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Abstract

This dissertation focuses on the analysis of Stochastic Volatility (SV) models with leverage effect.

We propose a general family of asymmetric SV (GASV) models and consider in detail two particular

specifications within this family. The first one is the Threshold GASV (T-GASV) model which

nests some of the most famous asymmetric SV models available in the literature with the errors

being either Normal or GED. We also propose score driven GASV models with different assumptions

about the error distribution, namely the Normal, Student-t or GED distributions, where the volatility

is driven by the score of the lagged return distribution conditional on the volatility. Closed-form

expressions of some statistical moments of interest of these two GASV models are derived and

analyzed. We show that some of the parameters of these models cannot be properly identified by

the moments usually considered when describing the stylized facts of financial returns, namely,

excess kurtosis, autocorrelations of squares and cross-correlations between returns and future

squared returns. As a byproduct, we obtain the statistical properties of those nested popular

asymmetric SV models, some of which were previously unknown in the literature. By comparing

the properties of these models, we are able to establish the advantages and limitations of each of

them and give some guidelines about which model to implement in practice.

We also propose the Stochastic News Impact Surface (SNIS) to represent the asymmetric

response of volatility to positive and negative shocks in the context of SV models. The SNIS

is useful to show the added flexibility of SV models over GARCH models when representing

conditionally heteroscedastic time series with leverage effect. Analyzing the SNIS, we find that

the asymmetric impact of the level disturbance on the volatility can be different depending on the

volatility disturbance.
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Finally, we analyze the finite sample properties of a MCMC estimator of the parameters and

volatilities of some restricted GASV models. Furthermore, estimating the restricted T-GASV

model using this MCMC estimator, we show that one can correctly identify the true nested

specifications which are popularly implemented in empirical applications.

All the results are illustrated by Monte Carlo experiments and by fitting the models to both

daily and weekly financial returns.
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Chapter 1

Introduction

This dissertation focuses on asymmetric Stochastic Volatility models for modelling the financial

returns. It has been commonly accepted that, although the returns are usually uncorrelated, the

second order moment of the conditional distribution of financial returns is time-varying. There

are two main well known features of the time-varying volatility of financial returns, namely

volatility clustering and leverage effect.

Volatility clustering refers to large (small) absolute returns tending to be followed by large

(small) absolute returns. This behavior is reflected in the fact that power transformed absolute

returns display a positive and slowly decaying autocorrelation function. As an illustration, consider

a series of daily S&P500 returns observed from September 1, 1998 to July 25, 2014 with T = 4000

observations. The returns are computed as yt = 100 × 4 logPt, where Pt is the adjusted close

price from yahoo.finance on day t. The raw prices together with their corresponding returns are

plotted in Figure 1.1, which suggests the presence of volatility clustering. It is also supported by

the positive and significant sample autocorrelations of both squared and absolute returns plotted

in the last two panels of Figure 1.2. However, the sample autocorrelations of returns plotted in

the first panel of Figure 1.2 are not significant indicating that they are uncorrelated.

When modeling the second order dynamics of univariate financial returns, it is often observed

that volatility increases are larger in response to negative than to positive past returns of the same

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: S&P500 daily prices (bottom line) and returns (top line) observed from September 1, 1998 up to July 25,
2014.

magnitude; see Bollerslev et al. (2006) for a comprehensive list of references and Hibbert et al.

(2008) for a behavioral explanation. After Black (1976), this asymmetric response of volatility

is popularly known as leverage effect in the related literature. This effect is due to the impact of

negative shocks on the value of a firm. In particular, bad news tends to decrease the stock price,

and consequently, increase the financial leverage or the debt-to-equity ratio of a firm. On the

other hand, this leads to an increase of the risk and to raising the future expected volatility of the

stock return. The leverage effect is also reflected by the negative and significant cross-correlations

between returns and future absolute or squared returns. Looking at the S&P 500 prices and

returns in Figure 1.1, we can observe episodes of large volatilities in returns associated with

periods of negative movements in prices. Furthermore, this association can also be observed in

the negative sample cross-correlations between returns and future squared and absolute returns

plotted in Figure 1.3.

Modeling volatility clustering with asymmetries has led to an enormous literature. Two

main alternative families of models are usually implemented. The first family is based on the

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model of Bollerslev (1986),

with the volatilities specified as a function of past returns and, consequently, observable one-step

ahead; see Engle (1995), Giraitis et al. (2007) and Teräsvirta (2009) for comprehensive reviews
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Figure 1.2: Sample autocorrelations of the returns (top panel), the squared returns (middle panel) and the absolute
returns (bottom panel) of the S&P500 daily returns.

on GARCH models. Alternatively, the second family includes Stochastic Volatility (SV) models,

which specify the volatility as a latent variable that is not directly observable; see Ghysels et al.

(1996) and Cavaliere (2006) for reviews on SV models and their applications.

Both GARCH and SV models have been extended to represent the dynamic evolution of

conditionally heteroscedastic time series with leverage effect. Among the GARCH family, the

main proposals are: the Exponential GARCH (EGARCH) model of Nelson (1991), the Glosten-

Jagannathan-Runkle (GJR) model of Glosten et al. (1993), the Asymmetric Power ARCH (APARCH)
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Figure 1.3: Sample cross-correlations between returns and future squared returns (top panel) and the future absolute
returns (bottom panel) of the S&P500 daily returns.

model of Ding et al. (1993), the Threshold GARCH (TGARCH) of Zakoian (1994) and the Generalized

Quadratic GARCH (GQARCH) of Sentana (1995). The similarities and differences among these

asymmetric GARCH models have been described by Rodrı́guez and Ruiz (2012) who show that,

among them, the EGARCH specification is the most flexible while the GJR and GQARCH models

may have important limitations to represent the volatility dynamics often observed in real financial

returns if their parameters are restricted to guarantee the positivity, stationarity and finite kurtosis

restrictions. Furthermore, their empirical study shows that the conditional standard deviations

estimated by the TGARCH and EGARCH models are almost identical and very similar to those

estimated by the APARCH model, while the estimates of the GQARCH and GJR models differ

among them and with respect to the other three specifications.

SV models have also being extended to cope with leverage effect. Extensions of the simple

discrete time model, due to Taylor (1986), have been proposed, among others, by Wiggins (1987),

Chesney and Scott (1989), Harvey and Shephard (1996) and So et al. (2002). Consequently, a
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variety of alternative econometric specifications are available to choose among when dealing

with SV models with leverage effect. In particular, Taylor (1994) and Harvey and Shephard

(1996) propose incorporating the leverage effect through the correlation between the level and

log-volatility disturbances. Alternatively, Demos (2002) and Asai and McAleer (2011) suggest

adding a noise to the log-volatility equation specified as in the EGARCH model. Finally, Breidt

(1996) and So et al. (2002) propose a Threshold SV model in which the parameters of the log-volatility

equation change depending on whether past returns are positive or negative; see also Asai and

McAleer (2006). Although these asymmetric SV models are often implemented to represent

the dynamic dependence of volatilities, their statistical properties are either partially known or

completely unknown. Consequently, it is not possible to establish their advantages and limitations

for explaining the empirical properties of financial returns.

In this thesis, we focus on the asymmetric SV models. First of all, the SV models are shown to

be more flexible than GARCH models to represent the properties often observed in real financial

returns; see Carnero et al. (2004). Second, incorporating the leverage effect into SV models can

have important implications from the point of view of financial models; see, for example, Hull and

White (1987) in the context of the Black-Scholes formula, Nandi (1998) for pricing and hedging

S&P500 index options and Lien (2005) for average optimal hedge ratios. Third, even though

models within the GARCH family have been extensively analyzed in the literature, the advantages

and limitations of the alternative asymmetric SV models have not been previously analyzed.

Knowing the moments of returns implied by different specifications can be important when

estimating the parameters using estimators based on the Method of Moments (MM) as those

proposed, for example, by Bollerslev and Zhou (2002) and Garcia et al. (2011). Furthermore,

knowing the moments of the alternative specifications, we can compare them to see which one is

more adequate to explain the empirical properties often observed when dealing with real data,

namely, leptokurtosis, positive and persistent autocorrelations of power-transformed absolute

returns and negative cross-correlations between returns and future power-transformed absolute

returns. We propose a family of asymmetric SV models that we call generalized asymmetric SV
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(GASV) and derive its properties. The GASV family is rather general including as particular cases

some of the most popular asymmetric SV models. The analytical expressions of their statistical

properties are obtained, so that we are able to point out the advantages and limitations of each of

the restricted specifications.

Besides volatility clustering and leverage effect, another important and well documented

empirical feature of standardized financial returns is the fact that they are heavy-tailed distributed;

see, for instance, Liesenfeld and Jung (2000), Jacquier et al. (2004) and Chen et al. (2008) among

many others. In order to capture this latter feature, both GARCH and SV models have been

extended by assuming fat-tailed return errors. Two examples are the GARCH-t model of Bollerslev

(1987) and the asymmetric SV model with Student-t distribution of Asai and McAleer (2011).

Nonetheless, these traditional models often specify the asymmetric volatility as being driven

by past return errors. Consequently, they can suffer from a potential drawback since a large

realisation of the return error, which could be due to the heavy-tailed nature of its distribution,

will be attributed to an increase in volatility. Therefore, in the GARCH context, Creal et al. (2013)

and Harvey (2013) have recently proposed models in which the dynamic of volatility is driven by

the lagged score of the conditional distribution of returns to automatically correct for influential

observations. This gives rise to the Generalised Autoregressive Score (GAS) models which are

also known as dynamic conditional score (DCS) models. We extend the GAS idea to asymmetric

SV models by specifying the unobserved volatility to be driven by lagged scores. Given that the

conditional distribution of returns does not have an analytical expression, the score is computed

with respect to the distribution of returns conditional on the volatilities. We show that this

type of models lays in the GASV family. We denote the new models as GAS-GASV (GAS2V)

and consider three alternative GAS2V models depending on the assumed distribution of the

return errors, namely, Normal, Student-t and Generalised Error Distribution (GED). Closed-form

expressions of several relevant statistics of these models are derived to analyse their ability to

represent the main empirical features often observed in financial returns. It is important to point

out that analytical expressions of these moments of the GAS2V model with Student-t errors can be
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derived, in opposition to the traditional specifications of the SV models in which their derivation

is hardly possible when the errors are Student-t. Moreover, we show that the GAS2V model with

Student-t errors generates returns with very similar properties to those generated by the GAS2V

model with GED errors as far as the parameters of both distributions are chosen to have the same

kurtosis. Therefore, this could indicate the existence of difficulties in identifying the parameters

of the GAS2V model when looking at the moments.

A useful tool to describe how a particular model represents the asymmetric response of volatility

to positive and negative past returns often observed in practice, is the News Impact Curve (NIC)

which was originally proposed by Engle and Ng (1993) in the context of GARCH models. Yu

(2012) proposes an extension of the NIC to SV models based on measuring the effect of the

level disturbance on the conditional variance. However, this is a rather difficult task due to

the lack of observability of the volatility in SV models. In the spirit of Yu (2012), Takahashi

et al. (2013) propose several methods to compute the news impact curve for SV models. In

this thesis, we suggest an alternative definition of the NIC in the context of SV models, which

relates the volatility with the level and volatility disturbances. Therefore, we propose representing

the response of volatility by a surface called Stochastic News Impact Surface (SNIS).1 Analyzing

the SNIS, we show that the asymmetric impact of the level disturbance on the volatility can be

different depending on the volatility disturbance.

Although SV models are attractive for modeling volatility, their empirical implementation

is limited by the difficulty involved in the estimation of their parameters which is complicated

by the lack of a closed-form expression of the likelihood. Furthermore, the volatility itself is

unobserved and cannot be directly estimated. Consequently, several simulation-based procedures

have been proposed for the estimation of parameters and volatilities; see Broto and Ruiz (2004)

for a survey. Examples of procedures based on the Monte Carlo likelihood evaluation are the

simulated Maximum Likelihood (MCL) procedure of Durbin and Koopman (1997) and the Efficient

1 The SNIS proposed in this thesis should not be confused with the News Impact Surface (NIS) defined in the
context of multivariate models; see, for example, Asai and McAleer (2009), Savva (2009) and Caporin and McAleer
(2011).
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Importance Sampling (EIS) procedure of Liesenfeld and Richard (2003) and Richard and Zhang

(2007); see also Asai and McAleer (2011) for the implementation of the latter procedure for estimating

their exponential SV model and Koopman et al. (2014) for an extension. Alternatively, Monte

Carlo Markov Chain (MCMC) based approaches have become popular given their good properties

in estimating parameters and volatilities; see, for example, Omori et al. (2007), Omori and Watanabe

(2008), Nakajima and Omori (2009), Abanto-Valle et al. (2010) and Tsiotas (2012) for MCMC

estimators of SV models with leverage effect. In this paper, we consider a MCMC estimator

implemented in the user-friendly and freely available BUGS software described by Meyer and Yu

(2000). This estimator is based on a single-move Gibbs sampling algorithm and has been recently

implemented in the context of asymmetric SV models, for example, by Yu (2012) and Wang

et al. (2013). The MCMC estimator implemented by BUGS is appealing because it can handle

non-Gaussian level disturbances without much programming effort. We carry out extensive

Monte Carlo experiments and show that, it has adequate finite sample properties to estimate

the parameters and volatilities of restricted T-GASV and GAS2V models in situations similar to

those encountered when analyzing time series of real financial returns. Furthermore, we show

that the nested specifications of the restricted T-GASV model can be adequately identified when

the parameters are estimated using the BUGS software. Therefore, in empirical applications,

researchers will be better off by fitting the general model proposed in this thesis and letting the

data to choose the preferred specification of the volatility instead of choosing a particular ad hoc

specification.

The rest of this dissertation is organized as follows. Chapter 2 proposes the GASV family and

derives its statistical properties. Moreover, we propose the T-GASV model which is included in

the GASV family and incorporates some of the most famous asymmetric SV models previously

available. We consider a MCMC estimator of the restricted T-GASV model and conduct Monte

Carlo experiments to analyze its finite sample properties. An empirical application to daily

S&P500 returns is presented. In Chapter 3, we propose the GAS2V model and fit it to both daily

and weekly financial returns. Finally, Chapter 4 concludes the thesis and proposes possible lines
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of future research.
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Chapter 2

Moments of a Family of Asymmetric

Stochastic Volatility Models and the

Stochastic News Impact Surface

2.1 Introduction

A variety of alternative SV models are available to choose among for modeling the financial

returns with leverage effect, such as the asymmetric autoregressive SV (A-ARSV) model of Taylor

(1994) and Harvey and Shephard (1996), the Exponential SV (E-SV) model of Demos (2002) and

Asai and McAleer (2011) and the Threshold SV (T-SV) model of Breidt (1996) and So et al. (2002)

among many others. Although these models are often implemented to present the dynamic

dependence of volatilities, their statistical properties are either partially known or completely

unknown.

In this chapter, we propose a general family of asymmetric SV models, named as GASV family,

and derive the general expression of its statistical properties. This GASV family is rather general

including as particular cases some of the asymmetric SV models mentioned above. Moreover,

we propose further a specification, called T-GASV model, with the motivation that it nests some

11
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of the most popular asymmetric volatility specifications previously available in the literature.

The closed-form expressions of its statistical properties are obtained. As a marginal outcome of

this analysis, we also obtained the statistical properties of the models nested within the T-GASV

model, some of which were previously unknown in the literature and, hence, we are able to point

out the advantages and limitations of each of the restricted specifications. We also propose a

useful tool, SNIS, to describe the asymmetric response of volatility to positive and negative past

returns. It is a surface relating the conditional volatility with the level and volatility disturbances.

We show that the asymmetric impact of the level disturbance on the volatility can be different

depending on the volatility disturbance.

Although SV models are considered as competitive alternatives to GARCH models, their

implementation is always limited due to the intractable likelihood. In this chapter, we consider

a MCMC estimator of the GASV models implemented by the user-friendly and free software,

BUGS. We carry out extensive Monte Carlo experiments to analyze its finite sample performance

when estimating both the parameters and the underlying volatilities of the restricted T-GASV

model. Moreover, we also find that, by fitting our restricted T-GASV model to the series generated

from those nested asymmetric SV models, it is able to identify the true Data Generating Process

(DGP). Finally, the MCMC estimator is implemented to estimate the volatilities and forecast the

Value at Risk (VaR) of the daily S&P500 return series after fitting all the asymmetric SV models

considered in this chapter.

The rest of this chapter is organized as follows. Section 2.2 defines the GASV family and

derives its statistical properties. Section 2.3 proposes the SNIS to describe the asymmetric response

of volatility. The properties of the T-GASV are analyzed and compared in Section 2.4. In Section 2.5,

we analyze and compare different asymmetric SV models contained in the GASV family. Section 2.6

conducts Monte Carlo experiments to analyze the finite sample properties of the MCMC estimator

of the parameters and underlying volatilities of the restricted T-GASV model and presents an

empirical application to daily S&P500 returns. Finally, the main conclusions and some guidelines

for future research are summarized in Section 2.7.
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2.2 The GASV family and its statistical properties

In this section, we define the GASV family and derive its statistical properties. In particular, we

obtain the general conditions for stationarity and for the existence of integer moments of returns

and absolute returns. Expressions of the marginal variance and kurtosis, the autocorrelations of

power-transformed absolute returns and cross-correlations between returns and future power-transformed

absolute returns are derived.

2.2.1 Model description

Let yt be the return at time t, σ2
t its volatility, ht ≡ log σ2

t and εt be an independent and identically

distributed (IID) sequence with mean zero and variance one. The GASV family is given by

yt = exp(ht/2)εt, t = 1, · · · , T (2.1)

ht − µ = φ(ht−1 − µ) + f(εt−1) + ηt−1, (2.2)

where f(εt−1) is any function of εt−1 for which no restrictions are imposed further than being a

function of εt−1 but not of the other disturbance in the model, ηt−1. Therefore, given εt, f(εt) is

observable. The volatility noise, ηt, is a Gaussian white noise with variance σ2
η .1 It is assumed to

be independent of εt for all leads and lags. The scale parameter, µ, is related with the marginal

variance of returns, while φ is related with the rate of decay of the autocorrelations of power-transformed

absolute returns towards zero and, consequently, with the persistence of the volatility shocks.

Note that, in equations (2.1) and (2.2), the return at time t − 1 is correlated with the volatility at

time t. Furthermore, if f(·) is not an even function, then positive and negative past returns with

the same magnitude have different effects on volatility.

