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Abstract: Nowadays the Social Networks are experiencing a 
growing importance. The reason of this is that they enable the 
information exchange among people, meeting people in the 
same field of work or establishing collaborations with other 
research groups. In order to manage social networks and to find 
people inside them, they are usually represented as graphs with 
persons as nodes and relationships between them as edges. 
Once this is done, establishing contact with anyone involves 
searching the chain of people to reach him/her, that is, the search of 
the path inside the graph which joins two nodes. In this paper, a 
new algorithm based on nature is proposed to realize this search: 
SoS-ACO (Sense of Smell - Ant Colony Optimization). This 
algorithm improves the classical ACO algorithm when it is 
applied in huge graphs. 
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I.   INTRODUCTION

One  of  the  most  important  applications  that  exist 
nowadays is the Social Networks. This is due to the fact that 
they are used by the great majority of the people around the 
globe  to  contact  with  other  people  and  to  interchange 
information with them. 
These applications could be very useful for researchers to 

establish  collaborations  between  different  groups,  or  to 
contact with people interested in the same knowledge area. 
To realize these connections it is very important to follow 

a chain of people with any kind of relation between them to 
ensure that the friend request is not rejected by the person of 
interest. 
In  order  to  deal  with  this  type  of  information  and  to 

search the way to reach a person, from another one, inside a 
social network, an efficient way to represent the information 
is  as  a  graph  such  that  persons  are  nodes  and  the 
relationships between them are links in the graph. Examples 
of  this  transformation  and  its  problems  can  be  found  in  [1] 
where  nodes  represent  students  in  Club  Nexus  (a  social 
network  of  the  Stanford  University)  and  links  represent  the 
relation  between  students  (to  do  that,  different  factors  must 
be considered such as gender or class year of the student). 
Once  this  is  done,  to  search  a  person  involves  to  search 

the path between two nodes of the graph, that is, to apply a 
search path algorithm in it. 
 The main problem of this search is that, despite the high 

amount  of  algorithm  to  realize  this  function,  there  is  not 

anyone able to handle the size of graphs obtained from social 
networks using its topology.  
Examples  of  this  can  be  found  in  [22]  which  proposal 

shows  a  search  path  algorithm  which  works  efficiently  on 
small graphs (graphs with thousands of nodes). The problem 
of  it  is  that  success  rate  diminishes  when  the  number  of 
nodes increases. This working way can be found also in [15] 
which searches paths on graphs on the order of 213 nodes. 
To  fill  the  gap  in  the  literature  which  represents  the 

search  of  paths  in  social  networks,  in  this  paper  a  new 
algorithm is going to be presented. 
The  base  of  the  proposed  algorithm  is  the  Ant  Colony 

Optimization algorithm (ACO [11, 12, 13]). The selection of 
this algorithm is due to the structure presented by the graphs 
resulting  of  the  transformation  of  the  Social  Networks: 
graphs  with  a  high  degree  of  clustering  and  with  a  small 
number of steps between any nodes. 
Although  ACO  is  normally  applied  to  graphs  with 

hundreds  or  thousands  of  nodes,  under  the  conditions 
previously mentioned it can work fine if some modifications 
are introduced to deal with the number of nodes. 
These modifications are based on the animal behavioral. 

They use their sense of smell to localize food source and to 
avoid  searching  in  incorrect  areas  of  the  savanna,  for 
example.  This  sense  is  going  to  be  applied  to  ants  to  avoid 
invalid search reducing the number of steps that they have to 
do  to  reach  the  destination  avoiding  that  ants  get  lost  and 
reducing the time to give a path. 
To  explain  the  new  algorithm,  the  paper  is  organized  as 

follows:  In  Section  2  is  going  to  be  shown  some  relevant 
works in the area of path searches. In Section 3 the proposal 
is explained. To test the proposed algorithm, in Section 4 is 
going  to  be  shown  some  experiments  on  real  social 
networks.  And  finally,  Section  5  offers  conclusions  and 
future works. 

