
© 2011. Springer Science+Business Media B.V.

This document is published in:

Lang Resources & Evaluation 46 (2012) 4, pp. 543–563

DOI: 10.1007/s10579-011-9146-z

Ins t i tu t ional Repos i tory

C O R E M e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

P r o v i d e d b y U n i v e r s i d a d C a r l o s I I I d e M a d r i d e - A r c h i v o

https://core.ac.uk/display/29406883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10579-011-9146-z
http://e-archivo.uc3m.es/

A real time Named Entity Recognition system for Arabic
text mining

Harith Al-Jumaily · Paloma Martínez · José L. Martínez-Fernández · Erik Van
der Goot

Abstract Arabic is the most widely spoken language in the Arab World. Most
people of the Islamic World understand the Classic Arabic language because it is
the language of the Qur’an. Despite the fact that in the last decade the number of
Arabic Internet users (Middle East and North and East of Africa) has increased
considerably, systems to analyze Arabic digital resources automatically are not as
easily available as they are for English. Therefore, in this work, an attempt is made

to build a real time Named Entity Recognition system that can be used in web
applications to detect the appearance of specific named entities and events in news
written in Arabic. Arabic is a highly inflectional language, thus we will try to
minimize the impact of Arabic affixes on the quality of the pattern recognition
model applied to identify named entities. These patterns are built up by processing
and integrating different gazetteers, from DBPedia (http://dbpedia.org/About, 2009)
to GATE (A general architecture for text engineering, 2009) and ANERGazet
(http://users.dsic.upv.es/grupos/nle/?file=kop4.php).

H. Al-Jumaily (&) · P. Martı́nez

Computer Science Department, Carlos III University of Madrid, Av. Universidad 30,

28911 Leganés, Madrid, Spain

e-mail: haljumai@inf.uc3m.es

P. Martı́nez

e-mail: pmf@inf.uc3m.es

J. L. Martı́nez-Fernández

DAEDALUS – Data, Decisions and Language S.A., Avda. de la Albufera,

321, 28031 Madrid, Spain

e-mail: jmartinez@daedalus.es

E. Van der Goot

EC Joint Research Centre, Via E. Fermi, 27549 Ispra, Italy

e-mail: erik.van-der-goot@jrc.it

1

Keywords Arabic language · Text mining · Named Entity Recognition ·

Event detection · Morphological analysis · Root extraction

1 Introduction

We currently have many opportunities to obtain a wide variety of information from

the Internet. This information is growing at an exponential rate. Most of it is written

in natural language because the Web was designed for human reading and

understanding, not for machine recognition and interpretation. The huge volumes of

information and the widely extended use of Internet have attracted researchers to

face up to these new challenges and to improve Internet services. Information

Retrieval (IR) is one of the most important services that provides tools to achieve

relevant and complicated searches on Internet. Therefore, there is fierce competition

between the gigantic search engines such as Google, Yahoo, etc., to provide the best

application with more performance and accurate information.

Text mining technology is becoming one of the major issues in IR. It highlights
the relevant information in the text that can be used for different applications
providing the users with powerful search functionality that goes far beyond text
search (Steinberger et al. 2008). So, text mining applying techniques can help to
confront the challenge of searching through huge volumes of information (Martin

and Van der Goot 2009). For example, the web applications which are used to detect
news about people, organizations and places, as well as those which may give
earlier warnings about medical and health-related topics or natural disasters, all
require more work and efforts to be made in text mining and pattern recognition
(Best et al. 2007). The framework in which the research work described in this paper
has been developed includes a real time monitoring system for news channels in
order to detect the appearance of specific words or expressions, which have been
collected as a result of previous works. A large quantity of news must be processed
in a short period of time so efficient methods to look for these words in the news are
needed. Names of people, places and organizations must also be tagged so a Named

Entity Recognition (NER) process is required. Thus, our system has been designed
to recognize two types of elements in the Arabic language: named entities and a set
of common words (nouns and verbs). As regards NER, in this paper we will
consider only a basic categorization scheme for named entities made up of three
main classes: Person, Location and Organization. As regards the common words, we
apply the recognition task to detect nouns and verbs. Khoja’s Stemmer (Khoja and
Garside 1999) has also been integrated to extract the linguistic roots of the detected
nouns and verbs. Our approach tries to minimize the impact of Arabic prefixes and
suffixes on the quality of the recognition patterns, which is considered one of the
major problems found in Arabic (Afify et al. 2006). A part-of-speech process has
not been considered because it would take too much time to process each piece of
news so on-the-fly monitoring would not be feasible.

The rest of this work is organized as follows: In Sect. 2, we provide a brief
introduction on the Arabic language to make it easier for a non-native Arabic reader
to understand the difficulties of the Arabic language. In Sect. 3, some related works

2

are presented and discussed. Section 4 describes the architecture of the system.

Section 5, shows defined experiments and discusses the results. In Sect. 6, some

conclusions and future works are presented.

2 Why the Arabic language?

Despite the number of Arabic Internet users having increased considerably in
the last decade (Fig. 1) (Internet World Stats, Usage and Population Statistics,
http://www.internetworldstats.com/), the content of Arabic digital resources on the
Internet is still lower than its actual weight as a language. These resources are less
than 1% of all Internet content, while people who speak Arabic natively represent
5% of the world’s population (El potencial de la Red en a´rabe, 2010), so
a significant increase in Arabic content is expected and tools, like those proposed
in this work, are needed to process this content automatically.

The Arabic language is one of the Semitic languages that is used by people living
in the Middle East, and North and East of Africa. It is the official language
throughout the Arab World, which consists of 25 countries although each one of
them has its own regional variants. In addition, many people of the Islamic World

(non-Arab countries such as Turkey, Iran, Pakistan, etc.) understand Classic Arabic
(CA) because it is the Language of the Qur’an. Nevertheless, most writing in the
Arabic World such as books, newspapers, magazines, official documents, etc., is in
Modern Standard Arabic (MSA), which is one of the official languages of the
United Nations. “The major difference between the MSA of today and the CA of
yesteryear is that the former is truly a living language subject to the many influences
of the Arabic spoken dialects, whereas the latter is a frozen, static entity” (Kaye
1991). For this reason, we have only considered MSA in this work.

The Arabic alphabet consists of 28 letters; three of them are used as long vowels.
Most of these letters have different shapes depending on whether it will be
connected at the beginning, middle or end of the word. The Arabic alphabet also
contains three short vowels that are normally placed above or below the

corresponding letter. On the other hand, the reader should know the difference
between the basic concepts of Arabic; root, stem, and vowel patterns. Arabic text is
written and read from right to left. Most of the words are built from roots, except the
common names and particles. At the same time, these words can be analyzed to
obtain the base roots. Around 64% of the Arabic roots are made up of three letters
(Khoja et al. 2001). A root can also be formed from two or four letters. In limited

cases, a root can have more than four letters.
The Arabic language has highly inflectional and derivational difficulties because

there are many irregular words (Al-Zoghby et al. 2007), and there are many vowel
patterns, each defining a grammatical state of the stems. For example, let us consider
the root (كتبktb1) ‘write’ which contains three letters (كـk + تـt + بb), to derive all
the
1 In this paper the Arabic words are presented using the HSB transliteration schema (Habash et al. 2007) as
follows: آ ,'ءĀ, أÂ, ؤŵ, إǍ, ئŷ, اA, بb, ةħ, تt, ثθ, جj, حH, خx, دd, ذð, رr, زz, سs, شš, صS, ضD,
~ّ ,y, َa, ُu, ِi, ًã, ٌũ, ٍĩي ,ýى ,wو ,hه ,nن ,mم ,lل ,kك ,qق ,fف ,γغ ,ςع ,Ďظ ,Tط , . , ـ _,.

