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Abstract

Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment
of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at
their own expenses, while defectors “free-ride” this good. Eventually this causes the exhaustion of the good, a situation which
is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing
defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the
introduction of rare, malicious agents —that we term jokers— performing just destructive actions on the other agents induce bursts
of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators
outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting
indiscriminately promotes cooperation.
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1. Introduction

In the recent Hollywood movie The Dark Knight (2008) the
comic character known as the Joker jeopardizes a whole society
spreading chaos and destruction with no aim of benef t at it. The
situation is so critical that even the mob is willing to cooperate
with honest people to stop this nonsensical catastrophe. This
f ction provides a visual metaphor of how an event like this can
force exploiters of society to collaborate temporarily to f ght
the common enemy. Society is an emergent structure resulting
from the cooperation among its members, and exploiters need
society to survive, even if they do not contribute to it. Thus they
are specially sensitive to the destruction of society precisely be-
cause, being self sh agents, society is their only source of sur-
vival. The appearance of the Joker provides a strong incentive
for cooperation.

Beside situations like the one depicted by the Joker metaphor,
the importance of the inclusion of malicious agents on the
game is also illustrated in other scenarios. Here are a few ex-
amples. Temporary coalitions of rival parties are constantly
formed whenever a common enemy arises, only to restore
their old rivalry once this enemy has been wiped out. Dur-
ing the Second World War U.S.A. and U.S.S.R. were allied
in f ghting Hitler, but they got engaged in the Cold War for
decades after the danger of Nazism had been ruled out. It is
also well known that strong affective links between humans
are created when they face a common diff cult situation. Bi-
ology is another source of potential examples. For instance,
it has been shown that the perception of an increase in the
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risk of predation can induce cooperative behavior in some bird
species (Krams et al., 2010). Indeed, prey species frequently
form groups to increase the survival rate against predator at-
tacks (Hamilton, 1971; Krebs & Davies, 1993). In some cases,
this has been proven to happen even in the absence of kinship
among its members, as in the collective defense of spiny lob-
sters (Lavalli & Herrnkind, 2009).

The existence of these temporary coalitions for defense
against a common danger in rational and irrational agents
alike calls for an evolutionary explanation. In this article we
propose a stylized evolutionary game (Hofbauer & Sigmund,
1998) aimed at studying theoretically this enhancement of co-
operation driven by the emergence of purely destructive agents.
The game does not try to model any specif c situation, but it
proposes an abstract setting in which the role of the indiscrimi-
nate destructive action of these agents in enhancing cooperation
is made clear. Our model is a modif cation of the standard Pub-
lic Goods (PG) game (Groves & Ledyard, 1977), the n-players
version of Prisoner’s Dilemma and a paradigm of the risk
of exploitation faced by cooperative behavior (Hardin, 1968).
It has been shown that several mechanisms involving reputa-
tion (Milinski et al., 2005), allowing for volunteer participation
(Hauert et al., 2002a,b), punishing defectors (Fehr & Gächter,
1999, 2000), rewarding cooperators (Sigmund et al., 2001) or
structuring agents (Szabó & Hauert, 2002; Wakano et al., 2009;
Hauert et al., 2008), can enhance cooperation. Here, we present
a different mechanism for the enhancement of cooperation
based on the existence of evil agents. The game involves n
players who belong to one out of three different types: coopera-
tors, who contribute to the public good at a cost for themselves;
defectors, who free-ride the public good at no expense; and jok-
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ers, who do not participate in the public good —hence obtain
no benef t whatsoever— and only inf ict damage to the public
good. Groups are formed randomly, and each player’s strat-
egy is established before the group is selected. Hence, play-
ers have no memory. Remarkably, the appearance of jokers
promotes a rock-paper-scissors dynamics, where jokers outbeat
defectors and cooperators outperform jokers, which are subse-
quently invaded by defectors. In contrast to previous models
(Hauert et al., 2002a,b), the cycles induced by jokers are limit
cycles, i.e. attractors of the dynamics, and exist in the presence
of mutations; these properties make them robust evolutionary
outcomes. Therefore, paradoxically, the existence of destruc-
tive agents acting indiscriminately promotes cooperation.

