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A game theoretic approach to group centrality∗

24 July 2014

Abstract

This paper is centered in the valuation of the centrality of groups following a problem-specific
approach (Friedkin, 1991). Our aim is to measure the relative position of a group taking also
into account the purpose of the network. Assuming a TU game that reflects the interests which
motivate the interactions among individuals in a network, we extend the game theoretic cen-
trality measure of Gomez et al. (2003) to the case of groups, and define the game theoretic group
centrality of a group as the variation of its value or power due to their social relations. We rely
on the Shapley group value (Flores et al., 2014) for measuring the value of a group in a game
without any restriction, and we introduce the Myerson group value in order to measure the value
of a group in a game that considers the limitations in the cooperation imposed by the social
structure.

Keywords: Centrality, social capital, Shapley group value, Myerson value.

1 Introduction

A social network consists of a finite set of actors and the relations defined among them. In this
paper we are concerned with social networks in which for every pair of actors we have at most
a single relation that is dichotomous and non directional. Then, the social network can be rep-
resented by a graph (N, Γ) where N = {1, 2, . . . , n} is the finite set of actors (nodes) and Γ is a
collection of (unordered) pairs {i, j} of elements of N (edges), which show the possible relations;
i.e., individuals i and j are related if, and only if, {i, j} ∈ Γ.

Wasserman and Faust (2004) point out that one of the primary uses of graph theory in this
context is the identification of the “most important” or “prominent” actors in a social network.
Definitions of individual importance have been proposed by many authors. For example, classical
measures of centrality –degree, betweenness or closeness– that rely only upon the information given
by the structure of the social network, were defined and widely studied (see the review of Free-
man, 1979). Other individual measures, such as the individual game theoretic centrality index of
Gomez et al. (2003), which takes also into account the purpose of the graph, have been described.

On the contrary, group measures of importance have not deserved such a detailed analysis.
Nevertheless, the relevance of defining an appropriate group centrality measure has been pointed
out by different authors in a variety of contexts, mainly in the framework of information diffusion
models (see Kempe et al., 2005), but also in the social networks context (Everett and Borgatti
(1999); Borgatti (2006); Latora and Marchiori (2007); Kolaczyk et al. (2009)).

∗This research has been supported by I+D+i research project MTM2011-27892 from the Government of Spain.
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Following the approach given by Gomez et al. (2003), we propose in this paper a new group
centrality measure for social networks, which is based on a group valuation. They adopt a game theo-
retic approximation to the problem of measuring individual centrality by considering a cooperative
game in characteristic function form to reflect the interests that motivate the interactions among
individuals in a network. Then, they define the game theoretic individual centrality of an actor as
the difference between his value in the game restricted by the graph which captures the social
structure -measured by his Myerson value (Myerson, 1977)- and his value in the unrestricted
game -measured by his Shapley value (Shapley, 1953)-. If the underlying game is symmetric, and
therefore, a priori differences among agents are not taken into account, the resulting variations
measure the positional advantage of each actor. On the other hand, when players’ differences are
modeled by means of a non-symmetric game, it is more appropriate to refer to the resulting vari-
ations as the individual game theoretic social capital (Salisbury, 1969) of each actor. These variations
measure player’s relational importance admitting that they possibly have different cooperative
abilities (see Gónzalez-Arangüena, Khmelnitskaya, Manuel and Pozo, 2011).

Following this approach, we consider also a cooperative game in characteristic function form
to model the purpose of the social network, and then we measure the difference between the
value of a given group in the graph-restricted game when their members act together -as one
unit- relative to the rest of actors, and their global value in the game without any communica-
tion restriction, nor any integration effect. We rely on the Shapley group value, and we introduce
the Myerson group value, for measuring the value of a group depending on whether the social
structure is taken into account. In fact, according to the specific meaning of the underlying game
the resulting variation measures the centrality of the group -if the game describes the functionality
of the network- or the capital of the group -if the game details the resources that are available
to every group of actors. In the first case, the game describes the use of the network that anony-
mous actors do and therefore the underlying game must be symmetric. The second case, in which
different actors can have different access to the resources, and thus the underlying game can be
non-symmetric, is left for subsequent work.