II.  RELATED WORKS
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The search of paths in graphs is not new, but the problem 
is that the size of the graphs is each time bigger and bigger 
and the answer to the request of paths must be fast. 
Out  of  the  domain  of  social  networks  there  are  a  lot  of 

works  trying  to  search  paths  in  large  graphs  consuming  a 
small period of time. 
To do that, all they realize some type of preprocessing to 

change the  structure of  the  graph  and  to reduce  the  number 
of  nodes/links  over  which  the  search  has  to  be  done.  After 



that,  they  apply  classical  algorithm  (A-Star,  Dijkstra,  etc.) 
with  some  modifications  to  handle  the  new  structure  of  the 
graph (hierarchy of subsets of the main graph, a fragmented 
graph, a shortest path tree, clusters, etc). 
Different  examples  are  explained  in  the  following 

paragraphs  attending  to  the  type  of  storage:  main  memory 
and secondary memory. 
With  respect  to  the  first  type  of  storage  mentioned 

before,  [4,  9]  organize  the  graph  using  a  hierarchy,  and  [8] 
creates  sub-graphs  dividing  the  main  graph  and  taking  into 
account some edges of it which satisfy a fixed characteristic. 
Usually,  this  preprocessing  takes  a  lot  of  time  because  the 
number of nodes has to be highly reduced to can be storage 
in main memory. 
In the latter type of storage can be found [5, 6], where a 

file system is used. In this case, in the preprocessing phase, 
the graph is divided in fragments and the paths between the 
nodes  in  the  frontier  of  those  fragments  are  calculated  and 
stored.  In [23, 24],  graphs  are  organized  into  tree  structures 
and  saved  in  databases.  The  storage  in  a  database,  when  a 
secondary  memory  is  used,  is  the  most  typical  practice 
because databases are prepared to handle massive amount of 
data (More examples of these algorithms can be found in the 
survey  [26]).  By  that  reason,  the  preprocessing  in  this  case 
can take a smaller period of time than before.  
As  all  these  methods  require  a  large  amount  of  time  to 

complete  the  pre-processing,  it  is  very  difficult  to  include 
changes in it as result of the study of the realized queries and 
their  results.  That  is,  these  proposals  are  not  adaptable  to 
modifications to the pre-processing factors.  
Taking  into  account  the  topology  of  the  graphs  which 

represent  social  networks,  it  satisfies  a  very  interesting 
characteristic: the number of steps to reach the destination is 
low, and there is a high clustering degree. That is, the graph 
follows a small-world topology [19, 25]. 
Considering  the  topology  and  the  adaptability 

characteristic,  there  is  an  algorithm  that  could  be  highly 
recommended:  the  Ant  Colony  Optimization  Algorithm 
(ACO  algorithm  [11,  12,  13]).  It  has  been  used  in  a  lot  of 
applications (ACO to solve the problem of job scheduling in 
grid  computing  [7],  to  create  personalized  guides  within 
museums  using  mobile  devices  [16],  to  determine  medical 
diagnoses [20], etc.), but normally  with small graphs (in [2] 
they  use  huge  graphs  but  they  have  the  limitations  of  main 
memory storage). 
In  this  paper  is  going  to  be  shown  some  different 

experiments of a  new  version  of  ACO  algorithm  previously 
presented  in  [21].  The  new  version  is  based  on  a  modified 
ACO in which ants have the ability of detecting the odor of 
the  food.  With  this  modification,  that  is  going  to  be 
explained  in  detail  in  the  next  section,  the  number  of  links 
that ants have to use to reach the destination decreases. 
The  only  problem  that  can  be  found  in  ACO  is  that  it 

does  not  give  the  shortest  path,  but  this  is  not  a  problem  in 
the domain of social network, the only restriction is to find a 
path  with  quality  within  a  certain  range  (it  cannot  be  very 
different of  the optimum  one  because as  longer  the path  is, 
lower  is  the  probability  to  reach  the  person  destination, 

because  the  probability  of  a  negative  answer  to  the  friend 
request of some person in the chain increases). 

