumption is observed every 30 minutes. Following
[Cho et al., 2013] we study the series of weekly average consumption. We
apply a logarithm transformation to cope with the apparent increase in
variance and remove the trend which was estimated with a LOESS using
R default parameters. The original dataset and its appearance after each
transformation is shown in Fig.1

After the transformations we are working with a 52x16 matrix, on columns
we have years, on rows weeks. Each column of the matrix is transformed
(smoothed) into a functional object in [0,1] using a BSpline basis with ⌊ 52

√
⌋

5. http://clients.rte-france.com
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basis functions, knots are distributed equidistantly between zero and one,
included. Applying our test with n.pc←3, and n.boot←200 we get P-value
zero. The estimated ||KΨ||S

2
is 8.0 · 10−7 and the quartiles for

(
∥KId∥S

b,∗)2

are 1.7 · 10−6, 1.6 · 10−5, 2.7 · 10−5, 5.3 · 10−5, 1.09 · 10−3. Changing the
number of principal components, doubling the number of basis functions and
doubling the bootstrap replications did not affect the result significantly.
The two plots in Fig.2 show that, besides the Schmidt norm, there is a
significant difference in the structure of the estimated eigenvalues of KΨ

and KId. The first ones decrease smoothly in magnitudes. For the Random
Walks instead the first eigenvalues dominates all the others.

In conclusion, we can reject the null hypothesis that Electrical Energy con-
sumption in France is a Random walk because the P-value is very small
and the decay of the eigenvalues of the original dataset is quite continuous
whilst, under the Random Walk hypothesis, the first eigenvalue dominates
all the others.

Figure 1. These plots represent electrical power consumption in France. [a] All
yearly consumption’s are plotted together. [b] Historic plot of energy consump-
tion, from 1996 to 2012. [c] Log is applied to previous plot with LOESS trend
function superimposed. [d] The trend is removed from the previous.

Applications to Real Dataset 13



Figure 2. The two plots show the estimated eigenvalues of KΨ on the right, and
the bootstrapped estimated eigenvalues of KId on the left.

4.2 Bitcoin daily prices

Bitcoin is a virtual currency introduced by [Nakamoto, 2008]. Bitcoins are
traded twenty-four hours per day, all days of the year, prices are known to
have large variability and suffered a burst on beginning of 2014 after a period
of explosive growth. In the recent paper by [Kristoufek, 2013], it was shown
that the series of average daily prices between 1-May-2011 and 30-June-2013
is non stationary. The paper provides some introductory information about
the Bitcoin currency to which the interested reader may refer.

We follow [Kristoufek, 2013] using the same dataset6 and the same temporal
window for our investigations. But, instead of using daily average prices, we
will consider the much more detailed series of daily prices, where each day
is seen as a functional observation Xi(t).

The Bitcoin prices we have are the ones processed at Mt.Gox , once the
largest currency trading center. They are available for free on the Internet.
The number of trades in Mt.Gox during the considered time period is
extremely variable. For six days there were no transactions at all, these
days were removed from our analysis. Excluding zeros, the minimum number
of transactions per day was 373, the maximum 66293, the other deciles:
2042, 2722, 3448, 4255, 5000, 5994, 7322, 9483, 13736.

The series of trade prices was passed to logarithm and detrended. Fig.3
illustrates the dataset at each step. Then, the dataset was divided in day
blocks. For each daily data was build a piecewise linear interpolating func-
tion with domain in [0, 1]. Each function was sampled in 2000 equidistant
points from zero to one creating a matrix of 2000x786 elements where every
column corresponds to a day. The data matrix was converted to a set of func-

6. File mtgoxUSD.csv at http://api.bitcoincharts.com/v1/csv/
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tional observations respect to a BSpline basis with ⌊ 2000
√

⌋ basis function,
knots were equispaced between zero and one. We applied our test for unit
root setting n.pc ←3 and n.boot ←200. The resulting P-value was 0.63,
the estimated ||KΨ||S

2
is 0.43 and the quartiles for

(
∥KId∥S

b,∗)2
are 0.011,

0.14, 0.30, 0.62, 14.29. The null hypothesis can not be rejected. Moreover,
comparing the structure of eigenvalues in Fig.4 we see they are similar, the
first eigenvalue dominates all the others and also, the magnitude of the first
eigenvalue for KΨ is approximately the median of the bootstrapped eigen-
values of KId. Increasing the number of principal components and doubling
the number of basis functions did not affect the P-value significantly.

Finally, we can not reject the null hypothesis that Bitcoin daily prices are
ruled by a Random Walk. Indeed, the P-value is substantially larger than
0.05 and also, the decay of eigenvalues of the original dataset is similar to
the one observed on the bootstrapped datasets under the null hypothesis
that the series is a Random Walk.