It is important to note that although the specification of log-volatility in (2.2) is rather general,

1The normality of ηt when f(εt−1) = 0 has been justified by, for example, Andersen et al. (2001a) and Andersen
et al. (2001b, 2003).
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it rules out models in which the persistence, φ, and/or the variance of the volatility noise, σ2
η ,

are time-varying. Finally, note that the only assumption made about the distribution of the level

disturbance, εt, is that it is an IID sequence with mean zero and variance one. As a consequence,

εt is strictly stationary. In the related literature, different assumptions about this distribution

have been considered. Originally, Jacquier et al. (1994) and Harvey and Shephard (1996) assume

that εt is a Gaussian process. Although this is the most popular assumption, there has been

other proposals that consider heavy-tailed distributions such as the Student-t distribution or the

Generalized Error Distribution (GED)2; see, for example, Chen et al. (2008), Choy et al. (2008)

and Wang et al. (2011, 2013). Several authors also include skewness in the distribution of εt by

assuming an asymmetric GED distribution as in Cappuccio et al. (2004) and Tsiotas (2012) or a

skew-Normal and a skew-Student-t distributions as in Nakajima and Omori (2012) and Tsiotas

(2012).

2.2.2 Moments of returns

We now derive the statistical properties of the GASV family in equations (2.1) and (2.2). Theorem 2.1

establishes sufficient conditions for the stationarity of yt and derives the expression ofE(|yt|c) and

E(yct ) for any positive integer c.

Theorem 2.1. Define yt by the GASV family in equations (2.1) and (2.2). The process {yt} is strictly

stationary if |φ| < 1. Further, if εt follows a distribution such that both E(exp(0.5cf(εt))) and E(|εt|c)

exist and are finite for some positive integer c, then {|yt|} and {yt} have finite, time-invariant moments of

order c which are given by

E(|yt|c) = exp
(cµ

2

)
E(|εt|c) exp

(
c2σ2

η

8(1− φ2)

)
P (0.5cφi−1) (2.3)

2The GED distribution with parameter ν is described by Harvey (1990) and has the attractiveness of including
distributions with different tail thickness as, for example, the Normal when ν = 2, the Double Exponential when ν = 1
and the Uniform when ν =∞. The GED distribution has heavy tails if ν < 2.
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and

E(yct ) = exp
(cµ

2

)
E(εct) exp

(
c2σ2

η

8(1− φ2)

)
P (0.5cφi−1), (2.4)

where P (bi) ≡
∏∞
i=1E(exp(bif(εt−i))).

Proof. See Appendix A.1.1.

Theorem 2.1 establishes the strict stationarity of yt if |φ| < 1 and the existence of the expectation

of y2
t if further E(exp(f(εt))) < ∞. Consequently, under these two conditions, yt is also weakly

stationary.

Note that according to expression (2.4), if εt has a symmetric distribution, then all odd moments

of yt are zero. Furthermore, from expression (2.3), it is straightforward to obtain expressions of

the marginal variance and kurtosis of yt as the following corollaries show.

Corollary 2.1. Under the conditions of Theorem 2.1 with c = 2 and taking into account that E(yt) = 0,

the marginal variance of yt is directly obtained from (2.3) as follows

σ2
y = exp

(
µ+

σ2
η

2(1− φ2)

)
P (φi−1). (2.5)

Corollary 2.2. Under the conditions of Theorem 2.1 with c = 4, the kurtosis of yt can be obtained as

E(y4
t )/(E(y2

t ))
2 using expression (2.3) with c = 4 and c = 2 as follows

κy = κε exp

(
σ2
η

1− φ2

)
P (2φi−1)

(P (φi−1))2
, (2.6)

where κε is the kurtosis of εt.

The kurtosis of the basic symmetric Autoregressive SV (ARSV) model considered by Harvey

et al. (1994) is given by κε exp
(

σ2
η

1−φ2

)
. Therefore, this kurtosis is multiplied by the factor r =

P (2φi−1)
(P (φi−1))2

in the GASV family.
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Note that, the expression of E(|yt|c) in (2.3) depends on f(·) and on the distribution of εt.

Therefore, in order to obtain closed-form expressions of the variance and kurtosis of returns, one

needs to assume a particular distribution of εt and a specification of f(εt). We will particularize

these expressions for some popular distributions and specifications in Section 2.4. Also, it is

important to note that even for those cases in which the function f(·) and/or the distribution of

εt are such that they do not allow to obtain closed-form expressions of the moments, expression

(2.3) can always be used to simulate them as far as they are finite.

2.2.3 Dynamic dependence

Looking at the dynamic dependence of returns when they are defined as in (2.1) and (2.2), it

is easy to see that they are a martingale difference. However, they are not serially independent

as the conditional heteroscedasticity generates non-zero autocorrelations of power-transformed

absolute returns. The following theorem derives the autocorrelation function (acf) of power

transformed absolute returns.

Theorem 2.2. Consider a stationary process yt defined by equations (2.1) and (2.2) with |φ| < 1. If εt

follows a distribution such that E(exp(0.5cf(εt))) < ∞ and E(|εt|c) < ∞ for some positive integer c,

then the τ -th order autocorrelation of |yt|c is finite and given by

ρc(τ) =
E(|εt|c)E(|εt|c exp(0.5cφτ−1f(εt))) exp

(
φτ c2σ2η

4(1−φ2)

)
P (0.5c(1+φτ )φi−1)T (τ,0.5cφi−1)−[E(|εt|c)P (0.5cφi−1)]2

E(|εt|2c) exp

(
c2σ2η

4(1−φ2)

)
P (cφi−1)−[E(|εt|c)P (0.5cφi−1)]2

,

(2.7)

where T (n, bi) ≡
n−1∏
i=1

E(exp(bif(εt−i))) if n > 1 while T (1, bi) ≡ 1.

Proof. See Appendix A.1.2.

Notice that, in practice, most authors dealing with real time series of financial returns focus

on the autocorrelations of squared and absolute returns, ρ2(τ) and ρ1(τ), which can be obtained

from (2.7) when c = 2 and c = 1, respectively.
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The leverage effect is reflected in the cross-correlations between power-transformed absolute

returns and lagged returns. The following theorem gives general expressions of these cross-correlations.

Theorem 2.3. Consider a stationary process yt defined by equations (2.1) and (2.2) with |φ| < 1. If εt

follows a distribution such that E(exp(0.5cf(εt))) < ∞ and E(|εt|2c) < ∞ for some positive integer c,

then the τ -th order cross-correlation between yt and |yt+τ |c for τ > 0 is finite and given by

ρc1(τ) =
E(|εt|c) exp

(
2cφτ−1

8(1−φ2)
σ2
η

)
E(εt exp(0.5cφτ−1f(εt)))P (0.5(1+cφτ )φi−1)

T (τ,0.5cφi−1)√
P (φi−1)√

E(|ε|2c) exp

(
c2σ2η

4(1−φ2)

)
P (cφi−1)−[E(|εt|c)P (0.5cφi−1)]2

. (2.8)

Proof. See Appendix A.1.3.

2.3 The Stochastic News Impact Surface

Besides the cross-correlations between returns and future power-transformed absolute returns,

another useful tool to describe the asymmetric response of volatility is the News Impact Curve

(NIC) originally proposed by Engle and Ng (1993) in the context of GARCH models. The NIC is

defined as the function relating past return shocks to current volatility with all lagged conditional

variances evaluated at the unconditional variance of returns. It has been widely implemented

when dealing with GARCH-type models; see, for example, Maheu and McCurdy (2004). Extending

the NIC to SV models is not straightforward due to the presence of the volatility disturbance

in the latter models. As far as we know, there are two attempts in the literature to propose a

NIC function for SV models. The first is attributed to Yu (2012) who proposes a function that

relates the conditional variance to the lagged return innovation, εt−1, holding all other lagged

returns equal to zero. Given that, in SV models the conditional variance is not directly specified,

this definition of the NIC requires solving high-dimensional integrals using numerical methods

making its computation a difficult task. Furthermore, the NIC proposed by Yu (2012) is based

on integrating over the latent volatilities and, therefore, useful information about the differences

between the effects of εt on σt+1 for different values of ηt can be lost. The second attempt is due
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to Takahashi et al. (2013) that specifies the news impact function for SV models in the spirit of

Yu (2012) as the volatility at time t + 1 conditional on returns at time t. However, in order to

obtain an U-shaped NIC, Takahashi et al. (2013) proposes to incorporate the dependence between

returns and volatility by considering their joint distribution. This idea is implemented by using a

Bayesian MCMC scheme or a simple rejection sampling.

It is important to note that, in the context of GARCH models, because there is just one disturbance,

the volatility at time t, σ2
t , coincides with the conditional variance, Var(yt|y1, · · · , yt−1). Consequently,

when Engle and Ng (1993) propose relating past returns to current volatility, this amounts to

relating past returns with conditional variances. However, in SV models, the volatility and the

conditional variance are different objects. Therefore, in this thesis, we propose measuring the

effect of past shocks, εt−1 and ηt−1, on the volatility instead of on the conditional variance as

proposed by Yu (2012). Taking into account the information provided by the two disturbances

involved in the model, we define the Stochastic News Impact Surface (SNIS) as the surface that

relates σ2
t with εt−1 and ηt−1. As in Engle and Ng (1993), we evaluate the lagged volatilities at the

marginal variance, so that, we consider that at time t − 1, the volatility is equal to an “average”

volatility and analyze the effect of level shocks, εt−1, and volatility shocks, ηt−1, on the volatility

at time t. Therefore, the SNIS is given by

SNISt = exp((1− φ)µ)σ2φ
y exp (f(εt−1) + ηt−1) . (2.9)

Note that the shape of SNIS does not depend on the type of the distribution of εt as it is a function

of f(εt−1) and ηt−1.

For illustrating the SNIS, we consider the following specification of f(·)

f(εt) = αI(εt < 0) + γ1εt + γ2|εt|, (2.10)

where I(·) is an indicator function that takes value one when the argument is true and zero

otherwise. We denote the model defined by equations (2.1), (2.2) and (2.10) as Threshold GASV
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(T-GASV).3 This specification is interesting because it nests several popular models previously

proposed in the literature to represent asymmetric volatilities in the context of SV models. For

example, whenα = γ2 = 0 and εt follows a Gaussian distribution, we obtain the A-ARSV model of

Harvey and Shephard (1996). On the other hand, when α = 0 the model reduces to the EGARCH

plus error model of Demos (2002) and Asai and McAleer (2011), denoted as E-SV. Finally, when

only α 6= 0, equation (2.10) resumes to a threshold model where only the constant changes

depending on the sign of past returns. By changing the threshold in the indicator variable, we

allow the leverage effect to be different depending on the size of εt.

Figure 2.1 plots the SNIS of the T-GASV model with {φ, σ2
η, α, γ1, γ2} = {0.98, 0.05, 0.07,−0.08, 0.1}

and µ is chosen such that exp((1 − φ)µ)σ2φ
y = 1. These parameter values are chosen to resemble

those often obtained when the asymmetric SV models are fitted to real financial data. We can

observe that the SNIS shows a discontinuity due to the presence of the indicator function in (2.10).

The leverage effect is very clear when the volatility shock is positive. The most important feature

of the SNIS plotted in Figure 2.1 is that it shows that the leverage effect of SV models is different

depending on the values of the volatility shock. In practice, when ηt−1 is negative, the leverage

effect is weaker. When ηt−1 = 0, we obtain the NIC of the corresponding GARCH-type model

which is also plotted in Figure 2.1. It is important to observe that by introducing ηt in the T-GASV

model, more flexibility is added to represent the leverage effect.

Summarizing, Figure 2.1 shows that, for the T-GASV model and the particular parameter

values considered, given a value of the lagged volatility shock, ηt−1, the response of volatility is

stronger when εt−1 is negative than when it is positive with the same magnitude. Furthermore,

this asymmetric response depends on the log-volatility noise, ηt−1. The leverage effect is clearly

stronger when ηt−1 is positive and large than when it is negative.

3In independent work, Asai et al. (2012) mention a specification of the volatility similar to the T-GASV model with
f(εt) defined as in (2.10) with long-memory. However, they do not develop further the statistical properties of the
model.
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Figure 2.1: SNIS of different GASV models with φ = 0.98, σ2
η = 0.05 and exp((1− φ)µ)σ2φ

y = 1. The parameter values
are {α, γ1, γ2} = {0.07,−0.08, 0.1}. Top panel corresponds to the SNIS of T-GASV, the second panel corresponds to
the SNIS of A-ARSV model; the third panel is the SNIS of E-SV model and bottom panel is the SNIS of RT-SV model.
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2.4 Threshold GASV model

As mentioned above, appropriate choices of the function f(·) and of the distribution of εt allow

obtaining closed-form expressions of the moments of returns. In this section, we derive these

expressions for the T-GASV model when εt follows a GED distribution.

Consider the T-GASV model defined in equations (2.1), (2.2) and (2.10) with εt ∼ GED(ν). If

ν > 1, then the conditions in Theorem 2.1 are satisfied and a closed-form expression of E(|yt|c)

can be derived; see Appendix A.2.1 for the corresponding expectations. In particular, the marginal

variance of yt is given by equation (2.5) with

P (bi) =
∏∞
i=1

{∑∞
k=0

((
Γ(1/ν)
Γ(3/ν)

)k/2
Γ((k+1)/ν)
2Γ(1/ν)k! b

k
i

[
(γ1 + γ2)k + exp(αbi)(γ2 − γ1)k

])}
, (2.11)

where Γ(·) is the Gamma function. Note that in order to compute P (·), one needs to truncate the

corresponding infinite product and summation. Our experience is that truncating the product at

i = 500 and the summation at k = 1000 gives very stable results. Similarly, the kurtosis can be

obtained as in expression (2.6) with P (φi−1) and P (2φi−1) as in expression (2.11)

Given that the Gaussian distribution is a special case of the GED distribution when ν = 2,

closed-form expressions ofE(|yt|c) can also be obtained in this case; see A.2.2 for the corresponding

expectations. In particular, the marginal variance is given by expression (2.5) while the kurtosis

is given by expression (2.6) with

P (bi) =
∏∞
i=1

{
exp

(
αbi +

b2i (γ1−γ2)2

2

)
Φ(bi(γ2 − γ1)) + exp

(
b2i (γ1+γ2)2

2

)
Φ(bi(γ2 + γ1))

}
, (2.12)

where Φ(·) is the Normal cumulative distribution function.

When ν < 1, we cannot obtain analytical expressions of E(|yt|c). However, in A.2.1, we show

that E(|yt|c) in equation (2.3) is finite if γ2 + γ1 ≤ 0 and γ2 − γ1 ≤ 0.4 Finally, if ν = 1, the

4The same conditions should be satisfied for the finiteness of E(|yt|c) when εt follows a Student-t distribution with
d > 2 degrees of freedom.



22 CHAPTER 2. THE GASV FAMILY AND THE SNIS

conditions for the existence of E(|yt|c) in equation (2.3) are γ2 + γ1 < 2
√

2/c and γ2− γ1 < 2
√

2/c.

As mentioned in Section 2.2, the kurtosis of the T-GASV model is equal to the kurtosis of the

basic symmetric ARSV model multiplied by the factor, r = P (2φi−1)
(P (φi−1))2

. We illustrate its shape in

Figure 2.2 which plots it as a function of the leverage parameters α and γ1 when γ2 = 0.1 and 0 for

three different persistence parameters, namely, φ = 0.5, 0.9 and 0.98 assuming Gaussian errors.

First of all, we can observe that the factor is always larger than 1. Therefore, the T-GASV generates

returns with higher kurtosis than the corresponding basic symmetric ARSV model. Second, the

effects of the parameters α, γ1 and γ2 on the kurtosis of returns are very different depending on the

persistence. The kurtosis increases with α, |γ1| and γ2. However, their effects are only appreciable

when φ is close to 1.

The expectations needed to obtain closed-form expressions of the autocorrelations in expression

(2.7) and cross-correlations in (2.8) have been derived in A.2.1 for the T-GASV model with parameter

ν > 1 and in A.2.2 for the particular case of the Normal distribution, i.e. ν = 2. As above, when

ν ≤ 1, we can only obtain conditions for the existence of the autocorrelations and cross-correlations.

As these autocorrelations are highly non-linear functions of the parameters, it is not straightforward

to analyze the role of each parameter on their shape. Furthermore, by comparing the autocorrelations

in (2.7) for absolute and squared returns, it is not easy to conclude whether the T-GASV model is

able to generate the Taylor effect defined by the autocorrelations of absolute returns being larger

than those of squares; see Ruiz and Pérez (2012) for an analysis of the Taylor effect in the context

of symmetric SV models. Consequently, in order to illustrate how these moments depend on each

of the parameters, we focus on the model with parameters φ = 0.98, σ2
η = 0.05 and Gaussian

errors.

The first order autocorrelations of squared and absolute returns, namely, ρ2(1) and ρ1(1), are

plotted in the first row of Figure 2.3 as functions of the leverage parameters, γ1 and α. In the

top left panel of Figure 2.3, which corresponds to the autocorrelations of squares, we can observe

that they are larger, the larger is γ2. However, both surfaces are rather flat and, consequently, the

leverage parameters do not have large effects on the first order autocorrelations of squares. The



2.4. THRESHOLD GASV MODEL 23

corresponding first order autocorrelations of absolute returns are plotted in the top right panel

of Figure 2.3. They are also larger the larger is the parameter γ2. However, we can observe that

the autocorrelations of absolute returns increase with the threshold parameter α. The effect of γ1

γ2 = 0.1 γ2 = 0

φ = 0.5

φ = 0.9

φ = 0.98

Figure 2.2: Ratio between the kurtoses of the T-GASV model and the symmetric ARSV model with Gaussian errors
when γ2 = 0.1 (left column) and 0 (right column) for three different values of the persistence parameter, φ = 0.5 (first
row), φ = 0.9 (middle row) and φ = 0.98 (bottom row).
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Figure 2.3: First order autocorrelations of squares (top left panel), first order autocorrelations of absolute returns (top
right panel), first order cross-correlations between returns and future squared returns (bottom left panel) and first order
cross-correlations between returns and future absolute returns (bottom right panel) of different Gaussian T-GASV
models with parameters φ = 0.98 and σ2

η = 0.05.
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on the autocorrelations of absolute returns is much milder. Finally, comparing ρ1(1) with ρ2(1),

we can conclude that, the Taylor effect is stronger the larger is the leverage effect, regardless of

whether this is due to α or γ1.

In the second row of Figure 2.3, we illustrate the effect of the parameters on the cross-correlations

between yt and y2
t+1 and |yt+1|, ρ21(1) and ρ11(1), respectively. First of all, observe that the first

order cross-correlations between returns and future absolute and squared returns are indistinguishable

for the two values of γ2 considered in Figure 2.3. Second, for a given value of γ2, it is obvious

that increasing the leverage parameters α and |γ1| increases the absolute cross-correlations. Note

that |γ1| drags ρ21(1) in an approximately linear way while the effect of α is non-linear. On the

other hand, the absolute cross-correlations between returns and future absolute returns have an

approximately linear relationship with γ1 and α and are clearly larger than those between returns

and future squared returns. Therefore, it seems that when identifying conditional heteroscedasticity

and leverage effect in practice, it is preferable to work with absolute returns instead of squared

returns.