III.  PROPOSAL

Once discussed the different solutions to search paths in 
huge  graphs,  in  this  section  it  is  going  to  be  presented  the 
proposed  algorithm  to  search  paths  between  nodes  in  social 
networks, that is, to search relationships between persons. 
This  version  of  ACO  has  the  ability  of  finding  the 

destination  node  using  helps  in  the  graphs.  These  helps  are 
nodes in the graphs which are commonly used to reach other 
nodes because  they  represent persons  with  a  high  centrality 
degree, that is, persons with a lot of friends. This means that 
there is a high probability of success to reach the destination 
if that path goes through those nodes. 
 To detect those nodes, the algorithm is going to deposit 

in them "food", and it is going to give to each ant the sense 
of smell to detect the odor of those foods. 
With  this  fact,  and  because  the  diffusion  of  the  odor  of 

the food is going to be simulated, ants are able to find these 
important  persons  in  the  graph  easily,  because  it  is  not 
necessary  to  find  the  food,  to  find  the  trail  of  food  odor  is 
enough to know how to reach the food. 
As there is a high probability that a lot of ants reach the 

foods, ones can help others to find the destination node using 
the trails of pheromones typical of ants. 
That is, the "Food nodes" act as a meeting point for ants 

to make easy to complete the path from the start node to the 
end node. 
An  example  of  the  way  in  which  the  food  is  used  is 

shown in Figure 1. In that case, there is only one food. The 
odor  is  diffused  and  reaches  to  some  people  of  the  graph. 
When a path is requested between the "Start Node" and the 
"End Node", ants search their destination or a food odor. In 
the case of Figure 1, they find the odor and use it to reach the 
destination.  

Figure 1.  Example of "food" use. 
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After this explanation, a more formal one is going to be 
shown  in  the  following  subsections  (to  see  the  proposed 
algorithm in more detail [21] can be consulted). 



A.  Formalization of the problem 

Given a particular social network, it is represented by a 
connected graph that it is defined as G(N, L, W):N = {ni} is 
a set of nodes; L⊆N×N is a set of edges; and W is a function 
which  gives  a  positive  value  for  each  edge,  such  that  for 
every edge lij = (ni, nj) L, there is a value wij W.
Over G is going to be carried out some request of paths. 

These paths between any two nodes of G must be solved in 
a time less than a value fixed by the user (tthreshold). 

B. Selection of food nodes 

The  first  step  in  the  proposed  algorithm  is  to  select  the 
nodes  of  the  graph  in  which  the  "Food"  is  going  to  be 
deposited.  That  is,  the  selection  of  the  nodes  which  are 
going to help ants to reach the destination. 
To do this, it is going to be selected the centroids of the 

graph,  that  is,  the  nodes  with  a  high  degree  of  centrality 
(e.g.,  celebrities  or  persons  with  a  lot  of  friends  in  the 
graph). 
The resulting set of special nodes is going to be inside of 

a subset called F={fi}⊆N. Each fi is a food node, and by this 
reason  it  has  an  amount  of  odor,  specifically  the  biggest 
amount  of  odor  in  the  graph  is  in  each fi.  This  amount  of 
odor is going to be called m.
As  can  be  observed,  this  characteristic  is  only  of  the 

nodes, not of the edges. 

C.  Diffusion of food odor 

In order to represent that the odor of a food is not only in 
the  food  and  that  it  is  diffused  by  the  air  in  a  limited  area 
(the odor decreases the farther the place is from the source), 
the next step in SoS-ACO is to generate this diffusion in the 
graph. 
To do that, an iterative process is going to be followed, 

such  that  the  odor  of  each  node  is  equal  to  the  odor  of  the 
previous node minus a factor proportional to the cost of the 
link  which  joins  them.  The  start  node  of  the  diffusion  is 
each fi.
The  formula  followed  to  do  that  is O(ni)=O(nj)-k·wij,

where ni is the node to which the food odor is diffused from 
node nj,O(ni)  and O(nj)  represent  the  odor  in ni  and nj,wij
represents the cost of the edge which joins both nodes, and 
the factor k determines the weight of each edge’s cost in the 
decrease. 
The odor is set to all nodes which obtain an odor bigger 