The remainder of the paper is organized as follows. Section 2 is devoted to a general presen-
tation of the problem we deal with. We describe some illustrative examples for motivating the
need for a group measure, and also to show the key points we need to consider when evaluating
the performance of a group. In Section 3 we introduce some standard concepts and notation on
Game Theory and Graph Theory that will be used throughout this paper, and we give a brief
description of the individual centrality index (Gomez et al., 2003) on which our proposal is based.
In Section 4 we introduce the Myerson group value and the game theoretic group centrality and we
show how they may answer the relevant questions established from the examples. In Section 5
we study some of their properties. In Section 6 we illustrate its behavior using two datasets which
have been previously analyzed in the literature of group centrality measures. Section 7 concludes
the paper.
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2 Motivation

Let us start by considering four examples that illustrate the need for a group centrality measure
that allows to consider the specific “purpose of the network” when we wonder about which is
the most central group with certain characteristics (of a given size, for instance). We use these
examples to go into detail about the differences between functionality and capital, as well as to
show that the aim of obtaining a group valuation can be endogenous -when the decision makers
are the actors of the social network- or exogenous -when there exists an external decision maker
who wants to achieve his own specific goal.

First, let us consider the social network of a criminal organization. For instance, the terrorist
network of the 11S depicted in Figure 2.

Figure 1: 11S social network. Image taken from Valids E.Krebs (Copyright c⃝2002, First Monday)

In this event, the purpose of the terrorist group is to mount a coordinated action. In the case of
the terrorists, they use the group valuation to identify a small group of agents to act as leaders in
order to guarantee the success of the terrorist attack. This is an endogenous goal. On the contrary,
there exists an external decision agent, the police, who use these information about the valuation
of each group to identify a small group of agents to neutralize in order to break up the criminal
organization. This is an exogenous goal. We can assume here that the functionality of the network
is to transmit information among the nineteen hijackers which prepared and executed the attack
(distributed in four cells).

Many species have a social structure in which individuals form groups and interaction among
members within each group is much more frequent than interaction of individuals across groups.
This is the case of the second example: the social network of a troop of monkeys based on three
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months of interactions between them, observed in the wild by Linda Wolfe as they sported by
a river in Ocala, Florida. In the Wolfe primate data, which is given as a standard dataset in
UCINET (Borgatti, Everett and Freeman, 2002), joint presence at the river once was coded as a
interaction. This data set was used by Everett and Borgatti (1999) to illustrate the group centrality
measures they proposed. They dichotomized the data, formerly symmetric and valued, by taking
the presence of a tie if there were more than six interactions over the time period (see Figure 3
in page 26). In that case, from the point of view of group selection in Evolutionary Biology it is
worthy to evaluate the relevance of each of these groups in order to promote the fitness of the
troop, which will be given mainly by their ability to form groups which improve the defense
of their territory, as well as their defense against predators. In this example, the purpose of the
primates troop is to promote its fitness. The specific feature relevant to the fitness of a group in
which the analyst is interested will determine the functionality of the network.

The third example is a network within a consulting company analyzed in Borgatti (2006),
which consists of advice-seeking ties among members of a the global company. The data were
collected on a one to five strength-of-tie-scale, but for his analysis the author examined only the
strongest ties (rated 5). The derived social network is shown in Figure 4 (see page 29). In this
framework, the social network of informal relationships between the members of an organization
have “become a pervasive feature of organizations” (see Cross and Parker, 2004). Thus, the iden-
tification of a small group of actors who are able to lead the formation of optimal working teams,
or whose deletion would disrupt most the ability of the social structure to form them, is crucial for
the top managers of the organization, which play the role of an external decision maker. In this
case, to achieve the goal of the organization, we consider that the purpose of the social network’s
actors (the company members) is to form working teams. The specific kind of working teams
that the organization wants to promote will determine the particular expression of the network’s
functionality.