Figure 2.3 focuses on the first order autocorrelations and cross-correlations, but gives no

information on the shape of the acf and the cross-correlation function (ccf) for different lags. To

illustrate these shapes and the role of the distribution of εt on the acf and ccf, Figure 2.4 plots

the acf of squared and absolute returns and the ccf between returns and future squared and

absolute returns for the T-GASV model with parameters α = 0.07, γ2 = 0.1, γ1 = −0.08 and

four different values of the GED parameter, ν = 1.5, 1.7, 2 and 2.5. As expected, the acfs of y2
t

and |yt| in the first two panels have an exponential decay. Furthermore, fatter tails of εt imply

smaller autocorrelations of both absolute and squared returns; see Carnero et al. (2004) for similar

conclusions in the context of symmetric SV models. The ccf plotted in the last two panels show

that the parameter ν of the GED distribution has a very mild influence on the cross-correlations,

especially for ρ11(τ).

To put it briefly, both ν and γ2 increase the flexibility of the T-GASV model to represent the

volatility clustering while have little influence on the leverage effect. On the other hand, γ1 affects
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Figure 2.4: First forty orders of the autocorrelations of squares (first column), autocorrelations of absolute returns
(second column), cross-correlations between returns and future squared returns (third column) and cross-correlations
between returns and future absolute returns (fourth column) for different specifications of asymmetric SV models
when φ = 0.98 and σ2

η = 0.05. The first row corresponds to a T-GASV model with α = 0.07, φ = 0.98, σ2
η = 0.05,

γ1 = −0.08, γ2 = 0.1 and ν = 1.5 (solid lines), ν = 1.7 (dashed lines), ν = 2 (dotted lines) and ν = 2.5 (dashdot lines).
The second row corresponds to the A-ARSV with α = γ2 = 0. The third row matches along with the E-SV model with
α = 0. Finally, the last row corresponds to the RT-SV model with γ1 = γ2 = 0.
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the leverage effect and this effect is reinforced by the inclusion of α, which could influence slightly

the autocorrelations of absolute returns.

2.5 Famous Asymmetric SV models included in the GASV family

In this section, we analyze some of the most popular asymmetric SV models in the literature

which are included in the GASV family and can be nested by the T-GASV model, namely, A-ARSV,

E-SV and restricted T-SV (RT-SV) models. We obtain the closed-form expressions of their statistical

properties from those of the T-GASV model derived in Section 2.4. Some of these properties

were previously unknown in the literature. These models are extended by assuming that the

return errors follow a GED distribution and compared with one and another in terms of their

statistical properties in order to identify their limitations and advantages when used to represent

the dynamic properties of the financial returns.

2.5.1 A-ARSV model

One of the most popular SV specifications with leverage effect is the Gaussian A-ARSV model

originally proposed by Taylor (1994) and Harvey and Shephard (1996) which specifies the volatility

as follows

ht − µ = φ(ht−1 − µ) + η∗t−1, (2.13)

with η∗t and εt in the return equation (2.1) being jointly Normal with zero means, variances σ2
η∗

and 1, respectively, and correlation δ; see Bartolucci and De Luca (2003), Yu et al. (2006) and

Tsiotas (2012)5 among many others for empirical applications. Define γ1 and σ2
η as γ1 = δση∗ and

σ2
η = (1 − δ2)σ2

η∗ . Then, the A-ARSV model is equivalent to the following restricted volatility

5 Tsiotas (2012) allows the return disturbance to follow several asymmetric and fat-tailed distributions.
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specification of equation (2.2)

ht − µ = φ(ht−1 − µ) + γ1εt−1 + ηt−1, (2.14)

which is obtained from T-GASV model when εt is Gaussian and α = γ2 = 0; see Asai and McAleer

(2011) and Yu (2012) for the equivalence of these two specifications. However, it is important to

note that the equivalence between the specifications in (2.13) and (2.14) can only be established

when εt is Normal if the volatility is assumed to be Log-Normal. In this chapter, we focus on the

A-ARSV model defined by the equation (2.1) and (2.14) and extend it to allow for fat tails of εt by

assuming that εt ∼ GED(ν) distribution.

The moments of the Gaussian A-ARSV model have been already derived in the literature by

Taylor (1994, 2007), Demos (2002), Ruiz and Veiga (2008) and Pérez et al. (2009). Particularly, the

marginal variance and kurtosis of yt, given in (2.5) and (2.6), reduce to σ2
y = exp(µ) exp

(
σ2
η+γ21

2(1−φ2)

)
and ky = kε exp

(
σ2
η+γ21

1−φ2

)
, respectively. Note that σ2

η+γ2
1 = σ2

η∗. As a consequence, several authors

conclude that, in the basic Gaussian A-ARSV model, the variance and kurtosis of yt do not depend

on whether there is leverage effect or not; see Taylor (1994), Ghysels et al. (1996) and Harvey and

Shephard (1996). One can always find a symmetric model with a larger variance of the errors that

has the same variance and kurtosis as a given asymmetric model.

By using the expressions of the statistical properties of the T-GASV model in the previous

section, we can also obtain closed-form expressions of the moments of the A-ARSV model when

the return errors are GED. As an illustration, Figure 2.4 plots the acfs and ccfs of the A-ARSV

model for the same parameter values of the T-GASV model except that α = γ2 = 0. We can

observe that the autocorrelations of squared and absolute returns and the absolute cross-correlations

are slightly smaller than those of the corresponding T-GASV models. Therefore, including γ2

and α in the T-GASV model allows for stronger volatility clustering and leverage effect. Smaller

autocorrelations are observed when the tails of the distribution of the return disturbance, εt, are

fatter. Once more, the thickness of the tails has very mild influence on the cross-correlations and,
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therefore, on the leverage effect.

Next, we consider SNIS of the A-ARSV model which is obtained from (2.9) with α = γ2 = 0.

The second panel of Figure 2.1 illustrates the SNIS of an A-ARSV model with the same parameters

as in the illustration of SNIS of the T-GASV model, i.e., {φ, γ1, σ
2
η} = {0.98,−0.08, 0.05} and

exp((1 − φ)µ)σ2φ
y = 1. Given ηt−1, the SNISt is an exponential function with exponent γ1. Thus,

bad news generates a higher impact on volatility than good news of the same size. The magnitude

of this difference increases with ηt−1. Moreover, it is magnified (mitigated) by positive (negative)

ηt−1. Hence the leverage effect is very weak for negative log-volatility shocks. However, for the

particular model considered in Figure 2.1, the leverage effect is very mild when compared with

that of the T-GASV model.

2.5.2 Exponential SV model

Consider now the following specification of ht proposed by Demos (2002) and Asai and McAleer

(2011) based on the EGARCH model with an added noise

ht − µ = φ(ht−1 − µ) + γ1εt−1 + γ2|εt−1|+ ηt−1, (2.15)

where all the parameters and processes are defined and interpreted as in the T-GASV model in

(2.10). The model specified by (2.1) and (2.15), denoted as E-SV, can also be obtained by assuming

Normality of εt and α = 0 in the T-GASV model.6 The parameter γ2 measures the dependence of

ht on past absolute return disturbances in the same form as in the EGARCH model. It nests the

A-ARSV model when γ2 = 0. Demos (2002) derives the acf of yt and the ccf between yt and y2
t .7

Using the results of the T-GASV model from the previous section, we can obtain the properties

of the E-SV model when the return errors have a GED distribution. The second row of Figure 2.4

plots the autocorrelations and cross-correlations for an E-SV model with the same parameter

6Asai and McAleer (2011) also consider an E-SV model with Student-t return errors.
7 It is important to point out that the E-SV model has also been implemented by specifying the log-volatility using

yt−1 instead of εt−1 in the volatility equation; see Danielsson (1998) and Meyer and Yu (2000). In this case, although
the estimation of the parameters is usually easier, the derivation of the properties is harder.
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values of the T-GASV model considered in Figure 2.4 except that α = 0. Comparing the plots

of the A-ARSV and E-SV models in Figure 2.4, we can observe that adding |εt−1| into the A-ARSV

model generates larger autocorrelations of squares and absolute returns but not a larger Taylor

effect. However, as expected, the cross-correlations are almost identical. Therefore, the E-SV

model is more flexible than the A-ARSV to represent wider patterns of volatility clustering but

not of volatility leverage.

Figure 2.4 also illustrates that the E-SV model is not identified by the autocorrelations of

squared and absolute returns and the cross-correlations between returns and future squared and

absolute returns, when the parameter of the GED distribution of εt, ν, is not fixed. Observe that,

given a particular E-SV model, we may find an A-ARSV model with almost the same autocorrelations

and cross-correlations. Compare, for example, the autocorrelations of the E-SV model with ν = 2

and those of the A-ARSV model with ν = 2.5. Further, the cross-correlations are indistinguishable

in any case. Nevertheless, these two models generate returns with different kurtoses. Therefore,

if the parameter ν is a free parameter, we cannot identify the parameters γ2 and σ2
η using the

information of the autocorrelations and cross-correlations. However, the distribution of returns

implied by both models is different and therefore, this information should be used to estimate the

parameters.

By comparing the T-GASV and E-SV models from Figure 2.4, we can observe that the autocorrelations

are almost identical. Only the autocorrelations of absolute returns of the T-GASV are slightly

larger; see also Figure 2.3. Including α only has a paltry effect on the volatility clustering that

the model can represent. However, the cross-correlations of the T-GASV model are stronger than

those of the E-SV model. Therefore, α allows for a more flexible pattern of the leverage effect.

Finally, we illustrate the shape of SNIS of the E-SV model. For this purpose, we consider the

same parameters as above with α = 0 and plot the corresponding SNIS in the third panel of

Figure 2.1. In this case, we can observe that there is not any discontinuity but the effect of εt−1

on σt still depends on ηt−1. Comparing the SNIS of the E-SV model with that of A-ARSV model,

we can observe that these two surfaces are similar. We can identify the important role of α in the
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response of volatility by comparing the SNIS of the E-SV and T-GASV models. As before, we also

plot the NIC of the EGARCH model of Nelson (1991) by considering ηt = 0.

2.5.3 Threshold SV model

The third popular specification for the volatility considered in this chapter is the Threshold SV

(T-SV) model proposed by Breidt (1996) and So et al. (2002) which captures the leverage effect

by allowing the parameters of the log-volatility equation to be different depending on the sign of

lagged returns. Although its statistical properties are unknown, the T-SV model is rather popular;

see, for example, Asai and McAleer (2004, 2005), Muñoz et al. (2007), Chen et al. (2008), Smith

(2009), Montero et al. (2010) and Elliott et al. (2011).

In this subsection, we analyze the ability of T-SV models to explain the empirical properties

of financial returns. We use simulated data to show that the T-SV model captures asymmetric

conditional heteroscedasticity when the constant of the log-volatility equation changes with the

sign of lagged returns. However, changes in the persistence parameter and/or in the variance of

the log-volatility noise do not guarantee leverage. Therefore, we consider a restricted version of

the T-SV model, called Restricted T-SV (RT-SV), in which only the constant changes. We derive its

statistical properties and compute the SNIS. Moreover, we extend this RT-SV model by assuming

that the return errors follow a GED distribution. The statistical properties of this extended RT-SV

models are also analyzed.

Threshold SV model

The T-SV model of Breidt (1996) is given by

ht =

 α1 + φ1ht−1 + ση1ηt−1, yt−1 ≥ 0,

α2 + φ2ht−1 + ση2ηt−1, yt−1 < 0,
(2.16)

where ηt is a standardized Gaussian white noise processes that independent of εt. The T-SV model

introduces the leverage effect by allowing the parameters to change depending on the sign of past
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returns. So et al. (2002) consider a T-SV model with ση1 = ση2.

Deriving the statistical properties of the T-SV model in equations (2.1) and (2.16) is a difficult

task.8 Consequently, we use simulated data to analyse the role that each parameter plays in

explaining the relevant statistical properties of financial returns. We consider nine specifications

that can be classified into three scenarios. The first scenario includes models with φ1 = φ2 =

0.98 and σ2
η1 = σ2

η2 = 0.05 while the constant is allowed to change according to the following

combinations {α1, α2} = {−0.12, 0.08}, {−0.07, 0.05}, and {−0.14, 0.1}. These models are denoted

by M1, M2, and M3, respectively. The second category includes models in which α1 = α2 =

0 and σ2
η1 = σ2

η2 = 0.05, while the persistence parameter changes according to the following

combinations, {φ1, φ2} = {0.9, 0.98}, {0.95, 0.98} and {0.6, 0.9}. The corresponding models are

denoted as M4, M5 and M6, respectively. Finally, the third scenario includes models with α1 =

α2 = 0 and φ1 = φ2 = 0.98 while the variance of log-volatility noise changes according to the

following combinations, {σ2
η1, σ

2
η2} = {0.02, 0.01}, {0.05, 0.04} and {0.05, 0.02}. These models are

denoted as M7, M8 and M9, respectively. The parameters have been chosen to represent those

usually estimated in empirical applications; see So et al. (2002), Asai and McAleer (2005), Muñoz

et al. (2007) and Chen et al. (2008). After simulating R = 1000 series of size T = 10000 from each

of the nine models considered, the sample kurtosis, the τ -th order autocorrelations of squares,

ρ2(τ), and cross-correlations between levels and future squares, ρ21(τ), are obtained. Table 2.1

reports the corresponding Monte Carlo means and standard deviations for τ = 1.

Consider first the results for models M1, M2 and M3 in which the constant changes. We

can observe that the moments of the series generated by these models are close to those often

observed when dealing with real financial returns. Moreover, Figure 2.5, that plots the Monte

Carlo averages and the 5% and 95% percentiles of the sample autocorrelations of squares and the

cross-correlations for the first twenty lags, displays patterns similar to those observed in real data.

Particularly, the autocorrelations of squares are all positive and significantly different from zero

8The results in Section 2.2 cannot be used because the GASV family does not include models in which φ and σ2
η

change.
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and if the difference between α2 and α1 is large enough, the cross-correlations are significant and

negative. Therefore, T-SV models with changes in the constant are able to generate asymmetric

conditional heteroscedasticity.

Next, consider the results reported in Table 2.1 for models M4, M5 and M6 in which the

autoregressive parameter changes. Observe that the kurtoses and autocorrelations of squares are

clearly smaller than before. The magnitude of the first order cross-correlations is also too small

to represent the leverage effect often observed in real financial returns; see also Figure 2.6 that

illustrates further that when φ changes, the generated series do not show significant cross-correlations.

Furthermore, in model M6, in which φ1 = 0.6 and φ2 = 0.9, even the autocorrelations of squares

are barely larger than zero. Therefore, when φ changes, the series generated by the T-SV model

presents volatility clustering without leverage effect. Moreover, depending on the particular

values of φ, the series could even be without the volatility clustering.

Finally, consider the results reported in Table 2.1 for models M7, M8 and M9 in which σ2
η

changes. Observe that these models generate significant autocorrelations of squares and, consequently,

volatility clustering. The values of the kurtoses are also rather realistic. However, the cross-correlations

are not significantly different from zero; see also Figure 2.7. Therefore, changes in σ2
η seem to

generate conditionally heteroscedasticity without leverage effect.

Summing up, changes in φ and/or σ2
η do not pick up the leverage effect, while the threshold in

the constant of the log-volatility equation enables the T-SV model to capture conditional heteroscedasticity

with leverage effect.
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Model α1 α2 φ1 φ2 σ2
η1 σ2

η2 Kurtosis ρ2(1) ρ21(1)

M1 -0.12 0.08 0.98 0.05 13.327
(4.111)

0.266
(0.036)

-0.039
(0.017)

M2 -0.07 0.05 0.98 0.05 11.423
(3.643)

0.257
(0.032)

-0.025
(0.016)

M3 -0.14 0.1 0.98 0.05 14.965
(6.173)

0.271
(0.040)

-0.046
(0.017)

M4 0 0.9 0.98 0.05 4.685
(0.171)

0.141
(0.012)

-0.012
(0.007)

M5 0 0.95 0.98 0.05 6.240
(0.450)

0.195
(0.018)

-0.008
(0.009)

M6 0 0.6 0.9 0.05 3.393
(0.040)

0.040
(0.006)

-0.012
(0.005)

M7 0 0.98 0.02 0.01 4.383
(0.160)

0.133
(0.011)

0.001
(0.006)

M8 0 0.98 0.05 0.04 9.243
(1.587)

0.243
(0.026)

0.001
(0.013)

M9 0 0.98 0.05 0.02 7.214
(0.869)

0.219
(0.022)

0.003
(0.011)

Table 2.1: Monte Carlo means and standard deviations (in parenthesis) of the sample kurtosis, first order
autocorrelation of squares and first order cross-correlation between returns and future squared returns.

Figure 2.5: Monte Carlo averages and 5% and 95% percentiles (blue lines) of the autocorrelations of squares (first
row) and cross-correlations between returns and future squared returns (second row) of models M1 (first column), M2
(middle column) and M3 (last column).
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Figure 2.6: Monte Carlo averages and 5% and 95% percentiles (blue lines) of the autocorrelations of squares (first
row) and cross-correlations between returns and future squared returns (second row) of models M4 (first column), M5
(middle column) and M6 (last column).

Figure 2.7: Monte Carlo averages and 5% and 95% percentiles (blue lines) of the autocorrelations of squares (first
row) and cross-correlations between returns and future squared returns (second row) of models M7 (first column), M8
(middle column) and M9 (last column).
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The restricted Threshold SV model

Since, only the threshold in the constant in equation (2.16) allows the model to generate asymmetric

conditional heteroscedasticity with volatility clustering, we focus our analysis on the following

specification of the volatility, denoted as RT-SV

ht = µ∗ + αI(εt−1 < 0) + φht−1 + σηηt−1, (2.17)

in which the autoregressive parameter and the variance of the log-volatility noise are constant

and µ∗ = α1 and µ∗ + α = α2. This specification is included in the GASV family and has been

previously considered by Asai and McAleer (2006).

The Stochastic News Impact Surface According to the definition of SNIS in Section 2.3, the

SNIS of the RT-SV is given by

SNISt = exp(µ∗)σ2φ
y exp(αI(εt−1 < 0) + σηηt−1), (2.18)

where σ2
y is the marginal variance of yt which can be easily obtained from the equation (2.5) given

that µ = µ∗

1−φ and

P (bi) ≡
∞∏
i=1

1

2
[exp(biα) + 1] . (2.19)

Figure 2.1 plots at the bottom panel the SNIS of RT-SV model with parameters φ = 0.98, σ2
η = 0.05

and α = 0.7. The value of µ∗ is chosen such that exp(µ∗)σ2φ
y = 1. The main characteristic of the

SNIS is its discontinuity with respect to εt−1. Furthermore, it represents different leverage effects

depending on the value of the log-volatility disturbance.