3

possible stems from this root we should replace the letters (- فf+-ع- ς+ لl) of all the
vowel patterns with the three letters (كـk+ تt b) of the root respectively, as shownب+
in Table 1. So far, it seems easy: all that we need to do is apply the vowel patterns to
the roots to obtain almost 70% of the Arabic stems. Nevertheless, the problem here is
that there are more than 5,000 Arabic roots and more than 1,500 vowel patterns
(Alqatta Alsaqly 1999). In addition, many of these forms consist of the same set of
letters differing only in the way the short vowels are used. For example, in Table 1, the
stem (َكَتٰ بkat~aba) is the past tense of the verb but if this stem appears with other set
of short vowels as (ْكُتبkutb.) it is a noun meaning ‘books’, and the same situation can
be observed between (كُتابkutAb) and (ِكتاب kitAb). Here, the problem can be
aggravated because the short vowels are typically not written in normal texts such as
(books, newspapers, magazines, official documents, etc.). Sometimes, they are written
when word ambiguity cannot be solved from the text. So the reader must be familiar
with the language to understand the missing vowels.

Another problem is al-hamzah ء) ‘) which is an additional letter in the Arabic
alphabet, representing the sound of a glottal stop. It can be written in different forms;
alone (ء) at the end of a word, above or under the letters ا) A), و) w), and ى) ý), such
as أ) Â), إ) Ǎ), ؤ) ŵ), and ئ) ŷ). This often leads to orthographical confusion, thus
people do not usually write the al-hamzah in the right place or it can be totally
ignored. For example, if we search the words (اينابسإ ǍsbAnyA), (اينابسأ ÂsbAnyA), and
(اينابسا ÂsbAnyA) in Google which are different ways of writing ‘Spain’ in Arabic

Fig. 1 World Internet growth between 2000 and 2008

Table 1 An example showing roots, stems, and vowel patterns

Vowel patterns Stems Grammatical state Meaning

لَعٰفَ Faς~ãla بَتٰكَ kat~aba Past verb He has written

لْعفُ fuςl بْتكُ kutb Noun Books

لاعفِ fuςAl باتكُ kutAb Noun Writers

لاعفِ fiςAl باتكِ kitAb Noun A Book

4

using different types of the al-hamzah, we will get approximately the same number of
pages (4.7 million). Although the second spelling of the previous example is not a
variety but a wrong spelling of Spain in Arabic, Google considers the three letters
 as the same letter to resolve orthographical confusion. In addition (Aا) and ,(Âأ) ,(Ǎإ)
to the al-hamzah, there are other letters that can be written in different shapes in
Arabic, such as using tatweel (ـ) to elongate the Arabic letter, and using the modified
letters such as (پp, ڤv, ڤ گ چg, etc.) to write foreign words (Habash 2010).

Finally, as we said, one of the major problems of the Arabic language is the
prefixes and suffixes because there is a large number of them, approximately more

than 80 prefixes and 200 suffixes. A prefix length can range from 1 to 4 letters, while
a suffix length can range from 1 to 6. For example, if we use the suffix (انAn) with
the noun stem (كتابktAb) ‘book’ we will obtain a new word (كتابانktAbAn) ‘two
books’. In addition to the large number of them, the compatibility problem must also
be resolved between them and with stems (Buckwalter 2004). In this work, the impact
of using the Arabic affixes in our system will be studied and a verification algorithm
will be implemented to improve its performance.

3 Related work

In this section we study and analyze some of the important efforts on Morphological

Analysis (MA) and NER for Arabic. We start by presenting the Buckwalter Arabic
Morphological Analyzer (BAMA) (Buckwalter 2004) which is considered a

pioneering work for the Arabic language. It consists of a dictionary of lexicons of
Arabic stems, prefixes, and suffixes, with truth tables to indicate a correct
combination of these affixes. It provides morphological categories such as Function
word, Nouns, and Verbs. It uses Buckwalter transliteration, which can be converted
directly to Unicode Arabic with a minimal amount of automatic processing. Many

important Arabic researches are based on BAMA such as; MADA + TOKAN
(Habash et al. 2009) which is a freely available toolkit for Arabic NLP applications.
MADA handles the Morphological Analysis and Disambiguation for each word, and
TOKAN presents the results in a wide variety of customizable formats. SAMA 3.1
(Maamouri et al. 2009) is another Arabic morphological analyzer which is based on
BAMA. SAMA is considered the continuity of the previous BAMA releases.

It is worth highlighting other efforts such as, AMIRA (Diab 2009) which is an
online toolkit for Arabic tokenization, lemmatization, POS-tagging and Base Phrase
chunking. It has been widely used for different NLP applications due to its speed
and high performance. Serf (The Arab League Educational, Cultural and Scientific
Organization (Alecso) 2007) is an Arabic Morphology analyzer that uses the
trilateral and quadrilateral roots as input, the output is a set of all the grammatical

states of these roots. The main limitation of Serf is that the inputs are only roots.
NOOJ (Silberztein 2002) is a developed NLP environment in many languages. It
offers a free plug-into provide morpho-syntactic tools for Arabic processing.
Khoja’s Stemmer (Khoja and Garside 1999) is also a valuable system for the Arabic
language. It uses an algorithm to remove the prefixes and suffixes from the input
words and then it extracts roots from these words. In an earlier phase, it removes

5

stop words and strange words from the original text. A stop word is a commonly

used Arabic word. A strange word is a foreign word written using Arabic script.
Although removing the affixes is not sufficient for many NLP applications
(Al-Sughaiyer and Al-Kharashi 2004), we believe that root extraction can help in
the ED task because most of the Arabic words can change their orthographic forms

when their grammatical states are changed.
On the other hand, NER is considered to be an important task since it helps to

improve the performance of many NLP applications (Benajiba et al. 2008). It is a
valuable source to capture the semantic content of a written text. However, very little
research into NER for Arabic has been published (Benajiba 2009) due to the lack of
the related resources and the limited progress made in Arabic NLP in general (Shaalan
and Raza 2008). Many techniques are used to build NER systems for Arabic. For
example, Abuleil (2004) used a set of rules to predict where the Arabic proper names

are located in the text. It states that entity names seem to appear close to trigger words
(keywords or special verbs). So it assumes that these names are found in a space of 10
words to the left and 10 words to the right of the trigger word. ANERsys which is a
NER system built exclusively for Arabic texts based-on n-grams and maximum

