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Abstract

In this paper we consider adaptive Bayesian semiparametric analysis of the linear

regression model in the presence of conditional heteroskedasticity. The distribution of the

error term on predictors are modelled by a normal distribution with covariate-dependent

variance. We show that a rate-adaptive procedure for all smoothness levels of this standard

deviation function is performed if the prior is properly chosen.More specifically, we derive

adaptive posterior distribution rate up to a logarithm factor for the conditional standard

deviation based on a transformation of hierarchical Gaussian spline prior and log-spline

prior respectively.

Keywords: Bayesian linear regression, conditional heteroskedasticity, rate of convergence,

posterior distribution, adaptation, hierarchical Gaussian spline prior, log-spline prior.

1 Introduction

We consider Bayesian estimation of the linear regression model that imposes conditional

moment restrictions. A useful framework like E(Y |X) = X ′β0 or Y = X ′β0 + ε, E(ε|X) = 0

is widely formulated to analyze a number of statistical and econometric models. It is well-

known that the procedure of estimating the parameters of interest could be expected to be

efficient provided more information about the conditional error distribution is known. In

this paper we propose a Bayesian semiparametric method for consistent estimation of the

regression coefficients and the conditional standard deviation when the error term is subject

to a normal distribution with associated variance that is dependent on covariates.

The primary purpose of this paper is to investigate the asymptotic frequentist properties

of the corresponding posterior distribution by putting a prior on the regression coefficients

and the standard deviation in this linear model. An analysis of the asymptotic behavior of

Bayesian methods in the infinite-dimensional statistical models is important, such as poste-

rior consistency, rate of posterior convergent, rate-optimality and adaptation properties and

Bernstein-von Mises phenomenons, which reflect a sense of Bayesian robustness, namely the

prior does not have an impact on the posterior distribution too much when the amount of

information collected in the data or the number of observations grows indefinitely.
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In recent years, there has been substantial research in Bayesian nonparametrics on the de-

velopment of these mathematical, asymptotical theory for a wide range of statistical models,

see, for example, Ghosal et al. (1999, 2000); Ghosal and van der Vaart (2001, 2007b,a), to

name a few. However, it has been studied very little in the linear models with predictor de-

pendent conditional variance of the error terms. Norets (2015) established a semiparametric

version of Bernstein-von Mises theorem under misspecification: the posterior credible regions

of the regression coefficients are asymptotically equivalent to the frequentist ones and also

this posterior inference is efficient even though the data generating process is not normal.

Pelenis (2014) considered the kernel stick-breaking mixtures to model the conditional error

distribution and demonstrated posterior consistency of the conditional error density and the

finite regression coefficients for these kernel mixture priors. Also, Wang (2013) studied pos-

terior consistency for the heteroscedastic nonparametric regression models by relaxing the

assumptions of linearity in the model, with a substitution of an unknown, smooth regression

function. There is a noticeable absence of rate adaptation results in these regression setting.

In the present paper, we plug this gap and take up the investigation of this rate adaptive

procedure, in order to provide a theoretical underpinning of the Bayesian inference approach

to explore the possible accuracy at maximum capacity and assess the well-balanced spread of

the underlying prior distribution across a continuum of regularities of the functions consid-

ered. Adaptive convergence rates for Bayesian nonparametric estimation in various statistical

models have been established by Huang (2004), Scricciolo (2006), Belitser and Ghosal (2003),

van der Vaart and van Zanten (2009), Rousseau (2010), Kruijer et al. (2010), de Jonge and

van Zanten (2010, 2012), Shen and Ghosal (2012), Shen et al. (2013), Norets and Pati (2014)

and Belitser and Serra (2014), among others.

A broad class of priors have been explored to yield adaptation across all smoothness levels.

Recently, priors based on splines have received much attention for the construction of prob-

ability distribution on the infinite-dimensional spaces. Various groups of researchers have

worked with univariate splines or its corresponding tensor-product splines in the multivariate

case as a useful block to construct a prior. For example, Huang (2004) built a prior on the

discrete mixture of splines to develop a theorem on adaptive convergence rates in the context

of regression and density estimation. de Jonge and van Zanten (2012) discussed priors on

multivariate functions by choosing an appropriate probability distribution on the partition

size and Gaussian prior on B-spline coefficients in the tensor-product B-spline expansions.

Shen and Ghosal (2012) constructed a prior using finite random splines with a prior distri-

bution on the number of terms. Belitser and Serra (2014) investigated an extension of these

results involving spline based priors by endowing a probability distribution on the location

of the knots instead of assuming them to be equally spaced. This enables us to build a wide

spectrum of priors on the conditional standard deviation of the regression error terms. It is

widely known that the posterior distribution contracts at a rate of the order n−α/(2α+d) (up to

an additional logarithm factor) for a α-smooth functions of d-variables, which agrees with the

optimal rate of the estimators in the frequentist context. In other words, a fully rate-adaptive
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procedure can be obtained across all smoothness levels if that holds. One possible explana-

tion about this phenomenon is that there is a sufficiently large amount of prior mass around

the function of interest with total smoothness levels. We will show that the corresponding

posterior converges at the optimal rate up to a logarithm factor without the priori knowledge

of the smoothness levels of the conditional standard deviation.

From the practical point of view, diverse algorithms for normal linear regression with predictor

dependent variance have been exhibited in Yau and Kohn (2003) and Chib and Greenberg

(2013) which considered transformed splines to model the variance and Goldberg et al. (1997)

where a transformed Gaussian process prior was considered. Markov Chain Monte Carlo

simulations carried out in these papers performs well in these flexible covariance dependent

cases. Here we center on the theoretical aspects in Bayesian normal regression models.

The paper is organized as follows. In Section 2 we give a general overview of the notation

and a brief account of the model settings. In Section 3 we provide a preliminary review on

the notions of spline functions, univariate B-splines and tensor-product B-splines as well as

its associated approximation properties. In Section 4, we show that the optimal posterior

convergence rate can be achieved using two types of spline priors: one based on conditional

Gaussian tensor-product spline prior or a hierarchical Gaussian spline prior and the other built

on log-spline prior that stems from finite random spline expansion with a random number of

terms. We conclude with a brief discussion and some technical lemmas, all containing proofs

as well as auxiliary theorems are delegated to the Appendix.

2 General model setup

In this Section, we take a detailed description of the notation and then describe our model.

2.1 Notation

For any a ∈ R, denote ⌊a⌋ to be the largest integer strictly smaller than a. Similarly, define

⌈a⌉ to be the smallest integer which is strictly greater than a.