RT-SV model with Gaussian errors The statistical properties of the Gaussian RT-SV model can

be obtained from the results of the T-GASV model in Section 2.4. Note that, given that εt is
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Gaussian, the conditions for Theorem 2.1, Theorem 2.2 and Theorem 2.3 in Section 2.2 are satisfied

so that E(exp(0.5cαI(εt < 0))) = 1
2(1 + exp(0.5cα)) < ∞, E(εct) < ∞ and E(ε2ct ) < ∞ for any

positive integer c. Therefore, when |φ| < 1, the RT-SV model is stationary and the moments of

|yt|, the autocorrelations of |yt|c and the cross-correlations between yt and |yt+τ |c for τ > 0 are all

finite. Furthermore, the odd moments of yt are always zero.

All its closed-form statistical properties can be obtained from those of the T-GASV model

derived in Section 2.4 by restricting that µ = µ∗

1−φ and γ1 = γ2 = 0, given that, when εt ∼ N(0, 1),

E|εt|c = 2c/2√
π

Γ
(
c+1

2

)
, P (bi) given in the equation (2.19) and T (n, bi) ≡

n−1∏
i=1

1

2
[exp(biα) + 1] if n > 1

while T (1, bi) ≡ 1.

In order to illustrate the shape of the autocorrelations of the squared returns generated by the

RT-SV model, the left panel of Figure 2.8 plots them for RT-SV models with parameters µ∗ = 0,

φ = 0.98, σ2
η = 0.05 and α = 0, 0.1 and 0.2. Observe that the value of α barely has influence on the

autocorrelations of squares which are very similar to those in Figure 2.5 for the simulated data.

Figure 2.8: Autocorrelations of squares (left column) and cross-correlations between returns and future squared returns
(right column) for Gaussian RT-SV models with φ = 0.98, σ2

η = 0.05, µ∗ = 0 and α = 0 (solid lines), α = 0.1 (dashed
lines) and α = 0.2 (dotted lines).

The cross-correlations between returns and future squared returns for the same RT-SV models

considered above are plotted in the right panel of Figure 2.8. We observe that larger values of α

generate returns with larger leverage effect. Furthermore, the magnitude of the cross-correlations

is very close to that of the simulated ones plotted in Figure 2.5 for models M1 and M2. This
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confirms the Monte Carlo results about changes onα capturing the leverage effect without destroying

the volatility clustering.

RT-SV model with GED error The RT-SV model considered above can be extended to assume

a GED distribution for the return errors. Once more, the statistical properties of the RT-SV model

with GED errors can be obtained using the results in Section 2.4. The last row of Figure 2.4

illustrates the shape of the autocorrelations of squared and absolute returns and the cross-correlations

between returns and future squared and absolute returns, for a RT-SV model with the same values

of the parameters φ, σ2
η and ν as those considered for the T-GASV model in Figure 2.4. Comparing

the autocorrelations of squares and absolute returns of the T-GASV model represented in the top

panel of Figure 2.4 and those of the RT-SV model with GED return errors, we can observe that

the latter are slightly smaller than the former. However, the cross-correlations are clearly smaller

in the RT-SV model. Actually, these cross-correlations are the smallest among those of all the

models considered. It seems that the presence of α in the T-GASV model is reinforcing the role of

the leverage parameter γ1.

2.6 MCMC estimation and empirical results for GASV models

Stochastic volatility models are attractive because of their flexibility to represent a high range

of the dynamic properties of time series of financial returns often observed when dealing with

real data. This flexibility can be attributed to the presence of a further disturbance associated

with the volatility process. However, as a consequence of the volatility being unobservable,

it is not possible to obtain an analytical expression of the likelihood function. Furthermore,

one needs to implement filters to obtain estimates of the latent unobserved volatilities. Thus,

the main limitation of SV models is the difficulty involved in the estimation of the parameters

and volatilities; see Broto and Ruiz (2004) for a survey on alternative procedures to estimate SV

models. In this context, simulation based MCMC procedures are becoming very popular because

of their good properties and flexibility to deal with different specifications and distributions of
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the errors.9 The first Bayesian MCMC approach to estimate SV models with leverage effect

was developed by Jacquier et al. (2004). After that, there have been several proposals that try

to improve the properties of the MCMC estimators. For example, Omori et al. (2007), Omori

and Watanabe (2008) and Nakajima and Omori (2009) implement the efficient sampler of Kim

et al. (1998) to SV models with Student-t errors and leverage effect based on log y2
t . Based on

the work of Shephard and Pitt (1997) and Watanabe and Omori (2004), Abanto-Valle et al. (2010)

estimate an asymmetric SV model assuming scale mixtures of Normal return distributions while

SV models with skew-Student-t and skew-Normal return errors are estimated by Tsiotas (2012)

using MCMC. Among the alternative MCMC estimators available in the literature, we consider

the estimator described by Meyer and Yu (2000) who propose to estimate the A-ARSV model

using the user-friendly and freely available BUGS software. The estimator uses the single-move

Gibbs sampling algorithm; see Yu (2012) and Wang et al. (2013) for empirical implementations.

This estimator is attractive because it reduces the coding effort allowing its empirical implementation

to real time series of financial returns. There are two main versions of BUGS, namely WinBUGS

and OpenBUGS. WinBUGS is an established and stable, stand-alone version, which is not further

developed. In this thesis, we adopt OpenBUGS that is still being updated.

In this section, we describe briefly the algorithm of the MCMC estimator for estimating the

T-GASV model with restriction γ2 = 0 and εt ∼ GED(ν), denoted as RT-GASV. Recall that in

Section 2.5, we show that one possible problem is the parameter identification. For a T-GASV

model with parameter ν = ν0, we may find another model with ν 6= ν0 and different parameter

values that represents the same dynamics of |yt|c. This might be due to the fact that the parameters

γ2 and ν do the same job that allow the T-GASV model to capture more volatility clustering.

Therefore, we focus on the RT-GASV model where γ2 = 0.

9 There are several alternative procedures proposed in the literature to estimate SV models with leverage effect. For
example, Bartolucci and De Luca (2003) propose a likelihood estimator based on the quadrature methods of Fridman
and Harris (1998). Alternatively, Harvey and Shephard (1996) propose a Quasi Maximum Likelihood procedure while
Sandmann and Koopman (1998) implement a Simulated Maximum Likelihood procedure based on the second order
Taylor expansion of the density function. Finally Liesenfeld and Richard (2003) propose a Maximum Likelihood
approach based upon an efficient importance sampling.
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We carry out extensive Monte Carlo experiments to analyze the finite sample performance of

the MCMC estimator when estimating both the parameters and the underlying volatilities of the

RT-GASV model. Moreover, we also investigate that, by fitting our RT-GASV model to the series

generated from those nested asymmetric SV models, whether it is able to identify the true Data

Generating Process (DGP).

Finally, the MCMC estimator is implemented to estimate the volatilities and the Value at Risk

(VaR) of the series of daily S&P500 returns after fiting all the asymmetric SV models considered

in this chapter.

2.6.1 Finite sample performance of a MCMC estimator for Threshold GASV model

Next, we describe briefly the algorithm. Let p(θ) be the joint prior distribution of the unknown

parameters θ = {µ, φ, α, γ1, σ
2
η, ν}. Following Meyer and Yu (2000), the prior densities of φ and

σ2
η are φ = 2φ∗ − 1 with φ∗ ∼ Beta(20, 1.5) and σ2

η = 1/τ2 with τ ∼ IG(2.5, 0.025), respectively,

where IG(·, ·) is the inverse Gaussian distribution.10 The remaining prior densities are chosen

to be uninformative, that is, µ ∼ N(0, 10), α ∼ N(0.05, 10), γ1 ∼ N(−0.05, 10) and ν ∼ U(0, 4).

These priors are assumed to be independent. The joint prior density of θ and h is given by

p(θ,h) = p(θ)p(h0)

T+1∏
t=1

p(ht|ht−1,θ). (2.20)

The likelihood function is then given by

p(y|θ,h) =

T∏
t=1

p(yt|ht,θ). (2.21)

Note that the conditional distribution of yt given ht and θ is yt|ht,θ ∼ GED(ν). We make use

of the scale mixtures of Uniform representation of the GED distribution proposed by Walker and

Gutiérrez-Peña (1999) for obtaining the conditional distribution of yt given ν and ht, which is

10Although the prior of φ∗ is very informative, when it is changed to Beta(1, 1), the results are very similar.



2.6. MCMC ESTIMATION AND EMPIRICAL RESULTS FOR GASV MODELS 41

given by

yt|u, ht ∼ U

(
− exp(ht/2)√

2Γ(3/ν)/Γ(1/ν)
u1/ν ,

exp(ht/2)√
2Γ(3/ν)/Γ(1/ν)

u1/ν

)
, (2.22)

where u|ν ∼ Gamma(1 + 1/ν, 2−ν/2). Given the initial values (θ(0),h(0)), the Gibbs sampler

generates a Markov Chain for each parameter and volatility in the model through the following

steps:

θ
(1)
1 ∼ p(θ1|θ(0)

2 , . . . , θ
(0)
K ,h(0),y);

...

θ
(1)
K ∼ p(θ1|θ(1)

2 , . . . , θ
(1)
K−1,h

(0),y);

h
(1)
1 ∼ p(h1|θ(1), h

(0)
2 , . . . , h

(0)
T+1,y);

...

h
(1)
T+1 ∼ p(hT+1|θ(1), h

(1)
1 , . . . , h

(1)
T ,y).

The estimates of the parameters and volatilities are the means of the Markov Chain. The posterior

joint distribution of the parameters and volatilities is given by

p(θ,h|y) ∝ p(θ)p(h0)
T+1∏
t=1

p(ht|ht−1,y,θ)
T∏
t=1

p(yt|ht,θ). (2.23)

We consider two designs for the Monte Carlo experiments. First, R replicates are generated

by the RT-GASV model with parameters
{
µ, φ, α, γ1, σ

2
η, ν
}

= {0, 0.98, 0.07,−0.08, 0.05, 1.5}. All

the parameters are then estimated using the MCMC estimator. The total number of iterations

in the MCMC procedure is 20,000 after a burn-in of 10,000. The results are based on R = 500

replicates of series with sample sizes T = 500, 1000 and 2000. Table 2.2 reports the average and

standard deviation of the posterior means together with the average of the posterior standard

deviations of each parameter through the Monte Carlo replicates for the first design. We observe
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that the Monte Carlo averages of the posterior means are rather close to the true parameter

values, indicating almost no finite sample biases for series of sizes T = 1000 and 2000. Also,

it is important to point out that the average of the posterior standard deviations is rather close

to the Monte Carlo standard deviation of the posterior means. Consequently, inference based on

the posterior distributions seems to be adequate when the sample size is as large as 1000. When

T = 500, the estimation could suffer from small parameter bias.

µ φ α γ1 σ2
η ν

True 0 0.98 0.07 -0.08 0.05 1.5
T=500

Mean 0.268 0.952 0.108 -0.074 0.083 1.581
(1.445) (0.063) (0.126) (0.077) (0.068) (0.369)

s.d. 1.803 0.018 0.121 0.066 0.034 0.184
T=1000

Mean 0.046 0.974 0.077 -0.082 0.055 1.520
(1.442) (0.010) (0.073) (0.041) (0.020) (0.132)

s.d. 1.779 0.009 0.078 0.042 0.017 0.112
T=2000

Mean 0.082 0.977 0.072 -0.082 0.053 1.528
(1.278) (0.006) (0.056) (0.031) (0.013) (0.098)

s.d. 1.422 0.006 0.057 0.030 0.011 0.071

Table 2.2: Monte Carlo results of the MCMC estimator of the parameters of the RT-GASV model. Reported are the
values of the Monte Carlo average and standard deviation (in parenthesis) of the posterior means together with the
Monte Carlo average of the posterior standard deviation.

Second, we also want to check whether by fitting the RT-GASV model we are able to identify

the true restricted specifications. With this purpose, we generate R = 200 replicates of size T =

1000 from each of the restricted models, A-ARSV and RT-SV, with the distribution parameter

ν = 2 or ν = 1.5 and fit the RT-GASV model. The results, reported in Table 2.3, provide evidence

that it is possible to identify the true data generating process (DGP) by fitting the more general

RT-GASV model.
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A-ARSV RT-SV

µ φ α γ1 σ2
η ν µ φ α γ1 σ2

η ν

True 0 0.98 0 -0.08 0.05 2 0 0.98 0.07 0 0.05 2

Mean 0.068 0.974 -0.005 -0.082 0.055 2.022 0.145 0.972 0.077 -0.002 0.056 2.076

(1.377) (0.009) (0.069) (0.037) (0.018) (0.200) (1.531) (0.011) (0.080) (0.042) (0.019) (0.201)

s.d. 1.722 0.009 0.078 0.042 0.016 0.200 1.720 0.010 0.080 0.042 0.016 0.188

True 0 0.98 0 -0.08 0.05 1.5 0 0.98 0.07 0 0.05 1.5

Mean 0.140 0.974 -0.008 -0.088 0.053 1.478 0.003 0.972 0.081 0.002 0.058 1.525

(1.431) (0.010) (0.075) (0.043) (0.018) (0.140) (1.461) (0.013) (0.075) (0.048) (0.022) (0.128)

s.d. 1.767 0.009 0.077 0.042 0.017 0.117 1.752 0.010 0.080 0.042 0.018 0.113

Table 2.3: Monte Carlo results of MCMC estimator of the parameters of the RT-GASV model fitted to series simulated
from different asymmetric SV models. Reported are the values of the Monte Carlo average and standard deviation (in
parenthesis) of the posterior means together with the Monte Carlo average of the posterior standard deviation.

Summarizing the Monte Carlo results on the MCMC estimator considered in this chapter,

we can conclude that: i) If the sample size is moderately large, the posterior distribution gives

an adequate representation of the finite sample distribution with the posterior mean being an

unbiased estimator of the true parameter value. ii) The true restricted specifications are correctly

identified after fitting the proposed RT-GASV model.

When dealing with conditional heteroscedastic models, practitioners are interested not only in

the parameter estimates but also, and more importantly, in the volatility estimates. Consequently,

in the Monte Carlo experiments above, at each time period t and for each replicate i, we also

compute the relative estimation error of volatility, e(i)
t = (σ

(i)
t − σ̂

(i)
t )/σ

(i)
t , where σ

(i)
t is the

simulated true volatility at time t in the i-th replicate and σ̂
(i)
t is its MCMC estimate. Table 2.4

reports the average and standard deviation through time of mt =
∑R

i=1 e
(i)
t /R together with the

average through time of the standard deviations given by st =

√∑R
i=1(e

(i)
t −mt)2/(R− 1) when

T = 1000. These quantities have been computed for the Monte Carlo experiments conducted

above. Consider first the results when the RT-GASV model is the true DGP. We observe that the

estimates of the volatility are unbiased. Further, when the restricted models are the DGPs but

the general RT-GASV model is fitted, the errors are also insignificant and with similar standard

deviations. In all cases the relative errors are negative. Therefore, the MCMC estimated volatilities
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are insignificantly larger than the true underlying volatilities.

RT-GASV
A-ARSV RT-SV

ν = 2 ν = 1.5 ν = 2 ν = 1.5

Mean -0.027 -0.030 -0.040 -0.022 -0.022

(0.016) (0.040) (0.053) (0.018) (0.021)

s.d. 0.232 0.216 0.238 0.213 0.229

Table 2.4: Monte Carlo results of the relative volatility estimation errors. Reported are the values of the time
average and standard deviation (in parenthesis) of mt =

∑R
i=1 e

(i)
t /R together with the time average of st =√∑R

i=1(e
(i)
t −mt)2/(R− 1), where e(i)t = (σ

(i)
t − σ̂

(i)
t )/σ

(i)
t .

2.6.2 Empirical application

Estimation results

In this subsection, the RT-GASV model is fitted to represent the dynamic dependence of the

daily S&P500 returns described in Chapter 1. It is clear that the volatility clustering and leverage

effect are present in this series. Consequently, the RT-GASV model is fitted first assuming GED

errors and second assuming that the errors are Gaussian. Our objective is to observe empirically

whether the estimated volatilities and the corresponding Value at Risk (VaR) are affected by the

distribution of εt. For completeness, we also fit the other two restricted models. All the parameters

and volatilities have been estimated implementing the MCMC estimator of BUGS.

To compare two competitive models, saying M0 and M1, we consider the Bayes Factor (BF).

The BF, which is defined as the ratio of the marginal likelihood values of two competing models,
p(y|M0)
p(y|M1) , where p(y|Mk) is the marginal likelihood of model k with k = 0, 1. If the prior odds ratio

is 1 by Bayes’ theorem, the posterior odds ratio takes the same value as the BF. Jeffreys (1961) gave

a scale for the interpretation of BFs. If ln(BF ) is less (bigger) than 0, there is evidence in favor of

(against) M1. Moreover, if ln(BF ) ∈ (0, 1), the evidence against M1 is barely worth mention; if

ln(BF ) ∈ (1, 3), the evidence against M1 is positive; if ln(BF ) ∈ (1, 3) (0r (3,∞)), the evidence

against M1 is strong (or very strong).

Table 2.5 reports the posterior mean and the 95% credible interval of the MCMC estimator of
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εt ∼ GED(ν) εt ∼ N(0, 1)

RT-GASV A-ARSV RT-SV RT-GASV A-ARSV RT-SV
µ -0.035 0.084 -5.638 -0.477 -0.007 -5.647

(-0.019,0.079) (-0.017,0.222) (-6.551,-4.276) (-0.891,0.519) (-0.133,0.207) (-6.910,-4.184)

φ 0.982 0.980 0.984 0.979 0.981 0.980
(0.974,0.993) (0.973,0.990) (0.974,0.992) (0.969,0.987) (0.973,0.992) (0.969,0.989)

α 0.035 0.193 0.019 0.236
(-0.019,0.079) (0.169,0.224) (-0.026,0.051) (0.189,0.271)

γ1 -0.129 -0.143 -0.145 -0.143
(-0.155,-0.103) (-0.162,-0.126) (-0.172,-0.117) (-0.168,-0.125)

σ2
η 0.009 0.009 0.012 0.017 0.016 0.021

(0.000,0.018) (0.002,0.019) (0.005,0.022) (0.005,0.027) (0.005,0.023) (0.010,0.032)

ν 1.359 1.391 1.419
(1.237,1.382) (1.309,1.365) (1.344,1.423)

Log-Likelihood -5688.8663 -5689.4757 -5689.9409 -5590.4776 -5590.4774 -5595.0947

Table 2.5: MCMC estimates of the parameters of alternative asymmetric SV models for S&P500 daily returns. The
values reported are the mean and 95% credible interval (in parenthesis) of the posterior distributions.

each parameter. The left panel reports the results of those models with GED errors while the right

panel for the models with Normal errors. Checking the results of the models with GED errors,

we can observe that when the RT-GASV model is fitted, the credible interval for the threshold

parameter α contains the zero. The Monte Carlo experiments in the previous section suggest that

fitting the general RT-GASV model with GED errors proposed in this paper, one could identify

the true restricted specification of the log-volatilities. Consequently, it seems that the threshold

parameter is not needed to represent the conditional heteroscedasticity of the S&P500 returns.