entropy approach is presented in Benajiba et al. (2007). They developed their own
corpora and gazetteers to train, evaluate and boost the system. They obtained an
improvement with respect to a baseline results without using any POS-tag information

or text segmentation. In Benajiba et al. (2010) the authors achieve a significant, high-
performance Arabic NER system by using lexical, syntactic and morphological

features. In Shaalan and Raza (2008) a system for Arabic NER is presented which
consists of two main processing resources: a dictionary of names (whitelist or
gazetteer), and a grammar, in the form of regular rules to recognize the Named

entities. A filtration mechanism is used as a blacklist to reject matches returned by
rules but which are invalid entities. The system is evaluated using its own corpora
which have been tagged in a semi-automated way. GATE (2009) is a Java suite of
tools, which is widely used in NLP tasks, including information extraction in many

languages. It has an Arabic module as one of the plug-ins in the CREOLE directories.
GATE can be used to extract basic entities, such as date, name, location, organization,
etc. The main problem of the tools such as GATE is that they were developed mainly

to analyze non-Arabic language, however, plugs-in have been added in them to make

sense of the Arabic (Farghaly and Shaalan 2009).
From the aforementioned overall trends the NLP for Arabic is directed towards

the Morphological Analysis (including root extraction), and NER. We agree with
(Benajiba et al. 2009) that from the NER system’s point of view, the recognition
task in Arabic is relatively different from performing the task in English due to the
aforementioned problems and because the Arabic script lacks capital letters. Thus
we believe that performing text mining on the Arabic language requires more effort
and poses special challenges (Halpern 2007). Although our system is directly related
to NER, we are conscious that the morphological categories (nouns and verbs) are
vital to detect events and provide earlier warnings about them. So, we believe that a
system is necessary that provides information such as nouns and verbs in addition to
the common Named entities. The root extraction is also included in our system to
make the identification of these words easier.

6

Finally, in this work we are interested in studying the impact of the Arabic affixes

on the performance of our system. In other words, we will try to reduce the impact

of these affixes and to improve the recognition results. If an Arabic token (prefix-

stem-suffix) is recognized then a verification process is used to ensure that the three

combination prefix-stem, stem-suffix, and prefix-suffix are compatible. A stem may

be one of the Named entities or the morphological categories considered in this

work. Finally, our system has been designed to detect the Named entities which can

be represented by more than one word. It can be easily integrated with the rest of the

system, providing output results in XML format and UTF-8 codepage to simplify

subsequent exploitation.

4 System architecture

In this section, we will explain our proposed system architecture for Arabic text
mining and analysis (Fig. 2) in more detail. When we started to design our system
architecture, we realized that this architecture must meet the following

requirements:

● Use the UTF-8 codepage for the I/O.

● Use existing systems of NLP with some adaptation to reduce the level of effort

required to develop our system.

● Allow the user to append information into the system dictionary ΣPMG; this

dictionary is divided into three parts: ΣP for the prefixes, ΣM for the

morphological categories, and the gazetteer ΣG for the Named entities. Each

one of these dictionaries is a text file that can be edited by any text editor and the

Fig. 2 A pattern-based architecture

7

user can manage the information of these dictionaries according to his/her

requirements.

● The system provides automatic mechanisms to manage the prefixes and the

suffixes of the Arabic language. These mechanisms help to optimize the number

of words in the dictionary effectively. For example, suppose the number of

prefixes and suffixes is (N and M) respectively, this means that the definition of

one word in the dictionary allows us to create (1 + N + M + (N*M)) forms of that

word in the online processing.

● The system has been implemented using Java, to facilitate the integration of the

architecture components, it is easy for an inexpert user, and the system allows

the addition of new modules according to future requirements.

● The output is in XML format to make the information exchange with other

systems easier.

● The architecture could be adopted for analyzing other languages that are currently

written using the Modified Arabic alphabet such as Kurdish, Persian, etc.

The architecture built to meet these requirements contains two types of

processes: offline and online. In the following, a brief description is shown for

each these processes:

4.1 System dictionary ΣPMG creation

The main objective of these processes is the creation of ΣPMG. This dictionary is

used to save all patterns that were retrieved from various information resources. The

objective of creating ΣPMG offline is to accelerate the system performance.

Currently ΣPMG contains about 94,000 patterns, each one of which is associated to

its attributes. A pattern (P) is associated with a set of attributes (a1| a2|…) and each one

of these attributes can have one or more values. A pattern specifies a reference word in

the Arabic language while the attributes specify the information and the categories of

the corresponding pattern. Almost all of these patterns are associated with the

morphological categories while 13% of them are associated with the Named entities.

The formal definition of a pattern and its attributes are shown below:

p1[+p2+...][%] a1,1[; a1,2; ….a1,n| a2,1; a2,2; ….a2,m|..............]

Pattern Attributes

We can distinguish three parts in ΣPMG; Prefixes ΣP, Morphological Resources

ΣM, and Gazetteer ΣG. In the following a brief description of each of the

dictionaries is shown:

(a) Prefixes ΣP: The Arabic prefixes are stored in the Prefix part, where each prefix
is associated with only one attribute which has (P) as a value. In this part, we

define all the possible letters of the prefixes. In the following, we show the

content of ΣP:

8

(b) BAMA Dictionary ΣM: The second part of ΣPMG is the morphological

dictionary ΣM that has been automatically generated from BAMA (Buckw-alter
2004). To create ΣM, the dicstems dictionary of BAMA was converted from the
Microsoft Windows Codepage 1256 (Arab) to UTF-8 codepage. In addition,
some adjustments to adapt the results according to the ΣPMG format were
made. In the following, an example of a pattern in ΣM is detailed:

This example defines a pattern that shows the normalized pattern of the word
(رحبأ ÂbHr). The symbol (%) that is associated with the pattern indicates that this
pattern allows the aggregation of suffixes, for example, the letter ت) t) in
(ترحبا AbHrt) which means ‘She/It travels’. In the following, we explain each one
of the pattern’s attributes:

– (a1) has one value (رحَبْأَ Âab.Har) which indicates the truly complete form of the
pattern, where all the short vowels are reviewed.

– (a2) has two values (a2,1 = set sail and a2,2 = travel by sea) to indicate the

translation of the word to English.

– (3a) has one value (PV) to show the morphological category of the pattern. Our
morphological categories agree with the morphological categories of BAMA

(Buckwalter 2004). The three main categories are Function Word (particles,
pronouns, and other words that do not function as Nouns or Verbs), Nouns, and
Verbs (Perfect Verb, Imperfect Verb, and Imperative Verb).

(c) Gazetteer ΣG: The third part of ΣPMG is the gazetteer ΣG that aims to define

patterns with the Named entities. Normally the patterns of this part of the

dictionary are associated with only one attribute, as an example, the following

shows some patterns.

9

Although ΣG forms only 13% of ΣPMG, i.e. it is smaller than the morphological

dictionary; the offline processes that were used to generate ΣG have been more

complicated and more expensive because various digital resources have been used

in different ways. In order to generate about 12,000 non-repeated patterns for ΣG,
the estimation of the total time spent in this process was approximately one person

for 420 h of work. This time has been averaged between providing a number of

programs for automatic processing, using various tools and databases to save and

manage the generated data, and finally manual work to adapt these data to the

ΣPMG requirements.