Let η = (β, σ) and the true value η0 = (β0, σ0). Denote the conditional density function

N(β, σ2(x)) by fxη and let fxη0 be the true conditional density function N(β0, σ
2
0(x)). The

Kullback-Leibler divergence between η and η0 is then defined as,

K(η, η0) =

∫
X

∫
Y
fxη0(y) log

fxη0(y)

fxη(y)
dy dG0(x), (1)

V (η, η0) =

∫
X

∫
Y
fxη0(y)

(
log

fxη0(y)

fxη(y)

)2

dy dG0(x), (2)

where X ,Y are the domains that will be specified later and G0(·) is a general distribution

function. The ε-Kullback-Leibler neighborhood around η0 is expressed as,

Kε(η0) = {η : K(η, η0) < ε}. (3)
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We define the Hellinger metric between η and η0 as,

dH(η, η0) =

∫
X

∫
Y

(√
fxη(y)−

√
fxη0(y)

)2

dy dG0(x). (4)

We use the natural L2-norm with respect to the distribution function G0(·) to measure the

distance between η and η0:

d2(η, η0) =

{∫ b

a

(
[(β − β0)

Tx]2 + [σ(x)− σ0(x)]
2
)
dG0(x)

}1/2

, (5)

and denote the neighborhood of η0 with respect to the distance function d2(η, η0) as follows:

Uε(η0) =

{
(F, σ) :

∫ b

a

(
[(β − β0)

Tx]2 + [σ(x)− σ0(x)]
2
)
dG0(x) > ε

}
. (6)

We use the notation . to stand for somewhat inequality up to a constant. To compare two

function, for example, g1, g2, we denote g1 . g2 . g1 by g1 ≍ g2. The covering number of a set

P equipped with some metric d, denoted by N(ε,P, d), is viewed as the minimum number

of d-balls with radius ε needed to cover the set P. The metric entropy number of the set P,

denoted by logN(ε,P, d), is defined as the logarithm of its associated covering number. Let

∥ · ∥2 and ∥ · ∥∞ denote the Euclidean norm and supremum norm respectively.

We now take a brief account of the definitions in the context of multivariate functions, espe-

cially describe the appropriate notions of smoothness in this multivariate case. Let’s denote

the space of continuous functions f on [0, 1]d by C
(
[0, 1]d

)
, equipped with the supremum

norm ∥f∥∞. For a multi-index α = (α1, α2, . . . , αd), let the sum |α| =
∑d

i=1 αi and the mixed

partial derivative operator is defined as,

Dα =
∂|α|

∂xα1
1 · · · ∂xαd

d

. (7)

For α > 0, the Hölder space Cα
(
[0, 1]d

)
stands for the collection of functions f on [0, 1]d with

mixed partial derivative Drf ∈ C
(
[0, 1]d

)
of all orders up to |r| ≤ ⌊α⌋ satisfying,

|Drf(x)−Drf(y)| ≤ C∥x− y∥α−⌊r⌋
2 , (8)

for some positive constant C, each x, y ∈ [0, 1]d. Meanwhile, denote the norm on the Hölder

class Cα
(
[0, 1]d

)
by,

∥f∥Cα([0,1]d) = ∥f∥∞ +
∑

r: |r|=⌊α⌋

∥Drf∥∞. (9)

2.2 Restricted moment models

Suppose we observe a real-valued sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) whereXi is a d-dimensional

covariate, Yi is the response variable and (Xi, Yi) ∼ P0 for i = 1, 2, . . . , N . The data

generating process satisfies Y |X = x ∼ N(x′β0, σ
2
0(x)) for some unknown true parameter
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β0 ∈ Θ ⊂ Rd and unknown true conditional variance function σ2
0(·) : [0, 1]d → (0,∞) and all

x ∈ X = [0, 1]d. In other words, this linear model could be described as,

Yi = X ′
iβ0 + εi, i = 1, 2, . . . , n. (10)

where error variables εi|Xi = xi ∼ N(0, σ2
0(xi)) for all xi ∈ [0, 1], i = 1, 2, . . . , n. In this

semiparametric model, the unknown parameters are (β, σ(·)) where the finite-dimensional

parameter β is of interest and σ(·) is the infinite-dimensional nuisance parameter. Our model

could be rewritten as (Θ×M, B × F ) equipped with Borel σ-algebras B and F on Θ and

M respectively, where,

M = {σ(·) : [0, 1]d → (σ, σ)}. (11)

is a polish space on X and also is assumed to contain the true conditional standard devi-

ation σ0. Let Π denote the total prior for the pair (β, σ) on (Θ, M) which is defined by

Π(dβ, dσ) = Πβ(dβ) × Πσ(dσ) where Πβ and Πσ are corresponding independent priors on β

and σ respectively. Here we leave the distribution of covariates denoted by G0(·) unspecified
since it is ancillary and also of our interest is to focus on the conditional distribution. The

corresponding posterior distribution for (β, σ) given the data (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

is denoted by,

Π(·|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)).

In view of Bayes’ theorem, the posterior is given by the expression,

Π(B|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)) =

∫
B L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn))Π(dβ, dσ)∫
L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn))Π(dβ, dσ)

,

(12)

where the likelihood function L(β, σ; (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) could be written as,

n∏
i=1

1√
2πσ(Xi)

exp

(
−(Yi −X ′

iβ)
2

2σ2(Xi)

)
. (13)

Usually the posterior mean can be regarded as a Bayesian estimator of the unknown pair

(β0, σ0). If this Bayesian estimator is consistent, the further concern is then of interest to

consider the finer aspects of this posterior distribution or quantify the rate at the which it

contracts around the true unknown parameter, namely, posterior convergence rate. More

precisely, for a given positive sequence (εn) going to zero, the posterior distribution is said to

converge to the Dirac-mass at (β0, σ0) at the rate εn, if, as n → ∞,

Π
{
(β, σ) : dH((β, σ), (β0, σ0)) > Mεn

∣∣ (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
}
−→ 0 in Pn

0 -probability,

(14)

for a sufficiently large M > 0. Here this assertion of the definition is in-probability statement

that holds under the true distribution P0 governed by the true parameter pair (β0, σ0).

The main objective is to construct some priors for Θ×M to show the corresponding posterior

converges at an optimal rate at (β0, σ0(·)) ∈ Θ×M. Here the prior does not depend on the

information about the unknown smoothness levels of the true conditional standard deviation

function σ0(·). So the so-called rate-adaptive procedure is obtained across all the regularity

levels.
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3 A preliminary introduction to Splines

In this Section, we will provide a general overview on spline function supported on hyper

cube following by a brief introduction on the splines defined on the unit interval [0, 1]. More

extensive treatment on this subject could be found in Schumaker (2007).

3.1 Spline function on unit interval

A spline function on [0, 1] is essentially viewed as an generalization of the polynomial function

on the unit interval. It is a piece polynomial function but enjoy the properties of global

smoothness on its domain.

