
© 2009 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This document is published in:

Computational Aspects of Social Networks (CASoN) 2011 pp.60-65

Institutional Repository

DOI: 10.1109/CASON.2011.6085919

http://dx.doi.org/10.1109/CASON.2011.6085919
http://e-archivo.uc3m.es/

 A Bio-Inspired Algorithm for Searching Relationships in Social Networks

Jessica Rivero, Dolores Cuadra, Francisco Javier Calle, Pedro Isasi
Computer Science Department
Carlos III University of Madrid

Madrid, Spain
{jrivero, dcuadra, fcalle}@inf.uc3m.es, Isasi@ia.uc3m.es

Abstract: Nowadays the Social Networks are experiencing a
growing importance. The reason of this is that they enable the
information exchange among people, meeting people in the
same field of work or establishing collaborations with other
research groups. In order to manage social networks and to find
people inside them, they are usually represented as graphs with
persons as nodes and relationships between them as edges.
Once this is done, establishing contact with anyone involves
searching the chain of people to reach him/her, that is, the search of
the path inside the graph which joins two nodes. In this paper, a
new algorithm based on nature is proposed to realize this search:
SoS-ACO (Sense of Smell - Ant Colony Optimization). This
algorithm improves the classical ACO algorithm when it is
applied in huge graphs.

Keywords: Large graphs, Social Networks, ACO,
Dijkstra, Path search

I. INTRODUCTION

One of the most important applications that exist
nowadays is the Social Networks. This is due to the fact that
they are used by the great majority of the people around the
globe to contact with other people and to interchange
information with them.
These applications could be very useful for researchers to

establish collaborations between different groups, or to
contact with people interested in the same knowledge area.
To realize these connections it is very important to follow

a chain of people with any kind of relation between them to
ensure that the friend request is not rejected by the person of
interest.
In order to deal with this type of information and to

search the way to reach a person, from another one, inside a
social network, an efficient way to represent the information
is as a graph such that persons are nodes and the
relationships between them are links in the graph. Examples
of this transformation and its problems can be found in [1]
where nodes represent students in Club Nexus (a social
network of the Stanford University) and links represent the
relation between students (to do that, different factors must
be considered such as gender or class year of the student).
Once this is done, to search a person involves to search

the path between two nodes of the graph, that is, to apply a
search path algorithm in it.
 The main problem of this search is that, despite the high

amount of algorithm to realize this function, there is not

anyone able to handle the size of graphs obtained from social
networks using its topology.
Examples of this can be found in [22] which proposal

shows a search path algorithm which works efficiently on
small graphs (graphs with thousands of nodes). The problem
of it is that success rate diminishes when the number of
nodes increases. This working way can be found also in [15]
which searches paths on graphs on the order of 213 nodes.
To fill the gap in the literature which represents the

search of paths in social networks, in this paper a new
algorithm is going to be presented.
The base of the proposed algorithm is the Ant Colony

Optimization algorithm (ACO [11, 12, 13]). The selection of
this algorithm is due to the structure presented by the graphs
resulting of the transformation of the Social Networks:
graphs with a high degree of clustering and with a small
number of steps between any nodes.
Although ACO is normally applied to graphs with

hundreds or thousands of nodes, under the conditions
previously mentioned it can work fine if some modifications
are introduced to deal with the number of nodes.
These modifications are based on the animal behavioral.

They use their sense of smell to localize food source and to
avoid searching in incorrect areas of the savanna, for
example. This sense is going to be applied to ants to avoid
invalid search reducing the number of steps that they have to
do to reach the destination avoiding that ants get lost and
reducing the time to give a path.
To explain the new algorithm, the paper is organized as

follows: In Section 2 is going to be shown some relevant
works in the area of path searches. In Section 3 the proposal
is explained. To test the proposed algorithm, in Section 4 is
going to be shown some experiments on real social
networks. And finally, Section 5 offers conclusions and
future works.