In the following the main resources of data used in this work are explained:

– DBpedia/Wikipedia: DBpedia is a project aimed at extracting structured
information from Wikipedia for IR (DBpedia 2009). DBpedia provides an
automatic conversion of the existing information in Wikipedia to RDF

(Resource Description Framework) (The World Wide Web Consortium

(W3C) 2009). Through the DBpedia website, users can download the RDF
databases (triple storage). A triple is a statement that contains subject, predicate
and object. For example, we have located all the triples that have a predicate as
Country, Capital, City, etc. and categorized them as a location in our system,

and so on for the other categories. Although the Arabic version of the RDF is not
included in DBpedia, we have used the English version and terms have been
translated using Google. Manual revision was applied to check the translation.

– Other Gazetteers and Resources: From the Internet and other tools for entity
recognition, we obtained prepared and classified lists of data according to
common categories. Among the gazetteers that have been used are the Arabic
Gazetteer lists of the GATE (2009). Each one of these lists contains a different
category, for example, the country.lst list contains a set of the Arabic countries,
and the country_world.lst list contains the set of the remaining world countries.
Moreover, there are female names, male names, surnames, organizations,
mountains, etc. Another gazetteer exploited is ANERGazet (Natural Language
Engineering Lab, http://users.dsic.upv.es/grupos/nle/?file=kop4.php) which con-
tains a collection of three Gazetteers, (i) Locations: a gazetteer containing the
names of continents, countries, cities, etc., (ii) People: a gazetteer containing
names of people manually collected from different Arabic websites, and finally
(iii) Organizations: containing names of companies, football teams, etc.

– Feedback: It is an offline process which is used to maintain the lexicons of
the system dictionary. This process is applied semi-automatically to detect the
words which have not been recognized by the system. All words which are not
recognized by our system are saved in the text file ‘Tokens Not Tagged’. The
content of this text file is analyzed according to the count of the appearance
frequency of tokens. The tokens with a highest frequency count are removed from
the analysis, and the rest of them are analyzed manually. As a future work we
are going to incorporate full automatic algorithms to detect entities depending
on trigger works and a list of matching rules (Abuleil 2004; Pouliquen and
Steinberger 2007).

10

4.2 Implementation issues for the classification algorithm

The main objective of these processes is to apply the classification algorithm

according to the proposed architecture. The algorithm starts when one or more

UTF-8 Arabic documents is entered. The online processes are run according to the

following sequence.

(a) Normalization (T): This process is run in the first place to convert the entered

corpus (T) into a normalized corpus (T’). In this process the various types of

al-hamzah (,Âأ ,Ǎإ and (Āآ are unified to ,(Aا) the short vowels and the elongation
letters are removed from the text. Sometimes the elongation letter (ـ) is used for
text decoration, or for writing the short vowels upon it, such as ـً) ã).

(b) UnicodeTokenizar (T’): This process receives the normalized text (T’) and

returns a set of tokens ({t1, t2,…,tn} ∈ T’). Each token is a unigram word.

The white space character is used to split tokens. Therefore, a token may

be an Arabic word, English word, numbers, symbols and punctuation

marks.

(c) Recognizer (ti): For any token (ti ∈ T’), the Recognizer process looks in the

Memory Hash Table and returns a set of patterns {P1..m} which match ti.

{P1..m} = {p1, p2,….,pm} can be one pattern or more than one pattern. For

example, if ti is the Arabic token (اهناودعو wςdwAnhA) ‘and its aggression’ then
the Recognizer process will return a set of 6 patterns, as follows; {P1.6} = { دعو
wςd, وعwς, عدوςdw, عدوانςdwAn, عدواςdwA, عدςd} which mean respectively
‘promise’, ‘make conscious’, ‘run’, ‘aggression’, ‘infection’, and ‘count’. Each
one of these patterns forms a part of the input token (pj ∈ ti). The
UnicodeTokenizar and the Recognizer of our system is based on the EMM

search engine of the JRC (2009).
(d) NoMatch (ti): This process is run when {P} = {‘‘}, i.e., the set of the matched

patterns is empty; the NoMatch process writes ti in the TokensNotTagged file.

As we said, this file is periodically studied to detect relevant words not being

recognized by the system.

(e) isStopWord(ti): If the set of the matched patterns {P} is not empty this

process is run to check whether ti is a stop word. A list of more than 500

stop words has been created as a dictionary to discard the words that are

frequently used. This list contains Prepositions, Adverbial particles, demon-

stratives, pronouns, etc.

(f) isSuffix(ti, pj): If ti is not a stop word then we reduce the size of the set of the

matched patterns. Each token can match a set of patterns {P1..m}, the size of

this set is m. Normally not all patterns are valid for the corresponding token ti,

if (pj ∈ ti) then we can apply (ti − pj) = {‘‘||prefj, ‘‘||suffj}. Here the minus

operator returns only the letters which form part of the token but are not

included in the pattern, i.e. it returns a set of prefixes, suffixes, or nulls (‘‘).

Therefore, this process calculates all the possible prefixes and suffixes that

exist in ti − pj. For the previous example the set of prefixes and suffixes are

shown as follows:

11

To reduce the set of matched patterns we have defined suffList that contains more

than 200 suffixes normally used in the Arabic language. If suffj ∉ suffList then
the corresponding pj is removed from the matched set. Therefore, for the pre-
vious example, the matched patterns p1, p2, and p6 are removed from the set because
{ اهناو wAnhA, اهناود dwAnhA, اهناو wAnhA} are not suffix terms. If not all the
calculated suffixes belong to suffList then the corresponding ti is written as NoMatch
(ti) in TokensNotTagged file. The new matched patterns set will be {P’} and m’ = 3.

(g) EditDistance (ti, {P’}): This process calculates the edit distance dj ∈ D

between ti and pj, where D is the distances set. The edit distance is defined as
(ti.length()-pj.length()). We use this distance to reduce the set of the matched
patterns in order to make it easy to find the appropriate match. For the previous
example, {P’1.0.3} = {p1 = ودع wςd, p2 = ناودع ςdwAn, p3 = اودع ςdwA} and the
set of the edit distances is D = {d1 = 5, d2 = 3, d3 = 4) respectively. This means
that p2 could be the correct pattern of ti because it has the minimum edit
distance with ti, while the other two patterns p1 and p3 are removed from the set.

(h) P–S Verification: Although in the previous processes (f and g) we carry out two
types of verification to find the correct pattern, we have detected that we need
more verification related to the compatibility between the prefixes and the
suffixes with the entities. For example, the prefix (Al) is compatible with theال
noun category while it is not compatible with the verb category, and so on. If the
prefixes or the suffixes are not compatible with the category type then the
corresponding ti is written as NoMatch (ti) in the TokensNotTagged file. In Sect.
4.3, the prefix and suffix v e r i fication is explained in more details.