More specifically, let q,K be two fixed natural numbers and partition the unit interval [0, 1]

into K equally spaced subintervals [(k − 1)/K, k/K] for k = 1, 2, . . . ,K. Consider a spline

function with the order q greater than 2, that is, all polynomials with its domain coinciding

with one of those subintervals are of the degree smaller than q − 1 and this spline function is

globally q − 2 times continuously differentiable on [0, 1].

Let SK be the collection of all splines of order q with simple knots at the points {k/K : k =

1, . . . ,K − 1}. It can be seen that SK forms a J = (q +K − 1)-dimensional liner space. The

so-called B-splines BK
1 , BK

2 , . . . , BK
J , which can be found in de Boor (2001), are used to give

a convenient basis in this space. The concrete function forms of these B-splines are negligible

to us. The primary properties of these B-splines closely used in this paper are that B-splines

are always nonnegative, each basis function is supported on a tiny interval with its length at

most q/K and the sum of all B-splines evaluated at any given point in the domain is equal

to one. In other words, they constitute a partition of unity, i.e.

J∑
i=1

BK
i (x) = 1,

for each x ∈ [0, 1].

3.2 Tensor-product spline on [0, 1]d

In this Subsection we introduce spline functions on multi-dimensional domains with the help

of multivariate polynomials. The construction of the linear space of such multivariate splines

relies heavily on the spline space SK in the unit interval described above. In fact, this linear

space on [0, 1]d is a tensor-product of those univariate linear space on [0, 1]. More precisely, a

unique direction denoted by a variable is assigned to each linear space in the tensor-product

and then we obtain the multivariate polynomials supported on some tiny rectangles by taking

the multiplication of polynomials with respect to one single variable defined on some small

intervals.
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Accordingly, the convenient basis for the linear space of tensor-product splines is the tensor-

product B-splines, which equal to the products of the corresponding B-splines on [0, 1]. Hence

the tensor product space has dimension (q +K − 1)d, for example, in the construction of the

space SK defined above. The advantage of introducing tensor-product B-splines is that they

inherit the nice properties that univariate B-splines have as we shall see below.

In what follows, we consider a d-fold tensor-product space SK = SK ⊗ · · · ⊗ SK(d times) of

tensor-product splines defined on the unit cube [0, 1]d, that is partitioned equally into md

cubes Ik1 × · · · × Ikd . A function s : [0, 1]d → R is defined to be a tensor-product spline in SK

if for each such tiny cube, s possesses the following multivariate polynomial form,

q−1∑
k1=0

· · ·
q−1∑
kd=0

ck1...kd x
k1
1 · · ·xkdd . (15)

As was the case in the univariate spline space, the basis in SK is provided by the so-called

tensor-product B-splines as follows,

BK
j1...jd

(x1, . . . , xd) = BK
j1 (x1)B

K
j2 (x2) · · ·B

K
jd
(xd). (16)

It can be shown that SK has dimension (q + K − 1)d and these multivariate B-splines also

form a partition of unity,

J∑
j1=1

· · ·
J∑

jd=1

BK
j1...jd

(x1, . . . , xd) = 1, (17)

for all xi ∈ [0, 1], i = 1, 2, . . . , d.

3.3 Approximation properties of tensor-product B-splines

It is well-known that the univariate B-splines in the space SK could approximate any function

of interest in Cα[0, 1], for example, at the rate J−α where J = q+K− 1. In other words, any

function with a smoothness level α in Cα[0, 1] could be approximated by a couple of B-splines,

BK
1 , BK

2 , . . . , BK
J with its associated approximation error controlled by the order J−α.

This idea also works in the multivariate case. How well tensor-product B-splines approximate

the generic function is uniquely determined by the target function’s smoothness level α and

the dimension of the linear space SK induced by the tensor-product B-splines if the order q of

the splines is chosen to be larger than the smoothness level α. The approximation ability in

terms of tensor-product B-splines is stated in the following lemma which provides an upper

bound of the approximation error with respective to the uniform distance.

Lemma 3.1 (Shen and Ghosal (2014)) Let q, d, K ∈ N, α ∈ R, α ≤ q, J = q+K−1. For any

function f ∈ Cα
(
[0, 1]d

)
, there exists θ = (θ00...0, . . . , θJJ...J) ∈ RJd

and a positive constant

C1 that only depends on q, d and α such that,∥∥∥∥∥∥f −
J∑

j1=1

· · ·
J∑

jd=1

θj1...jd B
K
j1...jd

(x1, . . . , xd)

∥∥∥∥∥∥
∞

≤ C1J
−α∥Dαf∥∞. (18)
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Furthermore, if f > 0, then each element of θ could be chosen to be positive for a sufficiently

large J .

4 Adaptive posterior contraction results

Splines possess excellent approximation capabilities for smooth functions in the previous Sec-

tion, where the approximation error is completely controlled by the dimension of the spline

space and the smoothness level. More precisely, the error becomes smaller if the dimension

grows and the objective function is smoother. From the frequentist view of point, Stone (1994)

showed that the maximum likelihood estimator of the function in Cα([0, 1]d) achieves the rate

of convergence n−α/(2α+d). As indicated in de Jonge and van Zanten (2012), a Bayesian esti-

mator for probability densities or the regression functions in multivariate domains under more

weaker conditions also attain the optimal contraction rate n−α/(2α+d). Simultaneously, they

established that a type of Gaussian process prior yields the near-optimal adaptive posterior

convergence rate, up to an additional logarithmic factor when α is unknown.

In the next two Subsections, we consider spline-based priors for σ(·) in a variety of means. In

Subsection 4.1, we build a hierarchical Gaussian spline prior by putting Gaussian prior weights

on the coefficient and adding another hierarchical layer for the partition size involved in the

tensor-product B-splines. It follows that this hierarchical procedure achieves a near-optimal

adaptive contraction rate. Alternative log-spline priors with finite random tensor-product

splines and a random number of terms that also achieve optimal adaptive rate of convergence

will be demonstrated in Subsection 4.2.

Throughout this Section, we consider the following condition on Πβ :

(A1) Its support is [β, β]. For all ε > 0, there exists m1 > 0 such that,

Π(∥β − β0∥2 ≤ ε) ≥ exp(−m1d log(1/ε)). (19)

In fact, this is a mild assumption on the prior of β. And several ordinary distribution examples

satisfy (19). More detailed and similar examples could be found in the discussion of the prior

for weights vector θ in Subsection 4.2.

4.1 Hierarchical Gaussian spline prior

In this Subsection, a class of Gaussian process, whose sample path is defined by tensor-product

splines extensively discussed in the preceding Section, will be used for the construction of priors

on the conditional standard deviation in our linear model.

