
This document is published in:

2012 IEEE Global Communications Conference (GLOBECOM)
(2012). (pp. 2523 - 2528). IEEE
DOI: http://dx.doi.org/10.1109/GLOCOM.2012.6503496

© 2012 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-archivo.uc3m.es/
http://dx.doi.org/10.1109/GLOCOM.2012.6503496

Torii-HLMAC: A Distributed, Fault-tolerant, Zero

Configuration Fat Tree Data Center Architecture with

Multiple Tree-based Addressing and Forwarding

Elisa Rojas

Departamento de Automatica, UAH

Alcala de Henares (Madrid), Spain

elisa.rojas@uah.es

Guillermo Ibáñez

Departamento de Automatica, UAH

Alcala de Henares (Madrid), Spain

guillermo.ibanez@uah.es

Abstract— This paper describes Torii-HLMAC, a scalable, fault-

tolerant, zero-configuration data center network fabric

architecture protocol as a fully distributed alternative to

PortLand for similar multiple tree network topologies. It uses

multiple, fixed, tree-based positional MAC addresses for multiple

path and table-free forwarding. Addresses are assigned by a

simple extension of the Rapid Spanning Tree Protocol. Torii-

HLMAC enhances the PortLand protocol advantages of

scalability, zero configuration and high performance and adds

instant path recovery, fully distributed routing and address

assignment. ARP Proxy may be used to avoid ARP broadcast

messages.

Keywords- Ethernet; tree-based routing; routing bridges; data

centers; fat trees; Shortest Path Bridges; Spanning Tree.

I. INTRODUCTION

 Data center networks are increasingly relying on Ethernet
and flat layer two networks due to its excellent price and
performance ratio and configuration convenience. The growing
importance, by economic reasons, of the scale up model
(increasing switches and links speeds) by the scale out model
[1], using a high number of commodity servers and switches, is
driving data center networks to high scale dimensions.
Different approaches to implement a data center fabric have
been recently proposed to overcome the limitations of
Spanning Tree protocol (ST) and the configuration complexity
of Multiple Spanning Tree Protocol.

 PortLand [2] is a recent protocol proposal for data centers
that uses centralized control, location based pseudo MAC
addresses and Up/Down turn prohibition to prevent loops.
Positional addresses are assigned to hosts and switches by a
discovery protocol and replace universal MAC addresses at
edge switches. ARP proxy and path repair functions are
implemented as centralized functions. Previous to PortLand
were [3] and [4] (SEATTLE).

 In this paper we explore a combination of distributed
functions to make forwarding in fat trees simple and more
scalable. The Torii-HLMAC protocol aims to improve
PortLand (and routing in fat trees in general) with alternative,
simpler and distributed mechanisms. We use topological
pseudo MAC addresses, but multiple simple addresses

(inspired in TRE [5]), in order to facilitate multipath
forwarding, direct frame routing without tables and on the fly
alternate path selection after link failure.

In Section II, the basics of Torii-HLMAC will be

explained: address assignment, broadcast/multicast/unicast

forwarding and path repair. The topology used is the same

shown in PortLand [2] for its simplicity. Nevertheless, in

Section III more specific features of Torii will be detailed, as

well as the generalization to any other topology.

II. PROTOCOL DESCRIPTION

A. Tree-based Multiple Addresses structure and automatic

assignment with Extended RSTP

Torii-HLMAC assigns to each bridge a Hierarchical Local

MAC (HLMAC) address at every port connected upstream as

shown in Fig. 1. Upper layer bridges are assigned one

HLMAC, next layer bridges get two HLMAC addresses (one

per link to upper layer bridges) and so on in powers of two.

HLMAC addresses are local (private) MAC addresses, i.e.,

addresses whose U/L bit is set to 1. The 46 bits available for

addressing purposes (after removing the local or global bit and

the multicast bit), encode by default up to 6 different

hierarchical levels, with 6 bits for the first and 8 bits for each

other level. The HLMAC of a bridge is expressed in the dotted

form �������� as the chain of designated port IDs a, b, c, ...

traversed in the descending path from the Root Bridge to the

bridge to which the address is assigned.

