
Actas de las Jornadas de Ingeniería Telemática 2013, ISBN-13: 978-84-616-5597-7, páginas 147 - 154

Analysis of relod.net, a basic implementation of
the RELOAD protocol for peer-to-peer networks

Marcos López Samaniego*, Isaias Martinez-Yelmo†, Roberto Gonzalez-Sanchez*

* Departamento de Ingeniería Telemática
Universidad Carlos III de Madrid

Avda. Universidad, 30. 28911 Leganés (Madrid). Spain
marcos.lopez@uc3m.es, rgonza1@it.uc3m.es

† Escuela Politécnica - Dpto. Automática

Universidad de Alcalá
Ctra. Madrid-Barcelona, km 33,600. 28871 Alcalá de Henares (Madrid). Spain

isaias.martinezy@uah.es

Abstract- The P2PSIP Working Group is chartered to develop
protocols and mechanisms for the use of SIP in distributed
environments, thus minimizing the need for centralized servers.
Under this premise, the RELOAD protocol was created, whose
design was generalized to accept other applications with similar
requirements, and which is currently in process of
standardization by the IETF. In this paper, we present a basic
implementation and an analysis of this protocol proposed
standard, given the great interest displayed in recent years by
the scientific and business community in issues related to peer-
to-peer networks. Later, we conduct several experiments in
order to validate its correct operation in real scenarios and
provide feedback in relation with the current specification.

Palabras Clave- RELOAD, peer-to-peer, Chord

I. INTRODUCTION

Peer-to-peer networks emerged last decade to make
possible the replacement and recovery of resources over the
Internet in a distributed way by creating overlay networks.
Nevertheless, although peer-to-peer applications are popular
nowadays, some open issues have not been addressed yet.
One of the most challenging issues is the incompatibility
between overlay algorithms, because their development was
isolated. The Internet community is making some efforts to
define mechanisms that allow the interoperability among
different peer-to-peer networks. [1]

The P2PSIP Working Group is developing a protocol:
RELOAD (acronym for REsource LOcation And Discovery),
which allows the implementation of any peer-to-peer
network, defining a common architecture and format. This
protocol will become in the next months a new standard
(RFC 6940) by the Internet Engineering Task Force (IETF),
whose purpose is to provide support to applications that can
work in distributed environments.

Even though it was linked to SIP from the beginning,
RELOAD has not been developed only as a VoIP protocol,
but rather its field of application has been extended so that it
can be used by any other protocol with similar requirements.

This protocol acts by establishing an overlay network. Its
modular design makes it possible to use it with any type of
P2P network which is previously defined in the standard. A
Chord algorithm is mandatory to implement.

In order to carry out the implementation, an object-
oriented design based on a functional subset of the protocol
was first carried out, and was then coded in such a way that
the application can be easily modified and reused.

The structure of the paper is as follows. Section II
presents the state of the art in relation with Pee-to-Peer
networks. Later, section III introduces the main concepts of
the RELOAD specification. Afterwards, section IV
summarizes the main aspects of relod.net. In section V, some
results from our current implementation are shown to
illustrate the operability of our design. Finally, a summary of
our experiences and feedback from this work is provided in
section VI. To conclude, conclusions can be found in section
VI and future work in section VII.

II. STATE OF THE ART

A. Overlay peer-to-peer networks

A peer-to-peer (P2P) overlay network is a distributed
collection of autonomous computers called peers that form a
set of interconnections. These peers self-organize the overlay
and have symmetric roles: they act as client and server
simultaneously. Any peer can store objects, support queries
and performs routing of messages [2].

These overlay networks have the following principles:
self-organization, role symmetry, resource sharing,
scalability, peer autonomy and resiliency [2].

There are three main types of P2P overlay networks:

1. Structured

Peers and, sometimes, resources are organized following
specific criteria and algorithms, which lead to overlays with
specific topologies and properties. They typically use
distributed hash table-based (DHT) indexing [3]. This kind of
networks is touted for their abilities to scale, tolerate failures,
and self-manage, making them well-suited for Internet-scale
distributed applications [4]. Some examples for DHT
algorithms DHT are: CAN, Chord, Kademlia, or Pastry.