(i) Stemming (pj): The main aim of this process is to reduce pj to its root. The root

extraction process is based on Khoja’s Stemmer (Khoja and Garside 1999). We

adapted this stemmer according to our system needs. This process is applied to
the selected patterns. The importance of root extraction for Arabic text mining is
shown through the following table which shows examples (not all) of the
multiple orthographic forms to write the Arabic word (زلزالzlzAl) ‘earthquake’
according to their grammatical states. Each one of these forms shows the
corresponding result in Google search.

لازلزب bzlzAl 191000 لازلزو wzlzAl 35200 هيلازلزلا AlzlzAlyh 10900

لازلزل lzlzAl 202000 لزلازلاك kAlzlAzl 45700 لزلازل lzlAzl 20000

لزلازلاو wAlzlAzl 584000 ةيلازلزلا AlzlzAlyħ 50000 لازلزلاو wAlzlzAl 23900

لازلزلاب bAlzlzAl 629000 يلازلزلا AlzlzAly 57900 لزلازب bzlAzl 25500

لزلازلا AlzlAzl 968000 لزلازلاب bAlzlAzl 116000 لزلازو wzlAzl 27300

لزلازلل llzlAzl 1000000 لازلزلا AlzlzAl 133000 لازلزلل llzlzAl 33200

12

When the word (زلزالzlzAl) ‘earthquake’ is used in the plural, the orthographical
form is changed to (زلازلzlAzl) ‘earthquakes’. This is due to what we call a broken
plural where the singular form of the word is different from the plural form of the
same word (Goweder et al. 2004). In addition, the different grammatical states such
as: Prepositional, Nominative, Irregular, Non-standard, Accusative, etc. can add one
or more letters to the original word. The root extraction process can help in the ED
task because all the previous words have only one Arabic quadrilateral root (زلزلzlzl).
Therefore, defining Arabic roots which are considered as interesting events for some
applications will help to detect all the possible words referencing those events.

(j) XMLConveter (ti, dj, pj, aj, r): This process is used to convert the output
information in XML file format. This information includes the original token,

the distances between the token and the selected patterns, the attributes, and the root.
If there is no root for ti then the symbol ‘-’ is reported. Figure 3 shows an

example of the XML output file. In this example the input text is T = (مملااةمظنمل
ةدحتملا lmnĎmħ AlAmm AlmtHdħ) ‘for the United Nations Organization’. In this

example, the matched pattern is\p[ةدحتممماةمظنم \/p[mnĎmħ Amm mtHdħ
with the attribute \a[Org\/a[. Nevertheless, the pattern \p[ةدحتممما
\/p[Amm mtHdħ with the attribute \a[Org\/a[is also matched. What
does this mean? It means that there is T’ = (ةدحتملامملاا AlAmm AlmtHdħ) ‘United
Nations’ included in T that matches that pattern in ΣPMG. So our system returns
all the patterns that would match all the input tokens in T or part of it. In
addition, our system tags every word in T, so the token \t[ةمظنمل
\/t[lmnĎmħ that consists of the Arabic prefix ل) l) ‘for’ and the word
(ةمظنم mnĎmħ) ‘organization’. This word matches \p[مظنم \/p[mnĎm
with \a[مظنَمُ |N|regulator;governor\/a[. These attributes are the morpho-

Fig. 3 An example of the
classification of tokens

13

logical categories that depend on the BAMA (Buckwalter 2004). The Arabic
word (مُنَظمmunaĎ ~ im) shows the truly complete form of the matched pattern,
and N denotes the token as a Noun. The rest of the attributes are the two possible
glosses of the token in English. The \d[2\/d[represents the edit distance
between the token and the matched pattern. The \r[نظم\/r[shows the
trilateral root of the word. And so on for the other tags.

4.3 Prefix–suffix verification

In this section, we will explain our approach to managing the Arabic prefixes and
suffixes t o s olve t he c ompatibility p roblem o f u sing t hem w ith e ach o f our
categories, and to minimize the impact of these affixes on the performance of our
system. As we said, the Arabic prefixes and suffixes are particles added to the stems

to obtain new grammatical states. To calculate the usage frequency of each of the
Arabic prefixes and suffixes in a modern text, we have used an Arabic collection of
documents with more than 12 million words. With regard to the prefixes, the results
showed that almost 57.3% of the words in the collection did not take prefixes, while
12.9, 27.3, 2.4, and 0.03% of them did take prefixes of one, two, three, four letters
respectively. With regard to the suffixes, t he r esults showed t hat a lmost 70.7% of
the words did not take suffixes, while 21.3, 7.3, 0.5, and 0.01% of them contained
suffixes of one, two, three, four letters respectively. Table 2 shows some of the
Arabic prefixes and suffixes with the highest frequency of use in the collection.

In the following, we will explain our approach to managing the compatibility of

the Arabic prefixes and suffixes with each of our categories.

● Person Category {Per}: It contains more than 9,000 patterns of the Arabic first
names and surnames. All these patterns have been defined exactly as they are
spoken. Arabic first names and surnames do not normally take suffixes, so we do
not need to verify the suffixes in this category. As regards the prefixes, in this
category we consider that a prefix prefj can be formed from two particles

Table 2 Frequency of use of

Arabic prefixes and suffixes
Prefixes Frequency of use

in the documents
collection (%)

Suffixes Frequency of use
in the documents
collection (%)

57.3 70.7

ـلا Al 24.82 ة ħ 15.75

و w 5.36 ا A 2.89

ـي y 2.49 تا At 2.59

ـب b 1.79 ه h 1.86

ـلاو wAl 1.57 اه hA 1.17

ـل l 1.50 ني yn 1.09

ـلل ll 1.27 نو wn 0.55

ـت t 1.13 هت th 0.54

ـلاب bAl 0.73 ن n 0.39

ـيو wy 0.44 مه hm 0.37

14

(prefj,0 + prefj,1), prefj,0 can be null or one of the following letters و} w, ب b, ل l, ف
f, ك k}, while prefj1 can be the definite article (لا Al) ‘the’ which is the most
common Arabic prefix. As an example, the prefix (لاو wAl) ‘and the’ consists of
the conjunction article و) w) and (لا Al). According to our approach the first
particle prefj,0 can be used only with the first name, while the second particle
prefj,1 can be used with the surnames. Surnames are usually used with the particle
prefj,1 = (لا Al) like in Aljumaily. For this reason, when we define the Arabic
surnames in the system dictionary we consider that prefj,1 is a part of them. The
verification of this category is carried out according to the following rules:

∀ (ti, pj) ∈ {Per} ⇒ (ti − pj) ∈ (prefj,0 + prefj,1)

⇒ prefj,0 ∈ {‘‘, ب b, ف f, ك k, ل l, و w} ^ prefj,1 = {‘‘, لا }

● Location Category {Loc}: It contains more than 2,000 patterns such as

(continent, country, city, etc.) these patterns have been defined in the system

dictionary without any prefixes. Normally the location names in Arabic do not

take suffixes, thus the verification of the prefixes is performed according to the

following rules:

∀ (ti, pj) ∈ {Loc} ⇒ (ti − pj) ∈ prefj
⇒ prefj ∈ {‘‘, لاو wAl, لاب bAl, لاف fAl, لل ll, لا Al, و w, ب b, ل l, لو wl, بو wb, ف f,
ك k}

