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Abstract:
Motivation: This work presents the development of an open source tool for the quantification of dynamic susceptibility weighted contrast enhanced (DSC) 
perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers 
to implement their own quantification methods easily and without the need of paying for a development license.
Materials and methods: This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A 
modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any 
of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented 
tool and with a widely used clinical software package. The resulting perfusion parameters were then compared.
Results: Perfusion parameters and the corresponding parametric images were obtained. When no gamma fitting is used, an excellent agreement with the 
tool used as a gold standard was obtained (R240.8 and values are within 95% CI limits in Bland Altman plots).
Conclusion: An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated 
using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license.

1. Introduction

Dynamic susceptibility weighted contrast enhanced (DSC) perfu
sion studies in magnetic resonance imaging (MRI) provide valuable 
data for brain function research and clinical practice. This image 
modality is based on the analysis of signal intensity changes in the 
MRI signal following the intravenous injection of a bolus of a 
paramagnetic contrast agent, such as Gd DTPA [24]. When the bolus 
passes through the brain, the signal intensity drops on T2n weighted 
images due to small variations in the local magnetic field. Modeling 
the time course of  this tracer through the brain  tissue makes  it
possible to obtain functional information regarding perfusion related
parameters such as cerebral blood flow (CBF), mean transit time (MTT) 
and cerebral blood volume (CBV).

The correct quantification of these parameters has several 
clinical applications, such as detection and assessment of ischemic 
stroke prior to treatment [3], characterization of multiple sclerosis 
lesions [7], tumor diagnosis [1,13,4,12,9,6] or as indicators on the 
progress of Alzheimer’s disease [8]. As this technique is also widely 
used in preclinical studies [20,25,26,15], it is therefore interesting to 
have a tool that performs the quantification process in a fast and 
reliable way for research purposes. To the extent of our knowledge, 
the only other comprehensive and open tool for this kind of 
analysis is LUPE [11]. However, we have not been able to find a 
validation of this tool compared with a clinical one. Furthermore, 
LUPE has been coded in the IDL programming language, which will 
force authors who wish to implement their own methods to 
acquire an IDL development license.

In this study we present the implementation of an open source 
DSC quantification tool developed as an ImageJ [22] plugin using the
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Java programming language and validated against Philips Intelli
Space, a widely used clinical tool. Our tool has been developed in a
modular way to allow external researchers easily include their own
quantification or preprocessing algorithms.

2. Materials and methods

2.1. Theoretical basis and mathematical description

The mathematical approach behind the quantification process
has been extensively reviewed in the literature [10,17,16,21] and
here we will provide a brief summary of the basic concepts.

For each voxel in the image, the signal drop after the contrast
injection depends on the tracer concentration and can be modeled
as

SðtÞ ¼ S0 � e�ðCmðtÞ=kÞ ð1:1Þ
where S(t) is the change over time of the image signal for any given
voxel, S0 is the baseline signal before the contrast bolus arrival,
CmðtÞ is the measured concentration of gadolinium as a function of
time and k is a constant that depends on the scanner used to
acquire the image series and on the TE of the acquisition sequence.
Since the parameter k appears simultaneously in the numerator and
denominator in the equations that compute the parametric maps, it
cancels out and a value of k¼ 1 is used on the next equations for
simplification purposes.

From the previous formula, the expression for the contrast
concentration can be obtained:

CmðtÞ ¼ ln
SðtÞ
S0

ð1:2Þ

The shape of this concentration curve is heavily influenced by
the way the tracer bolus is injected into the patient. To achieve an
accurate quantification it is necessary to eliminate this effect from
the concentration curve. The arterial input function (AIF) describes
the way the tracer bolus reaches the main vessels; therefore, the
concentration in a region can be expressed mathematically as the
convolution of the AIF with an idealized contrast bolus (C(t)), as
follows:

CmðtÞ ¼ CðtÞ � AIFðtÞ ð1:3Þ

The AIF is obtained from the image data via manual delineation,
typically from the carotid arteries, if they are present in the field of
view. Also, there are available robust algorithms to select automa
tically the relevant AIF voxels and avoid the manual delineation
process [21]. Once the input function has been obtained, it is
possible to compute the idealized contrast bolus for each voxel
using deconvolution techniques, such as the one published by [10].
Please note that we follow the notation from [10], commonly used in
nuclear medicine, but in other contexts C(t) is referred to as R(t) [27].

