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Investigation of different Compressed Sensing 

Approaches for Respiratory Gating 

in Small Animal CT 

Juan Abascal, Alejandro Sisniega, Cristina Chavarrfas, Juan Jose Vaquero, Manuel Desco, and Monica Abella 

Abstract- Respiratory gating is necessary in cardio-thoracic 

small-animal imaging because of the physiological motions that 

are present during scanning. When applying a low-dose protocol, 

fewer than 180 noisy projections may be left for the 

reconstruction of each respiratory phase, leading to streak 

artifacts. The Prior Image Constrained Compressed Sensing 

(PICCS) algorithm enables accurate reconstruction of highly 

undersampled data when a prior image is available. We evaluate 

three CS algorithms based on the Split-Bregman approach, with 

different transformations of the prior penalty function: Gradient 

(TV-PICCS), Ll-norm (Ll-PICCS), and Wavelet Transform 

(WT -PICCS), on low-dose data acquired on a micro-CT scanner. 

All CS methods performed very similarly in terms of noise and 

resolution, greatly improving filtered back-projection (79 % noise 

reduction) and eliminating streaks. Wavelet domain was found to 

be sparser and to show a more natural texture than the commonly 

used gradient domain. 

I. INTRODUCTION 

RESPIRATORY gating is necessary in cardio-thoracic small­

animal imaging because of the physiological motions that 

are present during scanning. In order to obtain good quality for 

every respiratory phase, it is necessary to acquire more data 

than in the case of standard protocol for static image, which 

significantly increases the dose. When applying a low-dose 

protocol, fewer than 180 noisy projections may be left for the 

reconstruction of each respiratory phase, leading to streak 

artifacts in the reconstructed images (Fig. 1). In [1, 2] this 

problem is solved in the analytical framework, using a 

variation of the McKinnon-Bates method. The algorithm is 

based on correcting an initial estimate made from the whole 

data set with the undersampled data for each respiratory phase. 

The authors show a noise and artifact reduction but it is 

challenging for the algorithm to correct for the artifacts that 

are present in the initial estimate [2]. 
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Fig. l. Central slice of low-dose FDK reconstruction of phases 1 and 3. 

In the compressed sensing framework, an image can be 

accurately reconstructed from few projections using convex 

optimization if the image is sparse on a transform domain [3, 

4]. The most common sparsity domain is the total variation 

(TV) which efficiently removes noise and artifacts from the 

image caused by the undersampling. From the large variety of 

methods available for the solution of Ll-penalty functions, the 

Split-Bregman algorithm has been shown to be optimal [5]. 

Compared with standard statistical reconstruction methods, 

TV -based approaches show that around 100 projections are 

enough to avoid streak artifacts, but the minimization of TV 

leads to patchy images for high undersampling factors [6]. 

The Prior Image Constrained Compressed Sensing (PICCS) 

algorithm is a combination of both strategies, i.e. prior image 

and sparsity condition, that solves this problem avoiding the 

patchy texture [7]. The prior in dynamic data is commonly 

chosen as the image reconstructed from averaging all frames. 

The gradient domain is the preferred choice for enforcing 

the sparsity of the variation of each phase with respect to the 

prior. However, depending on the application, other 

transformations such as the pixel domain or the wavelet 

transformed may be sparser. 

In this work we present an evaluation of three CS algorithms 

based on the Split-Bregman approach, with different 

transformations of the prior penalty function: Gradient (TV­

PICCS), Ll-norm (Ll-PICCS), and Wavelet Transform (WT­

PICCS), on low-dose data acquired on a micro-CT scanner 

and compared them to an image reconstructed using a filtered 

back-projection based algorithm (FDK). 
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II. METHODS

A. Data acquisition and low-dose simulation 

The algorithms were tested on rodent data acquired with the 

CT subsystem of an ARGUS/CT (SEDECAL) [8], a cone­

beam micro-CT scanner based on a flat panel detector. We 

obtained 360 views covering 360°, with 32 images of 512x512 

pixels (0.2xO.2 mm pixel size) per projection angle and a 

source voltage of 45 kVp. These high-dose projection data 

were arranged into four gates using a software-based 

retrospective gating [9]. 

To simulate the low-dose case, we randomly took 120 

projections from each gate and added Poisson noise by 

modeling the measurements as independently distributed 

Poisson random variables: 

Yi - Poisson { Yi} _ -fu(x,y,z) 
i = 1, ... , N with Y i = I i e U , (1) 

where u(x,y,z) is the unknown energy-dependent attenuation 

map of the object, and Ii is the intensity emitted by the X-ray 

source (we used Ii = 4.5xlO-4).

