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Abstract— This paper describes Torii-HLMAC, a scalable, fault-

tolerant, zero-configuration data center network fabric 

architecture protocol as a fully distributed alternative to 

PortLand for similar multiple tree network topologies. It uses 

multiple, fixed, tree-based positional MAC addresses for multiple 

path and table-free forwarding. Addresses are assigned by a 

simple extension of the Rapid Spanning Tree Protocol. Torii-

HLMAC enhances the PortLand protocol advantages of 

scalability, zero configuration and high performance and adds 

instant path recovery, fully distributed routing and address 

assignment. ARP Proxy may be used to avoid ARP broadcast 

messages. 
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I.  INTRODUCTION 

 Data center networks are increasingly relying on Ethernet 
and flat layer two networks due to its excellent price and 
performance ratio and configuration convenience. The growing 
importance, by economic reasons, of the scale up model 
(increasing switches and links speeds) by the scale out model 
[1], using a high number of commodity servers and switches, is 
driving data center networks to high scale dimensions. 
Different approaches to implement a data center fabric have 
been recently proposed to overcome the limitations of 
Spanning Tree protocol (ST) and the configuration complexity 
of Multiple Spanning Tree Protocol.  

 PortLand [2] is a recent protocol proposal for data centers 
that uses centralized control, location based pseudo MAC 
addresses and Up/Down turn prohibition to prevent loops. 
Positional addresses are assigned to hosts and switches by a 
discovery protocol and replace universal MAC addresses at 
edge switches. ARP proxy and path repair functions are 
implemented as centralized functions. Previous to PortLand 
were [3] and [4] (SEATTLE).  

  In this paper we explore a combination of distributed 
functions to make forwarding in fat trees simple and more 
scalable. The Torii-HLMAC protocol aims to improve 
PortLand (and routing in fat trees in general) with alternative, 
simpler and distributed mechanisms. We use topological 
pseudo MAC addresses, but multiple simple addresses 

(inspired in TRE [5]), in order to facilitate multipath 
forwarding, direct frame routing without tables and on the fly 
alternate path selection after link failure.   

In Section II, the basics of Torii-HLMAC will be 

explained: address assignment, broadcast/multicast/unicast 

forwarding and path repair. The topology used is the same 

shown in PortLand [2] for its simplicity. Nevertheless, in 

Section III more specific features of Torii will be detailed, as 

well as the generalization to any other topology. 

II. PROTOCOL DESCRIPTION

A. Tree-based Multiple Addresses structure and automatic 

assignment with Extended RSTP 

Torii-HLMAC assigns to each bridge  a Hierarchical Local 

MAC (HLMAC) address at every port connected upstream as 

shown in Fig. 1. Upper layer bridges are assigned one 

HLMAC, next layer bridges get two HLMAC addresses (one 

per link to upper layer bridges) and so on in powers of two. 

HLMAC addresses are local (private) MAC addresses, i.e., 

addresses whose U/L bit is set to 1. The 46 bits available for 

addressing purposes (after removing the local or global bit and 

the multicast bit), encode by default up to 6 different 

hierarchical levels, with 6 bits for the first and 8 bits for each 

other level. The HLMAC of a bridge is expressed in the dotted 

form �������� as the chain of designated port IDs a, b, c, ... 

traversed in the descending path from the Root Bridge to the 

bridge to which the address is assigned.  

To build the spanning tree and assign hierarchical 

addresses to the bridges, a modified version of the Rapid 

Spanning Tree Protocol (RSTP) is used, which is defined in 

HURP [6]. Once the root bridge is set, which gets 0.0.0.0.0.0 

as HLMAC, the process of building the spanning tree from the 

root to the leaves starts. This iterative process consists of 

BPDUs being sent by the parent bridge including the number 

of the Designated Port. These numbers are 1,2,3,4, which 

correspond to the pod number that the port is connected to, as 

shown in Fig 1.  
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For instance, the first switch at pod 1 has 1.1. (core switch 

1 and designated port 1) and 2.1. (core switch 2 and 

designated port 1) as its HLMAC addresses.  

The role of root bridge may be implemented as a couple of 

root bridges operating in active and fully sharing its 

addressing system towards downstream ports with redundant 

links, so that bridges 1,2,3,4 always get the same address  via 

both  links, even if a root bridge links fails. Root bridges do 

not carry user traffic because the reflection plane is located at 

core bridges, then their design is only focused to 

dependability. 

As a result, each node gets one or more (up to four in this 
scenario) topological tree addresses, HLMAC. There will be so 
many alternative HLMAC addresses at the edge switches as the 
number of core switches, and the HLMAC prefix will be used 
to distribute traffic on a hash base. 