With all these curves computed, three parametric maps of
interest, CBV, MTT and CBF, can be calculated. The expression for
CBV is [10]:

CBV¼ κH
ρ
�

R
CmðtÞR
AIFðtÞ ð1:4Þ

In the last equation, the constant κH corrects for the different
hematocrit between large and small vessels and has a value of
0.73, and ρ is the density of brain tissue (1.04 g/ml) [23].

The MTT is defined as

MTT¼
R
CðtÞ

Cmax
ð1:5Þ

where Cmax is the maximum of CðtÞ, the contrast measurement
after deconvolution with the AIF, for that voxel.

Finally, the CBF parametric map is obtained by dividing the
previous ones:

CBF¼ CBV
MTT

ð1:6Þ

While these steps describe the basic process, there are some
preprocessing steps that can be applied in order to reduce the
influence of noise or undesired effects such as tracer recirculation or
leakage through the blood brain barrier. These effects can also be
considered in the model: it is a common practice to simply remove
them by fitting each contrast curve to a gamma function that takes
into account only the first pass of the tracer and assumes no leakage
[19,5,28]. This function is defined by the following equation:

CmðtÞ ¼ Kðt t0Þαe� t t0
β ð1:7Þ

for any moment t4t0, where t0 is defined as the contrast injection
time. Once the contrast concentration curve for each voxel has been
fitted to this function, the fitted data are used for the rest of the
quantification process.

2.2. Software implementation

This work presents an open DSC quantification tool. The devel
opment platform chosen, ImageJ [22], is an imaging analysis
and processing tool created by the National Institutes of Health
(Bethesda, Maryland, USA) in the Java programming language (Oracle
Corporation, Santa Clara, California, USA). ImageJ source code is
available under a public domain license, which allows developers
to implement new algorithms easily with the help of its well
documented application programming interface (API). This also
allows concentrating on algorithm implementation, as the common
imaging handling and processing functions (opening and saving
image files, displaying them on screen, different basic filtering
approaches…) are already implemented. For some mathematical
computations as SVD (Singular Value Decomposition) or linear regres
sion, we have used the Apache Commons Math libraries (http://com
mons.apache.org/proper/commons math/).

The implementation of the DSC quantification process has been
made in a modular way. This allows modifying the quantification
workflow so as to easily replace or include new steps (for instance,
new preprocessing algorithms or fitting models).

The processing workflow, from the moment the image has
been loaded into ImageJ, is the following:

1. The image is masked to eliminate from the parametric compu
tation all the voxels outside the subject body area. This masking
process is done using a simple thresholding method.

2. The voxels from which the AIF should be computed are auto
matically detected using the algorithm detailed in [21]. This
algorithm searches for those voxels that present contrast con
centration curves with an earlier peak value, higher maximum
amplitudes and smaller full width half maximum (FHWM).
Intuitively, it tries to detect those voxels that carry contrast
before it interacts with any of the tissues present in the image.
Once the appropriate voxels have been selected, they are
presented to the user as an overlay to the original image. If the
automatic selection is not satisfactory to the user, it is possible to
go back and choose a different AIF calculation mode. The present
program version includes two other methods: manual delinea
tion, in which the AIF is computed by averaging selected voxels,
and importing the AIF from a text file. Other automatic or semi
automatic AIF calculation methods could be easily integrated.
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3. As an optional preprocessing step, the contrast curves can be
fitted to a gamma function. This is done using a preprocessing
class that can be extended to facilitate future implementation
of new preprocessing steps. This particular fitting process
(gamma fit) has been included as a proof of concept in order
to test the modular design.

4. After the AIF extraction and the optional preprocessing step,
the three parametric maps are computed and shown on screen.

The implemented gamma fitting was based on an adaptive
minimum norm total linear least square method [10] that line
arizes the gamma function, performs a linear fit and then undoes
the linear transformation. This fitting process needs to find the
initial (t0) and final (te) moments of the first pass of the contrast
bolus to fit only that part of the curve. To choose t0 and te we used
a method derived from that published on [10]. This method looks
along the contrast curve for all possible pairs of points with the
constraint that the second point needs to have at least a third of
the maximum contrast curve amplitude for the whole volume;
when these points are found, the first one is set to be t0. The search
for the final point works in an analogous way. The contrast curve is
then fitted to a gamma function for t0otote and 0 otherwise.