A prior image was obtained by adding the four low-dose 

gates and applying a Gaussian filter with u=5. 

B. Image reconstruction 

Let F be the forward operator, u the unknown image, up the 

prior image, j the data, and TJ and T2 the transformed sparse 

domains. The PICCS algorithm is given by 

(2) 

where TJ is selected as the gradient operator (TV). This 

selection for TJ filters out noise while keeping edges. 

The prior penalty term helps avoiding the cartoon-like 

texture and TV is also a common choice for T2. However, 

other selections of T2 might be sparser for this application. We 

tried the pixel domain (Ll-norm), i.e. T2 =1, and the wavelet 

domain (WT). 

In addition, we impose a support constraint that restricts the 

reconstruction to a circle n and a positive constraint [10]. 

Thus, the reconstruction problem becomes 

This problem can be efficiently solved using the Split­

Bregman formulation by including new variables, dx, dy, w, 

and v that allow for the splitting 

dv�2w." (1-a*dx , dy )ll l +a1HII

+ � IIFu -jkll: +� lldx -Dxu -b; II� +� lldy -Dyu -b;ll: (4) 

+� llw -T (u-u )_bkI12 +lllv_u_b�112 , 2 2 P "' 2 2 \ 2 
where the variables bi represent the Bregman iterations that

impose the constraints. Note that u is independent of the rest of 

variables, so the previous equation can be split. Solution of u 

only involves 2-norm functionals and can be solved exactly 

and efficiently using a Gaussian-Krylov solver. Solution of dx, 

dy, and ware solved using shrinkage formulas and v by hard 

thresholding [5]. 

Low-dose data were reconstructed by using Mangoose [11], 

an approximation of the FDK method, and three algorithms 

based on the Split-Bregman approach: TV-PICCS, Ll-PICCS, 

WT -PICCS. Parameters in each algorithm were selected to 

give comparable resolution properties. We used /1=20, A=I, 

y=O.1 and a =0.8. Our reference standard for evaluation was 

the result of reconstructing the high-dose data using 

Mangoose. 

III. RESULTS 

Fig. 2 shows the sorted absolute value of the coefficients for 

each sparsifying transform. We can see that for this data set the 

wavelet domain is significantly sparser than the commonly 

used gradient domain. 

a 0.5 1.5 2 x 105 

Fig. 2. Sparseness: Sorted absolute values on several transformed domains. 

All CS methods eliminated the high noise and severe streak 

artifacts present in the FDK image due to the lack of 

projection angles. They also performed very similarly in terms 

of noise: noise reduction was around 79% measured in an 

1800-pixel ROlon the heart area with respect to FDK. 

Fig. 3 shows a profile taken across the lung and heart to 

assess the blurring present in the prior due to the respiratory 

movement (the white line in the Fig. 3, left). All CS methods 

showed a good match with the target in respect to resolution, 

whereas the prior is blurred. 

-FBP -Ll-PICCS 

20 40 60 
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80 100 

Fig. 3. Left: Central slice of the prior image. Right: Profiles along the 
white line: low-dose FDK and prior are far from the target, while all CS 
methods show better fit (only Ll-PICCS shown). 

2



Fig. 4 shows the best result for each CS method in terms of 

mean square error with respect to the high-dose reconstruction 

(target). TV-PICCS, Ll-PICCS and WT-PICCS converged at 

40, 25 and 25 iterations respectively. 

Fig 4. Zoom-in images for target (A), TV-PICCS (B), Ll-PICCS (C) and 
WT-PICCS (D), from left to right and from top to bottom. 

From visual inspection, we can appreciate differences in 

image texture: TV-PICCS (Fig. 4-B) shows a patchy-like 

pattern and Ll-PICCS (Fig. 4-C) shows pixel-like artifact, 

while WT-PICCS (Fig. 4-D) shows a more natural texture. 

IV. DISCUSSION AND CONCLUSION 

We found that the selection of the sparsity transform for the 

prior term does not affect resolution and noise performance 

but it has an influence on the final image texture: Wavelet 

transform showed a more natural pattern than TV and L1-

norm. 

There are several limitations and approximations that will 

be considered in future work. First, in this study we present the 

results of the three methods for a=0.8 (parameter that weights 

the prior penalty function), but a study of a wider range of the 

weighting parameter would be advisable. Second, statistical 

modeling has been recently shown to improve noise and 

texture on PICCS [12], and can be easily included within the 

SB formulation [13]. And finally, we have used a prior based 

on the union of data for all phase bins, where other priors such 

as a running average can provide better results [14]. 

In conclusion, we showed that a compressed sensing 

methodology using a Split-Bregman approach is feasible to 

reduce dose in CT with respiratory gating. 
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