In the last example, let us consider a voting body, or a compound system of voting bodies. In
this situation, the capital of a group is given by its ability to form winning coalitions, i.e., coalitions
of voters that can force the passing of a bill according to the prearranged voting rules. Let us think
in the social network of possible alliances between parties in the Italian Parliament as a result of
the elections in 1983 (see Gónzalez-Arangüena et al. (2011) for more details).

PCI (198)

PSI (73)

DC (225)

DP (7)

MSI-DN (42)

PR (11)

PSDI (23) PRI (29) PLI (16)

UV-UVP-DPop (1) SVP (3)

LV (1) PSA (1)

Figure 2: Social affinities between parties in the Italian Parliament after elections 1983
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On the one hand, a lobbyist’s goal is to choose a small group of constitutional voters in order to
force the passing (blocking) of a bill. On the other hand, for this specific example an endogenous
goal was to elect the Prime-Minister taking into account the voting power of each party, which is
in turn a balanced measure between constitutional voting power and social capital.

The questions stated above are related with group centrality rather than individual centrality.
Therefore, since the k more central agents (from an individual point of view) do not form in
general the most valuable group of k agents, we need a group measure that adjust the sum of
centralities so as to account for the possible complementarity and substitutability relations among
group’s members. That is, we must define a specific group measure to deal with the ensemble
issue (see Borgatti, 2006). In that sense, Everett and Borgatti (1999) extend the standard network
centrality measures of degree, closeness and betweenness to apply to groups and classes as well
as individuals. Kolaczyk et al. (2009) propose an alternative extension of vertex betweenness
to sets of vertices, which they called group co-betweenness, and study its relation with the group
betweenness extension introduced by Everett and Borgatti (1999).

Nevertheless, none of these generalizations takes into account the purpose of the network -its
functionality or its capital- which is not the same in each of the four examples described above,
and must be incorporated to the problem at hand to measure the importance of a group in relation
with the goal that is being pursued. Our intention is to define an appropriate group measure
that, by means of extending an existing individual centrality measure, takes into account both
the ensemble issue and the purpose of the network. We extend the individual game theoretic
centrality measure introduced by Grofman and Owen (1982) and Gomez et al. (2003), and that of
the individual game theoretic social capital index analyzed in Gónzalez-Arangüena et al. (2011).
Latora and Marchiori (2007) introduce a new class of measures of structural centrality, which they
called delta centralities, that applies to groups as well as individuals, and also try to capture the
functionality of the network. The crucial difference of delta centralities and our proposal that
delta centralities only consider the marginal contribution of a group to the whole society, whereas
our proposal aggregates the marginal contribution of a group in all their possible cooperation
opportunities.

3 Preliminaries

We first recall some standard notation and concepts from graph theory and game theory that will
be used throughout the paper.

A undirected graph or simply a graph (N, Γ) consists of a finite set N = {1, . . . , n} of nodes and
a set Γ of edges whose elements are unordered pairs of distinct nodes. If {i, j} ∈ Γ, then i and j
are called adjacent nodes in Γ. The node adjacency list AΓ(i) of a node i is the set of nodes that are
directly linked to i in Γ, that is, AΓ(i) = {j ∈ N / {i, j} ∈ Γ}. The degree of a node is the number
of its adjacent nodes, i.e. δΓ(i) = |AΓ(i)|.