● Organization Category {Org}: It contains more that 1,000 patterns such as

company, newspapers, web site, TV channel, etc., all these patterns have been

defined in the system dictionary without any prefixes. Arabic organization names

do not normally take suffixes. The following rule is used to verify this category:

∀ (ti, pj) ∈ {Org} ⇒ (ti − pj) ∈ prefj
⇒ prefj ∈ {‘‘, لاو wAl, لاب bAl, لاف fAl, لل ll, لا Al, و w,ب b, ل l, لو wl, بو wb,ف f, ك k}

● Noun Category {Nou}: It contains almost 50,000 nouns that have been defined

without prefixes and suffixes. The verification of the prefixes and suffixes is

performed according to the following rule:

∀ (ti, pj) ∈ {Nou} ⇒ (ti − pj) ∈ {prefj, suffj}

⇒ prefj ∈ PN ^ suffj ∈ SN // where

PN = {‘‘, لاو wAl, لاب bAl, لاف fAl, لل ll, لا Al, و w, ب b, ل l, لو wl, بو wb, ف f, ك k, تا
At, للو wll, لابو wbAl, للو wll, لاك kAl, لاكو wkAl}
SN = {‘‘, ة ħ, تا tA, ا A, ني yn, ه h, اه hA, ن n, ي y, نو wn, هت th, مه hm, اهت thA, ةي yħ,
هتا Ath, ان nA, نيت tyn, نا An, اهتا AthA, ةم mħ, مهت thm, يت ty, ى ý, و w, مهتا Athm, امه

hmA, انت tnA, مك km, هي yh, او wA, نات tAn, ين ny, امهت thmA, نه hn, اهي yhA, انتا AtnA, اهو
whA, كت tk, ات tA, يا Ay, يتا Aty, امهتا AthmA, ها Ah, هو wh, نك kn, كتا Atk, مكت tkm, هن nh,
اها AhA, مهن nhm, هان nAh, مهو whm, نهن nhn, ام mA, نهتا Athn, انا AnA, انو wnA, هنا

Anh, هنو wnh, نهت thn, اهن nhA, مت tm, مكا Akm}

15

● Verb Category {Vrb}: It contains almost 32,000 verbs that have been defined

without prefixes and suffixes in the system dictionary. The verification of the

prefixes and suffixes in this category is carried out according to the following

rule:

∀ (ti, pj) ∈ {Vrb} ⇒ (ti − pj) ∈ {prefj, suffj}

⇒ prefj ∈ PV ^ suffj ∈ SV // where

PV = {‘‘, و w, ي y, ت t, يو wy, ف f, يس sy, ن n, تو wt, تس st, نس sn, يسو wsy, تل lt,
بو wb, يف fy, نو wn, او wA, لو wl, تسو wst, م m, تف ft, نل ln, يسف fsy, بف fb, نسو wsn,
اف fA, اسو wsA, يلف fly, تسف fst, تلو wlt, تمو wmt}
SV = {‘‘, ت t, ه h, ا A, اه hA, او wA, هت th, نو wn, مه hm, ان nA, امه hmA, و w, نا An, اهو
whA, هو wh, ات tA, اهنو wnhA, ين ny, ها Ah, امهت thmA, اهان nAhA, ينت tny, مت tm, هان nAh,
نهت thn, هن nh, هنو wnh, يننو wnny, هات tAh, امهيت tyhmA, مكان nAkm, مهان nAhm, ينن nny,
مهو whm, نه hn, مكو wkm, كنو wnk, مكنو wnkm, اننو wnnA, مكن nkm}

5 System evaluation

The Arabic language has become a popular area of research in IR, but it presents
serious challenges due to its richness, complex morphology, and syntactic flexibility
(Attia 2008). Although in the last decade a lot of work been carried out to make the
task of NLP of Arabic easy, the systems to analyze Arabic automatically are not as
easily available as they are for other languages such as English (Sawalha and Atwell
2008). In addition, available digital resources such as, for example, the corpora for
Arabic NER are still limited although efforts are being made to remedy this
(Farghaly and Shaalan 2009). One of the pioneering efforts is provided by the
Linguistic Data Consortium (LDC) (2011), where more than one Arabic corpus
annotated with regard to information extraction is provided in XML format.2

Nevertheless, we have preferred to use ANERcorp (Natural Language Engineering
Lab, http://users.dsic.upv.es/grupos/nle/?file=kop4.php) in our experiments because
the Named entities of this corpus have been annotated on the text with a simple

schema like (token1.tag1 token2.tag2 token3.tag3…etc.). This simple schema allows
us to modify the corpus manually to include the two morphological categories
considered in our work in addition to the Named entities (Person, Location, and
Organization) provided in the original corpus. ANERcorp contains almost 150,000
terms which have been prepared from a collection of 316 articles that were
manually obtained from various sources on the web.

In order to evaluate our approach, we applied widely used measurements such as
Precision, Recall, Fmeasure, and Accuracy (Yang 1999). Precision is the ratio of the
retrieved tokens which are relevant in the corpus, i.e., it evaluates the exactness of
the system. A token is considered relevant when our tool labels it correctly with
respect to the manually labeled corpus. Recall is the ratio of the retrieved relevant

2 ACE 2004, 2005 Multilingual Training Corpus http://www.ldc.upenn.edu/Catalog/CatalogEntry.

jsp?catalogId=LDC2005T09, http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006

T06.

16

tokens. It measures the ability of the system to retrieve a complete set of the relevant

tokens from a corpus, i.e., it evaluates the system coverage. Fmeasure evaluates the
effectiveness of the system. Accuracy shows the ability of the system to retrieve

relevant tokens and discard irrelevant ones. The terms TruePositives (TP counts the

tokens correctly assigned to this category), FalsePositives (FP counts the tokens

incorrectly tagged to this category), FalseNegatives (FN counts the tokens incorrectly

rejected from this category), and TrueNegatives (TN counts the tokens correctly

rejected from this category) were gathered to calculate the previous measures,

according to the following formulas:

Precision ¼ TP

TPþ FP

Fmeasure ¼ 2 � ðPr cision � RecallÞ
ðPr cisionþ RecallÞ

Recall ¼ TP

TPþ FN

Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN

To highlight the importance, and to clarify the effect of the Arabic prefixes and
suffixes in the recognition results, we carried out two experiments to calculate the
previous measures. The first experiment was carried out without Prefix–Suffix
Verification (Sect. 4.3), while in the second one the verification process was used for
all categories. Tables 3 and 4 show the results of the two experiments.

From these tables, we can distinguish the role of the Arabic prefixes and suffixes in
each category. In general, the verification process improved the recognition results for
all the categories although this improvement was not symmetrical. The biggest
improvement was produced in the Verb category where the result of the precision has
been improved from 51.19 to 85.79. This is because in the Arabic language adding
some prefixes to the verbs produces other grammatical states. For example, the past
verb (كتبktb) ‘he has written’, changes to (أكتبÂktb) ‘I write’, (,’yktb) ‘he writesيكتب
,’she writes‘ (tktbتكتب) (,Âأ) Alktb) ‘the books’ if it is associated with the prefixالكتب
 Al) respectively. We discuss the reason for this improvement by looking atال ,tت ,yي
the FP results of the Verb category in Tables 3 and 4, where the number of patterns
was reduced from 17,150 to 2,762. It means that using the system without verification
process returns many patterns as verbs, although these patterns are not labeled in the
corpus. However, when the verification process was used, the number of these
patterns was significantly reduced, so the precision result was increased.