2. Unstructured

Unstructured peer to peer networks do not provide any
algorithm for organization or optimization of network

M. López Samaniego, I. Martínez-Yelmo y R. González-Sánchez: Analysis of relod.net, a Basic Implementation of the RELOAD Protocol for
Peer-to-Peer Networks

148

connections. There are three models: the pure P2P systems or
decentralized, like Gnutella and Freenet, the entire network
consists solely of equipotent peers; there are no preferred
nodes with any special infrastructure function. Hybrid peer-
to-peer systems, like Kazaa, allow such infrastructure nodes
to exist often called super nodes. Finally, centralized peer-to-
peer systems, such as Napster, where a central server is used
for indexing functions and to bootstrap the entire system. [3].

3. Hierarchical

A hierarchical overlay network is one in which several
overlay networks of different types are connected to each
other by means of another overlay network. This
interconnection is usually performed by means of nodes
known as super-peers, which are simultaneously part of two
overlay networks. One example is H-P2PSIP [5].

III. RELOAD

A. Introduction to the protocol

The internet draft followed during design and
implementation is REsource LOcation And Discovery
(RELOAD) Base Protocol draft-ietf-p2psip-base-26, which
expires on August 28, 2013 [6]. In this document the
protocol is summarized as follows:

RELOAD is «a peer-to-peer (P2P) signaling protocol for
use on the Internet. A P2P signaling protocol provides its
clients with an abstract storage and messaging service
between a set of cooperating peers that form the overlay
network. RELOAD is designed to support a P2P Session
Initiation Protocol (P2PSIP) network, but can be utilized by
other applications with similar requirements by defining new
usages that specify the kinds of data that needs to be stored
for a particular application. RELOAD defines a security
model based on a certificate enrollment service that provides
unique identities. NAT traversal is a fundamental service of
the protocol. RELOAD also allows access from “client”
nodes that do not need to route traffic or store data for
others.» [1]

B. Basic concepts

RELOAD is defined as a protocol for the application
layer, the highest level of the TCP/IP protocol suite. As a
transport level, it makes it possible to use the “secure” TLS

(connection-oriented) or DTLS protocols (connectionless).
This protocol forms basically an overlay network in

which internet, transport, and application levels are
redefined, as well as a new routing level.

It can work with structured and unstructured overlay
networks, which work as genuinely exchangeable plugins.
The Topology Plugin is the RELOAD module that provides
this functionality

The RELOAD node identifier is the Node-ID. It is
composed of a variable number of bits – 128 in Chord. The
Resource-ID occupies the same space as Node-ID, and
identifies the resources stored in the overlay.

Each node is responsible for those Resource-IDs which
are equal to or lower than their own Node-ID, and which in
turn are higher than the immediately previous Node-ID.

C. Functional modules

1. Message Transport

This layer is responsible for end-to-end message
transactions. It communicates with the use layer and with the
storage component, and must be able to deliver messages to
the destination node, whether it is a Node-ID or a Resource-
ID.

Likewise, in the opposite direction, when Message
Transport receives a new message, it delivers it to the
relevant module, depending on the message type.

2. Storage

One of the features of RELOAD is the fact that is not
only a messaging network; it is also a storage network. The
overlay nodes keep available data which the usage needs.
The storage component is in charge of storing the data and
returning it when requested.

A Node-ID will necessarily store the resources of which
is responsible, but it will also be sent requests to store
Resources-ID which another node is in charge of. In this
way, replicated data can be stored throughout the entire
overlay, and a certain degree of redundancy against a node
failure exists.

The kind of data that can be stored by a node is known as
their Kind and is identified by its Kind-ID, which is a 32-bit
integer assigned by IANA (or else belonging to a private
range). A Resource-ID can contain several Kind-IDs.

The model for the data that can be stored in a Kind-ID is
known as a Data Model. In principle, three Data Models are
considered, although future usages might define new models.
The possible types to be stored can be: an individual value;
an array, multiple values indexed by a number; or a
dictionary, several values indexed by a key or String.