II. RELATED WORKS

1

The search of paths in graphs is not new, but the problem
is that the size of the graphs is each time bigger and bigger
and the answer to the request of paths must be fast.
Out of the domain of social networks there are a lot of

works trying to search paths in large graphs consuming a
small period of time.
To do that, all they realize some type of preprocessing to

change the structure of the graph and to reduce the number
of nodes/links over which the search has to be done. After

that, they apply classical algorithm (A-Star, Dijkstra, etc.)
with some modifications to handle the new structure of the
graph (hierarchy of subsets of the main graph, a fragmented
graph, a shortest path tree, clusters, etc).
Different examples are explained in the following

paragraphs attending to the type of storage: main memory
and secondary memory.
With respect to the first type of storage mentioned

before, [4, 9] organize the graph using a hierarchy, and [8]
creates sub-graphs dividing the main graph and taking into
account some edges of it which satisfy a fixed characteristic.
Usually, this preprocessing takes a lot of time because the
number of nodes has to be highly reduced to can be storage
in main memory.
In the latter type of storage can be found [5, 6], where a

file system is used. In this case, in the preprocessing phase,
the graph is divided in fragments and the paths between the
nodes in the frontier of those fragments are calculated and
stored. In [23, 24], graphs are organized into tree structures
and saved in databases. The storage in a database, when a
secondary memory is used, is the most typical practice
because databases are prepared to handle massive amount of
data (More examples of these algorithms can be found in the
survey [26]). By that reason, the preprocessing in this case
can take a smaller period of time than before.
As all these methods require a large amount of time to

complete the pre-processing, it is very difficult to include
changes in it as result of the study of the realized queries and
their results. That is, these proposals are not adaptable to
modifications to the pre-processing factors.
Taking into account the topology of the graphs which

represent social networks, it satisfies a very interesting
characteristic: the number of steps to reach the destination is
low, and there is a high clustering degree. That is, the graph
follows a small-world topology [19, 25].
Considering the topology and the adaptability

characteristic, there is an algorithm that could be highly
recommended: the Ant Colony Optimization Algorithm
(ACO algorithm [11, 12, 13]). It has been used in a lot of
applications (ACO to solve the problem of job scheduling in
grid computing [7], to create personalized guides within
museums using mobile devices [16], to determine medical
diagnoses [20], etc.), but normally with small graphs (in [2]
they use huge graphs but they have the limitations of main
memory storage).
In this paper is going to be shown some different

experiments of a new version of ACO algorithm previously
presented in [21]. The new version is based on a modified
ACO in which ants have the ability of detecting the odor of
the food. With this modification, that is going to be
explained in detail in the next section, the number of links
that ants have to use to reach the destination decreases.
The only problem that can be found in ACO is that it

does not give the shortest path, but this is not a problem in
the domain of social network, the only restriction is to find a
path with quality within a certain range (it cannot be very
different of the optimum one because as longer the path is,
lower is the probability to reach the person destination,

because the probability of a negative answer to the friend
request of some person in the chain increases).

III. PROPOSAL

Once discussed the different solutions to search paths in
huge graphs, in this section it is going to be presented the
proposed algorithm to search paths between nodes in social
networks, that is, to search relationships between persons.
This version of ACO has the ability of finding the

destination node using helps in the graphs. These helps are
nodes in the graphs which are commonly used to reach other
nodes because they represent persons with a high centrality
degree, that is, persons with a lot of friends. This means that
there is a high probability of success to reach the destination
if that path goes through those nodes.
 To detect those nodes, the algorithm is going to deposit

in them "food", and it is going to give to each ant the sense
of smell to detect the odor of those foods.
With this fact, and because the diffusion of the odor of

the food is going to be simulated, ants are able to find these
important persons in the graph easily, because it is not
necessary to find the food, to find the trail of food odor is
enough to know how to reach the food.
As there is a high probability that a lot of ants reach the

foods, ones can help others to find the destination node using
the trails of pheromones typical of ants.
That is, the "Food nodes" act as a meeting point for ants

to make easy to complete the path from the start node to the
end node.
An example of the way in which the food is used is

shown in Figure 1. In that case, there is only one food. The
odor is diffused and reaches to some people of the graph.
When a path is requested between the "Start Node" and the
"End Node", ants search their destination or a food odor. In
the case of Figure 1, they find the odor and use it to reach the
destination.