To build the spanning tree and assign hierarchical

addresses to the bridges, a modified version of the Rapid

Spanning Tree Protocol (RSTP) is used, which is defined in

HURP [6]. Once the root bridge is set, which gets 0.0.0.0.0.0

as HLMAC, the process of building the spanning tree from the

root to the leaves starts. This iterative process consists of

BPDUs being sent by the parent bridge including the number

of the Designated Port. These numbers are 1,2,3,4, which

correspond to the pod number that the port is connected to, as

shown in Fig 1.

1

For instance, the first switch at pod 1 has 1.1. (core switch

1 and designated port 1) and 2.1. (core switch 2 and

designated port 1) as its HLMAC addresses.

The role of root bridge may be implemented as a couple of

root bridges operating in active and fully sharing its

addressing system towards downstream ports with redundant

links, so that bridges 1,2,3,4 always get the same address via

both links, even if a root bridge links fails. Root bridges do

not carry user traffic because the reflection plane is located at

core bridges, then their design is only focused to

dependability.

As a result, each node gets one or more (up to four in this
scenario) topological tree addresses, HLMAC. There will be so
many alternative HLMAC addresses at the edge switches as the
number of core switches, and the HLMAC prefix will be used
to distribute traffic on a hash base.

B. Tree-based Forwarding

Routing of every frame is directly performed via address

decoding. Once the HLMACs are set, Torii switches need to

distinguish among broadcast/multicast and unicast frames, and

identify the direction of the frame: “going up” or “going

down”, which is done thanks to the frame input port. Once

those two parameters are known, the logic applied at each

switch of the topology is the following:

If frame is BROADCAST or MULTICAST:

 If frame goes UP:

 If switch is edge � host MAC to HLMAC (prefix chosen by a hash)

 Forward frame through the HLMAC port *

 Down broadcast frame ***

 Else if frame goes DOWN:

 If switch is edge � HLMAC to host MAC

 Down broadcast frame ***

 Else if frame is UNICAST:

 If frame goes UP:

 If switch is edge � host MAC to HLMAC (prefix chosen by a hash)

 Forward frame through the HLMAC port **

 Else if frame goes DOWN:

 If switch is edge � HLMAC to host MAC

 Forward frame through the HLMAC port *

*: Forwards through the next port according to the HLMAC address

(up port if the frame comes from a down one or viceversa)

**: Same that *, but in unicast, sometimes frames do not need to

reach the core switch if there is a shorter path, in this case the frame

is not forwarded to the core (indicated by the HLMAC prefix).

***: Broadcast only through the ports located down in the hierarchy

except through the input port.

1) Broadcast and Multicast Forwarding

 To put it into words, when a host A sends a broadcast

frame, first of all, the switch serving that host chooses a prefix

based on a hash function. The prefix determines the core

switch that will be used to carry out the broadcast. For

instance, if prefix 1 is chosen, while the broadcast destination

address (FF:FF:FF:FF:FF:FF) remains the same, the frame

source address A is translated into the corresponding Torii-

HLMAC address (see Fig. 2, in which A source address is

translated into 1:1:1:1:0:0 by the edge bridge). Broadcast

frames from a specific host may use different prefixes to

obtain load distribution and path diversity, since the hash

function can be based on any flow-related parameter.

 Once the prefix is elected and the address translation from

global MAC to local HLMACs is done, the frame is directed

up to the matching core switch and also replicated down to

every link except the one associated to the input port as shown

in Fig. 2. Since only one core switch is used, paths are unique

and the communication remains loop-free.

Figure 1: Multiple hierarchical addresses (HLMAC) assignment for Torii with extended Rapid Spanning Tree Protocol from virtual Root node.

From ‘.’ it means the rest of the HLMAC is made of zeroes.

2

Figure 2: Broadcast frame from host A. The broadcast address remains the

same while the A source address is translated into 1.1.1.1 at edge bridge in the

frame when prefix 1 has been chosen at the edge by hash.

 Finally, if the received frame at the destination edge

switches is an ARP Request, the chosen prefix HLMAC is

reversed into A (the information is known thanks to the ARP

message) and both addresses (the HLMAC and the original

MAC address A) are saved in a table for future unicast frames.