or  equal  than  a  given  threshold u,  and  when  there  are  not 
more  nodes  with  possibility  to  satisfy  this  condition,  this 
second step finishes. 
After this process, each fihas an area of odor around it 

which is called si, where each si⊆N and S = {si}.
If after the diffusion, some studies show that a food node 

is not necessary, or that other node has to be included in F,
the  only  task  that  has  to  be  done  is  to  delete  the 
corresponding si in the  first case, or to create a new one in 
the second case. 
Asu determine the size of each si, it is very important to 

select  a  good  value  for  it,  because  its  value  determines  the 
time to create the areas, and by this reason the adaptability 
of the algorithm. 

D. Path searches: modified ACO 

The last phase of the proposed algorithm (SoS-ACO) is 
the  search  of  paths  in  the  graph.  To  do  this,  SoS-ACO  is 
based in the ACO algorithm.  
The  modifications  introduced  to  classic  ACO  are  those 

which avoid that ants get lost (because the  high  number of 
nodes  in  social  networks  and,  by  this  reason,  the  high 
amount of possibilities in each step) and that make possible 
the reduction of the answer time. This is done incorporating 
the different areas of odor around each food node. 
Before the search process is explained, it is important to 

clarify  the  differences  between  pheromone  and  food  odor. 
The first difference is that pheromone is deposited in edges 
and food odor in nodes. The second, and most important, is 
that pheromone comes from ants and food odor comes from 
food  nodes  (is  a  characteristic  of  the  graph)  although  uses 
ants  to  diffuse  the  odor  beyond  the  limits  imposed  by  the 
value of u.
Once this is clear, the algorithm has, for each request of 

path, two phases which are going to be described now: 
Initialization phase:
− The pheromone of each lij is reset to a fix value. 
− Each ant has a tabu list to avoid that it repeats nodes 
in its path. In this phase, the tabu list is emptied. 

− Ants  are  divided  in  two  groups:  The  first  group  has 
the  nest  in  the  start  node  of  the  path  and  the 
destination in the end node of the path; and the other 
has the nest in the end node and the destination in the 
start node of the path. If one of these end nodes of the 
path  pertains  to F,  all  ants  are  situated  on  the 
opposing non-Fnode to search for the corresponding 
fi.

Path search phase:
Each  ant  starts  its  search  of  the  destination  node  while 

the  execution  time  does  not  exceed tthreshold,  and  while  it 
does not find its end node. 
In  each  movement  of  each  ant,  its  tabu  list  is  used  to 

guarantee that the node selected has not been visited before. 
The  only  exception  to  this  is  the  case  in  which  all  nodes 
reachable from the actual node have already been visited. In 
this case the ant selects one between all the reachable nodes. 
The  selection  between  the  set  of  valid  nodes  (after 

applied  the  tabu  list  condition)  for  the  next  step  is  done 
calculating the probability shown in Formula 1, where: ni is 
the  actual  node, NodesR are  the  visitable  nodes  after  the 
application of the tabu list rule, nj are all nodes with index in 
NodesR, and ijis the amount of pheromone in the edge lij.

p(ni, nj) = τij / (Σk=NodesR (τik)) (1) 

When  a  food  odor  area  (si
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)  is  found,  the  discoverer  ant 
follows the increasing trail of odor until reach the food node 
of  the  area.  When  this  is  done,  the  ant  tests  if  another  ant, 
which  follows  the  opposite  direction,  found  that  food 
before.  In  the  affirmative  case,  ant  joins  the  part  of  path 
found  by  it  (the  path  from  its  start  node  to  the  food  node) 
and  the  part  of  path  found  by  the  other  ant  (path  from  the 
food node to its end node). 