B. Tree-based Forwarding 

Routing of every frame is directly performed via address 

decoding. Once the HLMACs are set, Torii switches need to 

distinguish among broadcast/multicast and unicast frames, and 

identify the direction of the frame: “going up” or “going 

down”, which is done thanks to the frame input port. Once 

those two parameters are known, the logic applied at each 

switch of the topology is the following: 

If frame is BROADCAST or MULTICAST: 

      If frame goes UP: 

         If switch is edge � host MAC to HLMAC (prefix chosen by a hash) 

         Forward frame through the HLMAC port * 

         Down broadcast frame *** 

      Else if frame goes DOWN: 

         If switch is edge � HLMAC to host MAC 

         Down broadcast frame *** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Else if frame is UNICAST: 

      If frame goes UP: 

         If switch is edge � host MAC to HLMAC (prefix chosen by a hash) 

         Forward frame through the HLMAC port ** 

      Else if frame goes DOWN: 

         If switch is edge � HLMAC to host MAC 

         Forward frame through the HLMAC port * 

 

*: Forwards through the next port according to the HLMAC address 

(up port if the frame comes from a down one or viceversa) 

**: Same that *, but in unicast, sometimes frames do not need to 

reach the core  switch if there is a shorter path, in this case the frame 

is not forwarded to the core (indicated by the HLMAC prefix). 

***: Broadcast only through the ports located down in the hierarchy 

except through the input port. 

1) Broadcast and Multicast Forwarding

     To put it into words, when a host A sends a broadcast 

frame, first of all, the switch serving that host chooses a prefix 

based on a hash function. The prefix determines the core 

switch that will be used to carry out  the broadcast. For 

instance, if prefix 1 is chosen, while the broadcast destination 

address (FF:FF:FF:FF:FF:FF) remains the same, the frame 

source address A is translated into the corresponding Torii-

HLMAC address (see Fig. 2, in which A source address is 

translated into 1:1:1:1:0:0 by the edge bridge). Broadcast 

frames from a specific host may use different prefixes to 

obtain load distribution and path diversity, since the hash 

function can  be based on any flow-related parameter.  

     Once the prefix is elected and the address translation from 

global MAC to local HLMACs is done, the frame is directed 

up to the matching core switch and also replicated down to 

every link except the one associated to the input port as shown 

in Fig. 2. Since only one core switch is used, paths are unique 

and the communication remains loop-free. 

Figure 1: Multiple hierarchical addresses (HLMAC) assignment for Torii with extended Rapid Spanning Tree Protocol from virtual Root node. 

From ‘.’ it means the rest of the HLMAC is made of zeroes. 
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Figure 2: Broadcast frame from host A. The broadcast address remains the 

same while the A source address is translated into 1.1.1.1 at edge bridge in the 

frame when prefix 1 has been chosen at the edge by hash. 

     Finally, if the received frame at the destination edge 

switches is an ARP Request, the chosen prefix HLMAC is 

reversed into A (the information is known thanks to the ARP 

message) and both addresses (the HLMAC and the original 

MAC address A) are saved in a table for future unicast frames. 

     The same forwarding mechanism is applied for multicast 

frames. As it can be seen, multicast and broadcast forwarding 

are performed across the spanning tree as it occurs in classical 

Ethernet, the differences are the multiple (four in the figure) 

trees available where the frame is forwarded only to one of 

them by selecting the first level bridge with the hash function. 

ARP Proxy [7] function  may be implemented at edge bridges, 

learning from all ARP Request and ARP Reply frames 

traversing them, or centralized, as in PortLand. 

2) Unicast Forwarding

     In the case of unicast frames, the hash to select the prefix 

is based on both the origin and the destination MAC 

addresses, so that the prefix is unique and the flow is 

guaranteed to be bidirectional. Additionally, some other 

parameters (for instance, transport layer parameters such as 

the protocol or the transport ports) might be added to the hash 

function in order to distribute the traffic more efficiently, since 

multiple paths between hosts can be generated.  

     Once the unicast frame arrives at the source edge switch, it 

translates both addresses. The origin address is translated into 

the corresponding Torii-HLMAC address (which is known by 

the edge switch, since it is the responsible of assigning it to its 

hosts) and the same happens with the destination address (its 

HLMAC is always known by a previous ARP Request, which 

will be always sent before any unicast frame).  

     For instance, in Fig. 3, prefix 1 was chosen and, because of 

this, the origin B is translated into 1:3:1:2:0:0, while the 

destination A is translated into 1:1:1:1:0:0, which is known by 

the previous ARP Request (see Fig. 2).  