Figure 1. Example of "food" use.

2

After this explanation, a more formal one is going to be
shown in the following subsections (to see the proposed
algorithm in more detail [21] can be consulted).

A. Formalization of the problem

Given a particular social network, it is represented by a
connected graph that it is defined as G(N, L, W):N = {ni} is
a set of nodes; L⊆N×N is a set of edges; and W is a function
which gives a positive value for each edge, such that for
every edge lij = (ni, nj) L, there is a value wij W.
Over G is going to be carried out some request of paths.

These paths between any two nodes of G must be solved in
a time less than a value fixed by the user (tthreshold).

B. Selection of food nodes

The first step in the proposed algorithm is to select the
nodes of the graph in which the "Food" is going to be
deposited. That is, the selection of the nodes which are
going to help ants to reach the destination.
To do this, it is going to be selected the centroids of the

graph, that is, the nodes with a high degree of centrality
(e.g., celebrities or persons with a lot of friends in the
graph).
The resulting set of special nodes is going to be inside of

a subset called F={fi}⊆N. Each fi is a food node, and by this
reason it has an amount of odor, specifically the biggest
amount of odor in the graph is in each fi. This amount of
odor is going to be called m.
As can be observed, this characteristic is only of the

nodes, not of the edges.

C. Diffusion of food odor

In order to represent that the odor of a food is not only in
the food and that it is diffused by the air in a limited area
(the odor decreases the farther the place is from the source),
the next step in SoS-ACO is to generate this diffusion in the
graph.
To do that, an iterative process is going to be followed,

such that the odor of each node is equal to the odor of the
previous node minus a factor proportional to the cost of the
link which joins them. The start node of the diffusion is
each fi.
The formula followed to do that is O(ni)=O(nj)-k·wij,

where ni is the node to which the food odor is diffused from
node nj,O(ni) and O(nj) represent the odor in ni and nj,wij
represents the cost of the edge which joins both nodes, and
the factor k determines the weight of each edge’s cost in the
decrease.
The odor is set to all nodes which obtain an odor bigger

or equal than a given threshold u, and when there are not
more nodes with possibility to satisfy this condition, this
second step finishes.
After this process, each fihas an area of odor around it

which is called si, where each si⊆N and S = {si}.
If after the diffusion, some studies show that a food node

is not necessary, or that other node has to be included in F,
the only task that has to be done is to delete the
corresponding si in the first case, or to create a new one in
the second case.
Asu determine the size of each si, it is very important to

select a good value for it, because its value determines the
time to create the areas, and by this reason the adaptability
of the algorithm.

D. Path searches: modified ACO

The last phase of the proposed algorithm (SoS-ACO) is
the search of paths in the graph. To do this, SoS-ACO is
based in the ACO algorithm.
The modifications introduced to classic ACO are those

which avoid that ants get lost (because the high number of
nodes in social networks and, by this reason, the high
amount of possibilities in each step) and that make possible
the reduction of the answer time. This is done incorporating
the different areas of odor around each food node.
Before the search process is explained, it is important to

clarify the differences between pheromone and food odor.
The first difference is that pheromone is deposited in edges
and food odor in nodes. The second, and most important, is
that pheromone comes from ants and food odor comes from
food nodes (is a characteristic of the graph) although uses
ants to diffuse the odor beyond the limits imposed by the
value of u.
Once this is clear, the algorithm has, for each request of

path, two phases which are going to be described now:
Initialization phase:
− The pheromone of each lij is reset to a fix value.
− Each ant has a tabu list to avoid that it repeats nodes
in its path. In this phase, the tabu list is emptied.

− Ants are divided in two groups: The first group has
the nest in the start node of the path and the
destination in the end node of the path; and the other
has the nest in the end node and the destination in the
start node of the path. If one of these end nodes of the
path pertains to F, all ants are situated on the
opposing non-Fnode to search for the corresponding
fi.