The paper is organized as follows. Section 2 exposes the
model and shows the existence of cycles. Section 3 analyzes
the dynamics for inf nite populations, and section 4 compares
the joker model with other RPS dynamics.

2. A Public Good gamewith jokers: existence of limit cycles

The PG game works as usual: every cooperator yields a ben-
ef t b = rc (r > 1) to be shared by cooperators and defectors
alike, at a cost c for herself (this cost can be set to c = 1 with-
out loss of generality: all other payoffs are given in units of
c), and defectors produce no benef t at all but get their share
of the public good. As for the new agents (jokers), every joker
inf icts a damage −d < 0 to be shared equally by all non-jokers
and gets no benef t. In a given game 0 ≤ m ≤ n denotes the
number of cooperators, 0 ≤ j ≤ n the number of jokers, and
n − m − j ≥ 0 the number of defectors; S = n − j expresses
the number of non-jokers. In this group, the payoff of a defec-
tor will be ΠD(m, j) = (rm − d j)/S , and that of a cooperator
ΠC = ΠD − 1. Then, in each group, defectors will always do
better than cooperators. Jokers’ payoff is always 0.

A usual requirement of PG games is that r < n. Without
this requirement the solution in which all n players are defec-
tors is no longer a Nash equilibrium —hence the dilemma goes
away. As shown later, the evolutionary dynamics for inf nite
populations yields the same constraint, i.e., if r < n the dy-
namics asymptotically approaches the tragedy of the commons.
However this is no longer true for f nite populations, where
the upper bound of r for which the tragedy of the commons
takes place grows as M, the population size, decreases. In this
case the tragedy of the commons arises whenever r < rmax =

n(M − 1)/(M − n) (see Appendix A; notice in passing that for
a population of M = n individuals, the evolutionary dynamics
yields a tragedy of the commons for every r > 1).

An invasion analysis provides the clue as to why a rock-
paper-scissors (RPS) cycle is to be expected when jokers inter-
vene in the game. We shall assume that we have a population of
M players of the same type and will consider putative mutations
of one individual to any of the other two types. The mutation
will thrive if the average payoff of the mutant after many inter-
actions overcomes the average payoff of a non-mutant player.
The result of this analysis (see Appendix A) is summarized in
Fig. 1, which represents the three different patterns of invasion
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Figure 1: Dynamics of invasions in a Public Goods game with jokers. The
axes represent the gain factor r of the Public Goods game (i.e., the payoff
each cooperator yields to the public good) and the “damage” d > 0 that ev-
ery joker inf icts on the public good. The tragedy of the commons occurs for
1 < r < rmax = n(M − 1)/(M − n) (see text), which includes the dilemmatic
region 1 < r < n characteristic of PG games. Different colors are assigned to
different invasion patterns: Light blue corresponds to a region where J invades
both C and D (III); light green corresponds to a region where neither C nor J
invades each other (there is bistability on the J–C line) but D invades C and
is in turn invaded by J, so again everything ends up in J (II); f nally, light yel-
low corresponds to a region where D invades C, J invades D, but C invades J
back, thus generating a rock-paper-scissors cycle (I). The latter behavior is the
essence of the Joker effect. The equations of the straight lines separating the
three regions are (from top to bottom) r = 1 + d(n − 1) and r = 1 + d/(M − 1).
Notice that this scheme is valid for arbitrary n > 1. Also, for f xed r, all three
regions are crossed upon varying d, whereas vice versa is only true provided
d < d1 = M/(M − n). The Joker effect does not occur if d > d1. For large
populations, M ≫ 1, the region for the rock-paper-scissors cycle simplif es to
n > r > 1 + (n − 1)d and d < 1.

that can be observed within the region of interest 1 < r < rmax,
d > 0:

I. Rock-paper-scissors cycle: It arises whenever r > 1 +
d(n − 1). This condition expresses the fact that a single
cooperator gets a positive payoff in spite of the damage
inf icted by n − 1 jokers and therefore being a cooperator
pays (jokers get no payoff whatsoever).