A graph (N′, Γ′) is a subgraph of (N, Γ) if N′ ⊆ N and Γ′ ⊆ Γ, where the edge {i, j} can be in Γ′

only if i and j are in N′. We say that (N′, Γ′) is the subgraph induced by N′ if Γ′ contains each edge
of Γ with endpoints in N′.
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A path between two nodes i and j in a graph (N, Γ) is a subgraph of (N, Γ) consisting of a
sequence of nodes and edges P(i, j) = {i = i1, i2, . . . , ik−1, ik = j}, with k ≥ 2 satisfying the
property that for all 1 ≤ r ≤ k − 1, {ir, ir+1} ∈ Γ. A cycle is a path P = {i = i1, i2, . . . , ik−1, ik = j},
together with the edge {i, j}.

A graph is connected if every pair i, j ∈ N of its nodes is connected, i.e., if there is a path in
the graph from node i to node j; otherwise, the graph is disconnected. The maximal connected
subgraphs of a disconnected graph are called its connected components. Let S ⊆ N be a subset of
nodes, then conΓ(S) will denote the set of connected components of the subgraph (S, ΓS) induced
by S. We will refer to conΓ(S) as the set of connected components of S in Γ. A tree is a connected
graph that contains no cycle. Note that a every two nodes of a tree are connected by a unique
path. In this case, when (N, Γ) is a tree, then for every S ⊆ N there exists a unique smallest
connected subgraph in Γ which contains the subgraph (S, ΓS), which we will call its connected hull
and denote by HΓ(S).1 For a general connected graph (N, Γ), let MΓ(S) = {S1, . . . , Sr} ̸= ∅ be
the set of minimal connection sets of S in Γ, and AMΓ(S) =

∪r
ℓ=1 Sℓ be the set of agents in MΓ(S).

That is, every subgraph (Sℓ, ΓSℓ), ℓ = 1, . . . , r, is connected and contains the subgraph (S, ΓS) and,
for every other connected subgraph (T, ΓT) containing (S, ΓS), there exists ℓ ∈ {1, . . . , r} such that
Sℓ ⊆ T.

An n-person cooperative game in coalitional form with side payments, or with transferable
utility (TU game), is an ordered pair (N, v) where N is a finite set of n players and v : P(N) → IR
is a map assigning a real number v(S), called the worth of S, to each coalition S ⊆ N, and where
v(∅) = 0. The real number v(S) represents the reward that coalition S can achieve by itself if all
its members act together.

A game (N, v) is super-additive when v(S) + v(T) ≤ v(S ∪ T), for every pair of disjoint coali-
tions S, T ⊆ N. If v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T), for every pair S, T ⊆ N, then the game is
convex. A convex game can also be characterized by v(S ∪ i)− v(S) ≤ v(T ∪ i)− v(T), for every
S ⊆ T ⊆ N \ i.

A game (N, v) is symmetric when all the agents play the same role in the cooperative situation
and thus the only relevant information is the size of the coalition which is formed. In this case, the
characteristic function v(S) is defined by a real function f (·) such that f (0) = 0 and v(S) = f (s)
for all non-empty S ⊆ N cardinality is s.

A game (N, u) is a simple game if u(S) ∈ {0, 1}, for all S ⊆ N, and it is monotonic (i.e., u(S) ≤
u(T) whenever S ⊆ T). Simple games just make a difference between two types of coalitions:
winning and losing coalitions, with worths 1 and 0, respectively. A minimal winning coalition S ⊆ N
is a winning coalition such that all its proper subcoalitions lose. The set MW(u) of minimal
winning coalitions of the game (N, u) characterizes it.

Let Gn be the vector space of all TU games with fixed player set N, where n = |N|, and identify
(N, v) ∈ Gn with its characteristic function v when no ambiguity appears. A value φ for TU games
is an assignation which associates to each n-person game (N, v) ∈ Gn a vector φ(N, v) ∈ Rn,
where φi(N, v) ∈ R represents the value of player i, i ∈ N. Shapley (1953) defines his value as

1Formally, the subgraph which contains (S, ΓS) is the subgraph induced by HΓ(S).
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follows:

ϕi(N, v) = ∑
S⊆N
i/∈S

s!(n − s − 1)!
n!