Path search phase:
Each ant starts its search of the destination node while

the execution time does not exceed tthreshold, and while it
does not find its end node.
In each movement of each ant, its tabu list is used to

guarantee that the node selected has not been visited before.
The only exception to this is the case in which all nodes
reachable from the actual node have already been visited. In
this case the ant selects one between all the reachable nodes.
The selection between the set of valid nodes (after

applied the tabu list condition) for the next step is done
calculating the probability shown in Formula 1, where: ni is
the actual node, NodesR are the visitable nodes after the
application of the tabu list rule, nj are all nodes with index in
NodesR, and ijis the amount of pheromone in the edge lij.

p(ni, nj) = τij / (Σk=NodesR (τik)) (1)

When a food odor area (si

3

) is found, the discoverer ant
follows the increasing trail of odor until reach the food node
of the area. When this is done, the ant tests if another ant,
which follows the opposite direction, found that food
before. In the affirmative case, ant joins the part of path
found by it (the path from its start node to the food node)
and the part of path found by the other ant (path from the
food node to its end node).

A verification has to be done each time that a path
between an end node of the path and a food node is found
with the objective of determining if it has to be stored. This
storage is realized if its length is shorter than the previous
stored path with the same characteristics of food node and
end node or if there is not any path stored with those
characteristics.
After this process, the ant continues with its search from

the node with food odor found (not from the food node).
With respect to the amount of pheromone deposited in

each edge, it is updated each time that an ant founds a
complete path (a path between the start node of the path and
the end node of the path). This update follows the Formula
2, where ij(t) is the pheromone for the edge lij in time t, is
the dissipation rate of the pheromone (a value between 0
and 1) and length is the length of the found path.

τij (t) = τij (t - 1)·(1 - ρ) + constant/length, nj in path
 τij (t) = τij (t - 1)·(1 - ρ), nj not in path

(2)

After the search finishes, a new diffusion of odor is done
if there are paths stored for the food nodes. The diffusion
starts by the first node with odor in the path and follows the
opposite direction of the path, that is, beginning from the
node with food odor and arriving at the node from which the
ant originally departed. The food odor decreases according
to the same formula described sub-section C, that is,
O(ni)=O(nj)-k·wij.
The only difference between this diffusion of odor and

the one described in sub-section C is that, in this particular
case, the food odor can be smaller than u. Rather, it is
necessary that its value simply be greater than zero.
It is important to clarify that if during any of the previous

phases any change wants to be introduced in F or in S, it can
be realized without affecting the search of paths, because the
graph is not restructured, odor is only a help to ants which is
applied over the graph without change it.

IV. EVALUATION OF THE ALGORITHM

After the explanation of the proposed algorithm (SoS-
ACO), in this section is going to be realized some
experiments to show its proper functioning.
In order to do that some path searches are going to be

realized on a real social network graph, and its results in
answer time and cost of the obtained path are going to be
compared with the results of other algorithms applied over
the same graph and with the same searches.
Other thing that wants to be studied is the time required

to diffuse the food odor and how the different values of u
(threshold for food odor intensity) affect to the previously
mentioned parameters.
The selection of the algorithms to compare with is based

in the fact that there is not in the state of the art an algorithm
centered in the goals of this work, and by this reason it was
decided to select well-known and disseminated algorithms:
− Classic ACO algorithm [13]. As the base of SoS-
ACO is the classical ACO algorithm, could be a good

idea to compare the results of the base with the
proposal to show the improvements.

− Dijkstra’s algorithm. As it has been mentioned
before, the proposed ACO does not obtain the
optimum path. By this reason, this algorithm can be
used to determine what is the difference between the
quality of the obtained paths with the proposed
algorithm and the optimum path (the obtained with
Dijkstra). The other reason is that this algorithm is
implemented in all the Data Base Management
System (DBMS) as the algorithm to search paths in
graphs.