II. Joker-cooperator bistability: If 1 + d/(M − 1) < r <
1 + (n − 1)d neither jokers nor cooperators can invade
each other. Nonetheless defectors always invade cooper-
ators, and jokers always invade defectors, so eventually
only jokers survive, either because they are initially a ma-
jority or indirectly through the emergence of defectors.

III. Joker invasion: If r < 1+d/(M−1) jokers will invade any
homogeneous population, so a homogeneous population
of jokers is the only stable solution. Notice that this region
disappears for large populations (M → ∞) because r > 1.

The RPS cycle C→D→J→C occurring in region I is the essence
of the Joker effect.
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3. Inf nite populations

We can gain further insight into this effect by studying a
replicator-mutator dynamics (Maynard Smith, 1982). We as-
sume a very large population in which the three types are
present at time t in fractions x (cooperators), y (defectors), and
z = 1 − x − z (jokers). Agents interact with the whole popu-
lation by engaging in the above described game within groups
of n randomly chosen individuals (Hauert et al., 2006). Aver-
age payoffs of a cooperator, a defector, and a joker are denoted
PC(x, z), PD(x, z), and PJ(x, z), respectively. Assuming individ-
uals of a given type mutate to any other type at a rate µ ≪ 1,
the replicator-mutator equations for this system will be

ẋ = x(PC − P̄) + µ(1 − 3x),
ẏ = y(PD − P̄) + µ(1 − 3y),
ż = z(PJ − P̄) + µ(1 − 3z),

(1)

where P̄ = xPC + yPD + zPJ is the mean payoff of the popula-
tion at a given time. Explicit expressions for PC, PD, and PJ can
be obtained by averaging over all samples of groups of n play-
ers extracted from a population containing Mx cooperators, My
defectors, and Mz jokers, in the limit of very large populations
(M → ∞); the derivation can be found in Appendix B. Let us
recall that the parameters of the game in the inf nite population
limit satisfy 1 < r < n and d > 0; the f rst condition enforces the
public goods dilemma, and the second one implies that jokers
beat defectors in the absence of cooperators, because defectors
receive the damage inf icted by jokers thus obtaining a negative
payoff.

The stability analysis of the dynamical system (1) recov-
ers the picture displayed in Fig. 1 (taking M → ∞). When
r < 1+ (n− 1)d the system is in region II. The only stable equi-
librium is a population of only jokers and any trajectory of (1)
is asymptotically attracted to it. Thus, in this region the destruc-
tive power of jokers is high enough to wipe out the populations
of both cooperators and defectors. But the most interesting sit-
uation takes place when

r > 1 + (n − 1)d, (2)

i.e., in region I. In the absence of mutations the dynamical sys-
tem (1) has three saddle points at the corners of the simplex as
well as an unstable mixed equilibrium (see Appendix C). As
a consequence, the attractor of the system is the heteroclinic
orbit C → D → J → C. The period is inf nite because the
system delays more and more around the saddle points. When
mutations occur the corners of the simplex are no longer equi-
libria, and one is left with the interior f xed point, which for
small mutations is a repeller (see Appendix C). Since trajecto-
ries are conf ned within the closed region of the simplex, they
are attracted to a stable limit cycle for any r > 1 (a direct conse-
quence of the Poincaré-Bendixon theorem (Simmons & Krantz,
2006)), as shown in Fig. 2.

The size of the cycle depends on the parameter values. It
grows as d increases —i.e., when jokers play a more important
role (Fig. 3)— and as the mutation rate decreases (Fig. 4). For

Figure 2: The Joker effect in public goods games for large, well-mixed pop-
ulations. The simplex describes the replicator-mutator dynamics, Eq. 1, for a
population of cooperators, defectors and jokers with parameter values satisfy-
ing n > r > 1 + d(n − 1), for which a rock-paper-scissor dynamics is expected
(yellow region in Fig. 1). When mutation rates are small, the only equilibrium
is a repeller (white dot), and trajectories end up in a stable limit cycle (black
line). Thus the presence of jokers induces periodically a burst of cooperators.
Cooperators abound during short time spans, as shown by the small fraction of
cooperators in the equilibrium point. Parameters: n = 5, r = 3, d = 0.4 and
µ = 0.005. (Images generated using a modif ed version of the Dynamo Package
(Sandholm & Dokumaci, 2007)).