Second, the credible interval of the estimate of distribution parameter ν excludes the value 2

which, according to our Monte Carlo results, indicates that models with GED errors outperform

the counterparts with Gaussian errors. Finally, the log-Likelihoods of all the three models are very

close which indicates similar in-sample performance no matter which distribution is assumed to

the return errors. Figure 2.9 plots the plug-in moments implied by the estimated asymmetric SV

models together with the corresponding sample moments. The plug-in moments given by the

models with GED errors are always closer to the sample moments comparing with those of the

corresponding models with Gaussian errors.

Given the apparent similarity in-sample between these specifications with GED errors, next

we check whether they can generate significant differences when predicting the VaRs out-of-sample.
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ρ2(τ) ρ1(τ) ρ21(τ) ρ11(τ)

RT-GASV

A-ARSV

RT-SV

Figure 2.9: Sample autocorrelations of squares (first column), autocorrelations of absolute returns (second column),
cross-correlations of returns and future squared returns (third column) and cross-correlations between absolute returns
and lagged returns (fourth column) together with the corresponding plug-in moments obtained after fitting the
RT-GASV (first row), A-ARSV (second row) or RT-SV(third row) models to the daily S&P500 returns. The continuous
lines correspond to the moments implied by the models estimated with a Gaussian distribution while the dotted lines
correspond to the models estimated when the distribution is GED.

Forecasting VaR

In this subsection, we perform an out-of-sample comparison of the ability of the alternative

asymmetric SV models considered in this paper, with εt following either a GED or a Normal



2.7. CONCLUSIONS 47

distribution, when evaluating the one-step-ahead VaR of the daily S&P500 returns. Given the

extremely heavy computations involved in the estimation of the one-step-ahead VaR based on the

MCMC estimator, we compute it using data from January 4, 2010 to July 25, 2014. The parameters

are estimated using a rolling-window scheme fixing T = 1006 observations.11 Moreover, one-step-ahead

VaRs are obtained starting on January 2, 2014 until July 25, 2014 as

V aRt+1|t(m) = qσ̂t+1|t, (2.24)

with q being the 5% quantile of the distribution with parameter ν estimated in model m or the

5% quantile of the Normal distribution when ν = 2 and σ̂t+1|t is the estimated one-step-ahead

volatility. Finally, we obtain 142 one-step-ahead VaRs.

In order to evaluate the adequacy of the interval forecasts provided by the VaRs computed as

in equation (2.24) for each of the models, Table 2.6 reports the failure rates. We can observe that

the failure rate of the RT-GASV model with GED error is the smallest and the closest to the level

0.05. Therefore, our RT-GASV model with GED error provides the best prediction of volatilities

for this S&P500 return series.

Failure Rate

εt ∼ GED(ν)

A-ARSV 0.056
RT-SV 0.085

RT-GASV 0.049

εt ∼ N(0, 1)

A-ARSV 0.092
RT-SV 0.099

RT-GASV 0.070

Table 2.6: Failure rates.

2.7 Conclusions

In this chapter, we derive the statistical properties of a general family of asymmetric SV models

named as GASV. Some of the most popular asymmetric SV models usually implemented when

11Checking the estimates obtained, we observe that all the estimates are very stable over the year considered in the
rolling window estimation.
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modeling heteroscedastic series with leverage effect can be included within the GASV family.

We propose a new model named T-GASV which belongs to the GASV family and nests these

particular specifications. In particular, the A-ARSV model which incorporates the leverage effect

through the correlation between the disturbances in the level and log-volatility equations, the

E-SV model which adds a noise to the log-volatility equation specified as an EGARCH model and

a restricted T-SV model, in which the constant of the volatility equation is different depending on

whether one-lagged returns are positive or negative, are nested by the T-GASV model. Closed-form

expressions of the statistical properties of T-GASV model are obtained. Particularly, closed-form

expressions of the variance, kurtosis, autocorrelations of power-transformed absolute returns and

cross-correlations between returns and future power-transformed absolute returns are obtained

when the disturbance of the log-volatility equation is Gaussian and the disturbance of the level

equation follows a GED distribution with parameter strictly larger than one.

As a marginal outcome, we are able to obtain the statistical properties of those nested models,

some of which were previously unknown. We find that, first, the parameter γ2 in E-SV model

allows to capture more volatility clustering than the A-ARSV model. Furthermore, by adding the

threshold parameter α, the T-GASV model adds flexibility to capture the leverage effect. Finally,

the degrees of freedom of the GED errors enforce the model’s flexibility to capture volatility

clustering. The ability of the T-SV model to explain the empirical properties of financial returns is

also analyzed. Through extensive simulation studies, we show that allowing the autoregressive

parameter and/or the variance of the log-volatility disturbance to be different depending on

the sign of past returns do not generate leverage effect. However, changing the constant in

the volatility equation allows the model to capture asymmetric conditional heteroscedasticity

with volatility clustering. We derive the analytical properties of the T-SV model in which only

the constant changes, named as RT-SV. It is found that the RT-SV model generates returns with

smaller autocorrelations and absolute cross-correlations than the T-GASV model with the same

values of parameters.

Another contribution of this chapter is the proposal of the SNIS to describe the asymmetric
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response of volatility to positive and negative past returns in the context of SV models. One

attractive feature of the SNIS is that it allows to observe how the asymmetric response of the

volatility is different depending on the size and sign of the volatility shock.

Moreover, we analyze the finite sample properties of a MCMC estimator of the parameters and

volatilities of the RT-GASV model using the BUGS software. We show first that the parameters

and volatilities of the RT-GASV model can be estimated appropriately. Second, fitting the proposed

RT-GASV model allows to correctly identify the true data generating process. Finally, the RT-GASV

model as well as its nested models, A-ARSV and RT-SV, are fitted to estimate the volatilities

of S&P500 daily returns. For this particular data set, all the models with GED errors provide

similar in-sample performance and better than their counterparts with Gaussian return errors.

When estimating the VaRs our RT-GASV model with GED errors outperforms the benchmarks

considered.
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Chapter 3

Score Driven Asymmetric SV models

3.1 Introduction

It is well acknowledged that the standardized financial returns are heavy-tailed distributed. In

order to capture this feature, the SV models have been extended by assuming fat-tailed return

errors, for instance, the E-SV model with Student-t distribution of Asai and McAleer (2011).

However, in some of the traditional asymmetric SV models, the volatility is specified as being

driven by the past return error. Therefore, when the return errors are fat-tailed, the traditional

asymmetric SV models could attribute a large realisation of the return errors to an increase in

volatility. In this chapter, we propose a new class of asymmetric SV models, which specifies

the volatility as a function of the score of the lagged return distribution as in the Generalized

Autoregressive Score (GAS) model of Creal et al. (2013). The score-driven models can automatically

correct for the influential observations which are judged as outliers by the Gaussian yardstick. We

propose three score-driven SV models, namely, GAS2V-N, GAS2V-T, and GAS2V-G corresponding

to the return errors following either the Normal, Student-t or the GED distribution. The closed-form

expressions of their statistic properties are derived.

We show that the MCMC procedure described in Section 2.6 can estimate the parameters of

some restricted score driven SV models adequately. Finally, the models are fitted both daily and

51
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weekly financial returns and evaluated in terms of their in-sample and out-of-sample performance.

3.2 Score driven asymmetric SV models

In this section, we propose the GAS2V model and derive its statistical properties when the errors

are distributed as Normal, Student-t and GED. In particular, we obtain the closed-form expressions

of the marginal variance, the kurtosis, acf of power-transformed absolute returns and the ccf

between returns and future power-transformed absolute returns.

3.2.1 The GAS2V models

Let yt be modeled as in the equation (2.1). The GAS2V specifies the volatility as

ht − µ = φ(ht−1 − µ) + f(ut−1) + ηt−1, (3.1)

where ηt is a Gaussian white noise with variance σ2
η and εt is a strict white noise with variance

one which is distributed independently of ηt for all leads and lags. µ is a scale parameter related

with the marginal variance of returns while the parameter φ is related with the persistence of the

volatility shocks. Finally, f(·) is a function of the scaled conditional score of the lagged return,

ut−1, which is defined as follows

ut = C
∂lnP (yt|ht)

∂ht
, (3.2)

where C is any real number introduced to simplify the expression of the score and P (yt|ht) is the

density of returns conditional on volatilities. Denoting by ψ(εt) the probability density function

(pdf) of εt, the density function of yt conditional on ht is given byP (yt|ht) = exp(−ht/2)ψ(yt exp(−ht/2)).

It follows immediately that

ut = −C
2

+
C

2

εtψ
′(εt)

ψ(εt)
, (3.3)
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where ψ′(εt) denotes the derivative of ψ(εt) with respect to εt. Thus, ut depends on εt and,

consequently, after writing f(ut−1) = f
(
−C

2 + C
2
εtψ′(εt)
ψ(εt)

)
in equation (2.2), the GAS2V model

in equations (2.1) and (3.1) can be obtained as a particular case of the GASV family defined in

Chapter 2 and the results on the properties of this family can be directly used. In particular,

according to Theorem 2.1, when |φ| < 1 and the distribution of εt is such that E(exp(f(εt))) <∞,

the GAS2V model is stationary. Moreover, for any non-negative integer c, if the distribution of εt

is such thatE(exp(0.5cf(εt))) <∞ andE(|εt|c) <∞, both yt and |yt| have finite moments of order

c. The autocorrelation function of |yt|c is also finite. Finally, the finiteness of the cross-correlation

function between yt and |yt+τ |c, for τ = 1, 2, · · · , is guaranteed when further E(|εt|2c) < ∞. The

general expressions of these moments are given by Theorem 2.1, Theorem 2.2 and Theorem 2.3.

Later in this chapter, we obtain closed-form expressions of these moments for particular assumptions

on the function f(·) and on the error distribution. In particular, in order to represent the leverage

effect often observed when dealing with time series of financial returns, we consider the following

specification of f(·)

f(ut−1) = αI(εt−1 < 0) + kut−1 + k∗sign(−εt−1)(ut−1 + 1), (3.4)

where I(·) is an indicator function that takes value one when the argument is true and zero

otherwise. The parameter k represents an ARCH effect while the parameters α and k∗ represent

the leverage effect with α dealing with changes in the scale parameter depending on the sign of

past returns and k∗ with changes in the dynamics involving the score. Note that the last term

in (3.4) is based on the proposal of Harvey (2013) in the context of asymmetric score GARCH

models. As pointed out by Harvey (2013), although the statistical validity of the model does not

require it, proper restriction may be imposed on k and k∗ in order to ensure that an increase in

the absolute value of a standardized observation does not lead to a decrease in volatility.
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Finally, the SNIS of GAS2V model is given by

SNISt = exp((1− φ)µ)σ2φ
y exp(f(ut−1) + ηt−1), (3.5)

where σ2
y is the marginal variance of yt and f(ut−1) is given in (3.4). It is important to note that the

score, ut, is different depending on the particular assumption on the error distribution. Several

distributions of return errors have been proposed in the related literature being the Gaussian

distribution the most popular; see, for example, Jacquier et al. (1994) and Harvey and Shephard

(1996). When the errors are Gaussian, the score is given by

ut−1 = ε2t−1 − 1. (3.6)

The corresponding SNIS is plotted in the top panel of Figure 3.1 when the GAS2V model has

parameters {α, φ, k∗, k, σ2
η} = {0.07, 0.98, 0.08, 0.1, 0.05}. The scale parameter, µ is chosen so that

exp((1 − φ)µ)σ2φ
y = 1. It shows that the volatility response is larger when the lagged return is

negative than when it is positive. Therefore, this model is able to capture the leverage effect.

Moreover, the difference in the response of the volatility to positive and negative εt−1 depends

on the log-volatility noise, ηt−1. Stronger leverage effect is observed when ηt−1 is positive and

large. The News Impact Curve (NIC), defined by Engle and Ng (1993), is obtained when ηt−1 = 0,

which is also plotted in Figure 3.1. The inclusion of ηt−1 in the model allows it to be more flexible

in representing the leverage effect.
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Figure 3.1: SNIS of GAS2V-N (top panel) with parameters (α, φ, k∗, k, σ2
η) = (0.07, 0.98, 0.08, 0.1, 0.05) and exp((1 −

φ)µ)σ2φ
y = 1, GAS2V-T (middle panel) with ν0 = 6 and GAS2V-G (bottom panel) with ν = 1.5

However, the Gaussian distribution does not fully capture the fat tails of financial time series

often observed in practice and may suffer from a lack of robustness in the presence of extreme

outlying observations. Consequently, several authors consider heavy-tailed distributions such as
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the Student-t or the GED distributions;1 see, for example, Chen et al. (2008), Choy et al. (2008)

and Wang et al. (2011, 2013). Consider first the GAS2V model when εt has a Student-t distribution

with ν0 degrees of freedom. In this case, the score is given by

ut = (ν0 + 1)
ε2t

ν0 − 2 + ε2t
− 1. (3.7)

The SNIS of the GAS2V model with Student-t errors is plotted in the middle panel of Figure 3.1

for the same parameters as above and ν0 = 6. The asymmetric response of volatility to εt−1 is

similar to that of the GAS2V model with Gaussian errors.

Finally, when εt is assumed to follow a GED(ν) distribution, then the score function is given

by

ut =
ν

2

∣∣∣∣εtϕ
∣∣∣∣ν − 1, (3.8)

with ϕ =
√

2−2/νΓ(1/ν)/Γ(3/ν). The SNIS of the GAS2V model with GED errors when ν = 1.5 is

plotted in the bottom panel of Figure 3.1. The volatility responds asymmetrically to the positive

and negative returns errors. However, no big difference can be observed among the SNISs of all

the three GAS2V models.

3.2.2 Different GAS2V models

In this subsection, we analyze the properties of three GAS2V models corresponding to three

different return error distributions.

1There are also proposals to include simultaneously leptokurtosis and skewness in the distribution of εt, such as the
skewed-Normal and skew-Student-t in Nakajima and Omori (2012) and the asymmetric GED in Cappuccio et al. (2004).
It is not straightforward to capture the moments of returns when the distribution of εt is asymmetric. Consequently,
we leave this extension for future research and focus on symmetric distributions.
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GAS2V-N

If εt follows a Gaussian distribution, then, the scaled score, ut is given by expression (3.6) and the

specification of the log-volatility with f(·) defined as in (3.4) reduces to

ht − µ = φ(ht−1 − µ) + αI(εt−1 < 0) + k(ε2t−1 − 1) + k∗sign(−εt−1)ε2t−1 + ηt−1. (3.9)

The resulting model is denoted as GAS2V-N. It is important to note that although the specification

of the volatility in (3.9) is closely related to that in the T-GASV model in Chapter 2, the way in

which the leverage is introduced is different in both cases. In (3.9), the log-volatility depends

on squared returns and the leverage effect is introduced in the same fashion as in the TGARCH

model of Zakoian (1994). However, the log-volatility in the T-GASV model depends on past

absolute returns and the leverage is introduced as in the EGARCH model. Rodrı́guez and Ruiz

(2012) show that the TGARCH and EGARCH models are very similar. Therefore, we expect that,

if εt is Gaussian, the GAS2V-N and T-GASV models have very similar properties. The analytical

expressions of E(εct exp(bf(εt))) and E(|εt|c exp(bf(εt))) are given in Appendix B.1.1. Using these

expressions we can verify that when |φ| < 1 and k+ |k∗| < 1/2, the model is stationary, yt and |yt|

have finite moments of order c and the acf of |yt|c and ccf between yt and |yt+h|c are finite when

ck + |ck∗| < 1.

We first explore the kurtosis of the GAS2V-N model. It is the kurtosis of the ARSV(1) model

proposed by Harvey et al. (1994), kε exp
(

σ2
η

1−φ2

)
, multiplying the factor r =

∏∞
i=1 E(2φi−1f(ut−i))∏∞
i=1 E

2(φi−1f(ut−i))
.

As an illustration, Figure 3.2 plots R as a function of the leverage parameters α and k∗ when

k = 0 and 0.1 for three different persistence parameters, namely, φ = 0.5, 0.9 and 0.98. For these

particular parameter values, we can observe that the ratio is always larger than 1. Therefore, the

GAS2V-N model generates returns with larger kurtosis than the corresponding basic ARSV(1).

Furthermore, the kurtosis increases with α, k∗ and k. The increment is more prominent when φ is

larger.

In order to illustrate how the autocorrelations and the cross-correlations depend on the parameters,
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we have considered a particular GAS2V-N model with parameters φ = 0.98 and σ2
η = 0.05.

The leverage parameters α and k∗ take values between 0 and 0.2 and 0 and 0.1, respectively.

Figure 3.3 plots the first order autocorrelations of squares, ρ2(1) (top left panel), the first order

autocorrelations of absolute returns, ρ1(1) (top right panel), and the first order cross-correlations

between returns and future squared returns, ρ21(1) (bottom left panel), and future absolute returns,

ρ11(1) (bottom right panel) when k = 0. These moments are also plotted in Figure 3.4 when

k = 0.1. We can observe that they have very similar patterns as those of the GASV model; see

Figure 2.3. First, the first order autocorrelations are positive and the surface is rather flat and it is

not affected by the leverage effect parameters k∗ and α. However, the first order autocorrelation of

absolute returns is larger than that of the squared returns and increases with the two parameters.

Finally, the cross-correlations are negative and decrease with the two leverage effect parameters,

α and k∗ linearly. By comparing Figure 3.3 and Figure 3.4, we can observe that larger value of k

gives larger first order autocorrelations but negligible difference in cross-correlations.