With respect to the graph over which the requests of
paths are going to be realized, it is a graph which represents
the social network Slashdot in February of 2009 [18]. The
selection of a social network is because this algorithm has
been designed to work in huge graphs with small-world
topology (low number of edges between any two nodes of
the graph and a high clustering degree).
The number of nodes of this graph is equal to 82,168 and

the number of edges is equal to 948,464.
The final thing to completely describe the testing

scenario is to explain the type of search paths requests and
the amount of them.
A total number of 10 queries with 1,000 services each

one are going to be executed sequentially. By service it is
going to be understood a request for a path search between
two different nodes of the graph selected randomly among
all those appearing in the graph. In these experiments only
the first solution to each request is going to be selected, and
in the moment in which the solution is obtained the search
path process finishes.
Once the scenario has been described, it is important to

fix some parameters to ACO and SoS-ACO. These are
shown in Table I and the explication of each value is the
following: tthreshold is fixed to the time required by Dijkstra
(more or less) to give an answer (in this way the ants never
take more time than the time required to obtain the optimum
solution), number of ants is equal to 500 because this number
gives the best results in the test of scalability showed in [21],
pheromone evaporation rate is selected to not have the
problem of stagnation in local minimums, m to permit that
all the nodes in the graph can have food odor, and k to
decrease the amount of odor with a value equal to the cost of
the edges.

TABLE I. ALGORITHM PARAMETERS.

Parameter Value

tthreshold 600 sec

#ants 500

0.6

m 1,000,000

k 100%

With respect to the number of foods which is used in
SoS-ACO in this experiment, it is going to be equal to one,
that is, there is only one food node (F = {f1}

4

), the node
representing the person with the greatest number of edges

within the graph, and one food odor area (S = {s1}) in the
graph.
To finish the description of those things that have effect

in the way in which the algorithm works, it is important to
say that the food odor in the graph is restarted for every new
query, and that the pheromone trails in the graph are
restarted at the beginning of every service.
Once the scenario and parameters have been fully

described, the results of the experiments are going to be
studied.
The first phase is to study the influence of the different u

values in the time required to diffuse the food odor. To do
this, two values have been selected: u = 999,999 and u =
999,998. After the selection of the values of the food odor
threshold, the diffusion explained in the sub-section C of the
previous section is executed. The results of each diffusion
can be seen in Table II. They show that with the smaller
value of u, the food odor reaches the 37% of the nodes in
the graph, and with the bigger one, the percentage of
reached nodes decreases to 3%. With respect to the time, it
is bigger for the case of 37% of nodes.

TABLE II. AMOUNT OF FOOD ODOR DIFFUSED THROUGHOUT THE
GRAPH.

u Nodes with food odor (%) Time (sec)

999,999 3 17.4

999,998 37 234.1

The main conclusion extracted from these results is that
the kind of preprocessing which uses SoS-ACO in any case
is bigger than the time required for the algorithms in the
state of the art (which in some cases is equal to days).
With respect to the performance comparison of the

proposed algorithm (with 3% initial diffusion and with 37%
initial diffusion) with Dijkstra and classic ACO, it is
represented in Table III and IV.
Table III shows the information of the cost of the

obtained paths for each algorithm. It can be observed that
the proposed algorithm’s cost is very similar to the optimum
obtained by Dijkstra, and that the existent difference is
smaller for the proposed algorithm with smaller value of u.

TABLE III. COSTS OF FIRST PATH OBTAINED FOR EACH SERVICE.

Dijkstra ACO
Proposed
ACO 3%

Proposed
ACO 37%

Mean 4,51 387,69 9,43 6,40

Standard Deviation 0,25 76,76 0,86 0,21

Median 4,50 385,74 9,35 6,40

Another conclusion extracted from Table III is that SoS-
ACO improves the performance of classic ACO. The
difference in cost between them is large despite the fact that
the topology of the graph could be considered adequate for
the classic ACO (a low number of edges between any two
nodes of the graph).
With respect to the time required to give the first

solution, the results are shown in Table IV.
It makes clear that the proposed algorithm is superior to

the others. With respect to the two versions of the proposed

ACO, time is better in the case of 37% than in the other, but
the difference is not significant.
Concluding this section, after studying the different

experimental results, can be said that SoS-ACO presents a
good performance, and that clearly improves the classic
ACO algorithm.