Let Z00...0, . . . , ZJJ...J be a series of i.i.d standard normal random variables, the random pro-
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cess WK on [0, 1]d was given by

WK(x1, . . . , xd) =

J∑
j1=1

· · ·
J∑

jd=1

Zj1...jdB
K
j1...jd

(x1, . . . , xd), xi ∈ [0, 1], i = 1, 2, . . . , d. (20)

where {BK
j1...jd

(x1, . . . , xd) : ji = 1, . . . , J, i = 1, 2, . . . , d} is a group of tensor-product B-spline

basis of SK , J = q+K−1, K is the partition size of the knots. de Jonge and van Zanten (2012)

has shown that {BK
j1...jd

(x1, . . . , xd) : ji = 1, . . . , J, i = 1, 2, . . . , d} form an orthonormal basis

of the reproducing kernel Hilbert space (RKHS) HK associated with this Gaussian process

WK and also extensively exhibited the properties of the concentration function, which plays a

crucial role in determining the posterior convergence rate regarding to this Gaussian process

prior induced by the stochastic process WK .

In order that the corresponding posterior could be guaranteed to take on the asymptotic

properties, posterior consistency for example, the prior should have large enough support.

The tuning parameter K then should be required to vary with the sample size as well as the

regularity of the function of interest and the number of observations should also go to infinity.

This prior, the law of the Gaussian spline prior WK , depends explicitly on the unknown

smoothness level of the object. So this is not desired rate-adaptive procedure.

We could remedy this problem if this partition size K is viewed as the so-called hyper pa-

rameter and itself is endowed with a separate prior. In other words, we assign a probability

distribution on such an unknown tuning parameter and let the partition size be carefully

selected through its posterior distribution. In the Bayesian perspective, it is natural to treat

this parameter as one type of hyper parameter and let it estimated from the data via its

posterior mean.

Let K̃ be an independent N-valued random variable, the hierarchical Gaussian process prior is

denoted by W K̃ , where W K̃ |K̃=K is described in (20). As prior on the standard deviation, we

employ the law Πσ of the process Ψ̃(W K̃), that is a transformation of the stochastic process

W K̃ , where the link function Ψ̃ : R → (σ, σ) is given by,

Ψ̃(W K̃) = Ψ(W K̃)(σ − σ) + σ, (21)

for the logistic or normal function distribution Ψ.

The following theorem follows from Theorem 4.2 in de Jonge and van Zanten (2012) that

presents the general rate of contraction results for Bayesian multivariate function estimation.

Theorem 4.1 Assume that w0 = Ψ̃−1(σ0) ∈ Cα([0, 1]d) for some integer α less than q. Let

the prior Πσ be induced by the law of the stochastic process Ψ̃(W K̃), where the probability

mass of this hyper parameter K̃ for each K ≥ 1 satisfies:

C1 exp(−D1K
d logtK) ≤ P (K̃ = K) ≤ C2 exp(−D2K

d logtK), (22)

for some constants C1, C2, D1, D2, t ≥ 0. Suppose that for any ε > 0, log

{[
β−β

2ε

]
+ 1

}
≤ nε2

and also the prior for the regression coefficient Πβ satisfies (A1). Let the maximal eigenvalue
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of E(XiX
′
i) denoted by λmax(E(XiX

′
i)) be bounded for i = 1, 2, . . . , n. Then, for a sufficiently

large constant M > 0,

Πn{η : dH(η, η0) > Mεn|(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} −→ 0 in Pn
0 -probability,

where,

εn = c(n/ log1∨t n)−
α

d+2α ∨ n− α
d+2α (log n)

(1∨t)α
d+2α

+( 1−t
2

)+,

for a large enough positive constant c.

Note that if K̃d follows a Geometric distribution with t = 0, then condition (22) is satisfied.

Here the stochastic process prior Ψ̃(W K̃) implies a posterior rate of concentration on the space

of the standard deviation functions provided the true standard deviation has regularity level

α less than q. As indicated in de Jonge and van Zanten (2012), we keep the order q involved

in the splines fixed so that the prior could become simpler as well as easier for simulations

computationally. A common choice for q is 4 in practice.

The prior does not depend on the smoothness level α so our procedure is adaptive. If t is

chosen to be equivalent to one, the the rate εn becomes (n/ log n)−
α

d+2α , which coincides with

the optimal posterior convergence rate, up to an additional logarithm item, since the rate

n− α
d+2α for each α > 0 is the minimax convergence rate in the function class Cα([0, 1]d).

4.2 Log-spline prior

We consider a prior, in this Subsection, induced by a random series expansion in terms of

tensor-product B-splines as follows:

W J,θ(x) =
J∑

j1=1

· · ·
J∑

jd=1

θj1...jd B
K
j1...jd

(x1, . . . , xd), (23)

where θ = (θ00...0, . . . , θJJ...J) is a Jd-dimensional vector. A prior on h could be obtained by

assigning a probability distribution on the number of items J and the associated coefficient

vector θ of tensor-product B-splines discussed in Shen and Ghosal (2012) as follows:

(A2) We consider a prior for J satisfying,

exp(−c1j log
t1 j) ≤ Π(J = j) ≤ exp(−c2j log

t2 j), j = 1, 2, . . . , (24)

for some positive constants c1, c2 and 0 ≤ t1 ≤ t2 ≤ 1.

(A3) Given J , the prior for Jd-dimensional vector θ satisfies for each ∥θ0∥∞ ≤ H and a

sufficiently small ε > 0,

Π(∥θ − θ0∥2 ≤ ε) ≥ exp(−c3J
d log(1/ε)), (25)

Π(θ ̸∈ [−M,M ]J
d
) ≤ Jd exp(−c4M

t3), (26)

for some positive constants c3, c4, t3 and sufficiently large M > 0.
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Note that (A2) holds for Geometric, Poisson and Negative distributions when t1, t2 are careful-

ly chosen. And (A3) is fulfilled if we put independent Gamma and Exponential distributions

on each element of the vector θ. If the support of θ is a bounded and closed set, then multi-

variate Normal and Dirichlet distributions also meet (A3). We take the law of the following

stochastic process as the prior on the standard deviation σ:

Φ̃(W J,θ(x)) =
eW

J,θ(x)∫ 1
0 eWJ,θ(x) dx

(σ − σ) + σ, (27)

where W J,θ(x) is defined in (23). The law of the process Φ̃ gives the so-called log-spline prior

for the infinite-dimensional parameter σ.

We now present the result about the contraction rate of the posterior based on the product

prior defined by Πβ and this log-spline prior.

Theorem 4.2 Let w0 = Φ̃−1(σ0) ∈ Cα([0, 1]d) and the prior for the regression coefficient

β, the number of items J and the associated coefficients θ satisfy (A1), (A2) and (A3) re-

spectively. Suppose that the maximal eigenvalue of E(XiX
′
i) is bounded for i = 1, 2, . . . , n.