To illustrate the shape of these moments for different lags, Figure 3.5 plots the first twenty

orders of these moments for a GAS2V-N model with parameters µ = 0, φ = 0.98, σ2
η = 0.05,

α = 0.07, k∗ = 0.1 when k = 0, while Figure 3.6 illustrates these moments when k = 0.1. The

values of the parameters are chosen to be very similar to those obtained when fitting these models

to financial data; see Section 3.4. The figures show that both the acf and absolute ccf decay

exponentially towards zero. The absolute values of the moments related with absolute returns

are larger than those of the squared returns. Therefore, we can conclude that the model is able to

capture the Taylor Effect, phenomenon characterised by the autocorrelations of absolute returns

to be larger than those of squares. Moreover, the larger value of k allows the model to capture

larger autocorrelations of squared and absolute returns, therefore, volatility clustering.
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k = 0 k = 0.1

φ = 0.5

φ = 0.9

φ = 0.98

Figure 3.2: Ratio between the kurtoses of the GAS2V model and the symmetric ARSV(1) model with Gaussian (N),
GED (G) and Student-t (T) errors when k = 0 (left column) and 0.1 (right column) for three different values of the
persistence parameter, φ = 0.5 (first row), φ = 0.9 (middle row) and φ = 0.98 (bottom row).
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Figure 3.3: First order autocorrelations of squares (top left), first order autocorrelations of absolute returns (top right),
first order cross-correlations between returns and future squared returns (bottom left) and first order cross-correlations
between returns and future absolute returns (bottom right) of different GAS2V models when µ = 0, φ = 0.98, σ2

η =
0.05, ν = 1.5, ν0 = 11.8745 and k = 0. The surface N represents the moments of the GAS2V-N model, T represents the
moments of the GAS2V-T model and G represents the moments of the GAS2V-G model.
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Figure 3.4: First order autocorrelations of squares (top left), first order autocorrelations of absolute returns (top right),
first order cross-correlations between returns and future squared returns (bottom left) and first order cross-correlations
between returns and future absolute returns (bottom right) of different GAS2V models when µ = 0, φ = 0.98, σ2

η =
0.05, ν = 1.5, ν0 = 11.8745 and k = 0.1. The surface N represents the moments of the GAS2V-N model, T represents
the moments of the GAS2V-T model and G represents the moments of the GAS2V-G model.
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Figure 3.5: Autocorrelations of squares (first column), autocorrelations of absolute returns (second column),
cross-correlations between returns and future squared returns (third column) and cross-correlations between returns
and future absolute returns (fourth column) for different specifications of GAS2V models when φ = 0.98, σ2

η = 0.05,
α = 0.07, k∗ = 0.08 and k = 0. The solid line corresponds to the moments of the GAS2V-T model with ν0 = 11.8745
while ν0 = 19.8387 for dashed lines. The dotted and dashdot lines corresponds to the moments of the GAS2V-G model
when ν = 1.5 and 1.7, respectively. Finally, the ’+-’ line represents the moments of the GAS2V-N model.

Figure 3.6: Autocorrelations of squares (first column), autocorrelations of absolute returns (second column),
cross-correlations between returns and future squared returns (third column) and cross-correlations between returns
and future absolute returns (fourth column) for different specifications of GAS2V models when φ = 0.98, σ2

η = 0.05,
α = 0.07, k∗ = 0.08 and k = 0.1. The solid line corresponds to the moments of the GAS2V-T model with ν0 = 11.8745
while ν0 = 19.8387 for dashed lines. The dotted and dashdot lines corresponds to the moments of the GAS2V-G model
when ν = 1.5 and 1.7, respectively. Finally, the ’+-’ line represents the moments of the GAS2V-N model.
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GAS2V-T

Alternatively, if εt is distributed as a standardized Student-t distribution with degrees of freedom

ν0 > 2, pdf ψ0(εt) = Γ((ν0+1)/2)√
πν0Γ(ν0/2)ϕ0

(
1 +

y2t
ν0ϕ2

0

)− ν0+1
2 with ϕ0 =

√
ν0−2
ν0

, then ut is given by (3.7). We

denote the model specified by equations (2.1), (3.1), (3.4) and (3.7) as GAS2V-T. When |φ| < 1,

the model is stationary. Moreover, for some non-negative integer c, if ν0 > c, then the acf of

|yt|c is finite. If further, ν0 > 2c, the ccf between yt and |yt+τ |c for a positive integer τ is also

finite. The expectations needed to obtain the analytical expressions of the moments are derived

in Appendix B.1.2.

Analogously, we illustrate the kurtosis of GAS2V-T by plotting the factor R in Figure 3.2, for

the same parameters chosen for the GAS2V-N model and ν0 = 11.8745. Note that ν0 guarantees

εt to have the same kurtosis when it follows a GED distribution with degrees of freedom ν = 1.5.

We can observe that the ratio of the GAS2V-T model is smaller than that of the GAS2V-N when

φ = 0.98, while they are indistinguishable when φ is small.

As previously, we illustrate the first order of the acfs and ccfs of GAS2V-T models in Figure 3.3

and Figure 3.4 when ν0 = 11.8745. The other parameters are the same as those chosen for the

GAS2V-N model. We observe that the GAS2V-N model generates larger first order autocorrelations

for both absolute and squared returns than the corresponding GAS2V-T models. Moreover, the

absolute values of the cross-correlations are also larger for the GAS2V-N model than for the

GAS2V-T when k = 0. However, the absolute cross-correlation between returns and future

squared returns are smaller in the case of the GAS2V-N when k = 0.1 and k∗ approximates 0.1.

We illustrate the first twenty orders of acfs and ccfs in Figure 3.5 and Figure 3.6 for the same

parameter values used in the illustrations of the GAS2V-N model while considering two different

values of the degrees of freedom, namely 11.8745 and 19.8387, which guarantee the same kurtoses

of εt when εt ∼ GED with ν = 1.5 and ν = 1.7, respectively. We observe that the autocorrelations

and cross-correlations of the absolute values are smaller than those of GAS2V-N models for the

considered parameter values. Moreover, larger degrees of freedom imply larger autocorrelations
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and larger cross-correlation of absolute values. Therefore, we may conclude that fatter tails of εt

imply smaller autocorrelations of both absolute and squared returns, which coincides with the

conclusion of Carnero et al. (2004).

GAS2V-GED

Finally, we assume that εt follows a GED(ν) distribution with probability density function (pdf)

ψ(εt) = 1

21+
1
ν ϕΓ(1+1/ν)

exp
(
−1

2

∣∣∣ εtϕ ∣∣∣ν) with ϕ =
√

2−2/νΓ(1/ν)/Γ(3/ν). Then ut is given by (3.8)

where gt ≡
∣∣∣ εtϕ ∣∣∣ν follows a Gamma (2, 1/ν) distribution; see Harvey (2013). The model defined by

equations (2.1), (3.1), (3.4) and (3.8) is denoted as GAS2V-G. It is strictly stationary if |φ| < 1 and

if further k+ |k∗| < 2
νc , yt and |yt| have finite and time-invariant moments of non-negative integer

order c. Under these conditions, the acfs and ccfs are also finite. The analytical expressions of the

two expectations are given in Appendix B.1.3.

In Figure 3.2, we also plot the ratio of the kurtoses between GAS2V-G and ARSV(1) for the

same parameter values specified for the GAS2V-N model while ν = 1.5. Though this GAS2V-G

always generates returns with higher kurtosis than the ARSV(1) model, its kurtosis is smaller than

that of the corresponding GAS2V-N with similar parameter values. As the Gaussian distribution

is a special case of the GED distribution with ν = 2, we might conclude that a fatter tailed GED

generates less kurtosis. Moreover, the ratio of GAS2V-G is indistinguishable from that of the

GAS2V-T model when the return errors are assumed to have the same kurtosis in both models.

Apparently, the kurtosis of the return generated by the GAS2V model depends on the kurtosis of

the errors and barely on the type of distribution.

We also analyse the first order acfs and ccfs of the returns generated by the GAS2V-G model

when ν = 1.5 in Figure 3.3 and Figure 3.4. We find that when the kurtoses of return errors are

the same as in GAS2V-T, these moments related with squared returns are indistinguishable for

both models. The first order autocorrelation of absolute returns and first order cross-correlation

between returns and future absolute returns of GAS2V-T models are larger than those of the

GAS2V-G model.
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Figure 3.5 and Figure 3.6 illustrate the first twenty orders of these moments for two different

GAS2V-G models with two different values of the GED parameter, ν = 1.5 and 1.7. As expected,

the acfs of |yt| and y2
t have both an exponential decay. Furthermore, fatter tails of εt imply smaller

autocorrelations, but it has very mild influence on the cross-correlations. It verifies again that the

acf of squared returns and ccf between returns and future squared return are indistinguishable to

those of GAS2V-T model with εt having the identical kurtosis.

3.3 Finite Sample performance of the MCMC estimator for the GAS2V

models

We adopt the same MCMC procedure described in Section 2.6 to estimate the parameters of the

GAS2V model with restriction k = 0. We assume the prior distribution for k∗ as k∗ ∼ N(0.05, 10)

and for ν as ν ∼ χ2
8 when εt ∼ tν following the suggestion of Meyer and Yu (2000).

To check the reliability of this MCMC estimator, we simulate data from the three GAS2V

models, GAS2V-N, GAS2V-T and GAS2V-G, with parameter values {µ, φ, σ2
η, α, k

∗, ν, ν0} =

{0, 0.98, 0.05, 0.07, 0.08, 1.5, 11.8745} while imposing the restriction k = 0. Recall that, in the

previous section, we show that the GAS2V-G and GAS2V-T model generate returns with very

similar properties when the parameters of both distributions are chosen to have the same kurtoses.

Hence, there could be potential identification problem. Therefore, we consider the restricted

GAS2V models in the rest of this chapter. For each model, T = 1000 observations are simulated.

The posterior mean and standard deviation of each parameter in the model is obtained by fitting

the model to these simulated data using the MCMC estimator. The total number of iterations is

30,000 with the first 10,000 iterations used as burn-in. We replicate the experiment for R = 200

times.

Table 3.1 reports the Monte Carlo average of these posterior means and standard deviations

together with the standard deviation of these posterior means based on theseR replicates for each

model. We find that the MCMC estimator is quite reliable for all parameters in all cases.
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µ φ α k∗ σ2
η ν

GAS2V-N

True 0 0.98 0.07 0.08 0.05 -

Mean 0.131 0.976 0.067 0.083 0.054 -

(1.259) (0.010) (0.056) (0.021) (0.018) -

s.d. 1.548 0.007 0.060 0.020 0.014 -

GAS2V-T

True 0 0.98 0.07 0.08 0.05 11.8745

Mean 0.108 0.974 0.076 0.084 0.059 10.602

(1.274) (0.010) (0.056) (0.025) (0.027) (2.007)

s.d. 1.362 0.008 0.058 0.022 0.016 2.845

GAS2V-G

True 0 0.98 0.07 0.08 0.05 1.5

Mean 0.257 0.973 0.071 0.081 0.055 1.522

(1.438) (0.011) (0.073) (0.029) (0.025) (0.147)

s.d. 1.529 0.008 0.067 0.024 0.016 0.104

Table 3.1: Monte Carlo results of the MCMC estimator of the parameters of the GAS2V model. The value reported are
the Monte Carlo average and standard deviation (in parenthesis) of the posterior means together with the Monte Carlo
average of the posterior standard deviation.

3.4 Empirical application

3.4.1 Estimation results from daily data

In this subsection, we fit the restricted GAS2V models to the series of the S&P500 returns described

in Chapter 1.

Table 3.2 reports the posterior mean, the 95% credible interval for each parameter and the

marginal log-likelihood. From the table, several conclusions can be drawn. First, all the parameter

estimates are different from zero. The credible intervals of the degrees of freedom in both GAS2V-T

and GAS2V-G model exclude the case of the Normal distribution, which implies that the return
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error follows a fat-tailed distribution. Regarding the goodness of fit of the models, we observe,

analysing the log-likelihood values, that GAS2V-N model outperforms the other two models and

that the GAS2V-G model fits the data better than the GAS2V-T model.

GAS2V-N GAS2V-T GAS2V-G
µ -2.401 -1.435 -1.892

(-3.530, -0.215) (-1.782, -0.669) (-2.518, -0.169)

φ 0.978 0.980 0.982
(0.966,0.989) (0.968, 0.989) (0.973, 0.992)

α 0.104 0.080 0.067
(0.003, 0.145) (0.048, 0.108) (0.050, 0.093)

k∗ 0.056 0.087 0.073
(0.041, 0.071) (0.069, 0.104) (0.060, 0.080)

σ2
η 0.020 0.011 0.008

(0.009, 0.030) (0.007, 0.021) (0.001, 0.002)

ν - 3.929 1.395
- (2.733, 3.176) (1.267, 1.422)

Log-Likelihood -5590.031 -5743.086 -5696.456

Table 3.2: Estimation results from daily S&P500. The values reported are the mean and 95% credible interval
(parenthesis) of the posterior distributions.

3.4.2 Estimation results from weekly data

In this subsection, we fit the restricted GAS2V models to the mean-adjusted weekly return series

of S&P500 and NIKKEI225 observed from January 13, 1992 to December 27, 2010. The number

of observations are T1 = 990 and T2 = 986, respectively. Although the sample size is relatively

small, according to our Monte Carlo experiments, we can obtain reliable estimation results. For

completeness, we also fit RT-GASV models with GED (RT-GASV-G) and Gaussian (RT-GASV-N)

errors. Some of the relevant statistical moments are reported in the Table 3.3. We observe that the

sample autocorrelations of the squared returns are significantly positive and the cross-correlations

between returns and future squared returns are significantly negative, confirming the volatility

clustering and leverage effect.

Estimation results are reported in Table 3.4. According to the log-likelihood and credible

intervals, we can observe that γ1 and k∗ are not statistically significant for the S&P 500 which

means that the models with normal errors are similar. This does not happen to the case of
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NIKKEI225. Moreover, if we observe the estimates of the degrees of freedom, we can find that

the distribution is not fat-tailed for weekly data. Finally, according to the log-likelihood, the

RT-GASV-G model provides the best fit for both S&P500 and NIKKEI225 series of returns.

Median Maximum Minimum Std. Dev. Skewness Kurtosis ρ2(1) ρ1(1) ρ21(1) ρ11(1)

S&P500 0.125 11.245 -20.195 2.404 −0.813∗ 10.354∗ 0.297∗ 0.332∗ −0.254∗ −0.229∗

NIKKEI225 0.136 11.529 -27.805 3.113 −0.741∗ 9.945∗ 0.120∗ 0.171∗ −0.125∗ −0.139∗

* Significant at 1% level.

Table 3.3: Sample moments of mean adjusted weekly S&P500 and NIKKEI225 returns observed from Jan 13, 1992 to
Dec 27, 2010.

Data Model Log MargLik µ φ σ2
η α γ1/k∗ ν

S&P500 GAS2V-N -2041.397 -2.534 0.964 0.030 0.281 0.012
(-3.914, -1.171) (0.947, 0.982) (0.013, 0.047) (0.204, 0.380) (-0.015, 0.037)

GAS2V-T -2056.212 -2.032 0.971 0.018 0.205 0.022 15.490
(-3.651, -1.097) (0.9542, 0.9839) (0.004856, 0.02706) (0.1375, 0.3335) (-0.005294, 0.04658) (9.894, 20.05)

GAS2V-G -2044.018 -2.419 0.966 0.029 0.245 0.014 2.010
(-5.262, -0.492) (0.937, 0.982) (0.015, 0.054) (0.106, 0.339) (-0.017, 0.051) (1.802, 2.215)

T-GASV-N -2041.107 -1.548 0.962 0.032 0.230 -0.047
(-3.576, 0.09023) (0.9436, 0.974) (0.01539, 0.05349) (0.09363, 0.3669) (-0.1132, 0.007723)

T-GASV-G -2033.651 -1.394 0.957 0.040 0.221 -0.058 2.257
(-4.066, 0.516) (0.9283, 0.9788) (0.01514, 0.07397) (0.07043, 0.353) (-0.1335, 0.02006) (1.969, 2.526)

NIKKEI225 GAS2V-N -2401.129 1.288 0.882 0.060 0.164 0.057
(0.599, 1.873) (0.832, 0.932) (0.029, 0.105) (0.024, 0.306) (0.006, 0.107)

GAS2V-T -2417.644 1.505 0.917 0.033 0.090 0.074 13.050
(0.821, 2.125) (0.848, 0.957) (0.015, 0.065) (-0.024, 0.222) (0.029, 0.112) (8.252, 21.04)

GAS2V-G -2401.129 1.348 0.877 0.064 0.152 0.064 2.002
(0.793, 2.017) (0.797, 0.929) (0.031, 0.119) (0.016, 0.276) (0.025, 0.114) (1.824,2.252)

T-GASV-N -2399.766 1.800 0.893 0.059 0.041 -0.150
(0.700, 2.630) (0.833, 0.932) (0.033, 0.100) (-0.175, 0.258) (-0.276, -0.041)

T-GASV-G -2391.140 1.897 0.873 0.074 0.030 -0.158 2.164
(1.068, 2.666) (0.801, 0.924) (0.039, 0.126) (-0.170, 0.229) (-0.273, -0.055) (1.964, 2.518)

Table 3.4: Estimation results from weekly S&P500 and NIKKEI225. The values reported are the mean and 95% credible
interval (parenthesis) of the posterior distributions.

3.4.3 Forecasting results from weekly data

Good model in-sample performance does not necessary imply good model out-of-sample performance.

In this section, we compare the out-of-sample performance of the proposed models using the

two weekly return series described above. The three GAS2V and the RT-GASV models are fitted

to the return data and used to obtain one-period-ahead out-of-the-sample forecasts of weekly
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volatility. We split the weekly sample into an in-sample estimation period and an out-of-sample

forecast evaluation period. For estimation we use the rolling window scheme, where the size of

the sample, which is used to estimate the competing models, is fixed at Ti with i = 1 and 2. The

first forecast is made for the first week of January, 2011. When a new observation is added to the

sample, we discard the first observation and re-estimate all the models. The re-estimated models

are then used to forecast volatility. This process is repeated until we reach the end of the sample,

December 30, 2013. In total, we obtain 157 forecasts from each model.

Two alternative criteria are considered in this chapter to compare the out-of-sample performances

of these models, namely Mean Absolute Error (MAE) of the volatility forecasts and the Log

Predictive Score (LPS), which is computed using the MCMC output. In Table 3.5, we report the

MAE of the volatility forecasts. First, we calculated the weekly realized volatility (RV) obtained

from the sum of daily squared returns. Let RVt denote the weekly RV and p(t, k) denote the

k-th daily log-price in week t. Then RVt is defined as
√∑Nt

k=1(p(t, k)− p(t, k − 1))2, where Nt

is the number of trading days in week t and p(t, 0) = p(t − 1, Nt−1). We match each volatility

forecast with the corresponding realized volatility. Table 3.5 summarizes the MAE of the volatility

forecasts. We can see that all the models perform nearly equally in forecasting the volatility of the

S&P500 and NIKKEI225 returns.