TABLE IV. RESPONSE TIMES (SEC) OF FIRST PATH OBTAINED FOR
EACH SERVICE.

Dijkstra ACO
Proposed
ACO 3%

Proposed
ACO 37%

Mean 563,39 254,21 1,33 0,59

Standard Deviation 9,69 53,56 0,49 0,14

Median 562,33 254,51 1,22 0,57

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a new version of ACO algorithm, SoS-
ACO, has been proposed which is able to search paths in the
graphs of Social Networks: graphs with a huge number of
nodes and edges, with a high clustering degree, and with a
low number of steps to reach the destination node from a
start node.
To do this, two new concepts are introduced: the "Food"

(characteristic associated to the nodes of the graph with high
centrality) and "Food Odor" (used to create areas of odor
around the nodes with food and to make finding them
easier).
With these two concepts, ants of the ACO algorithm

have help to find a path between the start node and the
destination node because they use food nodes as meeting
points of ants which search the start node of the path and
those searching the end node of the path. Such that, after
finding the meeting point, the pheromone trail, typical of
ACO algorithms, can be used to complete the global path
(global path = path from start node to food node + path from
food node to end node).
Also, the diffusion of the food odor decreases the

number of nodes that has to be explored to find the food
node.
To test the way in which this algorithm works, some

experiments have been realized over a real social network
graph. The results of these experiments are that the
proposed algorithm gives paths with a quality very similar
to the optimum one, and using a small period of time. That
is, SoS-ACO is a good algorithm for the search of
relationships between members of a social network.
With respect to the future works, it would be particularly

interesting to see how the cost changes when instead of
taking the first path, it is taken after a period of time during
which ants are running. Additionally, more food nodes can
be included and the relation between the number of them
and the quality of the solution (in time and cost of the path)

5

can be studied.
Finally, there is an important conclusion which is result

of the low time required to diffuse the odor, the fact that
odor is only a help and the own characteristics of ACO:
SoS-ACO could be used taking into account the dynamic
characteristics which are typical in social networks (users

(nodes) and relationships (links) between old and/or new
users that continuously appear/disappear).
Due to this reason, in future works, experiments over

dynamic graphs want to be realized to test if the new version
of ACO can apply the well known good performance of
ACO in dynamic environments (examples could be seen in
ad-hoc networks [10], in travelling salesman problem [3], in
electrical distribution systems management problem [14] or
in dynamic vehicle routing [17]) to huge graphs.

ACKNOWLEDGMENT

This study was funded through a competitive grant
awarded by the Spanish Ministry of Education and Science
for the THUBAN Project (TIN2008-02711) and through
MA2VICMR consortium (S2009/TIC-1542,
http://www.mavir.net), a network of excellence funded by
the Madrid Regional Government.

R

6

EFERENCES

[1] L. Adamic and E. Adar, “How to search a social network”, Social
Networks vol. 27 (3), pp. 187-203, 2005.

[2] E. Alba and F. Chicano, “ACOhg: Dealing with huge graph”. Proc.
Genetic and Evolutionary Computation Conference of 2007, pp. 10-
17, 2007

[3] D. Angus and T. Hendtlass, “Dynamic Ant Colony Optimisation”,
Applied Intelligence vol. 23 (1), pp. 33-38, 2005.

[4] H. Bast, S. Funke, D. Matijevic, P. Sanders and D. Schultes, “In
transit to constant shortest-path queries in road networks”, Proc.
Workshop on Algorithm Engineering and Experiments of 2007, 2007.

[5] E.P.F. Chan and H. Lim, “Optimization and evaluation of shortest
path queries”, VLDB Journal vol. 16 (3), pp. 343-369, 2007.

[6] E.P.F. Chan and J. Zhang, “A fast unified optimal route query
evaluation algorithm”, Proc. 16th ACM conference on Conference on
information and knowledge management, pp. 371-380, 2007.

[7] R-S Chang, J-S Chang and P-S Lin, “An ant algorithm for balanced
job scheduling in grids”. Future Generation Computer Systems vol.
25 (1), pp. 20-27, 2009.