Assume that we endow a prior on σ by the law of the process Φ̃(W J,θ), then the corresponding

posterior of η = (σ, β) contracts at the rate,

εn = n−α/(2α+d)(log n)α/(2α+d)−(t2−1)/2, (28)

in terms of the Hellinger distance dH .

In fact, we applies Theorem 2 in Shen and Ghosal (2012) to our linear model in the presence of

the heteroscedasticity with this prior Πη to get this result. The optimal posterior convergence

rate relative to the Hellinger distance could be obtained by carefully selecting some sequences

J̄n, Jn, Mn, ε̄n that satisfy the conditions stated in Theorem 2 of Shen and Ghosal (2012) in

order to balance bias and model complexity in our semiparametric model.

5 Conclusions

To summarise, we obtain an adaptive procedure in a flexible linear model with heteroscedastic

normally distributed error in the presence of a conditional moment condition. More specifical-

ly, under mild restrictions on the model and priors, the posteriors of the conditional standard

deviation and of the finite regression coefficients adapt to the smoothness of the underlying

standard deviation function, which is assumed to be contained in a nonparametric model.

This result indicated that we could implement this Bayesian procedure as if the regularity of

the underlying function were known.

The alternative asymptotic property concerning in our normal linear regression model, the

Bernstein-von Mises theorem, has been developed in Norets (2015). Further research is war-

ranted for the investigation of the existence of a Bernstein-von Mises phenomenon in this

11



semiparametric model where the parameter of interest is the finite-dimensional regression

coefficients, by directly assigning a prior on the conditional error distribution with a zero

mean restriction. The estimation of the coefficients of interest in this setting that avoid the

potential model misspecifications would be efficient. Particularly challenging is how to model

this conditional error density with the imposition of moment restriction. Moreover, the prob-

lem is compounded by the fact that the appropriate constructions of the priors put on these

conditional error densities, making it difficult to obtain the semiparametric efficiency bound.

It would be interesting to extend the adaptive concentration rate of posterior and Bernstein-

von Mises theorem in our model to that in the weakly dependent data. In infinite-dimensional

models, there are few results concerning these two important asymptotic properties in the

weakly dependent cases. Maybe we could establish this asymptotic results under appropriate

conditions on the prior, an interesting future direction.
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A Useful lemmas

To prove the main theorems in Section 4, we need the following supplementary lemmas. For

brevity of notations, we use the generic positive constant C throughout this Appendix.

Lemma A.1 If x > 0, then the following inequality holds.

1−
√

2x

x2 + 1
≤ log x2 − 1 +

1

x2
. (29)

Proof of lemma A.1

Let us introduce a new function f(x) as follows,

h(x) = log x2 +
1

x2
+

√
2x

x2 + 1
. (30)

The claim holds if h(x) ≥ 2 for all x > 0. Note that the first derivative of h(x) could be

written as,

h′(x) = 2(x2 − 1)

(
1

x3
− 1

2(x2 + 1)
√

2x(x2 + 1)

)
.

Noting also that,

2(x2 + 1)
√

2x(x2 + 1)

x3
= 2

√
2

√
x

(
1 +

1

x2

)(
1 +

1

x2

)
≥ 2

√
2

√
x
1

2x
× 1 = 2 > 1.

Hence h′(x) ≥ 0 if x ≥ 1 and h′(x) < 0 otherwise. That is to say, h(x) attains the minimum

at x = 1. Using the fact that h(1) = 2 we then obtain h(x) ≥ 2 for all x > 0. So the proof of

this lemma is complete. �

The following lemma states that the order of the Hellinger distance between (β1, σ1) and

(β2, σ2) is controlled by the Euclidean distance of the finite-dimensional parametric parts β1

and β2 as well as the uniform norm of the difference on the infinite-dimensional parts σ1 and

σ2.

Lemma A.2 Let λmax(E(XiX
′
i)) be bounded by some positive constant m2 for i = 1, 2, . . . , n,

then we have,

d2H(η1, η2) = 2− 2

∫
X

exp

{
− ((β1 − β2)

TX)2

4(σ2
1(x) + σ2

2(x))

} √
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)
dG0(x)

≤ m2

4σ2
∥β1 − β2∥22 +

1

4
z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ1(x)− σ2(x)|2. (31)

Proof of Lemma A.2

13



An application of the elementary inequality 1− ab ≤ 1− a+ 1− b for a ≤ 1 and b ≤ 1 yields,

d2H(η1, η2) = 2− 2

∫
X

exp

{
− ((β1 − β2)

TX)2

4(σ2
1(x) + σ2

2(x))

} √
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)
dG0(x)

≤
∫

X
2

(
1− exp

{
− ((β1 − β2)

TX)2

4(σ2
1(x) + σ2

2(x))

})
+ 2

(
1−

√
2σ1(x)σ2(x)

σ2
1(x) + σ2

2(x)

)
dG0(x)

≤
∫

X

{
((β1 − β2)

TX)2

2(σ2
1(x) + σ2

2(x))
+ log

(
σ2
1(x)

σ2
2(x)

)
− 1 +

σ2
2(x)

σ2
1(x)

}
dG0(x)

≤ 1

4σ2
λmax(E(XiX

′
i))∥β1 − β2∥22 +

1

4
z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ1(x)− σ2(x)|2,

where the penultimate inequality follows from the elementary inequality 1 − e−x ≤ x for

x ≥ 0 and lemma A.1 in the Appendix. Thus the assertion follows by the assumption

λmax(E(XiX
′
i)) ≤ m2 for i = 1, 2, . . . , n. �

The following lemma states that we could bound the first and second moments of log likelihood

ratio from above.

Lemma A.3 Let λmax(E(XiX
′
i)) ≤ m2, where m2 > 0, then the following inequalities hold.