Figure 3: Replicator-mutator dynamics as a function of the damage d in-
f icted by jokers. For a f xed mutation rate, the size of the cycles increases as
the damage increases. Parameters: n = 5, r = 3 and µ = 0.001.

Figure 4: Replicator-mutator dynamics as a function of themutation rate µ.
(a) For very small mutation rates cycles approach the boundary of the simplex.
(b) As µ increases, the cycle amplitude decreases and, above a critical value
(typically, µc ≃ 0.01), cycles disappear in a Hopf bifurcation yielding a stable
mixed equilibrium (c). Parameters: n = 5, r = 3 and d = 0.4.
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both, large values of d [compatible with condition (2)] and very
small mutations, the cycle closely follows the boundaries of the
simplex (see Fig. 4a). By increasing the mutation rate (typically
over 0.01), cycles disappear in a Hopf bifurcation yielding a
stable mixed equilibrium (Figs. 4b-c).

4. Discussion and conclusions

This evolution has some resemblances with the effect of vol-
unteering in a PG game (Hauert et al., 2002a,b), but the two
games are fundamentally different. This can be told from the
dynamic behavior of the system. In both cases, the existence
of a third agent which does not participate in the game is the
ultimate reason why cooperators periodically thrive through a
Rock-Paper-Scissor dynamics. However, while the loners game
leads to neutrally stable cycles around a center, trajectories in
the Joker model are attracted by the heteroclinic cycle C–D–
J–C. The difference is even more striking if mutations are in-
cluded. Mutations replace the cycles in the loner model by
a stable mixed equilibrium. In contrast, in the Joker model
mutations substitute the heteroclinic orbit by a stable limit cy-
cle, which undergoes a transition (Hopf bifurcation) to a stable
mixed equilibrium above a threshold mutation rate.

These two scenarios can be understood from the analysis of
general RPS games (Hofbauer & Sigmund, 1998). There are
three situations: (a) orbits are attracted towards an asymptot-
ically stable mixed equilibrium (the case of the loners game
with mutations), (b) orbits cycle around a neutrally stable mixed
equilibrium (the case of the loners game without mutations),
and (c) orbits go away from an unstable mixed equilibrium and
approach the heteroclinic orbit def ned by the border of the sim-
plex (the case of the Joker game without mutations). If muta-
tions are added to the latter type of RPS games, limit cycles
and a Hopf bifurcation upon increasing the mutation rate are
also found (Mobilia, 2010). Limit cycles are robust to pertur-
bations and have a well def ned amplitude irrespective of the
initial fractions of players (as long as it is not at the border of
the simplex). Therefore, they are true attractors of the dynam-
ics, and can thus be regarded as a robust evolutionary outcome,
in contrast to neutrally stable cycles.

In contrast to loners, which do not participate in the game but
receive a benef t outside of it, jokers do not receive any benef t
at all and cause damage to players. Both loner and joker mod-
els coincide —in the absence of mutations— when the damage
inf icted by jokers and the benef t obtained by loners are both
zero. In this case both become simply non-participants in the
game, and the only effect they produce is a reduction in the ef-
fective number of players in the game, which is not enough to
induce an oscillatory dynamics (see Fig. 5). In other words,
the appearance of the RPS cycle which periodically increases
the population of cooperators in the presence of jokers can only
happen, remarkably, provided d > 0, i.e., if jokers are truly
destructive agents.

In this letter we have shed light on a still unexplored aspect
of evolutionary game theory (the presence of a destructive strat-
egy) in the prototypical PG game. We have shown, both theoret-
ically and by numerical simulations, that the addition of purely

Figure 5: Replicator-mutator dynamics for d = 0. If jokers are just passive
agents cooperators go extinct. (a) µ = 0. The system ends up in a point of the
line DJ with a majority of defectors. (b) µ = 0.001. Mutation generates one
single stable state made up mostly by defectors. Parameters: n = 5, r = 3 and
d = 0.

destructive agents (jokers) to a standard PG game has, paradox-
ically, a positive effect on cooperation. Bursts of cooperators
are induced through the appearance of a RPS cycle in which
jokers beat defectors, who beat cooperators, who beat jokers in
succession. The evolutionary dynamics provoked by the Joker,
with periods of cooperation, defection and destruction of the
PG, may help understand the appearance of cognitive abilities
that allow individuals to foresee the destructive periods, pro-
moting in advance the necessary cooperation to avoid them.