3. Topology Plugin

The Topology Plugin defines a generic structure on which
several structured and unstructured peer-to-peer overlay
algorithms can work. The functions of these plugins are
basically defining the network topology and routing the
messages through the nodes.

However, not any type of pre-existing algorithm can
work, but rather different algorithms will be defined or
redefined in the future so that they can work on RELOAD.
The only plugin currently defined is Chord, a DHT
algorithm, which has been slightly modified with respect to
its original design so it can work on RELOAD. It must be
possible to replace Chord by another algorithm without

Internet
Model

Internet Model
Equivalent in

Overlay

RELOAD
Architecture

Application

Application

Transport

(Routing)

Internet

Transport Link

Fig. 1. RELOAD architecture.

JITEL / Criptografía y control de acceso

149

affecting the rest of levels to continue to work without being
modified in any way.

The topology plugin is responsible for the routing and
connection table maintenance. The configuration of these
tables depends on the algorithm in use. The Topology Plugin
must be queried to make decisions about the packets routing.

4. Forwarding & Link Management

This layer communicates with the Topology Plugin to
obtain connection tables and routes, and thus deliver the
message to the following node. It is responsible for
establishing connections with new nodes and passes through
NAT and firewalls using ICE.

Forwarding & Link Management has access to the
TCP/IP transport level, and is in charge of maintaining
connections, so it is responsible for receiving overlay
messages and place new packets on the network at the
request of higher layers.

5. Link layer

Link provides an extra header known as the Framing
Header (FH), which only makes sense in the context of the
link and is removed at each hop.

On the one hand, when a reliable protocol (e.g.: TCP) is
selected, it is used to frame messages and to provide timing.
On the other hand, due to the unreliable nature of UDP, when
DTLS is chosen at the link level of the overlay network, use
of the Simple Reliability protocol is required. This protocol
makes use of the Framing Header to provide congestion
control and semi-reliability.

D. Basic fields

Unlike the Internet architecture, RELOAD levels do not
define their own headers. Rather, there is a common message
to all overlay network levels, which has three parts:
Forwarding Header, Message Contents, and Security Block.

1. Forwarding Header

This header includes fields that identify the RELOAD
protocol (RELO token), version, overlay name (e.g.: Chord-
RELOAD), number of the sequence identifying the
configuration file, TTL (time-to-life in number of hops),
fragmentation, transaction identifier (a random number),
maximum response length, routing addresses, and options.

Addresses include two fields. The first one is the
DESTINATION LIST, an array of destination addresses. A
message will be routed in strict order through the nodes that
appear in the list.

The other relevant field is the VIA LIST, a second array
where nodes are being crossed by the message in every hop
are gradually added. When a node forwards a message, it
places the peer that delivered the packet at the end of the
VIA LIST.

RELOAD works with recursive symmetrical routing,
which consists in the fact that, when a destination node
receives a request which must be answered, it generates a

DESTINATION LIST in the answering message, turning the
VIA LIST around.

2. Message Contents

The fields in this block are the message code, the
message body, and the extensions.

The message code is an integer that identifies the content
of the message (Store, Fetch, Join, Leave…, and whether it is
a request or an answer). Once identified, the message body is
delivered to the responsible module (Storage, Topology…),
which will decode it and generate an answer if required.

3. Security Block

This last block includes a number of certificates required
to verify signatures (they can be of various types, e.g.:
X.509), it specifies the hash and signature algorithms and,
finally, includes the certificate hash and the value of the
signature.

E. Usage layer

RELOAD cannot work by itself, it is designed to support
a variety of applications. The usages that can be given to
RELOAD are precisely known as usages. A usage defines
how an application can store its information in the overlay; it
may define its own data types, along with the rules for their
use. One single application may require multiple usages.

A vast number of usages are being currently defined to
work on RELOAD, in addition to SIP. Some of them are
Distributed Conference Control (DisCo) [10], Shared
Resources (ShaRe) [11], Constrained Application Protocol
(CoAP) [12], Simple Network Management Protocol
(SNMP) [13], Service Discovery [14], Public Switched
Telephone Network (PSTN) Verification [15]…

F. Encapsulation example

Fig.-2 shows an example of how a Join Request packet is
processed. Link layer delivers the message to Forwarding &
Link Management but this module does not contribute with
any header. Afterwards, it comes to Message Transport,
which will be able to decode the structure. The Message
Body field, which is opaque to Message Transport module, is
delivered to the responsible layer: Topology Plugin in the
case of a Join message. Header and Footer do not represent
any particular field in the message, just the rest of the
structure after and before Message Body.