K(η, η0) ≤ m3

(
sup
x∈X

|σ(x)− σ0(x)|2 + ∥β − β0∥22
)
, (32)

V (η, η0) ≤ m4

(
sup
x∈X

|σ(x)− σ0(x)|2 + ∥β − β0∥22
)
. (33)

Proof of lemma A.3

A straightforward computation for K(η, η0) shows that,

K(η, η0) =

∫
X

∫
Y
fxη0(y) log

fxη0(y)

fxη(y)
dy dG0(x)

=

∫
X

∫
Y
fxη0(y)

1

2

{
log

σ2(x)

σ2
0(x)

− (y − β′
0x)

2

σ2
0(x)

+
(y − β′x)2

σ2(x)

}
dy dG0(x)

=

∫
X

1

2

{
log

σ2(x)

σ2
0(x)

− 1

}
dG0(x) +

∫ b

a

∫
Y
fxη0(y)

{
1

2σ2(x)
(y − β′

0x+ β′
0x− β′x)2

}
dy dG0(x)

=

∫
X

1

2

{
log

σ2(x)

σ2
0(x)

− 1 +
σ2
0(x)

σ2(x)
+

1

σ2(x)
(β0 − β)′xx′(β0 − β)

}
dG0(x)

≤ 2z

(
σ2

σ2

)
σ2

σ4
sup
x∈X

|σ(x)− σ0(x)|2 + σ−2λmax(E(XiX
′
i))∥β − β0∥22,

where the final line follows from lemma A.5. Thus the assertion (32) follows by taking,

m3 =

{
2z

(
σ2

σ2

)
σ2

σ4
, σ−2λmax(E(XiX

′
i))

}
.
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For V (η, η0), simple algebra delivers that,

V (η, η0) =

∫
X

∫
Y
fxη0(y)

(
log

fxη0(y)

fxη(y)

)2

dy dG0(x)

=

∫
X

{(
σ2
0(x)

σ2(x)
− 1

)2

+
σ4
0(x)

σ4(x)
(β0 − β)′xx′(β0 − β)

}
dG0(x)

≤ σ−2

∫
X
(σ2(x)− σ2

0(x))
2 dG0(x) +

(
σ

σ

)4

λmax(E(XX ′))∥β − β0∥22

≤ 4σ2

σ2
sup
x∈X

|σ(x)− σ0(x)|2 +
(
σ

σ

)4

λmax(E(XiX
′
i)∥β − β0∥22.

Here we let,

m4 =

{
4σ2

σ2
,

(
σ

σ

)4

λmax(E(XiX
′
i))

}
,

therefore the assertion (33) follows. �

An immediate consequence from lemma A.3 implies that the following result holds.

Corollary A.4 Under the condition described in lemma A.3, we have,

max {K(η, η0), V (η, η0)} ≤ m5

(
sup
x∈X

|σ(x)− σ0(x)|2 + ∥β − β0∥22
)
, (34)

for some positive constant m5.

Lemma A.5 Let z(t) =
t− 1− log t

(t− 1)2
be a positive decreasing function on (0,∞), then for any

t ∈
[
σ2

σ2 ,
σ2

σ2

]
, the following inequality holds,

4σ2

σ4 z

(
σ2

σ2

)
d̃22(σ, σ0) ≤

∫ b

a

(
σ2
0(x)

σ2(x)
− 1− log

σ2
0(x)

σ2(x)

)
dG0(x) ≤

4σ2

σ4
z

(
σ2

σ2

)
d̃22(σ, σ0),

where d̃22(σ, σ0) =
∫ b
a (σ(x)− σ0(x))

2 dG0(x).

Proof of lemma A.5

Observe that,

(t− 1)2 z

(
σ2

σ2

)
≤ t− 1− log t ≤ (t− 1)2 z

(
σ2

σ2

)
.

Let t =
σ2
0(X)

σ2(X)
and notice that,

(σ2(X)− σ2
0(X))2

σ4(X)
z

(
σ2

σ2

)
≤ σ2

0(X)

σ2(X)
− 1− log

σ2
0(X)

σ2(X)
≤ (σ2(X)− σ2

0(X))2

σ4(X)
z

(
σ2

σ2

)
.

Therefore the claim follows by taking expectation with respect to the distribution function

G0(x) on the inequality above. �

Lemma A.6 Given 0 < α ≤ q, and for each function f ∈ Cα[(0, 1)d], there exists some

θ ∈ RJd
and a positive constant C that depends solely on q such that,

∥f − θT ξ∥∞ ≤ CJ−α∥D(α)f∥∞.

Futhermore, if σ < f < σ, every element of θ could be chosen to be between σ and σ.
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Proof of lemma A.6

The first part is as same as Lemma 1 of Shen and Ghosal (2012). And the proof of the second

part goes throughout the part (b) of Shen and Ghosal (2012) by choosing f̃ = f − σ and

g̃ = σ − f . �

The following two lemmas state that the approximation error of the transform stochastic

process could be controlled by the corresponding primitive process with respective to the

uniform norm.

Lemma A.7

sup
x∈X

∣∣∣Ψ̃(W (x))− Ψ̃(w0(x))
∣∣∣ ≤ C sup

x∈X
|W (x)− w0(x)| . (35)

B Proof of Theorems

B.1 Proof of Theorem 4.1

Here we provide the proof of all the results developed in Section 4.

Proof of theorem 4.1

We apply Theorem 4 of Ghosal and van der Vaart (2007a) to prove this theorem in a similar

manner as Lin and Dunson (2014). In particular, let,

Vn = {σ = Ψ̃(W ) : W ∈ Un}, (36)

where Un is a the measurable subset described in theorem C.5. Now we determine the upper

bound on the entropy number on the sieve of the support of the product prior Πη = Πσ ×Πβ.

Define,

Fn =
{
(σ, β) : σ ∈ Vn, β ∈ [β, β]d

}
. (37)

Since Ψ̃ is a one to one map from R to [σ, σ], then Vn ⊂ Bn. Hence the number of ε̄n-balls

needed to cover Vn is less than Bn in terms of the uniform distance. That is,

logN(εn, Vn, ∥ · ∥∞) ≤ logN(εn, Bn, ∥ · ∥∞), (38)

which is bounded by Dnε2n by (73). To bound from above the entropy number on Fn,

we consider the covering number of the one dimensional set {β1 : β1 ∈ [β, β]}. Let N ={[
β−β

2εn

]
+ 1

}
, the interval [β, β] could be partitioned into N sub-intervals with the equal

length
β−β

N . We denote all the middle points of these equidistant intervals by the set,

T =

{
β + i

β − β

2N
: i = 1, 3, . . . , 2N − 1

}
.

Then every equidistant interval could be covered by one neighborhood of some point in T

with radius εn. Thus the covering number of the set {β : β ∈ [β, β]d} is,

N
(
εnd

1/2, [β, β]d, ∥ · ∥2
)
≤ Nd.
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In view of (31), observe that if sup
x∈X

|σ(x) − σ0(x)| ≤ Cεn and ∥β − β0∥2 ≤ εnd
1/2, then we

have that,

d2H(η, η0) . sup
x∈X

|σ(x)− σ0(x)|2 + ∥β − β0∥22,

≤ εn(C
2 + d)1/2.

Therefore, the εn(C
2 + d)1/2-covering number of Fn is bounded by eDnε2n ×Nd, that is,

logN
(
εn(C

2 + d)1/2, Fn, dH

)
≤ Dnε2n + logN.

Using the assumption log

{[
β−β

2εn

]
+ 1

}
≤ nε2n we obtain,

logN
(
(C2 + d)1/2εn,Fn, dH

)
≤ (D + d)nε2n.