Figure 3. In the top left pane is represented the original dataset, Bitcoin trading
price in U.S. dollars. On the top-right, the series after applying the logarithm
with a dashed line superimposed for the trend. On the bottom, the the data after
logarithm transform and removal of the trend.
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Figure 4. Plot of KΨ eigenvalues and the boxplots of bootstrapped KId eigen-
values.

5 Conclusions

Using ||KΨ||S
2

as test statistic associated with our Bootstrap scheme has
given very good results in the numerical simulations. Comparing our power
results to the ones previously found for AR(1) in [Ferretti and Romo, 1996]
we see they are surprisingly high. The comparison is not completely correct
because we are working on a different framework but there is no other
Random Walk test on FAR(1) against which we could compare.

It has emerged from our investigations that a Random Walk tends to have
a first large eigenvalue that dominates all the following ones. Indeed, this
feature can be of help in deciding if to reject the null hypothesis in cases in
which the P-value would be near to the rejection region. Or also, in cases
in which the P-value alone would give a result in sharp contrast with our
intuition about the problem.

Applying the test to the two real data sets has given the results we were
expecting from visual inspection. Yearly innovations in France electrical
energy consumption can not be considered a Random Walk. On the other
side, it is not rejected that Bitcoin daily prices could be a random walk.
It was necessary to apply the common tools of time series analysis before
entering the test: remove the trend and adjust for variance. Indeed, a FAR(1)
process defined according to equations (2) and (3) has not enough analytical
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freedom to cope with this conditions which are not of local nature, but global
external factors.

As all simulations in functional data, there are many parameters that could
be tuned: the choice of the basis, the number of basis functions, the number
points in the real data set and their relative distance, the errors, their depen-
dence structure, the data smoothing, the empirical distribution smoothing
and so on. We tried to stick to the most widespread choices, the most
common errors types and operators, and the most popular initial analysis
setups. There are large possibilities for further experimentation and, of
course, for a desirable theoretical development in support of the numer-
ical evidence.
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Appendix

Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.91 0.62 0.27 0.18 0.06 0.03

100 1 1 0.98 0.68 0.3 0.16 0.05
200 1 1 1 1 0.69 0.14 0.04
500 1 1 1 1 1 0.35 0.05

bb 50 1 0.97 0.78 0.37 0.17 0.06 0.05
100 1 1 0.99 0.84 0.51 0.15 0.06
200 1 1 1 0.99 0.89 0.23 0.06
500 1 1 1 1 1 0.46 0.03

b1
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Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.61 0.3 0.26 0.16 0.11

100 1 1 0.98 0.71 0.31 0.18 0.08
200 1 1 1 1 0.63 0.16 0.06
500 1 1 1 1 1 0.33 0.08

bb 50 1 0.92 0.58 0.31 0.2 0.49 0.34
100 1 1 1 0.76 0.33 0.24 0.13
200 1 1 1 1 0.87 0.23 0.13
500 1 1 1 1 1 0.43 0.05

b2

Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.59 0.22 0.07 0.02 0.05

100 1 1 0.99 0.68 0.3 0.04 0.09
200 1 1 1 0.99 0.63 0.15 0.06
500 1 1 1 1 1 0.29 0.05

bb 50 1 0.98 0.85 0.37 0.28 0.04 0.05
100 1 1 1 0.86 0.44 0.13 0.06
200 1 1 1 1 0.88 0.11 0.09
500 1 1 1 1 1 0.46 0.02

b4

Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.87 0.57 0.24 0.12 0.13 0.13

100 1 1 0.99 0.64 0.3 0.11 0.15
200 1 1 1 0.99 0.63 0.14 0.08
500 1 1 1 1 1 0.28 0.06

bb 50 1 0.96 0.62 0.17 0.23 0.34 0.31
100 1 1 1 0.78 0.37 0.23 0.16
200 1 1 1 1 0.84 0.25 0.11
500 1 1 1 1 1 0.44 0.03

b5
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Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.96 0.73 0.35 0.2 0.06 0.03

100 1 1 0.98 0.72 0.35 0.17 0.05
200 1 1 1 1 0.76 0.14 0.04
500 1 1 1 1 1 0.42 0.06

bb 50 1 0.99 0.83 0.46 0.21 0.07 0.05
100 1 1 1 0.95 0.56 0.17 0.04
200 1 1 1 1 0.92 0.25 0.06
500 1 1 1 1 1 0.51 0.03

b7

Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.96 0.69 0.35 0.27 0.16 0.1

100 1 1 0.99 0.76 0.39 0.2 0.06
200 1 1 1 1 0.72 0.18 0.07
500 1 1 1 1 1 0.37 0.08

bb 50 1 0.97 0.75 0.39 0.25 0.53 0.35
100 1 1 1 0.8 0.41 0.25 0.13
200 1 1 1 1 0.93 0.23 0.13
500 1 1 1 1 1 0.52 0.05

b8

Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.91 0.64 0.27 0.17 0.06 0.03