G. Working diagram

It can be seen in fig.-3 how the different modules
communicate with each other. This diagram of course does
not represent all classes in detail; this is an extremely
simplified scheme that represents how the implementation is
designed, to validate RELOAD architecture in the standard.

Link, Forwarding & Link Management and Storage are
symbolized by a single class, this class has in fact all the
main code from these modules, but other secondary classes
exist and are not represented in the diagram.

TOPOLOGY PLUGIN JOIN REQ
MESSAGE TRANSPORT HEADER MESSAGE BODY FOOTER
OVERLAY LINK LAYER FH RELOAD MESSAGE

 TLS HEADER ENCRYPTED APPLICATION DATA

 TCP HEADER TCP DATA

IP HEADER IP DATA

Fig. 2. Encapsulation example in RELOAD.

M. López Samaniego, I. Martínez-Yelmo y R. González-Sánchez: Analysis of relod.net, a Basic Implementation of the RELOAD Protocol for
Peer-to-Peer Networks

150

By the other hand, Message Transport and Topology
Plugin have two classes.

The Topology Plugin module will have an additional
API-class for every algorithm implemented. While ChordApi
has the code from Chord, the TopologyPluginApi is a
standard API which has all the methods that can be called by
the rest of the layers, thus, it is impossible for the other
modules know the algorithm in use.

MessageTransportApi is the API for the Message module,
which includes all the needed methods in this layer; while
Message class is just an object containing the message
structure in RELOAD, which will be instantiated by the most
of the modules.

Finally, RelodApi and SipUsage are real classes, where
any other usage can be implemented instead of SIP.

IV. IMPLEMENTATION

A. Introduction

Our work consists in an implementation and benchmark
for RELOAD: relod.net. Due the specification length, a
subset with basic functionality is described here.

In addition, a reduced version of SIP has been
implemented to check the operation of the entire system,
taking as its base the existing draft: A SIP Usage for
RELOAD draft-ietf-p2psip-sip-09 [7].

The chosen programming language is Java. So far, no
Java implementation of the protocol is known – only C and
C++ implementations have been carried out and they are not

publicly available yet. In addition to previous reasons, Java is
chosen due to its object orientation and its multi-platform
nature.

B. Code structure

There are seven main Java packages in each of the
modules that form RELOAD: the link level, Forwarding and
Link Management, Topology Plugin, Message Transport,
Storage, one more for common classes to various modules,
and finally, one for the specific packages of the usage in
question, in this case SIP. In turn, these may contain more
subpackages.

C. Design considerations

A modular design was developed, emphasizing the
independence of the various layers in the overlay network.

Each package has a class, which is the Application
Programming Interface (API) – they are the only means for
access from other modules. This fact simplifies operation and
ensures that, for example, all requests that can be made from
the Storage module are addressed to the StorageApi class
only. However, internally within each layer, there are no
restrictions on how classes communicate with each other.
This design makes possible for each module to be
independent, retaining control over how some parts of the
code communicate with others.

Likewise, there is a class that groups all protocol
modules: ReloadApi. These APIs mask the complexity of
each of the modules and the application itself.

SipUsage
<main>

ReloadApi

MessageTransportApi StorageApi

+KindModel
+KindCounter

Message

ForwardingAndLinkManagementApi

‐LinkApi [] (client)

TopologyPluginApi

‐ChordApi

ChordApi

LinkApi

‐TCPClient

1..*

+ResourceReplica

+SingleValueTable
+ResourceKind

+ArrayTable
+DictionaryTable

+ConnectionTable

‐TCPServer

+SendData
+RoutingTable

‐ReloadApi

Message Transport

Topology Plugin

‐LinkApi (server)

Fig. 3. UML Diagram.