We proceed to show that the prior Πη assigns a large amount of probability mass on some

specialized Kullback-Leibler ball of the true value η0. Let,

B∗(η0, εn) = {η : K(η, η0) < ε2n, V (η, η0) < ε2n}. (39)

We need to bound from below Π(B∗(η0, εn)). By corollary A.4, it follows that,

B∗(η0, εn) ⊃

{
η = (β, σ) : ∥β − β0∥2 ≤

D̃εn
2

, ∥σ − σ0∥∞ ≤ D̃εn
2

}
. (40)

for some constant D̃. Therefore the prior mass on B∗(η0, εn) could be lower bounded by,

Πσ

(
∥σ − σ0∥∞ ≤ D̃εn

2

)
×Πβ

(
∥β − β0∥2 ≤

D̃εn
2

)
.

Applying lemma A.7 gives rise to,

Πσ

(
∥σ − σ0∥∞ ≤ D̃εn

2

)
≥ ΠW

(
∥W − w0∥∞ ≤ D̃εn

2C

)
,

which is greater than exp
{
− D̃2nε2n

16C2

}
. In view of the assumption on the prior of β, we have ,

Π(B∗(η0, εn)) ≥ Πσ

(
∥σ − σ0∥∞ ≤ D̃εn

2

)
×Πβ

(
∥β − β0∥2 ≤

D̃εn
2

)
,

≥ exp

{
−D̃2nε2n

16C2

}
× exp(−D̄nε2n),

≥ exp(−D̃1nε
2
n),

for some positive constant D̃1.

It remains to show that prior on the complement of the sieve is negligible. In fact, since

{η : η ̸∈ Fn} ⊂ {η : σ ̸∈ Vn}, it is easy to say, by (72),

Πη{η : η ̸∈ Fn} ⊂ Πσ{η : σ ̸∈ Vn} ⊂ ΠW {W : W ̸∈ Un} ≤ exp{−nε2n}. (41)
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So the claim follows since all the three key conditions listed in Theorem 4 of Ghosal and

van der Vaart (2007a) are satisfied. �

In order to prove theorem 4.2, we first present a variant of main results stated in Shen and

Ghosal (2012) in the following two technical lemmas.

Lemma B.1 Let,

ṼJn,Mn = {σ = Φ̃(W J,θ) : W J,θ = θT ξ, θ ∈ Rj , j ≤ Jn, ∥θ∥∞ ≤ Mn}, (42)

W̃Jn,Mn = {(σ, β) : σ ∈ ṼJn,Mn , β ∈ [β, β]d}, (43)

d2(η, η0) =

{∫ 1

0
[σ(x)− σ0(x)]

2 dG0(x)

}1/2

+ ∥β − β0∥2. (44)

Assume that the conditions listed in Theorem 1 of Shen and Ghosal (2012) hold relative to

uniform metric ∥ · ∥∞, then for some positive constants ã1, ã2, b̃, we have the following,

logD(εn, W̃Jn,Mn , d2) ≤ nε2n, (45)

Π(W ̸∈ W̃Jn,Mn) ≤ ã1 exp{−b̃nε̄2n}, (46)

− log Π{η = (σ, β) : ∥σ − σ0∥2∞ + ∥β − β0∥22 ≤ ε̄2n} ≤ ã2nε̄
2
n. (47)

Proof of lemma B.1

We omit the proof of assertions (45) and (46) since it is similar to the corresponding parts in

the proof of theorem 4.1. We are in a position to show (47). Observe that,

Π{η = (σ, β) : ∥σ − σ0∥2∞ + ∥β − β0∥22 ≤ ε̄2n},

≥ Πσ

(
∥σ − σ0∥∞ ≤ ε̄n

2

)
×Πβ

(
∥β − β0∥2 ≤

ε̄n
2

)
,

≥ Πw

(
∥w − w0∥∞ ≤ ε̄n

2

)
× exp(−cd log(1/ε̄n)),

≥ exp
{
−a2nε̄

2
n

}
× exp(−b̃2nε̄

2
n),

≥ exp(−ã2nε̄
2
n),

where ã2 = a2 + b̃2. The assertion (47) follows by taking logarithm transformation on both

sides above. We thus complete the proof of this lemma. �

Lemma B.2 Suppose that the conditions except (68) listed in Theorem 2 of Shen and Ghosal

(2012) hold for the case r = ∞, then the posterior distribution of η converges at rate εn with

respective to the Hellinger distance.

Proof of lemma B.2

Notice that K(pf0 , pf ) and V (pf0 , pf ) exhibited in Theorem 2 of Shen and Ghosal (2012)

are essentially the same as K(η0, η) and V (η0, η) respectively described in (1) and (2). We

employ the similar arguments in the proof of Theorem 2 in Shen and Ghosal (2012) to show

this lemma. It suffices to show that the following conditions stated in Theorem 4 of Ghosal
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and van der Vaart (2007a).

logD(εn, W̃Jn,Mn , dH) ≤ b1nε
2
n, (48)

Π(W ̸∈ W̃Jn,Mn) ≤ b3 exp{−(b2 + 4)nε̄2n}, (49)

Π(B∗(η0, ε̄n)) ≥ b4 exp{−b2nε̄
2
n}, (50)

for some positive constants b1, b2, b3, b4, where W̃Jn,Mn is described in lemma B.1 andB∗(η0, ε̄n) =

{η : K(η, η0) < ε2n, V (η, η0) < ε̄2n}. It is easy to show (48) and (49) by the same arguments

used in the proof of Theorem 2 in Shen and Ghosal (2012). Now it remains to check (50). In

fact, observe that by corollary A.4,

B∗(η0, ε̄n) ⊃ {η = (σ, β) : ∥σ − σ0∥2∞ + ∥β − β0∥22 ≤ ε̄2n}.

It follows that by (47) in lemma B.1,

Π(B∗(η0, ε̄n)) ≥ Π{η = (σ, β) : ∥σ − σ0∥2∞ + ∥β − β0∥22 ≤ ε̄2n}

≥ exp(−ã2nε̄
2
n).

Then the proof of this lemma is complete. �

B.2 Proof of Theorem 4.2

Proof of theorem 4.2

In order to obtain the rate εn like this, we only need to apply lemma B.2 with the appropriate

choice of J̄n, Jn, Mn, ε̄n. It is easy to say that (66) and (67) described in Theorem 2 of Shen

and Ghosal (2012) in terms of tensor-product spline basis. An application of corollary A.4

yields that,

max(K(η0, η), V (η0, η)) ≼ (∥σ − σ0∥2∞ + ∥β − β0∥22).