A  verification  has  to  be  done  each  time  that  a  path 
between an end  node of the  path and a  food node is  found 
with the objective of determining if it has to be stored. This 
storage  is  realized  if  its  length  is  shorter  than  the  previous 
stored  path  with  the  same  characteristics  of  food  node  and 
end  node  or  if  there  is  not  any  path  stored  with  those 
characteristics. 
After this process, the ant continues with its search from 

the node with food odor found (not from the food node). 
With  respect  to  the  amount  of  pheromone  deposited  in 

each  edge,  it  is  updated  each  time  that  an  ant  founds  a 
complete path (a path between the start node of the path and 
the end node of the path). This update follows the Formula 
2, where ij(t) is the pheromone for the edge lij in time t, is
the  dissipation  rate  of  the  pheromone  (a  value  between  0 
and 1) and length is the length of the found path.  

τij (t) = τij (t - 1)·(1 - ρ) + constant/length, nj in path
 τij (t) = τij (t - 1)·(1 - ρ), nj not in path

(2)

After the search finishes, a new diffusion of odor is done 
if  there  are  paths  stored  for  the  food  nodes.  The  diffusion 
starts by the first node with odor in the path and follows the 
opposite  direction  of  the  path,  that  is,  beginning  from  the 
node with food odor and arriving at the node from which the 
ant  originally  departed.  The  food odor  decreases  according 
to  the  same  formula  described  sub-section C,  that  is, 
O(ni)=O(nj)-k·wij.
The  only  difference  between  this  diffusion  of  odor  and 

the one described in sub-section C is that, in this particular 
case,  the  food  odor  can  be  smaller  than u.  Rather,  it  is 
necessary that its value simply be greater than zero. 
It is important to clarify that if during any of the previous 

phases any change wants to be introduced in F or in S, it can 
be realized without affecting the search of paths, because the 
graph is not restructured, odor is only a help to ants which is 
applied over the graph without change it.  

IV.  EVALUATION OF THE ALGORITHM

After  the  explanation  of  the  proposed  algorithm  (SoS-
ACO),  in  this  section  is  going  to  be  realized  some 
experiments to show its proper functioning. 
In  order  to  do  that  some  path  searches  are  going  to  be 

realized  on  a  real  social  network  graph,  and  its  results  in 
answer  time  and  cost  of  the  obtained  path  are  going  to  be 
compared  with  the  results  of  other  algorithms  applied  over 
the same graph and with the same searches. 
Other thing that wants to be studied is the time required 

to  diffuse  the  food  odor  and  how  the  different  values  of u
(threshold  for  food  odor  intensity)  affect  to  the  previously 
mentioned parameters.  
The selection of the algorithms to compare with is based 

in the fact that there is not in the state of the art an algorithm 
centered in the goals of this work, and by this reason it was 
decided to select well-known and disseminated algorithms: 
− Classic ACO algorithm [13].  As  the  base  of  SoS-
ACO is the classical ACO algorithm, could be a good 

idea  to  compare  the  results  of  the  base  with  the 
proposal to show the improvements. 

− Dijkstra’s algorithm.  As  it  has  been  mentioned 
before,  the  proposed  ACO  does  not  obtain  the 
optimum  path.  By  this  reason,  this  algorithm  can  be 
used to determine what is the difference between the 
quality  of  the  obtained  paths  with  the  proposed 
algorithm  and  the  optimum  path  (the  obtained  with 
Dijkstra).  The  other  reason  is  that  this  algorithm  is 
implemented  in  all  the  Data  Base  Management 
System  (DBMS)  as  the  algorithm  to  search  paths  in 
graphs.    

With  respect  to  the  graph  over  which  the  requests  of 
paths are going to be realized, it is a graph which represents 
the  social  network  Slashdot  in  February  of  2009  [18].  The 
selection  of  a  social  network  is  because  this  algorithm  has 
been  designed  to  work  in  huge  graphs  with  small-world 
topology  (low  number  of  edges  between  any  two  nodes  of 
the graph and a high clustering degree). 
The number of nodes of this graph is equal to 82,168 and 

the number of edges is equal to 948,464. 
The  final  thing  to  completely  describe  the  testing 

scenario  is  to  explain  the  type  of  search  paths  requests  and 
the amount of them. 
A  total  number  of  10  queries  with  1,000  services  each 