 The same forwarding mechanism is applied for multicast

frames. As it can be seen, multicast and broadcast forwarding

are performed across the spanning tree as it occurs in classical

Ethernet, the differences are the multiple (four in the figure)

trees available where the frame is forwarded only to one of

them by selecting the first level bridge with the hash function.

ARP Proxy [7] function may be implemented at edge bridges,

learning from all ARP Request and ARP Reply frames

traversing them, or centralized, as in PortLand.

2) Unicast Forwarding

 In the case of unicast frames, the hash to select the prefix

is based on both the origin and the destination MAC

addresses, so that the prefix is unique and the flow is

guaranteed to be bidirectional. Additionally, some other

parameters (for instance, transport layer parameters such as

the protocol or the transport ports) might be added to the hash

function in order to distribute the traffic more efficiently, since

multiple paths between hosts can be generated.

 Once the unicast frame arrives at the source edge switch, it

translates both addresses. The origin address is translated into

the corresponding Torii-HLMAC address (which is known by

the edge switch, since it is the responsible of assigning it to its

hosts) and the same happens with the destination address (its

HLMAC is always known by a previous ARP Request, which

will be always sent before any unicast frame).

 For instance, in Fig. 3, prefix 1 was chosen and, because of

this, the origin B is translated into 1:3:1:2:0:0, while the

destination A is translated into 1:1:1:1:0:0, which is known by

the previous ARP Request (see Fig. 2).

 If a different prefix was chosen with the ARP Request, the

according Torii-HLMAC would be easily deduced. If prefix 2

had been chosen instead, B would be 2:3:1:2:0:0 and A,

2:1:1:1:0:0. Therefore only the prefix part of the HLMAC

changes, an advantage of the fixed topology, which makes

HLMAC addresses completely deducible once one single

HLMAC is already known.

Figure 3: Unicast frame from B to A. Both addresses (A and B) are translated

at the edge switches, which already know them from the previous ARP

messages. In this case A goes 1.1.1.1 and B goes 1.3.1.2.

 After the prefix is elected and the translation done, the

frame is forwarded up or down according to the destination

HLMAC. The main difference with the broadcast forwarding

is that the frame does not always need to travel to the core

switch to finally reach the destination, because, sometimes,

there will be shorter paths, for example if the hosts share the

edge switch or the pod.

 Finally, at the destination edge switch, if the frame is an

ARP Reply, both addresses (the destination MAC and

translated HLMAC) are saved in a table. In this way, thanks to

the ARP Request and Reply messages, origin and destination

edge switches will be capable of translating future unicast

frames.

 Notice that unicast frames will always have the same

prefix in their Torii-HLMAC destination and source

addresses, this is because they will always travel through the

same core switch so that the communication is bidirectional.

Therefore, unicast frames with different prefixes at their Torii-

HLMACs can be used for special events such as notifying an

action (for example, a failed link when found) to any switch in

the topology.

C. Tree-based Path Repair

In the previous section, standard forwarding has been

detailed. When a link goes down in the topology, no messages

are exchanged and the Torii-HLMACs assigned remain

exactly the same, only the switches connected to that link

know that the link is down and not valid for a path anymore.

Therefore, when a frame arrives at a switch and its Torii-

HLMAC indicates it should be sent through the failed port, the

path repair procedure starts. The method is as follows, an

alternative HLMAC can be directly deduced on the fly from

its HLMAC. For this deduction is necessary to consider the

following:

• Broadcast and Multicast frames:

As there are no needs to follow a specific path, and to

prevent multiple broadcasts, the first and closest

alternative path available is selected. By closest, we

mean the alternative that requires fewer steps back to

continue the broadcasting.

3

• Unicast frames:

Since the communication must be bidirectional, both

sides of the communication should take the same

alternative path, i.e. the same alternative core switch

as the prefix. The criterion in this case is to choose the

next core switch in order, even if it is not the closest

alternative.

A notification should also be made to the edge

switches to avoid selecting the non-valid prefix path

again.

 Once the alternative HLMAC is selected, the frame is

forwarded back (if necessary) until it reaches the new path and

then it is transmitted through it as shown in Fig. 4.

Figure 4: Unicast frame from A to B. Link from switch 1. to 1.3. is down,

when the frame arrives at 1. it is forwarded back to 1.1. to be sent to its new

alternative path, which is the one with the next prefix, 2.