JITEL / Criptografía y control de acceso

151

The code seeks to make maximum use of Java’s object
orientation. Therefore, each structure defined in the draft is
encoded in a different class. This implementation is
innovative, since instead of using classic mechanisms such as
parsers to encode and decode structures, a new procedure has
been designed.

D. Object structure

Each structure is modeled as simple as possible: each one
of the fields is encoded by means of an attribute, which may
be a basic Java type or another structure (i.e. an object). Each
structure usually has two builders: the first one, whose
arguments are the same as the class attributes and whose
assignation is thus trivial; and a second builder whose only
argument is a byte array which also fills in the attributes after
the structure is decoded.

The purpose of the first builder is to generate a message
that will be delivered through the overlay, whereas the
second builder is used when a packet is received from the
network and we need to know its contents. Decoding is made
recursively: each class decodes its structure and, if it contains
attributes that are not primitive types, it calls the builders of
those structures in turn. Coding is performed by calling the
getBytes() method and it is also recursive.

V. RESULTS

A. Testing environment

Several tests are documented here. Various aspects of the
implementation are tested, such as the overlay registration –
when they access the overlay for the first time –, storage, or
the way in which they exchange routing information by
means of Update messages.

A Peer-to-Peer overlay network forms with twelve peers
is used in our tests. All peers are in the same LAN network
or they are reachable through public IP addresses, NAT
traversal support has not been implemented yet.

A number higher than ten is selected in order to be big
enough in order to validate the behavior of routing tables
based on fingers in Chord. Therefore, it will typically be one
or two fingers, and some nodes will not be connected to each
other, so messages must be routed through the overlay.

A basic implementation of SIP as usage [7] is being used
in the tests, so when each node is registered its overlay
location information is saved in the peer-to-peer network, so

any overlay node participating in the peer-to-peer overlay
can later retrieve it.

B. Basic operation sequence

Even though all the overlay nodes are only identified by
their Resource-ID / Node-ID, their IP addresses are
mentioned so that figures illustrating the text can be more
easily understood. In this section, diagrams show the theorist
working from the RFC and they can be compared to the real-
application Wireshark captures.

1. Overlay registration (Fig.-4)

When a node accesses the overlay – Joining Peer (JP),
with IP 192.168.1.15 –, it makes a connection to a Bootstrap
Node (BN), whose IP address it previously knows, in this
case: 192.168.1.70. This is the fifth node to initialize, so it
contacts 4 other peers, which are added to the neighbor table.

Then an Attach message is sent to the relevant Resource-
ID – its own Node-ID plus one –, which is routed via the
bootstrap to its Admitting Peer (AP), whose IP address is
192.168.1.13.

After receiving the Attach message, a direct connection is
established between the Joining Peer and the Admitting Peer,
direct messages are sent between these two nodes, and by
this means the JP receives information about the AP’s
neighbors, which are also its own neighbors. It then sends an
Attach message to the three other overlay nodes (two of
which were routed through the AP), and, as it is now ready to
become a part of the overlay, it sends a Join message to its
Admitting Peer.

After this, the JP sends three Store messages in which it
provides information about three Resource-IDs of which the
AP will now be responsible. The JP then sends an Update to
the AP, stating that it is now one more node in the overlay.
The AP now sends Updates to its entire routing table to make
it known that it is ready to route for them. Finally, SIP usage
registered its Address Of Record (AOR) in the overlay by
means of a Store message (the fact that the peer responsible
for storing this information is the AP is coincidental, and any
other peer in the overlay might have played this role).

2. Data procurement and remove (Fig.-5)

Once all the nodes have been initialized a mapping of an
AOR in another AOR is stored in the overlay by sending a
Store message and receiving the corresponding answer.

Then, a couple of queries for different AORs are made

Fig. 4. Peer initialization messages.

M. López Samaniego, I. Martínez-Yelmo y R. González-Sánchez: Analysis of relod.net, a Basic Implementation of the RELOAD Protocol for
Peer-to-Peer Networks

152

via the console. The Fetch requests and answers are shown,
which, in this case, provide the Node-ID for the AOR in
question. The answer to this Fetch message is shown on the
screen via the console.