Now, looking at Table 4, differences in precision and recall measures can be
observed between categories. While Location precision is more than 81%, for the
Organization category, precision reaches 65%. In our opinion, there are several
reasons to explain these differences. The first one relates to the normalization process
that our system carries out to remove the orthographical confusion problem (see Sect.
2). We think that this problem is difficult to resolve because it is part of the
orthographic habits of the people. The second reason relates to the wide variations in
usage and meaning of some of the Arabic words. In order to not overburden the
reader, we will detail an example of it. The precision result of the Person category is
(77.63%) which means that the system correctly tagged (5,425) tokens as persons, but
at the same time, there are (1,563) tokens that are incorrectly tagged. This is because
there are several Arabic words that have several meanings and uses, for

17

example words such as (ملاس slAm) ‘Salaam’, (ةايح HyAħ) ‘Hayat’, (نيسحت tHsyn)
‘Tahseen’, etc., are used as people’s first name, but these words are used also as
nouns meaning ‘peace’, ‘live’ and ‘improvement’ respectively. So, all these words
have been returned as relevant to the Person category, although they were not labeled
in the corpus. The third reason relates to the Latin words, where most of these words
are written in Arabic in different ways. For example, the name of the Prime
Minister of Spain ‘Zapatero’ could be written in Arabic in the following ways:
(وريتاباث θAbAtyrw, وريتاباز zAbAtyrw, وريتابث θbAtyrw). If we search for these three
words in Google, it returns the following number of documents (70,300, 31,200,
19,900) respectively. Our work does not currently provide the solution to this
problem, so most of the tokens that were incorrectly rejected of this category were
Latin words. The fourth reason can be observed in the case of the Organization
category, where our corpus is about Arabic news, and normally the Arabic
newspapers and web sites use names such as; (ةديرجءابنلاا jrydħ AlAnbA’) ‘Alanbaa
Newspaper’, (تنةريزجلا Aljzyrħ nt) ‘Aljazeera Net’, (لبقتسملاةديرج jrydħ Almstqbl)
‘Almustaqbal Newspaper’, etc. Whenever such names are found in the corpus, they
are correctly tagged as organization category, but often in the text of news only the
most significant parts of these names are written. Therefore, this leads to more
confusion because the system will tag these parts as nouns. The system does that
because these parts of the names have other meanings such as; Alanbaa ‘the news’,
Aljazeera ‘the island’, Almustaqbal ‘the future’, etc.

The Recall/coverage results show the ability of the system to retrieve the
complete set of the relevant tokens. In general, looking at Table 4, the Organization
category has the lowest coverage because the system retrieved only (50.91%) of the
relevant tokens in the corpus. The rest of the tokens have been lost because they
were not defined in the system dictionary. The results for the rest of categories are
almost the same.

Table 3 The results of the first experiment (without Prefixes-Suffixes Verification)

TP FP FN TN Precision Recall Fmeasure Accuracy

Person 5,442 2,298 1,807 132,791 70.31 75.07 72.61 97.12

Location 2,999 950 1,784 136,582 75.94 62.70 68.69 98.08

Organization 1,124 737 1,084 138,670 60.40 50.91 55.25 98.71

Noun 39,593 14,305 8,530 86,633 73.46 82.27 77.62 84.68

Verb 17,987 17,150 1,416 105,394 51.19 92.70 65.96 86.92

Table 4 The results of the second experiment (with Prefixes–Suffixes Verification)

TP FP FN TN Precision Recall Fmeasure Accuracy

Person 5,425 1,563 1,813 133,543 77.63 74.95 76.27 97.63

Location 2,999 681 1,784 136,851 81.49 62.70 70.87 98.27

Organization 1,124 591 1,084 138,816 65.54 50.91 57.30 98.82

Noun 39,468 11,531 8,547 89,532 77.39 82.20 79.72 86.53

Verb 16,679 2,762 1,890 121,090 85.79 89.82 87.76 96.73

18

6 Conclusion

In the last decade, the Arabic Language has become a popular area of research in IR

in general and in text mining in particular. Unfortunately, working with Arabic adds

more difficulties than the languages that derive from Latin, because it implies the

solving of different types of problems such as the short vowels, al-hamzah, prefixes,
suffixes, etc. In this work, we have tried to minimize the impact of the Arabic affixes

on the performance of the system. A verification process has been designed to do

that.

As we had expected, the verification process has improved the recognition results
although this improvement was not symmetrical. The improvements in the results of
Precision in all the categories Person, Location, Organization, Noun, and Verb are
7.32, 5.55, 5.14, 3.93, and 34.6, respectively. We do not think that these results are
bad but they could be improved on. This depends on improving the following aspects
in our system. (1) Improve the system dictionary by including new patterns in each
category. (2) Another problem that must be solved in future works is how Latin words
are written in Arabic because including all the possible ways of writing these words in
the dictionary would be an impossible solution, so we need to improve our algorithms
to detect all the possible ways used to write Latin words in Arabic. (3) Incorporate
expert feedback to our system by using intelligent learning techniques such as active
learning (Freund et al. 1997) or learning by demonstration techniques (Lieberman
2001) and (4) apply and adapt context analysis techniques already available to solve
ambiguity issues for other languages, for example, this solution could help to clarify if
.Paris’ is used as a Location or a Person in a sentence‘ (bArysباريس)

Acknowledgments This work has been partially supported by the Spanish Center for Industry
Technological Development (CDTI, Ministry of Industry, Tourism and Trade), through the BUSCAME-
DIA Project (CEN-20091026), and also by the Spanish research projects: MA2VICMR: Improving the
access, analysis and visibility of the multilingual and multimedia information in web for the Region of
Madrid (S2009/TIC-1542), and MULTIMEDICA: Multilingual Information Extraction in Health domain
and application to scientific and informative documents (TIN2010-20644-C03-01). The authors would like
also to thank the IPSC of the European Commission’s Joint Research Centre for allowing us to include the
EMM search engine in our system.

References

Abuleil, S. (2004). Extracting names from Arabic text for question-answering systems. RIAO’04,
Proceedings of the 7th international conference on Coupling approaches, coupling media, and
COUPLING languages for information retrieval, April 26–28, 2004 (pp. 638–647). France:

University of Avignon (Vaucluse).

Afify, M., Sarikaya, R., Kuo, H.-K. J., Besacier, L., & Gao, Y. (2006). On the use of morphological

analysis for dialectal Arabic speech recognition. Interspeech-2006, Pittsburg PA, September 2006.

Alqatta Alsaqly, I. (1999). Building nouns, verbs, and Gerunds, reviewed by Dr. Ahmed Mohamed Abdel-
Dayem. Egypt: Dar Al Kutub.