     If a different prefix was chosen with the ARP Request, the 

according Torii-HLMAC would be easily deduced. If prefix 2 

had been chosen instead, B would be 2:3:1:2:0:0 and A, 

2:1:1:1:0:0. Therefore only the prefix part of the HLMAC 

changes, an advantage of the fixed topology, which makes 

HLMAC addresses completely deducible once one single 

HLMAC is already known. 

Figure 3: Unicast frame from B to A. Both addresses (A and B) are translated 

at the edge switches, which already know them from the previous ARP 

messages. In this case A goes 1.1.1.1 and B goes 1.3.1.2. 

     After the prefix is elected and the translation done, the 

frame is forwarded up or down according to the destination 

HLMAC. The main difference with the broadcast forwarding 

is that the frame does not always need to travel to the core 

switch to finally reach the destination, because, sometimes, 

there will be shorter paths, for example if the hosts share the 

edge switch or the pod. 

     Finally, at the destination edge switch, if the frame is an 

ARP Reply, both addresses (the destination MAC and 

translated HLMAC) are saved in a table. In this way, thanks to 

the ARP Request and Reply messages, origin and destination 

edge switches will be capable of translating future unicast 

frames.   

     Notice that unicast frames will always have the same 

prefix in their Torii-HLMAC destination and source 

addresses, this is because they will always travel through the 

same core switch so that the communication is bidirectional. 

Therefore, unicast frames with different prefixes at their Torii-

HLMACs can be used for special events such as notifying an 

action (for example, a failed link when found) to any switch in 

the topology. 

C. Tree-based Path Repair 

In the previous section, standard forwarding has been 

detailed. When a link goes down in the topology, no messages 

are exchanged and the Torii-HLMACs assigned remain 

exactly the same, only the switches connected to that link 

know that the link is down and not valid for a path anymore. 

Therefore, when a frame arrives at a switch and its Torii-

HLMAC indicates it should be sent through the failed port, the 

path repair procedure starts. The method is as follows, an 

alternative HLMAC can be directly deduced on the fly from 

its HLMAC. For this deduction is necessary to consider the 

following: 

• Broadcast and Multicast frames:

As there are no needs to follow a specific path,  and to

prevent multiple broadcasts, the first and closest

alternative path available is selected. By closest, we

mean the alternative that requires fewer steps back to

continue the broadcasting.
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• Unicast frames:

Since the communication must be bidirectional, both

sides of the communication should take the same

alternative path, i.e. the same alternative core switch

as the prefix. The criterion in this case is to choose the

next core switch in order, even if it is not the closest

alternative.

A notification should also be made to the edge

switches to avoid selecting the non-valid prefix path

again.

     Once the alternative HLMAC is selected, the frame is 

forwarded back (if necessary) until it reaches the new path and 

then it is transmitted through it as shown in Fig. 4.  

Figure 4: Unicast frame from A to B. Link from switch 1. to 1.3. is down, 

when the frame arrives at 1. it is forwarded back to 1.1. to be sent to its new 

alternative path, which is the one with the next prefix, 2. 

     In the case of unicast frames, since the edge switches need 

to be notified, the source HLMAC will be translated into the 

new HLMAC while the destination will remain the same. In 

this way, the same redirected frame serves as  a notification as 

well, because their HLMAC prefixes will not be the same and 

it will be considered a special frame.    

Figure 5: Unicast frame from A to B. Once the frame is back to 1.1., the origin 

HLMAC is translated into the new path HLMAC (from 1.1.1.1 to 2.1.1.1) and 

sent to core switch 2. The destination remains the same, 1.3.1.2, but because 

of its nature (different HLMAC prefixes), it is known the frame is a 

notification frame and it is sent to the new HLMAC: 2.3.1.2. 

 The notification indicates the switch serving the 

destination host to avoid using the old path (shown in the 

destination prefix) and start using the new one (shown in the 

source prefix). For instance, in Fig. 5, the source is translated 

into 2.1.1.1, while the destination remains as 1.3.1.2. 

However, since it is a failure notification frame, it is deduced 

to be sent to 2.3.1.2 through core switch 2, i.e., the frame does 

not follow the path of destination for routing, but the 

destination with the prefix of the source. As an example, in 

Fig. 5, the frame destination is 1.3.1.2 but it will be forwarded 

through 2.3.1.2 (core switch 2) since the source prefix is 2 and 

not 1, and at the same time, the frame indicates the failed link 

for core switch 1 to the destination edge switch. 