 In the case of unicast frames, since the edge switches need

to be notified, the source HLMAC will be translated into the

new HLMAC while the destination will remain the same. In

this way, the same redirected frame serves as a notification as

well, because their HLMAC prefixes will not be the same and

it will be considered a special frame.

Figure 5: Unicast frame from A to B. Once the frame is back to 1.1., the origin

HLMAC is translated into the new path HLMAC (from 1.1.1.1 to 2.1.1.1) and

sent to core switch 2. The destination remains the same, 1.3.1.2, but because

of its nature (different HLMAC prefixes), it is known the frame is a

notification frame and it is sent to the new HLMAC: 2.3.1.2.

 The notification indicates the switch serving the

destination host to avoid using the old path (shown in the

destination prefix) and start using the new one (shown in the

source prefix). For instance, in Fig. 5, the source is translated

into 2.1.1.1, while the destination remains as 1.3.1.2.

However, since it is a failure notification frame, it is deduced

to be sent to 2.3.1.2 through core switch 2, i.e., the frame does

not follow the path of destination for routing, but the

destination with the prefix of the source. As an example, in

Fig. 5, the frame destination is 1.3.1.2 but it will be forwarded

through 2.3.1.2 (core switch 2) since the source prefix is 2 and

not 1, and at the same time, the frame indicates the failed link

for core switch 1 to the destination edge switch.

Finally, once the frame arrives at the destination edge

switch, this last sends the notification back so that the origin

edge switch is also informed. This second notification has now

the old origin as its destination and the new destination as its

origin. For instance, in Fig. 6, the frame HLMAC origin is

now 2.3.1.2 (from the previous destination 1.3.1.2) and the

destination is 1.1.1.1 (from the previous source 2.1.1.1) but,

since it is a notification, the frame is sent through the path to

2.1.1.1.

Figure 6: Unicast frame from A to B. Once the frame has notified the

destination edge switch (1.3.1), it is sent back to 1.1.1.1 (through the new path

2.1.1.1) indicating the new destination HLMAC 2.3.1.2

 After both notifications are exchanged, both edge switches

know about the failed link and will not assign again that path

after hashing, but the alternative one.

It is important to notice that these special frames are not

extra messages in the network, they are just normal

communication frames that serve, as the same time, as

notifications. Therefore, when path repair is needed, not only

alternative paths are decided on the fly, but there is no

overload in the network.

III. EVALUATION

A. Simulation of Torii HLMAC

Torii-HLMAC has been simulated in Omnet++ (v4.1). The
implementation, coded in C++, relies on the MACRelayUnit
module (from inet/linklayer/etherswitch). The base has been
modified so that it acts as a Torii switch. Though STP is not
implemented, the STP BPDUs are given as parameters in the
simulation instead.

The simulations consisted of UDP traffic exchange between
different hosts in the PortLand topology. Operation of path
repair was also proven with broadcast and unicast traffic by
changing the status to down of links at different hierarchy
levels. As expected, frames were directly forwarded through
the alternative path with no need of extra messages or any other
calculations.

4

The aim of these simulations was to prove Torii-HLMAC
works as expected: Once the HLMAC are assigned, no
overload was added and decisions were made on the fly (for
normal forwarding and repair as well), no extra messages were
needed for any change of configuration, load balancing was
assured with the multiple addressing and, for all of this
features, we only implemented the logic of Torii-HLMAC at
every switch. Regarding table sizes, switches only needed to
save their addresses and edge switches require an extra table
for saving the original host’ MACs for translation of maximum
size equal to the number of hosts in the network.

B. Use of Virtual Machines at hosts

In data center topologies, physical hosts are usually
composed by a number of virtual machines (VM) installed on
them. In the most generic case, Torii would assign one
HLMAC address per final host, but in practice, Torii only uses
the first four bytes of HLMAC addresses, so the last two bytes
could be used to distinguish among those VM by being
assigned in the reception order of their ARP messages.
Therefore, every host could have up to 2

16
 (65536) – 1 (since

number 0 is not used for HLMAC addresses) = 65535 VM
working at the same time.