100 1 1 0.98 0.66 0.3 0.16 0.05
200 1 1 1 1 0.69 0.14 0.04
500 1 1 1 1 1 0.35 0.05

bb 50 1 0.98 0.78 0.38 0.18 0.09 0.06
100 1 1 0.99 0.84 0.52 0.15 0.06
200 1 1 1 0.99 0.89 0.22 0.06
500 1 1 1 1 1 0.47 0.03

b10
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Error m 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.63 0.31 0.26 0.16 0.11

100 1 1 0.98 0.71 0.31 0.18 0.09
200 1 1 1 1 0.62 0.16 0.07
500 1 1 1 1 1 0.34 0.08

bb 50 1 0.92 0.59 0.31 0.19 0.51 0.36
100 1 1 1 0.76 0.34 0.24 0.13
200 1 1 1 1 0.89 0.24 0.13
500 1 1 1 1 1 0.46 0.04

b11

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.88 0.72 0.5

100 1 1 1 0.99 0.94 0.63
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.89

bb 50 1 0.95 0.9 0.65 0.36 0.19
100 1 1 1 0.91 0.69 0.33
200 1 1 1 1 0.95 0.35
500 1 1 1 1 1 0.66

k1b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.86 0.75 0.64

100 1 1 1 1 0.9 0.64
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.87

bb 50 1 0.96 0.9 0.64 0.36 0.2
100 1 1 1 0.92 0.68 0.33
200 1 1 1 1 0.95 0.36
500 1 1 1 1 1 0.67

k1b2
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Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.92 0.78 0.54

100 1 1 1 1 0.97 0.7
200 1 1 1 1 1 0.83
500 1 1 1 1 1 0.94

bb 50 1 0.96 0.94 0.74 0.43 0.2
100 1 1 1 0.97 0.74 0.4
200 1 1 1 1 0.97 0.43
500 1 1 1 1 1 0.72

k1b7

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.93 0.88 0.59 0.4 0.22

100 1 1 1 0.88 0.6 0.28
200 1 1 1 1 0.93 0.42
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.98 0.83 0.53 0.37
100 1 1 1 0.99 0.84 0.46
200 1 1 1 1 0.97 0.55
500 1 1 1 1 1 0.8

k2b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.97 0.81 0.57 0.44 0.31

100 1 1 1 0.86 0.6 0.35
200 1 1 1 0.99 0.92 0.41
500 1 1 1 1 1 0.58

bb 50 1 0.98 0.98 0.82 0.53 0.37
100 1 1 1 0.99 0.83 0.47
200 1 1 1 1 0.97 0.54
500 1 1 1 1 1 0.8

k2b2

22 Section



Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k3b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k3b2

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.9 0.72 0.48

100 1 1 1 1 0.97 0.66
200 1 1 1 1 1 0.87
500 1 1 1 1 1 0.98

bb 50 1 1 1 0.95 0.83 0.69
100 1 1 1 1 1 0.81
200 1 1 1 1 1 0.96
500 1 1 1 1 1 0.99

k4b1
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Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.87 0.78 0.67

100 1 1 1 1 0.91 0.63
200 1 1 1 1 1 0.83
500 1 1 1 1 1 0.96

bb 50 1 1 1 0.96 0.84 0.68
100 1 1 1 1 1 0.79
200 1 1 1 1 1 0.96
500 1 1 1 1 1 1

k4b2

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.93 0.88 0.6 0.42 0.21

100 1 1 1 0.87 0.6 0.27
200 1 1 1 1 0.92 0.41
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.93 0.73 0.44 0.26
100 1 1 1 0.97 0.75 0.39
200 1 1 1 1 0.96 0.47
500 1 1 1 1 1 0.74

k5b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.96 0.82 0.56 0.45 0.32

100 1 1 1 0.84 0.61 0.34
200 1 1 1 0.99 0.91 0.39
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.91 0.72 0.44 0.27
100 1 1 1 0.97 0.78 0.41
200 1 1 1 1 0.96 0.46
500 1 1 1 1 1 0.74

k5b2
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Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k6b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k7b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 0.98

100 1 1 1 1 1 0.99
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k8b1
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Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.99 0.82 0.67 0.42

100 1 1 1 0.99 0.91 0.49
200 1 1 1 1 1 0.66
500 1 1 1 1 1 0.81

bb 50 1 0.96 0.95 0.75 0.45 0.24
100 1 1 1 0.97 0.77 0.42
200 1 1 1 1 0.97 0.46
500 1 1 1 1 1 0.71

k9b1

Error m 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k10b1
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