Finally, we remove our AOR, by means, as we will see,
of a Store that crushes the stored information, as there is no
specific message for removals.

3. Replication (Fig.-6)

Once our peer has become a part of the overlay, another
one, whose IP address is 192.168.1.19, wishes to store its
information in a Resource-ID that belongs to us.

Firstly, we receive a Store message, but it does not come
from the expected node. This happens because, given that the
overlay has many nodes, we are not the neighbor or the
finger of the node generating the packet, so that the packet is
routed through the overlay – in this case, with an
intermediate hop, through the peer with IP address
192.168.1.1. Given that routing is symmetrical and recursive,
the answer is returned to that same node.

This information must be replicated twice, so it is
forwarded to our two first successors. Our immediate
successor is the node with IP 192.168.1.2, so that the
information is directly delivered. The next successor is
192.168.1.16, so it is delivered in the same way.

C. Join traffic (Fig.-7)

This screenshot shows the Join Request message in the
previous section (Overlay registration). This picture is a
detail of the eleventh packet in fig. 4.

The Forwarding Header shows the values mentioned
above. The RELOAD version is 0x0A16 = 1010 = 1.0. The
message is sent to a Node-ID (the Admitting Peer), the
message code is 15 (Join Request), and its only content is the
Joining Peer’s Node-ID.

D. Fetch traffic (Fig.-8)

The following packet to be analyzed is the first Fetch
message in fig. 5, from Data procurement and remove, in the
previous section.
It can be seen how, in the DESTINATION LIST FIELD, the
destination is a Resource-ID, so the responsible Node-ID for
that resource will receive the message. The message code is
number 33 (Join Request), and the message body includes
the Resource-ID again. It is a simple request that has only
one Kind-ID (number 1: “SIP-REGISTRATION”). A
GENERATION COUNTER of 0 specifies that it is an
original (not replicated) message, and no dictionary keys are
specified (0 keys), as SIP usage indicates that requests must
be empty, so that all the values stored in that resource will be
returned in the answer.

E. Store traffic (Fig.-9)

Finally, a Store Request from Replication will now be
examined. The picture is a detail of the third packet in fig. 6,
where a request to store some replicas was made.

Even though it is not shown due to space constraints, the
destination of this message is a node, the Node-ID where we
want to store the replicated message. The message code is 7
(Store Request), and in the content appears the Resource-ID
where the original content is stored – a resource for which
the node receiving this message is of course not responsible.

It can be seen that this is a “SIP-REGISTRATION”
Kind-ID, the GENERATION COUNTER is 1, which means
that this is a replicated message in the first successor, and
that a single dictionary entry is stored, with one key and one
value. SIP usage defines that the key is a node identifier
where the person to be called can be located, while the value
is a structure with additional SIP data.

Fig. 6. Replica storage.

Fig. 7. Join Request message detail.

Fig. 5. Data storage and fetch.

JITEL / Criptografía y control de acceso

153

VI. ANALYSIS

A. Implementation performance

These values include the Java Virtual Machine resource
consumption. This test was made on an Intel Core i7 950
Quad-core clocked at 3 GHz, on Microsoft Windows 7.

In a small network with 10 or 12 nodes running relod.net,
the CPU usage is at 2.1% maximum during the registration in
the overlay, after this, the usage drops to a value very close
to 0%. The RAM consumption is between 23.8 and 25.8 MB,
peaking at the initialization.

B. Feedback and suggested improvements

1. Feedback

Generally speaking, the standard structure is complex.
Just taking a look to it, it is not clear to which module
messages belong, or how the layers are encapsulated. In this
sense, other protocols such as P2PP are easier to understand,
and even most of the documents published by the IETF
published are less complex.

Further, some of the relationships between modules are
not so obvious. In certain messages, such as a Ping Request,
when a node receives a message in the link layer of the
overlay network, it delivers the message to Forwarding, so
that it decides whether it belongs to it or whether it must be
forwarded to another node. To do so, it queries the Message
Transport layer, as it is unable to understand the structure by
itself, given that Forward has no associated header. After
checking that the message belongs to it, it is finally sent to
the higher layer, which is again Message Transport.