C. HLMAC Address Assignment Alternatives

In this proposal, Torii-HLMAC takes 1 byte of the 6 of the
HLMAC per hierarchical level, so that is 4 bytes and the free 2
bytes could be used per VM addressing assignment.
Nevertheless, if more levels are needed, fewer bits could be
assigned per level and many alternatives could be used
depending on the topology requirements, without changing the
basics of the Torii-HLMAC protocol.

D. Inter-L2 Mobility

Regarding inter-L2 mobility, when a host (or virtual
machine in a host) A communicating with another B, moves
from one edge switch to a different one, the frames will follow
the next procedure:

• If the frame goes from A to B (Fig. 7):

If the new edge switch has B’s HLMAC, the frame is
forwarded towards it, with the new A’s HLMAC, since
we consider A should had emitted a gratuitous ARP
before.

If not, the edge switch should emit a special frame
(ARP Request) to obtain B’s HLMAC and discard any
frame meanwhile. A second option would be broadcast
any frame following the ARP-alike frame, so that they
are not lost.

• If the frame goes from B to A:

In this case, the frame will reach the old edge switch
and this last should broadcast the frame towards the
other edge switches (all frames so that they are not lost
or just a single one to make the notification). The new
edge switch would then note down B’s HLMAC and
send a special message (ARP Reply) towards B with
the new A’s HLMAC.

Figure 7: Unicast frame from A to B, after A change. The frame reaches its

new edge switch and this already knows B (from a previous ARP or after an

extra ARP by the edge). A is translated into 1.2.1.3 and reaches B at 1.3.1.2.

The switch serving B knows A’s address and can translate back thanks to it

gratuitous ARP (or the ARP Request from A’s edge switch if needed)

Both cases require broadcasting of frames in order to be
lossless. However, alternatively, less broadcasting could be
applied by discarding some frames while the mobility of A is
notified if the design requires it.

The key in inter-L2 mobility with Torii-HLMAC is that
only edge switches need to update information in relation with
the host change, and only in some cases, and this can be
requested by a simple ARP message.

E. Generalization of Torii HLMAC to any data center

topology

This paper has shown how Torii-HLMAC would work in a
topology like the one described in PortLand. This topology is
based on using commodity switches with all links of equal
capacity and, although named as FatTree is better described as
a Clos Network [8]. The difference between both concepts is
that a Fat Tree [9] increases the capacity of its links the closer
it is to the core switches, while in a Clos Network all links have
the same capacity. Fat trees are also very suitable for Ethernet
networks thanks to the aggregation compatibility with the
Ethernet family growth (using links of 100Mbps, 1Gbps,
10Gbps, etc). Therefore, in practice, the use of one or the other
will depend on the most desirable feature: less cost using cheap
off-the-self components (Clos Network) or less wiring
complexity (Fat Tree).

In the case of the Torii protocol, both (Clos networks and
Fat Trees) could be used. In fact, Fat Trees are specially
convenient for simpler wiring once there are four core
switches, since four core switches provide the network with
enough multipath forwarding and, in case of a link failure, still
three alternative paths to be used. The only condition for using
Torii in the different topologies is that nodes are organized into
‘pods’ so that from a core node (at the top) to its corresponding
edge switches (at the bottom), links form a tree.

In Fig. 8, two different types of topologies with four levels
of switches (instead of the three levels in the previous
examples), in which the Torii protocol could be applied, are
shown. The one on the left, a Clos network, would need more
wiring, but it allows the use of 4-port commodity switches, and
each host could apply up to 8 Torii-HLMACs addresses (since
there are 8 core switches at the top). While the one on the right,

5

a Fat Tree network, would need less wiring and the wires
capacity increases towards the top (see the fatter links), but
commodity switches could not be used, and each host could
apply only up to 2 Torii-HLMACs addresses (only 2 core
switches at the top), which could be enough in some
circumstances. Choosing one or the other will always depend
on the design requirements.

Figure 8: A Clos network and its equivalent Fat Tree network of 4 levels of

hierarchy and 8 edge switches

 Another design option could be the PortLand-alike

topologies, the so-called “Fat Trees” (which in fact are Clos

networks), the specific features of these topologies described

in [1], as well as its scaling properties, make it particularly

appealing for the data center. In general, a “Fat Tree” built

from identical k-port switches can support 100 percent

throughput among k
3
/4 servers using k

2
/4 switching elements.