one  are  going  to  be  executed  sequentially.  By  service  it  is 
going  to  be  understood  a  request  for  a  path  search  between 
two  different  nodes  of  the  graph  selected  randomly  among 
all  those  appearing  in  the  graph.  In  these  experiments  only 
the first solution to each request is going to be selected, and 
in  the  moment  in  which  the  solution  is  obtained  the  search 
path process finishes. 
Once  the  scenario  has  been  described,  it  is  important  to 

fix  some  parameters  to  ACO  and  SoS-ACO.  These  are 
shown  in  Table  I  and  the  explication  of  each  value  is  the 
following: tthreshold  is  fixed  to  the  time  required  by  Dijkstra 
(more or less) to give an answer (in this way the ants never 
take more time than the time required to obtain the optimum 
solution), number of ants is equal to 500 because this number 
gives the best results in the test of scalability showed in [21], 
pheromone  evaporation  rate  is  selected  to  not  have  the 
problem  of  stagnation  in  local  minimums, m  to  permit  that 
all  the  nodes  in  the  graph  can  have  food  odor,  and k  to 
decrease the amount of odor with a value equal to the cost of 
the edges. 

TABLE I.     ALGORITHM PARAMETERS.

Parameter    Value    

tthreshold 600 sec 

#ants    500

0.6

m    1,000,000

k    100%

With  respect  to  the  number  of  foods  which  is  used  in 
SoS-ACO in this experiment, it is going to be equal to one, 
that  is,  there  is  only  one  food  node  (F = {f1}
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),  the  node 
representing  the  person  with  the  greatest  number  of  edges 



within  the  graph,  and  one  food  odor  area  (S = {s1})  in  the 
graph. 
To finish the description of those things that have effect 

in the way in which the algorithm works, it is important to 
say that the food odor in the graph is restarted for every new 
query,  and  that  the  pheromone  trails  in  the  graph  are 
restarted at the beginning of every service.  
Once  the  scenario  and  parameters  have  been  fully 

described,  the  results  of  the  experiments  are  going  to  be 
studied. 
The first phase is to study the influence of the different u

values in the time required to diffuse the  food odor. To do 
this,  two  values  have  been  selected: u = 999,999  and u = 
999,998.  After  the  selection  of  the  values  of  the  food  odor 
threshold, the diffusion explained in the sub-section C of the 
previous  section  is  executed.  The  results  of  each  diffusion 
can  be  seen  in  Table  II.  They  show  that  with  the  smaller 
value  of u,  the  food  odor  reaches  the  37%  of  the  nodes  in 
the  graph,  and  with  the  bigger  one,  the  percentage  of 
reached nodes decreases to 3%. With respect to the time, it 
is bigger for the case of 37% of nodes.

TABLE II.     AMOUNT OF FOOD ODOR DIFFUSED THROUGHOUT THE 
GRAPH.

u Nodes with food odor (%)     Time (sec) 

999,999 3 17.4

999,998 37 234.1

The main conclusion extracted from these results is that 
the kind of preprocessing which uses SoS-ACO in any case 
is  bigger  than  the  time  required  for  the  algorithms  in  the 
state of the art (which in some cases is equal to days). 
With  respect  to  the  performance  comparison  of  the 

proposed algorithm (with 3% initial diffusion and with 37% 
initial  diffusion)  with  Dijkstra  and  classic  ACO,  it  is 
represented in Table III and IV. 
Table  III  shows  the  information  of  the  cost  of  the 

obtained  paths  for  each  algorithm.  It  can  be  observed  that 
the proposed algorithm’s cost is very similar to the optimum 
obtained  by  Dijkstra,  and  that  the  existent  difference  is 
smaller for the proposed algorithm with smaller value of u.

TABLE III.    COSTS OF FIRST PATH OBTAINED FOR EACH SERVICE.