We have proven this “Joker effect” to occur both in f nite and
inf nite populations, discarding the possibility of its being an
artif cial size-depending phenomenon. Further research is re-
quired to ascertain the scope of the constructive role of destruc-
tion in general settings. This provides a new framework for the
evolution of cooperation that may f nd important implications
in social, biological, economical, and even philosophical con-
texts, and that is worth exploring either with different variants
of this game or with new, more specif c games accounting for
indiscriminate destruction.
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Appendix A. Finite populations: invasion analysis

We shall consider the situation in which in a homogeneous
population of M individuals with the same strategy Y, one of
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them mutates (changes) to a different type X. The new individ-
ual will invade provided its average payoff after many interac-
tions, PX, is larger than the average payoff of a Y individual,
i.e., PX > PY. Average payoffs can be evaluated as follows.
The population is made of one X player and M − 1 Y players.
Thus, when playing the game, the X player will always interact
with n − 1 Y players. Therefore

PX = ΠX(1X, (n − 1)Y). (A.1)

On the other hand, the n − 1 opponents of a Y player can be
of just two types: either all n − 1 are Y players, or n − 2 are
Y players and one is the single X player. The latter situation
occurs with probability (n − 1)/(M − 1). Therefore the average
payoff of a Y player will be

PY = ΠY(nY)
M − n
M − 1

+ ΠY(1X, (n − 1)Y)
n − 1
M − 1

. (A.2)

Next we derive the invasion conditions for homogeneous popu-
lations of three types of players. In this new scenario we must
consider the six different situations arising form the pair inter-
actions that can be formed:

(A) 1D + (M − 1)C.

PC = r − 1 −
r
n
n − 1
M − 1

, PD = r −
r
n
. (A.3)

The tragedy of the commons occurs when defectors over-
come cooperators, i.e., PD > PC. This happens iff

r < n
M − 1
M − n

. (A.4)

We will henceforth assume (A.4) to hold. This condition
contains the dilemmatic region 1 < r < n of PG games. In
the limit M → ∞, the inequality (A.4) reduces to r < n
and both, the conditions for the dilemma and the tragedy
of the commons coincide.

(B) 1C + (M − 1)D.

PC =
r
n
− 1, PD =

r
n
n − 1
M − 1

. (A.5)

Because of (A.4) PD > PC, so C never invades D.

(C) 1J + (M − 1)C.

PC = r − 1 −
d

M − 1
, PJ = 0. (A.6)

Since PJ > PC iff

r < 1 +
d

M − 1
, (A.7)

then J invades C iff (A.7) holds.

(D) 1C + (M − 1)J.

PC = r − (n − 1)d − 1, PJ = 0. (A.8)

Since PC > PJ iff

r > 1 + (n − 1)d, (A.9)

then C invades J iff (A.9) holds.

(E) 1D + (M − 1)J.

PD = −(n − 1)d, PJ = 0. (A.10)

As long as d > 0 we will have PJ > PD, then D never
invades J.

(F) 1J + (M − 1)D.

PD = −
d

M − 1
, PJ = 0. (A.11)

As long as d > 0 we will have PJ > PD, then J always
invades D.

Figure 1 illustrates the different regions of interest in this
game. The most interesting one is that in which there is a rock-
paper-scissor rotation between C, D, and J, which corresponds
to

1 < r < n
M − 1
M − n

, 0 < d <
r − 1
n − 1

. (A.12)

Appendix B. Inf nite populations: average payoffs

We evaluate here the average payoffs PX obtained by each
strategy (i =C, D, J) in this game when the population is very
large. These functions will determine the dynamics of the
population through the replicator equation. As before, sample
groups of n individuals playing the game are randomly formed,
and it is assumed that each player is sampled a large number of
times before payoffs are compared in order to update strategies.
The payoff for a given strategy is therefore proportional to the
average payoff that a player using this strategy obtains playing
against the whole population. This average payoff will depend
only on the player’s strategy and the composition of the popu-
lation, described by a fraction x of cooperators, z of jokers and
y = 1 − x − z of defectors. Notice that PJ = 0 for any com-
position of the population, so only cooperators’ and defectors’
payoffs need to be calculated.