On the other hand, LPS is a scoring rule introduced by Good (1952) that examines the model’s

performance when its implied predictive distribution is compared with observations not used in

the inference sample. In this sense, it evaluates the out-of-sample behaviour of different models

by mean of their divergence between the actual sampling density and the predictive density. The

formula for the LPS is given as follows

LPS =
1

K

K∑
k=1

log(f(yT+k|yk, · · · , yT+k−1)), (3.10)

where K is the total number of forecasts we’ve obtained. The one-step-ahead LPS are reported in

the lower panel of Table 3.5. According to the LPS, the best model in forecasting the volatility is
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the GAS2V-T although the difference among the alternative models are almost negligible.

MAE*1000

GAS2V-N GAS2V-T GAS2V-G T-GASV-N T-GASV-G
S&P500 6.220 6.378 6.248 6.206 6.220

NIKKEI 225 9.171 9.536 9.157 9.235 8.992
LPS

S&P500 -2.047 -2.047 -2.064 -2.049 -2.062
NIKKEI 225 -2.572 -2.524 -2.764 -2.579 -2.672

Table 3.5: Forecasting results from weekly data. MAE refers to the mean absolute forecasting error and LPS refers to
the log-predictive likelihood.

3.5 Conclusion

In this chapter, we propose to extend the asymmetric SV models by specifying the volatility as

being driven by the conditional score of lagged return. This type of models, denoted as GAS2V,

can automatically correct the influential observations, which are outliers judged by the Gaussian

yardstick and usually attribute to an increase in the volatility in the traditional SV models.

Three GAS2V models are proposed, namely, GAS2V-N, GAS2V-T and GAS2V-G corresponding

to the return errors following a Normal, Student-t and GED distribution, respectively. The closed-form

expressions of their statistical properties are derived and analyzed. We find that the GAS2V model

with Student-t error generates returns with similar moments as those generated by the GAS2V

model with GED error for fixed kurtosis of return errors.

Finally, the new proposals are fitted to both daily and weekly financial data and we observe

that the GAS2V-T model provides the best fit in-sample for the daily S&P500 return series. Regarding

the out-of-sample performance of the models in forecasting the volatility of the weekly financial

returns of the S&P500 and NIKKEI225, all models provide similar mean absolute forecast errors

when the volatility forecasts are compared with a consistent measure of volatility, the realized

volatility. Using the Log Predictive Score criterion, the best model in forecasting the volatility

of the two series of financial returns is the GAS2V-T, although the difference among models are

almost negligible.



Chapter 4

Conclusions and Future Research

4.1 Conclusions

In this dissertation, we propose a family of asymmetric Stochastic Volatility (SV) models, named

GASV. This family is very general and includes some of the most famous asymmetric SV models

available in the literature as, for instance, the A-ARSV model of Taylor (1994) and Harvey and

Shephard (1996), the exponential SV (E-SV) model proposed by Demos (2002) and Asai and

McAleer (2011) and a restricted version of the Threshold SV (RT-SV) model of Breidt (1996) and So

et al. (2002). The statistical properties of the GASV models are derived, namely, marginal variance,

kurtosis, autocorrelations of power transformed absolute returns and cross-correlations between

returns and future power transformed absolute absolute returns. These statistical properties are

important for evaluating the ability of the models to explain the empirical properties of interest

when dealing with real financial time series.

We show that some of the parameters of the proposed T-GASV model cannot be identified

when the parameter of the GED distribution is allowed to change as, in this case, the moments of

returns can be indistinguishable for different combinations of the parameters and distributions.

As a byproduct, we obtain the statistical properties of those nested models, some of which were

previously unknown. We find that the E-SV model is able to capture more volatility clustering
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compared to the A-ARSV while the T-GASV model is more flexible to represent the leverage effect

than the A-ARSV and E-SV models. Finally, we show that allowing the autoregressive parameter

and/or the variance of the log-volatility disturbance in the T-SV model to be different depending

on the sign of past returns do not generate leverage effect. However, changing the constant in the

volatility equation allows the T-SV model to capture asymmetric conditional heteroscedasticity.

Besides the T-GASV model, we also propose another kind of GASV models, the score-driven

GASV, denoted as GAS2V models, aiming at robustifying the traditional SV models, which might

suffer from a potential drawback that a large realisation of the return error, that can be due to

the heavy-tailed nature of the distributions, will be attributed to an increase in volatility. The

analytical expressions of the statistical moments of the GAS2V models are derived when the

return errors follow either Normal, Student-t or GED distribution. It is important to point out

that analytical expressions of these moments of the GAS2V model with Student-t return errors can

be derived, in opposition to the traditional specifications of the volatility where they are hardly

possible to be derived. We also show that the GAS2V model with Student-t errors generates

returns with very similar moments as those generated by the GAS2V model with GED errors for

fixed kurtosis of return errors.

Another contribution of this thesis is the proposal of the Stochastic News Impact Surface

(SNIS) to describe the asymmetric response of volatility to positive and negative past returns

in the context of SV model. It is a surface relating the volatility with the level and volatility

disturbances. From the SNIS, we can observe the asymmetric response of the volatility and this

asymmetry is different on the values of the volatility error.

We consider a MCMC estimator that is implemented by the user-friendly available software

BUGS to estimate the parameters and volatility of the restricted T-GASV (RT-GASV) and GAS2V

models. Through extensive Monte Carlo studies, we show the adequacy of the finite sample

properties of this estimator. Moreover, by fitting the general RT-GASV model, we are able to

identify the true data generating process. Therefore, in empirical applications, researches will be

better off by fitting the RT-GASV model and letting the data choose the preferred specification of
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the volatility instead of choosing a particular ad hoc specification. The RT-GASV model and its

nested models are fitted to one series of daily S&P500 returns and used to forecast the one-step-ahead

VaR. For this particular data set, the models with GED errors give better fit than those with

Gaussian models. Moreover, our RT-GASV model with GED errors provides the best estimates

of the VaR. The three GAS2V models are also fitted to this series. It turns out that the GAS2V

models with GED and Student-t models fit the data as well as the RT-GASV model with GED

errors and better than the GAS2V model with Gaussian errors. We also fit the GAS2V models

to two weekly data, S&P500 and NIKKEI225, and forecast the one-step-ahead volatility. The

out-of-sample results, according to the LPS, slightly favor the GAS2V models in comparison to

the RT-GASV model.

4.2 Future research

In this section, we discuss several possible extensions of the ideas proposed in this thesis. First,

Rodrı́guez and Ruiz (2012) compare the properties of alternative asymmetric GARCH models to

see which one is closer to the empirical properties often observed when dealing with financial

returns. In this thesis, we compare alternative asymmetric SV models in terms of their statistical

properties. Hence, it is interesting to compare the properties of these alternative SV models with

those of the best candidates within the GARCH family including the robust score-driven GARCH

models, such as the Beta-t-EGARCH and Gamma-GED-EGARCH models of Harvey (2013).

Second, we propose the score driven GASV models aiming at robustifying the traditional

asymmetric SV models. Hence, it is important to analyze the performance of these models in the

presence of outliers and compare to the traditional ones.

Third, although our focus is on univariate models, multivariate asymmetric models are attracting

a great deal of interest in the literature; see, for example, Harvey et al. (1994), Asai and McAleer

(2006), Chan et al. (2006), Chib et al. (2006), Jungbacker and Koopman (2006) and Yu and Meyer

(2006). Deriving the statistical properties of multivariate GASV models is in our future research
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line.

Fourth, Bandi and Renò (2012) and Yu (2012) argue that the leverage effect found in many real

time series of financial returns can be time-varying. Extending the model and results derived in

this paper to include time-varying leverage effect is also in our research agenda.

Finally, the MCMC procedure is usually time-consuming. Some alternative estimation methods

can be considered to estimate the GASV models. First, the efficient importance sampling (EIS)

method of Liesenfeld and Richard (2003) and Richard and Zhang (2007) might be an alternative.

Particularly, we would like to extend the numerically accelerated importance sampling (NAIS)

proposed by Koopman et al. (2014) to estimate the GASV models. The NAIS extends the global

approximating method of Richard and Zhang (2007) by solving for the parameters of the importance

sampling distribution using Gauss-Hermit quadrature rather than simulation. They show that

their NAIS method produces reliable results in a numerically and computationally efficient way.

Another possible alternative is the Approximate Bayesian Computation (ABC) method which is a

class of simulation-based algorithms and methods developed to perform inference by circumventing

of explicit evaluation of the likelihood. Moreover, the Particle Learning (PL) approach is also

under our consideration. It was firstly introduced by Carvalho et al. (2010) and implemented by

Virbickaite et al. (2014) to estimate a Bayesian non-parametric SV models with Markov switching

jumps.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Theorems

A.1.1 Proof of Theorem 2.1

Consider yt, which, according to equation (2.1), is given by yt = εt exp (ht/2). From equation

(2.2), ht can be written as

ht − µ =

∞∑
i=1

φi−1(f(εt−i) + ηt−i). (A.1)

First, note that if |φ| < 1 and x = (x1, x2, · · · ) ∈ R∞, then Ψ(x) =
∑∞

i=1 φ
i−1xi is a measurable

function. Given that for any x0 and ∀ς > 0, we can find a value of δ =
√

1− φ2ς , such that ∀x

satisfying |x−x0| =
√∑∞

i=1(xi − x0
i )

2 < δ, we have |Ψ(x)−Ψ(x0)| = |
∑∞

i=1 φ
i−1(xi−x0

i )|. Using

the Cauchy-Schwarz inequality, it follows that |Ψ(x)−Ψ(x0)| ≤
√∑∞

i=1 φ
2i−2

√∑∞
i=1(xi − x0

i )
2 <

δ√
1−φ2

= ς . Therefore, Ψ(x) is continuous, and consequently, measurable.

Second, given that εt and ηt are both IID and mutually independent for any lag and lead, then

{f(εt) + ηt} is also an IID sequence. Lemma 3.5.8 of Stout (1974) states that an IID sequence is

always strictly stationary. Therefore, in (A.1), if |φ| < 1, ht is expressed as a measurable function

of a strictly stationary process and, consequently, according to Theorem 3.5.8 of Stout (1974), ht
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is strictly stationary. As σt is a continuous function of ht, σt is also strictly stationary. The level

noise εt is independent of σt and strictly stationary by definition. Therefore, it is easy to show that

yt = σtεt is strictly stationary.

When |φ| < 1, yt and σ2
t are strictly stationary and, consequently, any existing moments are

time invariant. Next we show that σt has finite moments of arbitrary positive order c when εt

follows a distribution such that E(exp(0.5cf(εt))) <∞.

From expression (A.1), the power-transformed volatility can be written as follows

σct = exp(0.5cµ) exp

(
0.5c

∞∑
i=1

φi−1(f(εt−i) + ηt−i)

)
. (A.2)

Given that εt and ηt are mutually independent for all lags and leads, the following expression is

obtained after taking expectations on both sides of equation (A.6)

E(σct ) = exp(0.5cµ)E

[
exp

(
0.5c

∞∑
i=1

φi−1f(εt−i)

)]
E

[
exp

(
0.5c

∞∑
i=1

φi−1ηt−i

)]
. (A.3)

As ηt is Gaussian, the last expectation in (A.3) can be evaluated using the expression of the

moments of the Log-Normal. Furthermore, given that ηt and εt are both IID sequences, it is easy

to show that (A.3) becomes

E(σct ) = exp(0.5cµ) exp

(
c2σ2

η

8 (1− φ2)

) ∞∏
i=1

E
[
exp

(
0.5cφi−1f (εt−i)

)]
. (A.4)

We need to show thatP (0.5cφi−1) ≡
∞∏
i=1

E
[
exp

(
0.5cφi−1f (εt−i)

)]
is finite whenE (exp (0.5cf (εt−i))]) <

∞. In general, we are going to prove that when
∑∞

i=1 |bi| < ∞ and E(exp(bif(εt−i))) < ∞, then

P (bi) ≡
∞∏
i=1

E [exp (bif (εt−i))] is always finite.

Define ai = E(exp(bif(εt−i))). As 0 < ai < ∞, according to Section 0.25 of Ryzhik et al.

(2007), the sufficient and necessary condition for the infinite product
∏∞
i=1 ai to converge to a

finite, nonzero number is that the series
∑∞

i=1(ai − 1) converge. Expanding ai in Taylor series
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around bi = 0, we have

ai − 1 = O(bi) as bi → 0.

Consequently, for some ς > 0, there exist a finite M independent of i such that

sup
|bi|<ς,bi 6=0

|O(bi)| < M |bi|.

∑∞
i=1 |bi| <∞ implies

∑∞
i=1 |ai−1| <∞, therefore

∑∞
i=1(ai−1) <∞. Thus P (bi) =

∏∞
i=1 ai <∞.

Here bi = 0.5cφi−1. Therefore, if |φ| < 1, then
∑∞

i=1 |bi| = 0.5c
1−φ < ∞. Thus, the product∏∞

i=1E(exp(0.5cφi−1f(εt−i))) and, consequently, E(σct ) are finite when E(exp(0.5cφi−1f(εt−i))) <

∞. Note that when |φ| < 1, E(exp(0.5cf(εt))) < ∞ guarantees that E(exp(0.5cφi−1f(εt−i))) < ∞

for any positive integer i. Therefore, if |φ| < 1 and E(exp(0.5cf(εt))) <∞, E(σct ) is finite.

Finally, consider yt, which, according to equation (2.1), is given by yt = σtεt. Therefore, given

that σt and εt are contemporaneously independent, the following expressions are obtained

E(|yt|c) = E(σct )E(|εt|c), (A.5)

E(yct ) = E(σct )E(εct). (A.6)

Replacing formula (A.4) into (A.5) yields the following required expression

E (|yt|c) = exp(0.5cµ)E (|εt|c) exp

(
c2σ2

η

8 (1− φ2)

)
P (0.5cφi−1)), (A.7)

where P (bi) ≡
∏∞
i=1E(exp(bif(εt−i))). Therefore, if further εt follows a distribution such that

E(εct) < ∞, which is equivalent to E(|εt|c) < ∞, then |yt| has finite moments of arbitrary order c.
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On the other hand, following the same steps, we obtain

E (yct ) = exp(0.5cµ)E (εct) exp

(
c2σ2

η

8 (1− φ2)

)
P (0.5cφi−1)). (A.8)

Thus, E(yct ) <∞ if |φ| < 1, E(εct) <∞ and E(exp(0.5cf(εt))) <∞.

A.1.2 Proof of Theorem 2.2

Consider yt as given in equations (2.1) and (2.2). We first compute the τ -th order auto-covariance

of |yt|c which is given by

E(|εt|cσct |εt−τ |cσct−τ )− [E(|yt|c)]2. (A.9)

Note that from equation (2.2), σct = exp {0.5cht} can be written as follows

σct = exp {0.5cµ(1− φτ )} exp

{
0.5c

τ∑
i=1

φi−1(f(εt−i) + ηt−i)

}
σcφ

τ

t−τ . (A.10)

The following expression of the auto-covariance is obtained after substituting (A.7) and (A.10)

into (A.9)

cov(|yt|c, |yt−τ |c) =

E

(
|εt|c|εt−τ |c exp(0.5cµ(1− φτ )) exp

(
τ∑
i=1

0.5cφi−1(f(εt−i) + ηt−i)

)
σ
c(φτ+1)
t−τ

)

−

{
exp(0.5cµ)E (|εt|c) exp

(
c2σ2

η

8 (1− φ2)

)
P (0.5cφi−1))

}2

. (A.11)

Given that εt and ηt are IID sequences mutually independent for any lag and lead and that σt−τ

only depends on lagged disturbances, substituting the time-invariant moment of σt in (A.4),

equation (A.11) can be written as follows
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cov(|yt|c, |yt−τ |c) =

exp(cµ)E (|εt|c) exp

(
1 + φτ

4 (1− φ2)
c2σ2

η

)
E
(
|εt|c exp

(
0.5cφτ−1f (εt)

)) τ−1∏
i=1

E
(
exp

(
0.5cφi−1f (εt−i)

))
·
∞∏
i=1

E
(
exp

(
0.5c (1 + φτ )φi−1f (εt−i)

))
− exp(cµ)(E(|εt|c))2 exp

(
c2σ2

η

4 (1− φ2)

)
[P (0.5cφi−1)]2.

The required expression of ρc(τ) follows directly from ρc(τ) = cov(|yt|c,|yt−τ |c)
E(|yt|2c)−[E(|yt|c)]2 , where the

denominator can be obtained from (A.7).

A.1.3 Proof of Theorem 2.3

The calculation of the cross-covariance between |yt|c and yt−τ is obtained following the same steps

as in Appendix A.1.2. That is

cov (|yt|c, yt−τ ) = exp(0.5(c+ 1)µ)E (|εt|c) exp

(
1 + c2 + 2cφτ

8 (1− φ2)
σ2
η

)
E
(
εt exp

(
0.5cφτ−1f (εt)

))
·
∞∏
i=1

E
(
exp

(
0.5 (1 + cφτ )φi−1f (εt−i)

)) τ−1∏
i=1

E
(
exp

(
0.5cφi−1f (εt−i)

))
. (A.12)

Finally, ρc1(τ) = cov(|yt|c,yt−τ )√
E(|yt|2c)−E2(|yt|c)

√
E(y2t )

together with (A.7) and (A.12) yields the required

equation (2.8).

A.2 Expectations

A.2.1 Expectations needed to compute E(|yt|c), corr(|yt|c, |yt+τ |c) and corr(yt, |yt+τ |c)

when ε ∼ GED(ν)

If ε has a centered and standardized GED distribution, with parameter 0 < ν ≤ ∞, then, the

density function of ε is given by ψ(ε) = C0 exp
(
− |ε|

ν

2λν

)
, where C0 ≡ ν

λ21+1/νΓ(1/ν)
and λ ≡(

2−2/νΓ (1/ν) /Γ(3/ν)
)1/2

, with Γ(·) being the Gamma function. Thus, given that the distribution
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of ε is symmetric with support (−∞,∞), if p is a nonnegative finite integer, then

E(|ε|p) = C0

∫ +∞

−∞
|ε|p exp

(
− |ε|

ν

2λν

)
dε

= 2C0

∫ +∞

0
εp exp

(
− εν

2λν

)
dε.

Substituting s = εν

2λν and solving the integral yields

E(|ε|p) = 2
p
ν λpΓ ((p+ 1)/ν) /Γ (1/ν) . (A.13)

On the other hand,

E(|ε|p exp(bf(ε)))

=

∫ +∞

−∞
|ε|p exp(bαI(ε < 0) + bγ1ε+ bγ2|ε|)C0 exp

(
− |ε|

ν

2λν

)
dε

= C0

[∫ 0

−∞
(−ε)p exp(bα) exp(b(γ1 − γ2)ε) exp

(
−(−ε)ν

2λν

)
dε

+

∫ +∞

0
εp exp(b(γ1 + γ2)ε) exp

(
− εν

2λν

)
dε

]
.