Message analyses the packet, checks that it is a Ping
Request and that the responsible module is Forwarding, so
the message body is delivered to this layer, which will be
able to process its content. This module generates the
answer, which will be sent through the opposite path.

It is obvious that it is not easy for such a relevant layer as
Forwarding & Link Management not to have any associated
header (it would be perfectly possible for it to have access to
the data that would enable it to decide whether to forward the
message or not). It is in no way understandable the fact that
the Forwarding layer delivers a message to a higher layer,
which immediately returns the message to this same
Forwarding layer.

2. Suggested improvements

The RFC does not define a link layer proper in the
overlay network. It merely specifies that the Link level can
be TLS or DTLS but then, incoherently, it defines an extra
header on that same level: Framing Header.

We suggest creating a new intermediate layer between
TLS and Forwarding called “Link”, which would be
responsible for the tasks assigned by the document:
congestion control, semi-reliability, and timing.

C. Benefits

The creation of a standard protocol such as RELOAD can
be regarded as a landmark in the history of the Internet. Its
approach involves a shift from the current client-server
model to a new model distributed between peers. It can be
expected that businesses will tend to gradually assume this
paradigm shift, due to the high costs of centralized servers.

This protocol is particularly significant due to the
extensibility it allows, as is it not conceived for a specific

protocol, but rather it allows multiple usages. It also stands
out for its ease in adapting new protocols and turning them
into RELOAD usages. Finally, it is highly flexible, as any
type of peer-to-peer algorithm can be used.

Fig. 8. Fetch Request message detail.

Fig. 9. Store Request message detail.

M. López Samaniego, I. Martínez-Yelmo y R. González-Sánchez: Analysis of relod.net, a Basic Implementation of the RELOAD Protocol for
Peer-to-Peer Networks

154

This implementation was carried out to promote these
features. Its extremely modular design makes it possible to
create new topology plugins with no need to change the rest
of the code, and even if the source code is missing, as each of
the modules has an easily accessible API as a standard access
from other modules.

In addition, a general class is given: ReloadApi, which
provides a high-level API for the whole protocol. Any usage
to be programmed on this implementation of RELOAD will
only need to create a ReloadApi-type object and make calls
to the methods in this class.

VII. CONCLUSIONS

This paper analyzes relod.net, one of the first RELOAD
implementations, protocol that will become peer-to-peer
networks’ new standard. However, it does not only represent
a change when it comes to the creation of new software that
works in a distributed way; its main challenge is the
redefinition of widely accepted protocols by the industry,
which once adapted, the Internet will gradually change from
the client-server model into a new paradigm that will
minimize the need of centralized servers.

This work aims to show how possible is to make a basic
implementation of RELOAD extracting the main features of
the standard, at the same time that it suggests a modular
design that would even allow that two different modules
encoded by different companies could work jointly.

To provide the interoperability, it’s necessary to define
certain APIs, which determine what calls are permitted from
one module to another. Regarding this issue, it is especially
important to reach agreement on the Topology Plugin
module, and to set a standardized API as a way to ensure that
future overlay algorithms can operate with existing
implementations.

Therefore, we have published the Java API
documentation and we have also decided to release the
source code to the community, which is available in:

http://download.relod.net/

This application has been programmed through a whole
year. The program consists of 11,000 code lines, which
occupy a total of 554 kilobytes, stored in 163 Java classes, in
28 packages.

Although this is an alpha version that, due to their level
of maturity, interoperability with other implementations
cannot be guaranteed, we believe it could become a reference
to other developers, for its proper design and simple code. In
addition, the program will be updated while is being
completed, until it becomes a fully functional application.

VIII. FUTURE WORK

The first of our goals is to complete the missing parts,
such as transversal NAT, security, and clients. It is also very
important to focus on interoperability with other
implementations: once the security module is completed, it
will be possible to test it using other programmers’ software.

The creation of a second algorithm that works jointly
with Chord is proposed. No other peer-to-peer has currently
been defined yet, so potential work might involve adapting
an existing algorithm for usage on RELOAD. Designing a
usage from scratch might be equally interesting, modifying

an already existing protocol to work in distributed
environments, or else designing a new one.