Finally, once the frame arrives at the destination edge 

switch, this last sends the notification back so that the origin 

edge switch is also informed. This second notification has now 

the old origin as its destination and the new destination as its 

origin. For instance, in Fig. 6, the frame HLMAC origin is 

now 2.3.1.2 (from the previous destination 1.3.1.2) and the 

destination is 1.1.1.1 (from the previous source 2.1.1.1) but, 

since it is a notification, the frame is sent through the path to 

2.1.1.1. 

Figure 6: Unicast frame from A to B. Once the frame has notified the 

destination edge switch (1.3.1), it is sent back to 1.1.1.1 (through the new path 

2.1.1.1) indicating the new destination HLMAC 2.3.1.2 

     After both notifications are exchanged, both edge switches 

know about the failed link and will not assign again that path 

after hashing, but the alternative one. 

It is important to notice that these special frames are not 

extra messages in the network, they are just normal 

communication frames that serve, as the same time, as 

notifications. Therefore, when path repair is needed, not only 

alternative paths are decided on the fly, but there is no 

overload in the network. 

III. EVALUATION

A. Simulation of Torii HLMAC 

Torii-HLMAC has been simulated in Omnet++ (v4.1). The 
implementation, coded in C++, relies on the MACRelayUnit 
module (from inet/linklayer/etherswitch). The base has been 
modified so that it acts as a Torii switch. Though STP is not 
implemented, the STP BPDUs are given as parameters in the 
simulation instead. 

The simulations consisted of UDP traffic exchange between 
different hosts in the PortLand topology. Operation of path 
repair was also proven with broadcast and unicast traffic by 
changing the status to down of links at different hierarchy 
levels. As expected, frames were directly forwarded through 
the alternative path with no need of extra messages or any other 
calculations. 
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The aim of these simulations was to prove Torii-HLMAC 
works as expected: Once the HLMAC are assigned, no 
overload was added and decisions were made on the fly (for 
normal forwarding and repair as well), no extra messages were 
needed for any change of configuration, load balancing was 
assured with the multiple addressing and, for all of this 
features, we only implemented the logic of Torii-HLMAC at 
every switch. Regarding table sizes, switches only needed to 
save their addresses and edge switches require an extra table 
for saving the original host’ MACs for translation of maximum 
size equal to the number of hosts in the network. 

B. Use of Virtual Machines at hosts 

In data center topologies, physical hosts are usually 
composed by a number of virtual machines (VM) installed on 
them. In the most generic case, Torii would assign one 
HLMAC address per final host, but in practice, Torii only uses 
the first four bytes of HLMAC addresses, so the last two bytes 
could be used to distinguish among those VM by being 
assigned in the reception order of their ARP messages. 
Therefore, every host could have up to 2

16
 (65536) – 1 (since 

number 0 is not used for HLMAC addresses) = 65535 VM 
working at the same time. 

C. HLMAC Address Assignment Alternatives 

In this proposal, Torii-HLMAC takes 1 byte of the 6 of the 
HLMAC per hierarchical level, so that is 4 bytes and the free 2 
bytes could be used per VM addressing assignment. 
Nevertheless, if more levels are needed, fewer bits could be 
assigned per level and many alternatives could be used 
depending on the topology requirements, without changing the 
basics of the Torii-HLMAC protocol. 

D. Inter-L2 Mobility 

Regarding inter-L2 mobility, when a host (or virtual 
machine in a host) A communicating with another B, moves 
from one edge switch to a different one, the frames will follow 
the next procedure: 

• If the frame goes from A to B (Fig. 7):

If the new edge switch has B’s HLMAC, the frame is
forwarded towards it, with the new A’s HLMAC, since
we consider A should had emitted a gratuitous ARP
before.

If not, the edge switch should emit a special frame
(ARP Request) to obtain B’s HLMAC and discard any
frame meanwhile. A second option would be broadcast
any frame following the ARP-alike frame, so that they
are not lost.

• If the frame goes from B to A:

In this case, the frame will reach the old edge switch
and this last should broadcast the frame towards the
other edge switches (all frames so that they are not lost
or just a single one to make the notification). The new
edge switch would then note down B’s HLMAC and
send a special message (ARP Reply) towards B with
the new A’s HLMAC.

Figure 7: Unicast frame from A to B, after A change. The frame reaches its 

new edge switch and this already knows B (from a previous ARP or after an 

extra ARP by the edge). A is translated into 1.2.1.3 and reaches B at 1.3.1.2. 

The switch serving B knows A’s address and can translate back thanks to it 

gratuitous ARP (or the ARP Request from A’s edge switch if needed) 

Both cases require broadcasting of frames in order to be 
lossless. However, alternatively, less broadcasting could be 
applied by discarding some frames while the mobility of A is 
notified if the design requires it. 

