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Abstract—Most small-animal X-ray computed tomography
(CT) scanners are based on cone-beam geometry with a flat-panel
detector orbiting in a circular trajectory. Image reconstruction
in these systems is usually performed by approximate methods
based on the algorithm proposed by Feldkamp et al. Currently
there are a strong need to speed-up the reconstruction of X-
Ray CT data in order to extend its clinical applications. We
present an efficient modular implementation of an FDK-based
reconstruction algorithm that takes advantage of the parallel
computing capabilities and the efficient bilinear interpolation
provided by general purpose graphic processing units (GPGPU).
The proposed implementation of the algorithm is evaluated for
a high-resolution micro-CT and achieves a speed-up of 46, while
preserving the reconstructed image quality.

I. INTRODUCTION

Many small animal X-ray computed tomography (CT)

scanners are based on cone-beam geometry with a flat-panel

detector orbiting in a circular trajectory [2]. This configuration

presents advantages over other alternatives used in clinical and

preclinical applications: reduction of acquisition time, large

axial field of view (FOV) without geometrical distortions,

and optimization of radiated dose. Despite the existence of

a remarkable progress in statistical reconstruction algorithms,

approximate methods based on the algorithm proposed by

Feldkamp et al. [3] (namely FDK) are still widely used for

solving the 3D reconstruction task because of its straightfor-

ward implementation and computational efficiency [2]. This

algorithm is the extension of the filtered backprojection for

cone beam geometry correction factors, which incorporates

the length of the rays.

With the evolution of the technology, the acquisition time

has been reduced. On the other hand, the evolution of the

detector panels has resulted in an increase of detector elements

density, which produces a higher amount of data to process [6].

Together with this increase of data, there is a need of faster

reconstructions to address the newest uses of CT: planning

and monitoring in radiotherapy, image assisted surgery, and

other clinical modalities required the real time imaging [5].

On the other hand, the recent advances in algorithms have not

been exploited yet at the full potential in high performance

implementations, which represents a barrier for extending the

use of this technology [5]. All this motivates the need to look

for optimizations that can handle the increasing complexity

and demand of the reconstruction task.

One possibility to speed up the reconstruction is to use

alternative algorithms. These algorithms could be classified

in three groups. The first ones are based on regrinding the

projection data in the Fourier domain into a Cartesian grid in

order to be able to use FFT directly. The second group is based

on accelerating the back projection step by a recursive process

of partial sums and treating all projections simultaneously.

Finally, the third group is based on dividing the image in

smaller parts (in space or Fourier domain). The algorithms

from the last group have been reported to reach a speed-up of

40, although the quality of the image is degraded and they lack

generality due to their dependency on the image properties.

Another strategy is the speed up of FDK using parallel com-

puting techniques and architectures. In this direction there are

many approaches, some of which are rigid and costly, as the

use of application-specific integrated circuit (ASIC) or FPGA

devices. Currently, one promising alternative is exploiting the

parallelism inherent to the General Purpose Processor Unit

(GPGPU). This paper presents an hybrid multi-core/multi-

GPU modular implementation of the FDK algorithm based

on a C implementation of Mangoose [1]. The implementation

takes advantage of parallel computing capabilities and the

efficient bilinear interpolation provided by GPU, in order to

speed-up the two main stages of the algorithm implementation.

II. HYBRID MULTI-GPU AND MULTI-CORE

IMPLEMENTATION

Mangoose implementation consists of two main stages: fil-

tering and backprojection. Both stages are highly parallelizable

due to the lack of data dependencies and high number of data

parallel operations. However, the main challenge is to highly

utilize the available parallelism at both CPU and GPU levels.

Our approach is based on hierarchical decomposition and

dynamic scheduling. The hierarchical decomposition consists

of a coarse-grain OpenMP implementation and fine-grain

CUDA-based modules.

The OpenMP implementation leverages multi-core paral-

lelism in order to support a variable number of heterogenous

GPUs. Multi-core processors are exploited through coarse-

grained data parallelism by assigning different projections to

different threads dynamically. We employ dynamic scheduling

in order to be able to map the parallel application on multi-

GPU heterogeneous systems. This approach is motivated by
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the fact that, as shown in Figure 2, the application shows a high
variability of performance depending on the GPU architecture.
The dynamic scheduler of OpenMP assigns a set of pro-
jections in order to be processed consecutively in the filtering
and backprojection stages. The filtering stage is implemented
using CUFFT, the library of Fast Fourier Transforms (FFT)
included in the development tools of version 4.0 of CUDA.
The strategy for backprojection relies on maximazing the
utilization of the GPU global memory by storing there the
highest fitting part of volume, while loading a set number of
projections at a time into texture memory (the number of si-
multaneous projection depends on the current texture memory
size available in the GPU). This approach significantly reduces
processing time and increases the data locality in the texture
memory.

III. EXPERIMENTAL RESULTS

Data were acquired with the CT subsystem of an ARGUS
PET/CT, based on cone-beam geometry and circular path.
In order to provide standard timings, we used two standard
resolution studies (pixel size of 0.2 mm), a one-bed study
with 360 projections of 512x512 pixels and a two-bed study
with 360 projections of 526x526 pixels (beds are units of
reconstruction that are to be merged into the final volume).
We also used a high resolution study (pixel size of 0.05
mm), with 360 projections of 2048x2048 pixels to evaluate
the effect of handling big volumes on the performance. Re-
constructed volumes had a resolution of 512x512x512 pixels
and 2048x2048x2048, respectively. The computer system used
in the evaluation is equipped with two Intel Xeon E5640 (2.67
GHz quad-core processors), 64 GBytes of RAM, and two
NVIDIA Tesla C2050 and two ASUS GTX 470.
Figure 1 plots the times obtained for filtering and backpro-
jection stages and the total processing time. Results suggest
that for small volumes the best result is achieved with 2 GPUs.
This is mainly due to the additional cost of transferring data
between the devices and the CPU. However, for large volumes,
increasing the degree of parallelism significantly reduce the
execution time.

Fig. 1. Mangoose time breakdown for 1 to 4 GPUs and projection sizes of
512 and 2048 pixels.

Finally, Figure 2 shows the results of four projection sizes
over three different GPU devices. As shown in the figure,
the choice of the device brand is a key factor in reducing
computation times.

Fig. 2. Execution times for different GPU NVidia models and four sizes of
projection with one bed (1B) and two beds (2B) .

IV. DISCUSSION AND CONCLUSION

In this work, we have presented an efficient modular
implementation of a FDK-based algorithm for cone-beam
CT. The main disadvantage of having different modules for
filtering and backprojection is the inability to exploit synergies
between the different stages, leading to a significant increase
in data transfer between CPU and GPU. However, the mod-
ularity approach allows an efficient replacement algorithms
implementation, facilitating the adaptability of the proposed
solution to new architectures and incoming devices. Results
show a speed-up of 25 and 46 for filtering and backprojection
stages respectively. Although a direct comparison between
different implementations from the literature is difficult due
mainly to differences in the employed hardware, we found
that the proposed implementation achieves an improvement
over recently published works by a factor of 4 [1], [4].
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