(
v(S ∪ {i})− v(S)

)
, i = 1, . . . , n. (1)

Here s = |S| denotes the cardinality of coalition S ⊆ N, and being (N, v) ∈ Gn.

The value ϕi(N, v) of each player admits different interpretations, such as the payoff that player
i receives when the Shapley value is used to predict the allocation of resources in multiperson in-
teractions, or as a measure of his power when averages are used to aggregate the power of players
in their various cooperation opportunities. Note that the difference v(S ∪ i)− v(S) measures the
ability of player i to change the worth of coalition S in case she joins it.

Following the question originally addressed by Shapley in his seminal paper: we interpret
the value as the expectations of a player in a game (N, v), so we will refer to ϕ(N, v) ∈ Rn as
a valuation vector. Then, ϕi(N, v) ∈ R will measure the (a priori) value that playing the game
(N, v) has for player i, and can be used as an objective function for selecting key players. Since the
Shapley value is symmetric2 and efficient3 then ϕi(N, v) = f (n)

n for every player i = 1, . . . , n and
for every symmetric game (N, v).

The Shapley value admits an alternative expression in terms of the Harsanyi dividends of every
coalition T in (N, v), which are given by ∆N(v, T) = ∑S⊆T

S ̸=∅
(−1)t−sv(S), s and t being the cardinal-

ities of S and T, respectively. The formula is based on the linearity of the Shapley value and the
expression of the game (N, v) in terms of the basis of the unanimity games4 (see Shapley (1953)).

ϕi(N, v) = ∑
S⊆N
i∈S

∆N(v, S)
s

, i = 1, . . . , n. (2)

Now we are ready to recall the individual centrality measure in which our proposal is based.

A game theoretic approach to individual centrality

Let (N, Γ) be a graph describing the possible interactions among individuals in a social network,
and let (N, v) be a symmetric TU-game describing the functionality of the network, i.e. the interests
that motivate the interactions among the actors of the social network. Then, Gomez et al. (2003),
following Myerson (1977), consider the graph-restricted game (N, vΓ) to represent the economic
possibilities of the agents when the available communication possibilities are taken into account.
That is,

vΓ(S) = ∑
Tk∈conΓ(S)

v(Tk), S ⊆ N, (3)

2ϕi(N, v) = ϕj(N, v) for all symmetric players i, j ∈ N (i.e., v(S ∪ i) = v(S ∪ j), for all S ⊆ N \ {i, j}).
3∑n

i=1 ϕi(N, v) = v(N), for every n-person TU game (N, v).
4Recall that a game (N, v) is a unanimity game if there exists a coalition S such that for every T ⊆ N, v(T) = 1 if S ⊆ T,

and v(T) = 0 otherwise; in this case, we will denote the game by (N, uS) and its Shapley value is ϕi(N, uS) = 1
s , for all

i ∈ S, and ϕi(N, uS) = 0, otherwise. Unanimity games are a basis of the vector space of the n-person TU-games.
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where conΓ(S) is the set of connected components of S in Γ. In that setting, they argue that if
we consider the Shapley and the Myerson values as a reasonable outcome for these two games
(N, v) and (N, vΓ), respectively, then the differences between the corresponding outcomes can be
considered as a result of the different positions which players have in the graph Γ. Therefore, they
propose the difference

γi(N, v, Γ) = ϕi(N, vΓ)− ϕi(N, v), i = 1, . . . , n, (4)

as a measure of the centrality of player i ∈ N in the graph (N, Γ), given (N, v).