Appendix B.1. Defectors
The average payoff of a defector is

PD =
〈

rm − d j
S

〉

, (B.1)

where the symbol 〈· · · 〉 denotes an average over samples of n−1
opponents randomly selected from the population. The average
〈m/S 〉 can be obtained as in (Hauert et al., 2002b), yielding

〈m
S

〉

=
x

1 − z

(

1 −
1 − zn

n(1 − z)

)

.

Since j = n − S , the second term in Eq. (B.1) can be written as
n〈1/S 〉 − 1, where

〈

1
S

〉

=

n
∑

S=1

(

n − 1
S − 1

)

(1 − z)S−1zn−S
1
S
,

the factor in front of 1/S in the summation being the probabil-
ity of having S − 1 non-jokers in a group of n − 1 randomly
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chosen players. By using the identity a
(

a−1
b−1

)

= b
(

a
b

)

, the latter
expression becomes

〈

1
S

〉

=
1 − zn

n(1 − z)
.

Joining the two averages one gets the average payoff of a de-
fector,

PD = r
x

1 − z

(

1 −
1 − zn

n(1 − z)

)

− d
(

1 − zn

1 − z
− 1

)

, (B.2)

the f rst term arising from the exploitation of cooperators and
the second one being the damage inf icted by jokers.

Appendix B.2. Cooperators
The difference PD − PC can be written as

PD − PC =

〈

1 −
r
S

〉

(B.3)

because in a group of S − 1 opponents switching from coop-
eration to defection yields a payoff increment of 1 − r/S : the
defector’s payoff gets reduced by r/S because there is one co-
operator less in the group, but adds 1 to her payoff because she
does not pay the cost of cooperating (Hauert et al., 2002b). The
average in the r.h.s. of Eq. (B.3) just contains < 1/S >, thus
yielding

PD − PC = 1 −
r
n

1 − zn

1 − z
. (B.4)

Finally, from Eqs. (B.2) and (B.4) one gets

PC = r
x

1 − z

(

1 −
1 − zn

n(1 − z)

)

+
r
n

1 − zn

1 − z
− 1

− d
(

1 − zn

1 − z
− 1

)

.

(B.5)

Appendix C. Inf nite populations: proof of existence of
limit cycles

To complete the proof that the system ends up in a limit cy-
cle it remains to show that the interior equilibrium of Eqs (1)
is a repeller, i.e., its two eigenvalues have positive real parts.
The interior equilibrium and its stability can be evaluated in the
limit of small mutation rates, the one we are interested in. In
this case, one can neglect the dependence of µ in the position of
the f xed point. We are thus faced with the solution of the dy-
namical system (1) without the mutation term. The calculation
becomes simple for n = 2, and tractable for n > 3. The proofs
are treated separately in the next subsections.

Appendix C.1. Interior f xed point for n = 2

The interior f xed point (x0, y0, z0) satisf es PC = PD = 0.
According to Eq. B.4, the f rst equality requires (1 + z0)r = 2,
yielding

z0 =
2 − r
r
.

Since n = 2 > r > 1, one has 0 < z0 < 1, as it should. The
second equality, PD = 0, produces

x0 = 2d
2 − r
r2 .

Condition r > 1 + d from expression (2) guarantees that 0 <
x0 < 1 and 0 < y0 = 1 − x0 − z0 < 1. In order to analyze the
stability of this equilibrium, we consider frequencies x and z as
the independent variables of the two-dimensional system. To
prove that the equilibrium is a repeller it suff ces to show that
the trace and determinant of the Jacobian matrix at the f xed
point are both positive. For n = 2, equations (1) become

ẋ = −
1
2
x(2dz2 − rz + 2 − r − 2x + rx), (C.1)

ż = z[(1 − r)x + dz(1 − z)]. (C.2)

The Jacobian matrix in the interior equilibrium is































d(2 − r)2

r2
d(2 − r)(r2

+ 4dr − 8d)
r3

−
(2 − r)(r − 1)

r
d(2 − r)(3r − 4)

r2































, (C.3)

whose trace, T , and determinant, D, are

T =
2d(2 − r)(r − 1)

r2 > 0, (C.4)

D =
d(r − 2)2(r2

+ r(d − 1) − 2d)
r3 > 0. (C.5)

T is positive because n = 2 > r > 1. To prove that the determi-
nant is positive, we should realize that the second bracket in its
expression can be written as r(r − 1) − d(2 − r), which is larger
than 2(r − 1)2 > 0 because r > 1 + d.