Integrating by substitution with s = −ε in the first integral, we obtain

E(|ε|p exp(bf(ε))) = C0

[∫ +∞

0

sp exp(bα) exp(b(γ2 − γ1)s) exp

(
− sν

2λν

)
ds

+

∫ +∞

0

εp exp(b(γ1 + γ2)ε) exp

(
− εν

2λν

)
dε

]
(A.14)

= C0

∫ +∞

0

εp exp

(
− εν

2λν

)
[exp(bα) exp(b(γ2 − γ1)ε) + exp(b(γ1 + γ2)ε)] dε.

We can rewrite the previous equation by replacing ε with λ(2y)1/ν as follows

E(|ε|p exp(bf(ε)))

= C0
λp+12

1+p
ν

ν

∫ +∞

0
y−1+ 1+p

ν exp(−y)
[
exp(bα) exp(b(γ2 − γ1)λ2

1
ν y

1
ν ) + exp(b(γ1 + γ2)λ2

1
ν y

1
ν )
]
dy.
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Expanding the expression within the square brackets in a Taylor series and substituting C0, the

following expression is obtained

E(|ε|p exp(bf(ε)))

=
λp2

p
ν−1

Γ
(
1
ν

) ∫ +∞

0

+∞∑
k=0

[
exp(bα)

(
bλ2

1
ν (γ2 − γ1)

)k
+
(
bλ2

1
ν (γ1 + γ2)

)k] y−1+ 1+p+k
ν exp(−y)

k!
dy. (A.15)

Define ∆ = max
{
|bλ21/ν(γ1 + γ2)|,max(exp(bα), 1)|bλ21/ν(γ2 − γ1)|

}
. Then, we can use the

results in Nelson (1991) to show that if ν > 1 then the summation and integration in (A.15) can

be interchanged. Further, applying Formula 3.381 #4 of Ryzhik et al. (2007) yields the following

required expression1

E(|ε|p exp(bf(ε)))

= 2p/νλp
∞∑
k=0

(21/νλb)k
[
(γ1 + γ2)k + exp(bα)(γ2 − γ1)k

] Γ((p+ k + 1)/ν)

2Γ(1/ν)k!
<∞. (A.16)

Following the same steps, the following required expression is obtained when ν > 1,

E(εp exp(bf(ε)))

= 2p/νλp
∞∑
k=0

(21/νλb)k
[
(γ1 + γ2)k + (−1)p exp(bα)(γ2 − γ1)k

] Γ((p+ k + 1)/ν)

2Γ(1/ν)k!
<∞. (A.17)

Note that the expectations (A.16) and (A.17) are only valid when ν > 1. When 0 < ν ≤ 1, it

is not possible to obtain closed-form expression of the required expectations. In this case, we can

only obtain the conditions for the expectations to be finite. When 0 < ν < 1, it is very easy to

verify that E(|ε|p exp(bf(ε))) <∞ if and only if the both integrals in (A.14) are finite, which holds

if and only if b(γ2−γ1) ≤ 0 and b(γ2 +γ1) ≤ 0. When ν = 1, similarly, the sufficient and necessary

conditions for the infinity of E(|ε|p exp(bf(ε))) are b(γ2 − γ1) < 1
2λ and b(γ2 + γ1) < 1

2λ . That is

1See Nelson (1991) for the proof of finiteness of the formula.
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b(γ2 − γ1) <
√

2 and b(γ2 + γ1) <
√

2. The conditions for the infinity of E(εp exp(bf(ε))) are the

same as those for E(|ε|p exp(bf(ε))) 0 < ν ≤ 1.

Finally, when ε ∼Student-t with d degrees of freedom (d > 2) and is normalized to satisfy

E(ε) = 0, var(ε) = 1, then

E(|ε|p exp(bf(ε)))

= C1

[∫ +∞

0
εp exp(bα) exp(b(γ2 − γ1)ε)

(
1 +

ε2

d− 2

)− d+1
2

dε

+

∫ +∞

0
εp exp(b(γ1 + γ2)ε)

(
1 +

ε2

d− 2

)− d+1
2

]
dε, (A.18)

where C1 =
Γ( d+1

2 )√
(d−2)πΓ( d2 )

. We can verify that E(|ε|p exp(bf(ε))) = ∞ unless b(γ2 − γ1) ≤ 0 and

b(γ2 + γ1) ≤ 0.

A.2.2 Expectations needed to compute E(|yt|c), corr(|yt|c, |yt+τ |c) and corr(yt, |yt+τ |c)

when ε ∼ N(0, 1)

Assume that all the parameters are defined as in equations (2.1) and (2.2). When ε ∼ N(0, 1),

using the expression (A.14) and the formula 3.462-1 of Ryzhik et al. (2007), the following expressions

for any positive integer p and any integer b are derived

E(|ε|p exp(bf(ε))) =
1√
2π

{
exp(bα)Γ(p+ 1) exp

(
b2(γ1 − γ2)2

4

)
D−p−1(b(γ1 − γ2))

+Γ(p+ 1) exp

(
b2(γ1 + γ2)2

4

)
D−p−1(−b(γ1 + γ2))

}
(A.19)

and

E(εp exp(bf(ε))) =
1√
2π

{
(−1)p exp(bα)Γ(p+ 1) exp

(
b2(γ1 − γ2)2

4

)
D−p−1(b(γ1 − γ2))

+Γ(p+ 1) exp

(
b2(γ1 + γ2)2

4

)
D−p−1(−b(γ1 + γ2))

}
, (A.20)
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where D−a(·) is the parabolic cylinder function. Particularly, when p = 0, 1 or 2, the expressions

are reduced to

E(exp(bf(ε))) = exp(bα) exp
(
Ā
)

Φ(C̄) + exp
(
B̄
)

Φ(D̄),

E(ε exp(bf(ε))) =
1√
2π

{
− exp(bα)

[
1 +
√

2πC̄ exp(Ā)Φ ¯(C)
]

+
[
1 +
√

2πD̄ exp(B̄)Φ(D̄)
]}

,

E(|ε| exp(bf(ε))) =
1√
2π

{
exp(bα)

[
1 +
√

2πC̄ exp(Ā)Φ(C̄)
]

+
[
1 +
√

2πD̄ exp(B̄)Φ(D̄)
]}

and

E(|ε|2 exp(bf(ε))) =

1√
2π

{
exp(bα)

[
C̄ +

√
2π(C̄2 + 1) exp(Ā)Φ(C̄)

]
+
[
D̄ +

√
2π(D̄2 + 1) exp(B̄)Φ(D̄)

]}
,

where Φ(·) is the Normal distribution function, Ā = b2(γ1−γ2)2

2 , B̄ = b2(γ1+γ2)2

2 , C̄ = −b(γ1 − γ2)

and D̄ = b(γ1 + γ2).
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Appendix B

Appendix to Chapter 3

B.1 Closed-form expressions ofE(εct exp(bf(εt))) andE(|εt|c exp(bf(εt)))

B.1.1 εt ∼ Normal

Proposition B.1. Let c be a non-negative integer and b ∈ R and εt and f(εt) are defined as in GAS2V-N

model. If bk + |bk∗| < 1
2 , then

E (|εt|c exp(bf(εt))) =
exp(−bk)

2
√

2π
Γ

(
c+ 1

2

)[
exp(bα)

(
1

2
− b(k + k∗)

)− c+1
2

+

(
1

2
− b(k − k∗)

)− c+1
2

]
(B.1)

and

E (εct exp(bf(εt))) =
exp(−bk)

2
√

2π
Γ

(
c+ 1

2

)[
(−1)c exp(bα)

(
1

2
− b(k + k∗)

)− c+1
2

+

(
1

2
− b(k − k∗)

)− c+1
2

]
.

(B.2)

95
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Proof.

E(|εt|c exp(bf(εt)))

=

∫ 0

−∞
(−εt)c exp(bα+ bkε2t − bk + bk∗ε2t )

1√
2π

exp

(
−ε

2
t

2

)
dεt

+

∫ ∞
0

(εt)
c exp(bkε2t − bk − bk∗ε2t )

1√
2π

exp

(
−ε

2
t

2

)
dεt (B.3)

Integrating by substitution with st = −εt in the finite integral, we obtain

E(|εt|c exp(bf(εt)))

=
exp(b(α− k))√

2π

∫ ∞
0

(st)
c exp((b(k + k∗)− 1

2
)s2
t )dst +

exp(−bk)√
2π

∫ ∞
0

(εt)
c exp((b(k − k∗)− 1

2
)ε2t )dεt.

(B.4)

According to the formula 3.326-2 of Ryzhik et al. (2007), when c ≥ 0 and bk+ |bk∗| < 1
2 , the former

equation reduces to

E (|εt|c exp(bf(εt))) =
exp(b(α− k))√

2π

Γ
(
c+1

2

)
2
(

1
2 − b(k + k∗)

) c+1
2

+
exp(−bk)√

2π

Γ
(
c+1

2

)
2
(

1
2 − b(k − k∗)

) c+1
2

=
exp(−bk)

2
√

2π
Γ

(
c+ 1

2

)[
exp(bα)

(
1

2
− b(k + k∗)

)− c+1
2

+

(
1

2
− b(k − k∗)

)− c+1
2

]
.

(B.5)
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Following the same steps, we can obtain the analytical expression of E (εct exp(bf(εt))) as follows:

E(εct exp(bf(εt)))

=

∫ 0

−∞
εct exp(bα+ bkε2t − bk + bk∗ε2t )

1√
2π

exp

(
−ε

2
t

2

)
dεt

+

∫ ∞
0

(εt)
c exp(bkε2t − bk − bk∗ε2t )

1√
2π

exp

(
−ε

2
t

2

)
dεt

=
exp(b(α− k))√

2π

∫ ∞
0

(−st)c exp((b(k + k∗)− 1

2
)s2
t )dst

+
exp(−bk)√

2π

∫ ∞
0

(εt)
c exp((b(k − k∗)− 1

2
)ε2t )dεt

=
exp(b(α− k))√

2π

(−1)cΓ
(
c+1

2

)
2
(

1
2 − b(k + k∗)

) c+1
2

+
exp(−bk)√

2π

Γ
(
c+1

2

)
2
(

1
2 − b(k − k∗)

) c+1
2

=
exp(−bk)

2
√

2π
Γ

(
c+ 1

2

)[
(−1)c exp(bα)

(
1

2
− b(k + k∗)

)− c+1
2

+

(
1

2
− b(k − k∗)

)− c+1
2

]
. (B.6)

B.1.2 εt ∼ tν

Proposition B.2. Let c be a nonnegative integer and b ∈ R and εt and f(εt) defined as in GAS2V-T

model, then when ν > c

E(|εt|c exp(bf(εt))) =
(ν − 2)c/2 exp(−bk)

2

B(1+c
2 , ν−c2 )

B(1
2 ,

ν
2 )

·

exp(bα)

1 +

∞∑
i=1

i−1∏
j=1

c+ 1 + 2j

ν + 1 + 2j

 (b(ν + 1)(k + k∗))i

i!


+

1 +

∞∑
i=1

i−1∏
j=1

c+ 1 + 2j

ν + 1 + 2j

 (b(ν + 1)(k − k∗))i

i!

 (B.7)
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and

E(εct exp(bf(εt))) =
(ν − 2)c/2 exp(−bk)

2

B(1+c
2 , ν−c2 )

B(1
2 ,

ν
2 )

·

(−1)c exp(bα)

1 +
∞∑
i=1

i−1∏
j=1

c+ 1 + 2j

ν + 1 + 2j

 (b(ν + 1)(k + k∗))i

i!


+

1 +
∞∑
i=1

i−1∏
j=1

c+ 1 + 2j

ν + 1 + 2j

 (b(ν + 1)(k − k∗))i

i!

 . (B.8)

Proof. The probability density function of εt is ψ0(εt) =
Γ( ν+1

2
)

ϕ0
√
πνΓ( ν

2
)
(1+

ε2t
νϕ2

0
)−

ν+1
2 where ϕ0 =

√
ν−2
ν ,

then ut = (ν + 1)bt − 1 and bt =
ε2t /(νϕ

2
0)

1+ε2t /(νϕ
2
0)
∼ Beta(1

2 ,
ν
2 ), see Harvey (2013).

E(|εt|c exp(bf(εt))) =

∫ 0

−∞
(−εt)c exp (b(α− k)) exp (b(ν + 1)(k + k∗)bt)ψ0(εt)dεt

+

∫ +∞

0
εct exp(−bk) exp (b(ν + 1)(k − k∗)bt)ψ0(εt)dεt

= exp(b(α− k))

∫ 0

−∞
εct exp (b(ν + 1)(k + k∗)bt)ψ0(εt)dεt

+ exp(−bk)

∫ ∞
0

εct exp (b(ν + 1)(k − k∗)bt)ψ0(εt)dεt

=
exp(b(α− k))

2
E (|εt|c exp (b(ν + 1)(k + k∗)bt))

+
exp(−bk))

2
E (|εt|c exp (b(ν + 1)(k − k∗)bt)) , (B.9)

We proceed to work out the expectationE(|εt|c exp(mbt)) with respect to εt. Note thatE(|εt|c exp(mbt)) =
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ϕc0E(νc/2b
c/2
t /(1− bt)c/2 exp(mbt)) with respect to bt ∼ Beta(1

2 ,
ν
2 ). It follows that

E(|εt|c exp(m)bt)

= ϕc0

∫ 1

0
νc/2b

c/2
t /(1− bt)c/2 exp(mbt)

b
1
2
−1

t (1− bt)
ν
2
−1

B(1
2 ,

ν
2 )

dbt

= ϕc0ν
c/2B(1+c

2 , ν−c2 )

B(1
2 ,

ν
2 )

∫ 1

0
exp(mbt)

b
1+c
2
−1

t (1− bt)
ν−c
2
−1

B(1+c
2 , ν−c2 )

dbt

= ϕc0ν
c/2B(1+c

2 , ν−c2 )

B(1
2 ,

ν
2 )

E(exp(mb̃t)) (B.10)

with the expectation taken with respect to a Beta(1+c
2 , ν−c2 ) when ν > c, which is the moment

generating function of b̃t ∼ Beta(1+c
2 , ν−c2 ). It yields that

E(|εt|c exp (mbt) = ϕc0ν
c/2Beta(1+c

2 , ν−c2 )

Beta(1
2 ,

ν
2 )

{
1 +

∞∑
k=1

(
k−1∏
r=0

c+ 1 + 2r

ν + 1 + 2r

)
mk

k!

}
. (B.11)

Combing equation (B.9) and (B.11) gives the expression. On the other hand,

E(εct exp(bf(εt))) =

∫ 0

−∞
εct exp (b(α− k)) exp (b(ν + 1)(k + k∗)bt)ψ0(εt)dεt

+

∫ +∞

0
εct exp(−bk) exp (b(ν + 1)(k − k∗)bt)ψ0(εt)dεt

= (−1)c exp(b(α− k))

∫ 0

−∞
εct exp (b(ν + 1)(k + k∗)bt)ψ0(εt)dεt

+ exp(−bk)

∫ ∞
0

εct exp (b(ν + 1)(k − k∗)bt)ψ0(εt)dεt

= (−1)c
exp(b(α− k))

2
E (|εt|c exp (b(ν + 1)(k + k∗)bt))

+
exp(−bk))

2
E (|εt|c exp (b(ν + 1)(k − k∗)bt)) (B.12)

The proof is completed.
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B.1.3 εt ∼ GED(ν)

Proposition B.3. Let c be a nonnegative integer and b ∈ R. εt and f(εt) defined as in GAS2V-G model.

Then, when bk + |bk∗| < 1/ν,

E(|εt|c exp(bf(εt))) =
exp(b(α− k))

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k + k∗))−

c+1
ν ,

+
exp(−bk)

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k − k∗))−

c+1
ν , (B.13)

and

E(εct exp(bf(εt))) =
(−1)c exp(b(α− k))

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k + k∗))−

c+1
ν

+
exp(−bk)

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k − k∗))−

c+1
ν . (B.14)

Proof.

E(|εt|c exp(bf(εt)))

=

∫ 0

−∞
(−εt)c exp(bα+ bkut + bk∗(ut + 1))ψ(εt)dεt +

∫ +∞

0
εct exp(bkut − bk∗(ut + 1))ψ(εt)dεt

= exp(b(α− k))

∫ +∞

0
εct exp(b(k + k∗)

ν

2
gt)ψ(εt)dεt + exp(−bk)

∫ +∞

0
εct exp(b(k − k∗)ν

2
gt)ψ(εt)dεt

=
exp(b(α− k))

2
E(|εt|c exp(b(k + k∗)

ν

2
gt)) +

exp(−bk)

2
E(|εt|c exp(b(k − k∗)ν

2
gt))

=
exp(b(α− k))

2
E(ϕcg

c
ν
t exp(b(k + k∗)

ν

2
gt)) +

exp(−bk)

2
E(ϕcg

c
ν
t exp(b(k − k∗)ν

2
gt))

=
ϕc exp(b(α− k))

2
E(g

c
ν
t exp(b(k + k∗)

ν

2
gt)) +

ϕc exp(−bk)

2
E(g

c
ν
t exp(b(k − k∗)ν

2
gt))
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According to the Appendix B.2 of Harvey (2013), whenE(exp(b(k+k∗)ν2gt)) <∞ andE(exp(b(k−

k∗)ν2gt)) <∞, the previous equation can be written

ϕc exp(b(α− k))

2

2
c
ν Γ( c+1

ν )

Γ( 1
ν )

E

(
exp

(
νb(k + k∗)

2
g̃t

))
+
ϕc exp(−bk)

2

2
c
ν Γ( c+1

ν )

Γ( 1
ν )

E

(
exp

(
νb(k − k∗)

2
g̃t

))
,

where g̃t ∼ Gamma(2, c+1
ν ). When bk + |bk∗| < 1

ν , both E(exp(b(k + k∗)ν2gt)) and E(exp(b(k −

k∗)ν2gt)) are finite and given by the generating moments function of the Gamma distribution, then

E(|εt|c exp(bf(εt))) =
exp(b(α− k))

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k + k∗))−

c+1
ν

+
exp(−bk)

2

(Γ(1/ν))c/2−1 Γ( c+1
ν )(

Γ( 3
ν )
)c/2 (1− νb(k − k∗))−

c+1
ν

The expression for E(|εt|c exp(bf(εt))) can be obtained following the similar steps.
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