Note that (N, v) describes the functionality of the network, each specific choice of game (N, v)
determines a centrality measure, and the final centrality figures and relative ordering depend on
this specific choice. Thus, it is worthwhile to propose games that properly model some func-
tionalities of interest to social networks analysis. In that sense, Gomez et al. (2003) define some
particular relevant cases of centrality measures, based on three games for modeling three scenar-
ios, that allow us to measure group centrality considering three appealing purposes.

i) Overhead game, to mount a coordinated action:

voverh(S) = −1, ∀ ∅ ̸= S ⊆ N,

which focuses on the “general cost” that any set of players should pay to perform an action,
considering that all players are related.

ii) Messages game, to send information through the network via bilateral transmissions:

vmsg(S) = 2
(

s
2

)
= s2 − s, ∀ S ⊆ N,

which focuses on the level communication activity between pairs of individuals, where the
benefit of a binary communication is independent of the actors performing and it is the same
for each relation. Thus, the payoff vmsg(S) of coalition S is proportional to the number of
pairs in S, and thus v(S) = k(s

2). The proportionality constant k is chosen as 2 in order to
represent communication in both ways.

iii) Conferences game, to send information through the network via multilateral transmissions:

vcon f (S) = 2s − s − 1, ∀ S ⊆ N,

which reflects the level of communication among groups of two or more individual in a coali-
tion. The payoff of coalition S is the number of subsets or conferences in S with a cardinality
greater than one.

Using these characteristic functions we may describe the functionality of the motivational
examples, as we will explain in the sequel.
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With respect to the terrorist group, the functionality of the network is to transmit information
among the nineteen hijackers which prepared and executed the attack. In that case, taking into
account that bilateral communications are more safe than multilateral ones, the messages game
gives a good functionality model. Moreover, if we extend the social network to a more dense
network which included some people which did not take direct part in the attack but support the
terrorists, the purpose of the new network remains the same. Then, an asymmetric version of the
messages game in which only the messages between pairs of hijackers have a non–zero worth
could be used.

In the second example, since one of the purposes of the social structure is to promote the
survival of the troop, the overhead game may provide a functionality modeling. This game de-
scribes the common vital task of group survival. The workload is always the same regardless of
the number of primates in the group. Then, a bigger group is more efficient in a per capita basis
than a smaller one. Nevertheless, in Section 6 we analyze in deep this example and we propose
an alternative specific game.

In the third example, taking into account that a social network of informal relationships among
the members of an organization have a critical influence on the formation of valuable working
teams, the conferences game may be a good candidate to describe the functionality of the network.
Again, in Section 6 we propose slight variations of the conference game in order to account for
the optimal size of a group in the context of advice seeking.

In the last example we deal with capital, rather than with functionality. In this kind of sit-
uations, the capital of each group can be described by means of a simple game (N, u) that is in
general non-symmetric, and therefore the above difference (4) is interpreted as an index of so-
cial capital5 (Salisbury, 1969). Frequently, the voting procedure can be described by means of
a weighted simple game (N, w), characterized by a vector of agents’ weights (w1, . . . , wn) ∈ Rn

and a quota q ∈ R such that a coalition S ⊆ N is winning when the sum of the weights of
the players in S meets or exceeds the quota that is requested to pass the proposal. For the spe-
cific example of the Italian Parliament the capital is described by means of the weighted sim-
ple game with quota q = 316 and w(316; 225, 198, 73, 42, 29, 23, 16, 11, 7, 3, 1, 1, 1), being N =

{DC, PCI, PSI, MSI − DN, PRI, PSDI, PLI, PR, DP, SVP, LV, PSA, UV − UVP − DPop}.

In this paper we propose some examples of characteristic functions, although the definition
of the characteristic function to be used in a specific situation should be subject to a thorough
analysis. We want to remark the versatility of the game theoretic measures of centrality, since
each characteristic function v may provide a different centrality measure that takes into account
the specific purpose described by v.

4 Myerson group value and centrality

In this section we introduce our main ideas. As the game theoretic centrality measure is based
on the variation in each agents’s value due to the social structure, then we first need to measure
the value of a group in the two games (N, v) and (N, vΓ). We base our proposal on the extension

5The reader is referred to Gónzalez-Arangüena, Khmelnitskaya, Manuel and Pozo (2011), where the properties of the
individual game theoretic centrality measure as a social capital index for individuals are studied.
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of the Shapley value from individuals to groups considered in Flores, Molina and Tejada (2013),
which we recall below.