Al-Sughaiyer, I., & Al-Kharashi, I. (2004). Arabic morphological analysis techniques: A comprehensive

survey. Journal of the American Society for Information Science and Technology, 55(3), 189–213.
Al-Zoghby, A., Eldin, A. S., Ismail, N. A., & Hamza, T. (2007). Mining Arabic text using soft-matching

association rules. In International conference on Computer engineering & systems, 2007. ICCES ’07
(pp. 421–426). November 2007.

19

Attia, M. (2008). Handling Arabic morphological and syntactic ambiguities within the LFG framework
with a view to machine translation. PhD Dissertation, University of Manchester.

Benajiba, Y. (2009). Arabic Named Entity Recognition. PhD dissertation, Universidad Polite´cnica
de Valencia.
Benajiba, Y., Diab, M., & Rosso, P. (October, 2008). Arabic Named Entity Recognition using Optimized

Feature Sets. In Proceedings of international conference on Empirical methods in natural language
processing, EMNLP-2008 (pp. 284–293). Honolulu: Waikiki.

Benajiba, Y., Diab, M. T., & Rosso, P. (2009). Arabic Named Entity Recognition: A feature-driven study.
IEEE Transactions on Audio, Speech & Language Processing, 17(5), 926–934.

Benajiba, Y., Rosso, P., & Benedı´, J. M. (2007). ANERsys: An Arabic Named Entity Recognition system
based on maximum entropy. Computational linguistics and intelligent text processing, 8th
international conference, February 18–24, 2007 (pp. 143–153). Mexico City: CICLing. Benajiba,

Y., Zitouni, I., Diab, M., & Rosso, P. (2010). Arabic Named Entity Recognition: Using features
extracted from noisy data. In Proceedings of ACL 2010, Uppsala, Sweden, July 2010.

Best, C., Steinberger, R., & Halkia, S. (2007). Web mining and intelligence. IPSC Institute for the
Protection and the Security of the Citizen. Council of Europe. http://globesec.jrc.ec.europa.
eu/publications/brochures/brochures/LB7606422ENC.pdf.

Buckwalter, T. (2004). Buckwalter Arabic Morphological Analyzer Version 2.0. LDC. http://
www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004L02.

DBpedia. (2009). http://dbpedia.org/About.
Diab, M. (2009). Second Generation Tools (AMIRA 2.0): Fast and robust tokenization, POS tagging, and

base phrase chunking. In MEDAR 2nd international conference on Arabic language resources and
Tools. Egypt: Cairo.

El potencial de la Red en a´rabe. Accessed April 27, 2010, from http://www.elmundo.es.
EMM search engine of the JRC. (2009). http://langtech.jrc.it/.
Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM

Transactions on Asian Language Information Processing, 8(4), Article 14.
Freund, Y., Seung, H., Shamir, E., & Tishby, N. (1997). Selective sampling using the Query by

Committee algorithm. Machine Learning, 28, 133–168.
GATE. (2009). A general architecture for text engineering. http://gate.ac.uk/.
Goweder, A., Poesio, M., & Roeck A. (2004). Broken plural detection for Arabic Information retrieval. In

Proceedings of the 27th annual international ACM SIGIR conference on Research and development
in information retrieval, Sheffield, UK.

Habash, N. Y. (2010). Introduction to Arabic natural language processing. Synthesis Lectures on Human
Language Technologies, 3(1), 1–187.

Habash, N., Rambow, O., & Roth, R. (2009). MADA + TOKAN: A Toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. In
Proceedings of the 2nd international conference on Arabic language resources and tools (MEDAR),
Cairo, Egypt.

Habash, N., Soudi, A., & Buckwalter, T. (2007). On Arabic transliteration. In A. van den Bosch & A.
Soudi (Eds.), Arabic computational morphology: Knowledge-based and empirical methods. Berlin:
Springer.

Halpern, J. (2007). The challenges and pitfalls of Arabic Romanization and Arabization. In Second
Workshop on Computational approaches to Arabic Script-based Languages (CAASL2). Stanford:
Stanford University.

Internet World Stats, Usage and Population Statistics. http://www.internetworldstats.com/.

Kaye, A. S. (1991). The Hamzat al-Wasl in Contemporary modern standard Arabic. Journal of the
American Oriental Society, 111(3), 572–574. http://www.jstor.org/stable/604273.

Khoja, S., & Garside, R. (1999). Stemming Arabic text. Computing department. Lancaster U.K.: Lancaster
University. Accessed September 22, 1999, from http://www.comp.lancs.ac.uk/computing/

users/khoja/stemmer.ps.
Khoja, S., Garside, R., & Knowles, G. (2001). A tagset for the morphosyntactic tagging of Arabic. In

Paper given at the Corpus Linguistics 2001 conference, Lancaster.
Lieberman, H. (Ed.). (2001). Your wish is my command: Programming by example. San Francisco, CA:

Morgan Kaufmann.

Linguistic Data Consortium (LDC). (2011). http://www.ldc.upenn.edu/.
Maamouri, M., et al. (2009) LDC Standard Arabic Morphological Analyzer (SAMA) Version
3.1. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2010L01.

20

Martin, A., & Van der Goot, E. (2009). Near real time information mining in multilingual news. In
Proceedings of the 18th international World Wide Web conference (WWW’2009), Madrid, 20–24
April 2009 (pp. 1153–1154). New York: ACM.

Natural Language Engineering Lab. http://users.dsic.upv.es/grupos/nle/?file=kop4.php.
Pouliquen, B., & Steinberger, R. (2007). C. Automatic detection of quotations in multilingual news. In

Proceedings of the international conference recent advances in Natural language processing
(RANLP’2007), 27–29 September 2007(pp. 25–32). Borovets, Bulgaria.

Sawalha, M., & Atwell, E. (2008). Comparative evaluation of Arabic language morphological analysers
and stemmers. In Proceedings of COLING 2008 22nd international conference on Computational
linguistics.

Shaalan, K. F., & Raza, H. (2008). Arabic Named Entity Recognition from diverse text types. In
Advances in natural language processing, 6th international conference, GoTAL 2008, Gothenburg,
Sweden, August 25–27, 2008, Proceedings. Lecture Notes in Computer Science 5221 (pp. 440–451).
Berlin: Springer, ISBN 978-3-540-85286-5.

Silberztein, M. (2002). NOOJ: A cooperative object oriented architecture for NLP. I n 5th INTEX
Workshop, May 2002, Marseille, France.

Steinberger, R., Pouliquen, B., & Ignat, C. (2008). Using language-independent rules to achieve high
multilinguality in text mining. In F. Fogelman-Soulie´, P. Domenico, J. Piskorski, & R. Steinberger
(Eds.), Mining massive data sets for security (pp. 217–240). Amsterdam: John Benjamins Publishers.

The Arab League Educational, Cultural and Scientific Organization (Alecso). (2007). http://www.
alecso.org.tn/.

The World Wide Web Consortium (W3C). (2009). http://www.w3.org/.
Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Information

Retrieval, 1(1/2), 67–88.

21