The fitting algorithm output can be used to decide whether a
given pixel should be excluded from the analysis: if the contrast
signal curve can be properly fitted to a gamma function, then that
pixel is marked as containing contrast. On the fitted curve the signal
is forced to 0 before t0 and after te. These modelled curves are then
used to obtain the perfusion parameters, discarding the original ones.

The class hierarchy implemented can be seen in Fig. 1. Briefly, a
ImagePlusHyp class, which allows to read dynamic voxel values in a
convenient way, has been adapted from jClustering [14] and com
bined with an Iterator object (VoxIterator) in order to quickly read the
contrast curves from each voxel. Each voxel is then modeled using a
VoxelT2 class that contains the raw contrast measurement, the fitted
contrast (using a Fitter interface that can be implemented to develop
different fitting algorithms), the AIF (using the AIFCalculation inter
face) and the final parameters CBV, CBF and MTT.

2.3. Validation against a clinical tool

To validate the method we used a dataset of seven patients with
brain tumors (four males and three females; age range 25 80, age

mean and standard deviation 58.29719.18), recruited in the Radi
ology Department of our institution with no prior selection. Written
informed consent was obtained and the Institutional review board
approved the study.

Perfusion studies were acquired following a regular protocol: an
echo planar sequence (EPI factor 61) with a gradient echo prepara
tion (flip angle 401; TR 1692 ms; TE 30 ms). 40 frames (volumes) of
128�128�28 voxels with a voxel size of 1.8�1.8�5 mm were
acquired. 14 ml of Gadovist, 1.0 mmol/ml (Schering AG, Berlin,
Germany) were injected using an automated injector (Spectris Solaris
MR Injection System, Medrad, PA, USA) at a rate of 3 ml/s. After the
contrast injection, the line was flushed with 61 ml of saline solution
using the same injection rate. The images were acquired using a
Philips Intera magnetic resonance scanner, with field strength of 1.5 T
(Philips Medical Systems, Best, The Netherlands). All studies were
visually checked and no study had to be discarded due to patient
movement artifacts.

All studies were quantified using Philips IntelliSpace Portal,
obtaining CBV, CBF and MTT parametric images.

2.4. Quantification with IntelliSpace

At least two regions of interest (ROIs) were manually drawn on
each acquired image for quantification purposes by an experienced
radiologist. One was drawn inside the tumor area and another one,
or two, depending on the study, on the contralateral white matter
for reference purposes. Tumor to healthy white matter ratios were
computed for each parametric map using their average ROI values.
As more than one reference ROI was drawn in some of the patients,
a total of 13 ratios were computed. The AIF was calculated from
voxels selected manually by the radiologist.

2.5. Quantification with the presented tool

CBV, CBF and MTT maps were also obtained with the tool deve
loped in the present work using the automatic AIF extraction algo
rithm implemented, with and without the preprocessing gamma
fitting step. Parametric images were also obtained both with and
without gamma fitting preprocessing. The tumor ROIs drawn by the
radiologist were replicated manually in the contralateral hemisphere
and the tumor to healthy white matter ratios were computed. To
check the agreement between both tools, the Pearson correlation

Fig. 1. Diagram of the main classes implemented in this software.
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score was computed for each pair of measurements, followed by a
Bland Altman plot to detect possible biases in the results.

3. Results

The tool developed works as a plugin under the ImageJ platform
and has been published under a free software license (GNU GPL).

Source code and binary downloads are available at https://github.
com/HGGM LIM/imagej perfusion plugin.

Our tool successfully generated and displayed all the para
metric images using ImageJ internal procedures, as seen in Fig. 2.
The algorithm for automatic AIF selection was also successfully
employed in the generation of all the parametric maps; Fig. 3
shows a screenshot of one of the analyzed brains that shows the
voxels selected for the AIF calculation.

Regarding quantitative analysis, the correlation and Bland Alt
man analysis showed good results when no prior fitting is used
(Figs. 4 and 5). Fig. 4 includes the correlation values for each type of
comparison; p values o0.05 for all computed correlation scores.

4. Discussion

The DSC quantification tool developed in this work performs
the basic mathematical steps to generate CBV, CBF and MTT
parametric maps and includes a commonly used preprocessing
step by fitting the data to a gamma function in order to remove the
effects of both noise and contrast recirculation. The tool works as a
plugin under the ImageJ platform and has been published under a
free software license (GNU GPL).