Appendix C.2. Interior f xed point for n > 3

We use the same procedure as in the previous case. The frac-
tion of jokers z0 of the interior equilibrium arises from PC = PD,
namely Eq. (B.4). Once it is found, x0 follows from PD = 0,
c.f. Eq. (B.2).

Appendix C.2.1. Calculation of z0
z0 is obtained as the solution to

1 −
r
n

1 − zn

1 − z
= 0, (C.6)

which is equivalent to

n−1
∑

i=0
zi = n/r. (C.7)

The latter equation has exactly one solution, namely the cross-
ing of the polynomial in the l.h.s of Eq. (C.7) with the constant
n/r > 1. Since r > 1, this occurs at 0 < z0 < 1, consistent with
the meaning of z0. There is no analytical solution to Eq. (C.6)
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for arbitrary n. There exists, however, a simple analytical so-
lution in the limit of large n, which is indeed an excellent ap-
proximation for all n > 3. It can be obtained neglecting zn as
compared to 1 in (C.6), which leads to

z0 ≈ 1 −
r
n
. (C.8)

Since r < n, one has, of course, 0 < z0 < 1. For consistence,
zn0 = (1 − r

n )n ≈ e−r ≪ 1, which holds, say, for r > 3. Notice
that if r ≪ n the equilibrium approaches allJ, so that cycles get
very close to this state in this limit.

Appendix C.2.2. Calculation of x0
Let us impose PD = 0. Introducing (C.6) into (B.2) one f nds

x0 ≈
d

r − 1

(n
r
− 1

)

(1 − z0). (C.9)

Conditions d > 0, n > r > 1, and r > 1 + (n − 1)d yield
0 < x0 < 1 and 0 < x0 + z0 < 1, so that the three fractions are
smaller than 1. Substituting z0 from expression (C.8) into (C.9)
one f nally obtains

x0 ≈
d

r − 1

(

1 −
r
n

)

. (C.10)

Appendix C.2.3. Stability of the interior equilibrium
We need to determine the Jacobian matrix for the equilibrium

(x0, z0) given by C.9 and C.8. The dynamical system (1) can be
written as

ẋ = −
x

n(1 − z)2

(

− r + n − rnxz − dnzn+1
+ 2nxz

− nxz2 − 2nz + rx − rxzn + dnz2 − nx + rzn (C.11)

+ nz2 + rz − rzn+1
+ rnxz2 + dnzn+2 − dnz3

)

,

ż = − (−dz + rx + dzn − x)z. (C.12)

The f rst equation is very cumbersome. Fortunately, as already
explained, in the limit of large n and if r > 3 one can ne-
glect terms of order zn and above. Using expressions (C.8) and
(C.10), the Jacobian matrix J can be written as J = Yd(n−r)/n,
where

Y =































n − r
r

nr(r − 1) + d(r − n)(r2 − r + n)
r2(r − 1)2

−
r − 1
d

2































. (C.13)

(Notice that the factor d(n−r)/n > 0.) As the diagonal elements
of this matrix are positive, the trace is positive. Also Yzx < 0
and, as we show next, Yxz > 0, therefore the determinant turns
out to be positive, and the interior equilibrium is a repeller. To
see that Yxz > 0 we must show that the numerator is positive.
This can be shown by writing it as

nr(r − 1) + d(r − n)(r2 − r + n) > (r − 1)2 (n − r)2
+ nr

n − 1
> 0.

The f rst inequality follows from condition r − 1 > (n − 1)d.
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Fehr, E., & Gächter, S. (1999). A theory of fairness, competi-
tion, and cooperation. Quart. J. Econ., 114, 817–868.
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