[8] D. Delling, M. Holzer, K. Müller, F. Schulz F, D. Wagner, “High-
performance multi-level routing”, Series in Discrete Mathematics and
Theoretical Computer Science vol. 74, pp. 73-92, 2009.

[9] D. Delling, P. Sanders, D. Schultes and D. Wagner, “Highway
hierarchies star”, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book vol. 74, pp. 141-174,
2006.

[10] G. Di Caro, F. Ducatelle and L.M. Gambardella, “AntHocNet: An
adaptive nature-inspired algorithm for routing in mobile ad hoc
networks”, European Transactions on Telecommunications, Special
Issue on Self Organization in Mobile Networking vol. 16 (5), pp. 443-
455, 2005.

[11] M. Dorigo, “Optimization, learning and natural algorithms”, Doctoral
Thesis, Dipartamento di Elettronica, Politecnico di Milano, Italy,
1992.

[12] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey”,
TCS: Theoretical Computer Science vol. 344, pp. 243-278, 2005.

[13] M. Dorigo and T. Stützle, “Ant colony optimization”, The MIT Press,
2004.

[14] S. Favuzza, G. Graditi and E. Sanseverino, “Adaptive and Dynamic
Ant Colony Search Algorithm for Optimal Distribution Systems
Reinforcement Strategy”, Applied Intelligence vol. 24 (1), pp. 31-42,
2006.

[15] Guofu Feng, Chunhong Li, Qing Gu, Sanglu Lu and Daoxu Chen,
“SWS: Small World Based Search in Structured Peer-to-Peer
Systems”, Proc. International Conference on Grid and Cooperative
Computing Workshops of 2006, pp. 341-348, 2006.

[16] J. Jaén, J.A. Mocholí, A. Catalá and E. Navarro, “Digital ants as the
best cicerones for museum visitors”, Applied Soft Computing vol. 11
(1), pp. 111-119, 2011.

[17] C-Y Lee, Z-J Lee, S-W Lin and K-C Ying, “An enhanced ant colony
optimization (EACO) applied to capacitated vehicle routing
problem”, Applied Intelligence vol. 32 (1), pp. 88-95, 2010.

[18] J. Leskovec, “SNAP: Network datasets: Slashdot social network.
Stanford University”, http://snap.stanford.edu/data/soc-
Slashdot0902.html. Accessed 09 November 2010.

[19] M.E.J. Newman, “The structure and function of complex networks”,
SIAM Review vol. 45 (2), pp. 167-256, 2003.

[20] G.N. Ramos, Y. Hatakeyama, F. Dong and K. Hirota, “Hyperbox
clustering with Ant Colony Optimization (HACO) method and its
application to medical risk profile recognition”, Applied Soft
Computing vol. 9 (2), pp. 632-640, 2009.

[21] J. Rivero, D. Cuadra, J. Calle and P. Isasi, "Using the ACO algorithm
for path searches in social networks", Applied Intelligence, DOI:
10.1007/s10489-011-0304-1, 2011.

[22] O. Sandberg, “Distributed routing in small-world networks”, Proc.
8th Workshop on Algorithm Engineering and Experiments, pp. 144-
155, 2006.

[23] J. Sankaranarayanan and H. Samet, “Distance oracles for spatial
networks”, Proc. 25th IEEE International Conference on Data
Engineering, pp. 652-663, 2009.

[24] J. Sankaranarayanan, H. Samet and H. Alborzi, “Path oracles for
spatial networks”, Proc. 35th International Conference on Very Large
Data Bases, pp. 1210-1221, 2009.

[25] L. Tang and H. Liu, “Graph Mining Applications to Social Network
Analysis”, In: C. Aggarwal and H. Wang, “Managing and Mining
Graph Data”, Advances in DataBase Systems vol. 40, pp. 487-514,
2010.

[26] J. Xu Yu, J. Cheng, “Graph Reachability Queries: A Survey”, In: C.
Aggarwal and H. Wang. “Managing and Mining Graph Data”,
Advances in DataBase Systems vol. 40, pp. 181-215, 2010.