Dijkstra  ACO  
Proposed 
ACO 3% 

Proposed 
ACO 37%

Mean 4,51    387,69    9,43     6,40 

Standard Deviation 0,25     76,76    0,86     0,21 

Median 4,50    385,74    9,35     6,40 

Another conclusion extracted from Table III is that SoS-
ACO  improves  the  performance  of  classic  ACO.  The 
difference in cost between them is large despite the fact that 
the topology of the graph could be considered adequate for 
the  classic  ACO  (a  low  number  of  edges  between  any  two 
nodes of the graph). 
With  respect  to  the  time  required  to  give  the  first 

solution, the results are shown in Table IV. 
It makes clear that the proposed algorithm is superior to 

the others. With respect to the two versions of the proposed 

ACO, time is better in the case of 37% than in the other, but 
the difference is not significant.  
Concluding  this  section,  after  studying  the  different 

experimental  results,  can  be  said  that  SoS-ACO  presents  a 
good  performance,  and  that  clearly  improves  the  classic 
ACO algorithm. 

TABLE IV.    RESPONSE TIMES (SEC) OF FIRST PATH OBTAINED FOR 
EACH SERVICE.

Dijkstra   ACO   
Proposed 
ACO 3%

Proposed 
ACO 37%

Mean 563,39    254,21    1,33     0,59 

Standard Deviation 9,69    53,56     0,49    0,14

Median 562,33    254,51    1,22     0,57 

V.  CONCLUSIONS AND FUTURE WORKS

In  this  paper,  a  new  version  of  ACO  algorithm,  SoS-
ACO, has been proposed which is able to search paths in the 
graphs  of  Social  Networks:  graphs  with  a  huge  number  of 
nodes and edges,  with a  high clustering degree, and  with a 
low  number  of  steps  to  reach  the  destination  node  from  a 
start node. 
To do this, two new concepts are introduced: the "Food" 

(characteristic associated to the nodes of the graph with high 
centrality)  and  "Food  Odor"  (used  to  create  areas  of  odor 
around  the  nodes  with  food  and  to  make  finding  them 
easier). 
With  these  two  concepts,  ants  of  the  ACO  algorithm 

have  help  to  find  a  path  between  the  start  node  and  the 
destination  node  because  they  use  food  nodes  as  meeting 
points  of  ants  which  search  the  start  node  of  the  path  and 
those  searching  the  end  node  of  the  path.  Such  that,  after 
finding  the  meeting  point,  the  pheromone  trail,  typical  of 
ACO  algorithms,  can  be  used  to  complete  the  global  path 
(global path = path from start node to food node + path from 
food node to end node). 
Also,  the  diffusion  of  the  food  odor  decreases  the 

number  of  nodes  that  has  to  be  explored  to  find  the  food 
node. 
To  test  the  way  in  which  this  algorithm  works,  some 

experiments  have  been  realized  over  a  real  social  network 
graph.  The  results  of  these  experiments  are  that  the 
proposed  algorithm  gives  paths  with  a  quality  very  similar 
to the optimum one, and using a small period of time. That 
is,  SoS-ACO  is  a  good  algorithm  for  the  search  of 
relationships between members of a social network. 
With respect to the future works, it would be particularly 

interesting  to  see  how  the  cost  changes  when  instead  of 
taking the first path, it is taken after a period of time during 
which ants are running.  Additionally,  more food nodes can 
be  included  and  the  relation  between  the  number  of  them 
and the quality of the solution (in time and cost of the path) 
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can be studied. 
Finally, there is an important conclusion which is result 

of  the  low  time  required  to  diffuse  the  odor,  the  fact  that 
odor  is  only  a  help  and  the  own  characteristics  of  ACO: 
SoS-ACO  could  be  used  taking  into  account  the  dynamic 
characteristics  which  are  typical  in  social  networks  (users 



(nodes)  and  relationships  (links)  between  old  and/or  new 
users that continuously appear/disappear). 
Due  to  this  reason,  in  future  works,  experiments  over 

dynamic graphs want to be realized to test if the new version 
of  ACO  can  apply  the  well  known  good  performance  of 
ACO in dynamic environments (examples could be seen in 
ad-hoc networks [10], in travelling salesman problem [3], in 
electrical distribution systems management problem [14] or 
in dynamic vehicle routing [17]) to huge graphs. 
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