Meanwhile, lemma 3.1 implies the approximation error e(J) ≈ J−α. We proceed to determine

the rate εn as follows. Firstly, it follows that J̄−α
n ≤ ε̄n and J̄n log n ≤ nε̄2n by (67). Hence we

can choose Mn = n1/t3 , J̄n = (n/ log n)1/(2α+d) and ε̄n = (n/ log n)−α/(2α+d). Observe that

nε̄2n ≼ Jn log
t1 n by (65), we can also choose Jn = n1/(2α+d)(log n)2α/(2α+d)−t2 . Noting also

that Jn log n ≼ nε2n by (66), so that we get the rate εn as n−α/(2α+d)(log n)α/(2α+d)−(t2−1)/2.

Then the proof of this theorem is complete. �

C Auxiliary theorems for this paper

For easy reference, we collect some complementary results in the literature in aid of the proof

of the theorems in this present article.

Theorem C.1 (Ghosal and van de Vaart (2007)) Let P
(n)
θ be product measures and dn be

defined as follows:

dn(θ, θ
′) =

1

n

∫
(
√
pθ,i −

√
pθ′,i)

2 dµi. (51)
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Suppose that for a sequence εn → 0 such that nε2n is bounded away from zero, some k > 1, all

sufficiently large j and sets Θn ⊂ Θ, the following conditions hold:

sup
ε>εn

logN(ε/36, {θ ∈ Θn : dn(θ, θ0) < ε}, dn) ≤ nε2n, (52)

Πn(Θ\Θn)

Πn(B∗
n(θ0, εn; k))

= o(e−2nε2n), (53)

Πn(θ ∈ Θn : jεn ≤ dn(θ, θ0) ≤ 2jεn)

Πn(B∗
n(θ0, εn; k))

≤ enε
2
nj

2/4. (54)

Then P
(n)
θ Πn(θ : dn(θ, θ0) ≥ Mnεn|X(n)) → 0 for every Mn → ∞.

Lemma C.2 (Shen and Ghosal (2012)) For any 1 ≤ p ≤ ∞, we have,

∥θT
1 ξ − θT

2 ξ∥r ≤
J∑

j=1

|θ1j − θ2j | max
1≤j≤J

∥ξj∥p ≤
√
J∥θ1 − θ2∥2Cp,J , (55)

where,

Cp,J ≡ max
1≤j≤J

∥ξj∥p ≍

{
1 p = 2
√
J p = ∞

Theorem C.3 (Shen and Ghosal (2012)) Let εn ≥ ε̄n be two sequence of positive numbers

satisfying εn → 0 and nε̄2n → ∞ as n → ∞. For a function w0, suppose that there exist

sequences of positive numbers Jn, J̄n and Mn, a strictly decreasing, nonnegative function e(·)
and a θ0,j ∈ Rj for any j ∈ N, such that the following conditions hold for some positive

constants a1, a
′
1, a2:

∥θ0,j∥ ≤ H, d2(w0,θ
T
0,jξ) ≤ e(j), (56)

Jn{log Jn + log a(Jn) + logMn + log(1/εn)} ≤ nε2n, (57)

e(J̄n) ≤ ε̄n, log{1/B(J̄n)}+ c2J̄n log(2b(J̄n)/ε̄n) ≤ a2nε̄
2
n, (58)

A(Jn) ≤ a1 exp{−(a2 + 4)nε̄2n}, Jn exp{−CM t3
n } ≤ a′1 exp{−(a2 + 4)nε̄2n}. (59)

Let W = {w = θT ξ : θ ∈ Rj , j ≤ Jn, ∥θ∥∞ ≤ Mn}. Then the following assertions hold:

logD(εn,WJn,Mn , d2) ≤ nε2n, (60)

Π(W ̸∈ WJn,Mn) ≤ (a1 + a′1) exp{−(a2 + 4)nε̄2n}, (61)

− log Π{w = θT ξ : d2(w0, w) ≤ ε̄n} ≤ a2nε̄
2
n. (62)

Theorem C.4 (Shen and Ghosal (2012)) Suppose that we have independent observations Xi

following some distributions with densities pi,w : i = 1, . . . , n respectively. Let w0 ∈ Cα(Ω0) be

the true value of w. let r be either 2 or ∞. Let εn ≥ ε̄n be two sequences of positive numbers

satisfying εn → 0 and nε̄2n → ∞ as n → ∞. Assume that there exists a θ0 ∈ RJ , ∥θ0∥ ≤ H

and some positive constants C1, C2 satisfying,

∥w0 − θT
0 ξ∥r ≤ C1J

α(log J)s, s ≥ 0, (63)

∥θT
1 ξ − θT

2 ξ∥r ≤ C2J
K0∥θ1 − θ2∥2, K0 ≥ 0, for any θ1,θ2 ∈ RJ . (64)
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Assume that the prior on J and θ satisfy some conditions (A2) and (A3) in their paper. Let

Jn, J̄n ≥ 2 and Mn be sequences of positive numbers such that the following hold:

Jn log
t1 Jn ≥ 6nε̄2n, log Jn + 6nε2n ≤ c1M

t3
n , (65)

Jn{(K0 + 1) log Jn + logMn + log(1/εn) + log n} ≤ nε2n, (66)

J̄−α
n (log J̄n)

s ≤ ε̄n, J̄n{logt2 J̄n + c2K0 log(J̄n) + c2 log(1/ε̄n)} ≤ 2nε̄2n, (67)

ρn(w1, w2) . nC3∥w1 − w2∥r for any w1, w2 ∈ WJn,Mn and some constant C3 > 0, (68)

max
1≤i≤n

{K(pi,w0 , pi,w), V (pi,w0 , pi,w) } . ∥w1 − w2∥r, (69)

provided ∥w1−w2∥r is sufficiently small. Then the posterior of w converges around w0 at the

rate εn with respect to ρn.

Theorem C.5 (de Jonge and van Zanten (2012)) Suppose that for every m ≥ 1,

C1 exp(−D1m
d logtm) ≤ P (M = m) ≤ C2 exp(−D2m

d logtm), (70)

for some constants C1, C2, D1, D2, t ≥ 0. If w0 ∈ Cr([0, 1]d) for some integer r ≤ q, then there

exists for every constant C > 0, a constant D > 0 and measurable subsets Un of C([0, 1]d)

such that,

P (∥W − w0∥∞ ≤ 2εn) ≥ exp (−nε2n), (71)

P (W ̸∈ Un) ≤ exp (−Cnε2n), (72)

logN(2ε̄n, Un, ∥ · ∥∞) ≤ Dnε̄2n, (73)

are satisfied for sufficiently large n, and for εn and ε̄n given by,

εn = c(n/ log1∨t n)−
r

d+2r ε̄n = n− r
d+2r (log n)

(1∨t)r
d+2r

+( 1−t
2

)+, (74)

for c > 0 a large enough constant.
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