For the validation of the tool we made use of a Philips Intelli
Space workstation as the gold standard, as it is a software platform
widely used in clinical environments. Our software yielded excel
lent results in terms of agreement, with a R2 value higher than
0.80 for all measured parameters when no gamma fitting was
used. The agreement for CBF is higher than for MTT; one possible
explanation is that CBV and MTT are similarly affected by several

Fig. 2. CBV (top), CBF (center) and MTT (bottom) parametric images generated
with our tool. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. (Top) a screenshot of the voxels used to compute the AIF. A single slice is
shown here but the algorithm inspects the whole volume (top). (Bottom) The AIF
curve is presented to the user so a decision can be made based on its shape and not
only on the anatomical placement of the selected voxels.
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factors such as mathematical and computational errors, and errors
due to localization and manual delineation of ROIs. In the case of
MTT, it is also affected by the deconvolution operation, which is a
mathematical operation very sensitive to noise or the minimum
eigenvalue accepted when computing the pseudoinverse matrix.
As CBF is a ratio and the above mentioned issues are then partially
canceled when the ratio is computed.

The obtained parametric maps are correctly displayed on
ImageJ (Fig. 2) and can be stored in a file using any of the standard
image formats supported by this platform in order to carry out
posterior analyses. Fig. 2 uses the “Fire” color look up table (LUT),
but ImageJ enables the user to select different LUTs.

The computational load of this algorithm is minimal in current
desktop computing systems. In our tests, parametric images are
generated in 1 2 s per study.

Class structure has been defined with flexibility and modularity
in mind. Though in the present implementation there is only one
fitting algorithm, several more have been proposed in the literature
[18,19]. Implementing another one just requires the user to imple
ment the necessary math in its own class extending the fitter class
and add another selection in the GUI to let the user select it. As this
project has been published with an open source license, any third
party may extend or change any functionality. Therefore, it is also
possible to easily develop and integrate new automatic AIF selection
routines [2] by implementing new AIFCalculation interfaces, as it is
demonstrated with the current AIFFromTextFile class.

This work has a number of limitations. On the one hand, the
details of the algorithms used by Philips IntelliSpace are unknown.
Pre or post processing steps, if any, performed by this platform are
not replicated by our tool, so we cannot rule out an effect on the
final numerical values. Due to the low agreement obtained in the
MTT values when using the gamma fitting option (R2¼0.49), it can
be deducted that the gold standard tool does not use this pre
processing step prior to computing the parametric values. In that
sense, the validation necessarily worked against a “black box” for
which only agreement metrics can be computed when no gamma
fitting is used. Also, the ROIs used in the two tools might differ
slightly, as they were originally drawn by an experienced radiologist
on IntelliSpace and then replicated on our tool. Furthermore, in our
case the input function was obtained automatically, a functionality
not provided by IntelliSpace. This can also account for some of the
differences observed in the regression analysis.

No validation has been made of the results obtained with
gamma fitting. While a validation can been made, provided a gold
standard tool that performs the analysis in this way could be
obtained, these results are included only as a proof of concept for
the modular design of the tool; they show that the preprocessing
filter is indeed processing the data as expected.

It has to be noted that our tool currently performs DSC analyses
only. The models that quantify dynamic contrast enhanced MRI
studies (DCE MRI, acquired using the T1 field and processed with
software such as the one presented in [29]) are quite different
from those used here, but in principle it would be possible to
modify this tool so that both types of analyses can be performed;
the proposed class architecture allows it and it may be included in
future lines of work with this software, along with the already
mentioned implementation of additional fitting models.

5. Conclusions

In this work we present an open source DSC quantification tool
that runs under ImageJ and which has been validated against
approved clinical software. The tool is able to obtain the AIF either

Fig. 4. Regression analysis for CBV, CBF and MTT values for the presented tool
(LIMperf, y-axis) and the Philips gold standard tool (x-axis). p-values o0.05 for all
correlation scores.
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Fig. 5. Bland–Altman plots for the different measured values, with and without gamma fitting. Solid line represents the mean value for the data points and slashed line the
95% confidence interval limit.
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automatically or manually. Furthermore, it follows a modular
design that allows third parties to include their own quantification
and preprocessing steps in an easy way using a public API. The
results obtained on seven patients were consistent with those
offered by the gold standard tool when no prior fitting was used.
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