The key in inter-L2 mobility with Torii-HLMAC is that 
only edge switches need to update information in relation with 
the host change, and only in some cases, and this can be 
requested by a simple ARP message. 

E. Generalization of Torii HLMAC to any data center 

topology 

This paper has shown how Torii-HLMAC would work in a 
topology like the one described in PortLand. This topology is 
based on using commodity switches with all links of equal 
capacity and, although named as FatTree is better described as 
a Clos Network [8]. The difference between both concepts is 
that a Fat Tree [9] increases the capacity of its links the closer 
it is to the core switches, while in a Clos Network all links have 
the same capacity. Fat trees are also very suitable for Ethernet 
networks thanks to the aggregation compatibility with the 
Ethernet family growth (using links of 100Mbps, 1Gbps, 
10Gbps, etc). Therefore, in practice, the use of one or the other 
will depend on the most desirable feature: less cost using cheap 
off-the-self components (Clos Network) or less wiring 
complexity (Fat Tree). 

In the case of the Torii protocol, both (Clos networks and 
Fat Trees) could be used. In fact, Fat Trees are specially 
convenient for simpler wiring once there are four core 
switches, since four core switches provide the network with 
enough multipath forwarding and, in case of a link failure, still 
three alternative paths to be used. The only condition for using 
Torii in the different topologies is that nodes are organized into 
‘pods’ so that from a core node (at the top) to its corresponding 
edge switches (at the bottom), links form a tree.  

In Fig. 8, two different types of topologies with four levels 
of switches (instead of the three levels in the previous 
examples), in which the Torii protocol could be applied, are 
shown. The one on the left, a Clos network, would need more 
wiring, but it allows the use of 4-port commodity switches, and 
each host could apply up to 8 Torii-HLMACs addresses (since 
there are 8 core switches at the top). While the one on the right, 

5



a Fat Tree network, would need less wiring and the wires 
capacity increases towards the top (see the fatter links), but 
commodity switches could not be used, and each host could 
apply only up to 2 Torii-HLMACs addresses (only 2 core 
switches at the top), which could be enough in some 
circumstances. Choosing one or the other will always depend 
on the design requirements. 

Figure 8: A Clos network and its equivalent Fat Tree network of 4 levels of 

hierarchy and 8 edge switches 

  Another design option could be the PortLand-alike 

topologies, the so-called “Fat Trees” (which in fact are Clos 

networks), the specific features of these topologies described 

in [1], as well as its scaling properties, make it particularly 

appealing for the data center. In general, a “Fat Tree” built 

from identical k-port switches can support 100 percent 

throughput among k
3
/4 servers using k

2
/4 switching elements. 

The topology should be organized into k pods, each 

connecting k
2
/4 end hosts. Edge switches in each pod provide 

connectivity to end hosts and connect to aggregation switches 

in the hierarchy’s second level. Core switches form the root of 

the fat tree, facilitating interpod communication. 

  The topology shown in the Torii-HLMAC description 

figures considered k equal to four. Torii-HLMAC could be 

used in fat trees with k up to 16. This is because we have 6 bits 

for the prefix (the first level of six in the HLMAC), so the 

number of switching elements k
2
/4 should be smaller than 2

6
 

which is the number the HLMAC would cover. 

k
2
/4 <= 2

6
 � k

2 
<= 64*4 = 256 � k <= 16 

     The wiring complexity of a fat tree with 64 switching 

elements is high enough to even consider a bigger k topology. 

For this specific case of k equal to 16, which would mean k 

pods of k
2
/4 end hosts, 16 pods of 64 end hosts, i.e. a total of 

1024 hosts and the total bisectional capacity would be 1Tbps 

if links were all of speed 1Gbps. 

IV. CONCLUSIONS

Torii-HLMAC improves PortLand in several ways: 
multiple addresses are automatically assigned in a distributed 
form without duplicates, instead of by a centralized module. 

Routing and path repair is distributed and performed based 
solely on the destination tree-based HLMAC address used, 
without routing tables at bridges, allowing high speed 
forwarding. In case of a link failure in a path, the bridge 
instantly selects an alternative path to reach the destination host 
and also notifies both edge switches serving origin and 
destination so that the non valid path is not chosen again, for a 
while. The multiple addressing allows load balancing based on 
a hash function, which can be designed specifically for 
different topology requirements and traffic models without 
changing Torii’s main logic. The topology scales up to 6 levels 
plus roots and more, if needed. Torii’s topologies are more 
flexible than PortLand’s and a true fat tree can be set up, in 
which the links connected to the core switches are fatter 
(higher speed) in order to simplify the wiring instead. The 
independence of Torii-HLMAC from IP is clear as well. 
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