The topology should be organized into k pods, each

connecting k
2
/4 end hosts. Edge switches in each pod provide

connectivity to end hosts and connect to aggregation switches

in the hierarchy’s second level. Core switches form the root of

the fat tree, facilitating interpod communication.

 The topology shown in the Torii-HLMAC description

figures considered k equal to four. Torii-HLMAC could be

used in fat trees with k up to 16. This is because we have 6 bits

for the prefix (the first level of six in the HLMAC), so the

number of switching elements k
2
/4 should be smaller than 2

6

which is the number the HLMAC would cover.

k
2
/4 <= 2

6
 � k

2
<= 64*4 = 256 � k <= 16

 The wiring complexity of a fat tree with 64 switching

elements is high enough to even consider a bigger k topology.

For this specific case of k equal to 16, which would mean k

pods of k
2
/4 end hosts, 16 pods of 64 end hosts, i.e. a total of

1024 hosts and the total bisectional capacity would be 1Tbps

if links were all of speed 1Gbps.

IV. CONCLUSIONS

Torii-HLMAC improves PortLand in several ways:
multiple addresses are automatically assigned in a distributed
form without duplicates, instead of by a centralized module.

Routing and path repair is distributed and performed based
solely on the destination tree-based HLMAC address used,
without routing tables at bridges, allowing high speed
forwarding. In case of a link failure in a path, the bridge
instantly selects an alternative path to reach the destination host
and also notifies both edge switches serving origin and
destination so that the non valid path is not chosen again, for a
while. The multiple addressing allows load balancing based on
a hash function, which can be designed specifically for
different topology requirements and traffic models without
changing Torii’s main logic. The topology scales up to 6 levels
plus roots and more, if needed. Torii’s topologies are more
flexible than PortLand’s and a true fat tree can be set up, in
which the links connected to the core switches are fatter
(higher speed) in order to simplify the wiring instead. The
independence of Torii-HLMAC from IP is clear as well.

ACKNOWLEDGMENT

 This work was supported in part by grants from

Comunidad de Madrid and Comunidad de Castilla la Mancha

through Projects MEDIANET-CM (S-2009/TIC-1468) and

EMARECE (PII1I09-0204-4319).

REFERENCES

[1] A. Vahdat et al. Scale Out Networking in the Data Center.

IEEE Micro, July/August 2010

[2] R. Mysore et al. PortLand: A Scalable Fault-Tolerant Layer 2 Data

Center Network Fabric. In ACM SIGCOMM, August 2009.

[3] M. Al-Fares, A. Loukissas, A. Vahdat. A Scalable, Commodity Data

Center Network Architecture. SIGCOMM 2008.

[4] D. Kim, M. Caesar, J. Rexford. Floodless in SEATTLE: A Scalable

Ethernet Architecture for Large Enterprises, in Proc. ACM SIGCOMM,

August 2008.

[5] G. Ibáñez, A. García-Martínez, J. A. Carral, J. M. Arco, A. Azcorra.

Evaluation of Tree-based routing Ethernet. IEEE Communication

Letters, IEEE June 2009 Vol. 13 No 6 pp. 444 – 446. DOI: 10.1109/

LCOMM.2009.090469

[6] G. Ibáñez et al. HURP/HURBA: Zero-configuration hierarchical

Up/Down routing and bridging architecture for Ethernet backbones and

campus networks. Computer Networks. Vol. 54, Issue 1, 15 January

2010, pp 41-56. http://dx.doi.org/10.1016/j.comnet.2009.08.00

[7] K. Elmeleegy, A. Cox. EtherProxy: Scaling the Ethernet by suppressing

broadcast traffic. Proceedings of IEEE INFOCOM, 2009, Rio de

Janeiro, Brazil.

[8] C. Clos. "A study of non-blocking switching networks". Bell System

Technical Journal 32 (2): 406–424. 1953.ISSN 00058580

[9] Charles E. Leiserson Fat-trees: universal networks for hardware-efficient

supercomputing, IEEE Transactions on Computers, Vol. 34 , no. 10,

Oct. 1985, pp. 892-901.

6