In the storage module, data are stored in RAM memory.
This might suffice in many scenarios, but in others it might
be preferable for data to be stored in a hard disk or a solid-
state drive. For this reason, the use of databases is suggested.

Finally, it would be advisable to test the scalability of the
implementation on a larger number of nodes using a network
emulator such as ModelNet or PlanetLab. To ensure proper
operation, the idea is to try different scenario setups with at
least 1,000 peers.

ACKNOWLEDGMENTS

This research was supported in part by the Comunidad de
Madrid grant S-2009/TIC-1468 (MEDIANET project).

REFERENCES

[1] Isaias Martinez-Yelmo, Roberto Gonzalez-Sanchez and Carmen
Guerrero. “Validation of H-P2PSIP, a scalable solution for
interoperability among different overlay networks”. Peer-To-Peer
Networking and Applications, vol. 6. no. 2, pp. 175-193, 2013.

[2] John F. Buford, Heather Yu and Eng Keong Lua, P2P Networking and
Applications. Burlington, Massachusetts: Elsevier, 2008, pp. 29-31.

[3] D. Vivekanandreddy, Allamprabhu Vastrad and R. M. Nareshkumar,
“Implementation of a novel optimized trust based search approach for
the peer to peer (P2P) platform”, World Journal of Science and
Technology, vol. 2, no. 10, pp. 129-132, 2012.

[4] Tallat M. Shafaat, Ali Ghodsi and Seif Haridi, “Dealing with network
partitions in structured overlay networks”, Peer-To-Peer Networking
and Applications, vol. 2. no. 4, pp. 334-347, 2009.

[5] Isaias Martinez-Yelmo, Alex Bikfalvi, Ruben Cuevas, Carmen
Guerrero and Jaime Garcia. “H-P2PSIP: Interconnection of P2PSIP
domains for Global Multimedia Services based on a Hierarchical DHT
Overlay Network”. Computer Networks: The International Journal of
Computer and Telecommunications Networking. vol. 53 no. 4, pp. 556-
568, 2009.

[6] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset and H. Schulzrinne,
REsource LOcation And Discovery (RELOAD) Base Protocol draft-
ietf-p2psip-base-26, February 24, 2013. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-p2psip-base-26

[7] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset and H. Schulzrinne,
A SIP Usage for RELOAD draft-ietf-p2psip-sip-09, February 25, 2013.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-p2psip-sip-09

[10] A. Knauf, G. Hege and M. Waehlisch, A RELOAD Usage for
Distributed Conference Control (DisCo) draft-ietf-p2psip-disco-00.
October 9, 2012. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-p2psip-disco-00

[11] A. Knauf, T C. Schmidt, G. Hege and M. Waehlisch, A Usage for
Shared Resources in RELOAD (ShaRe) draft-ietf-p2psip-share-01.
February 24, 2013. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-p2psip-share-01

[12] J. Jimenez, J. Lopez-Vega, J. Maenpaa and G. Camarillo, A
Constrained Application Protocol (CoAP) Usage for REsource
Location And Discovery (RELOAD)
draft-jimenez-p2psip-coap-reload-03. February 18, 2013. [Online].
Available: http://tools.ietf.org/html/draft-jimenez-p2psip-coap-reload-03

[13] Y. Peng, W. Wang, Z. Hao and Y. Meng, An SNMP Usage for
RELOAD draft-peng-p2psip-snmp-05. October 18, 2012. [Online].
Available: http://tools.ietf.org/html/draft-peng-p2psip-snmp-05

[14] J. Maenpaa and G. Camarillo, Service Discovery Usage for REsource
LOcation And Discovery (RELOAD)
draft-ietf-p2psip-service-discovery-08. February 23, 2013. [Online].
Available:
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-08

[15] M. Petit-Huguenin, J. Rosenberg and C. Jennings, A Usage of
Resource Location and Discovery (RELOAD) for Public Switched
Telephone Network (PSTN) Verification
draft-petithuguenin-vipr-reload-usage-04. March 12, 2012. [Online].
Available:
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-04