Given a TU-game (N, v) and a coalition C ⊆ N, Derks and Tijs (2000) define the merging game
(NC, vC) in which all the agents of C ⊆ N are replaced by a single “super–player” c, who can act as
a proxy of any player in C. Formally, in the merging game (NC, vC), the player set N will become
NC = (N \ C) ∪ {c} with c as a single player c ≡ C, and the characteristic function vC describing
the new situation is of the form:

vC(S) =

v(S), if c /∈ S,

v(S ∪ C) if c ∈ S,
∀ S ⊆ NC. (5)

Note that when considering the previous merging game6 for evaluating the expectations of
group C in the game, we do not need to suppose necessarily that the agents know each other
nor agree to act jointly; instead, we may assume the existence of an external decision maker that
is able and willing to compute the value of the different groups. For instance, in the case of the
criminal organization, there exists a external agent, the police, whose goal is to establish which is
the group of terrorists more likely to turn back into double agents, or the more appropriate to to
spread misinformation through the criminal organization network.

Now we define the Shapley group value of the game (N, v) ∈ Gn as the mapping ϕg that assigns
for every C ⊆ N a real number ϕ

g
C(N, v) ∈ IR which represents the a priori value of group C ⊆ N

in (N, v), and its is given by

ϕ
g
C(N, v) := ϕc(NC, vC), for all ∅ ̸= C ⊆ N, and ϕ∅(N, v) = 0.

The Shapley group value represents a priori valuation of the expectations of a group in an un-
restricted game (N, v) when they act as a unit. Now, in order to measure the value of each group
when the restrictions in the cooperation due to the social relations are considered, we introduce
the Myerson group value as the Shapley group value of the graph-restricted merging game.

Definition 1. Let (N, Γ) be a social network, and (N, v) a TU game reflecting its functionality.
Then for every group C ⊆ N the graph-restricted merging game (NC, vΓ,C) is defined as:

vΓ,C(S) = vΓ(S) = ∑
Tk∈conΓ(S)

v(Tk), (6)

vΓ,C(S ∪ c) = vΓ(S ∪ C) = ∑
Tk∈conΓ(S∪C)

v(Tk), (7)

for every coalition S ⊆ N \ C = NC \ {c}.

Definition 2. Let (N, Γ) be a social network, and (N, v) a TU game reflecting its functionality.

6Which is also called the quotient game (Owen, 1977) of (N, v) with respect to the coalition structure.
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Then the Myerson value of group C ⊆ N is defined to be:

ϕ
g
C(N, v, Γ) := ϕ

g
C(N, vΓ) = ϕc(NC, vΓ,C), for every group C ⊆ N.

The Myerson value of C can be interpreted as a priori valuation of the expectation of group C
in the game (N, v) when communications between the players are restricted by the graph (N, Γ).
In this context, the Myerson group value is more related to the kind of questions Borgatti’s work
(2006) deals with, and also with the Target Set Selection Problem analyzed by Kempe et al. (2005).
That is, to choose a set of individuals to target if we want to diffuse widely and rapidly an an-
nouncement or an attitude among the social network; or to maximally disrupt the network’s ability
to mount coordinated action, etc. However, if we are interested in a group centrality measure,
then we must account for the variations in value due to their position in the graph. Thus, follow-
ing Gomez et al. (2003) approach, we propose the formal next definitions.

Definition 3. Let (N, Γ) be a social network, and (N, v) a TU symmetric game reflecting its func-
tionality. Then, the centrality of the group C ⊆ N, is defined to be:

γ
g
C(N, v, Γ) := ϕ

g
C(N, vΓ)− ∑

i∈C
ϕi(N, v), ∀ C ⊆ N. (8)

In general, if the a priori differences among agents must be taken into account, then a non–
symmetric game that properly reflects those differences must be considered. Therefore, the re-
sulting variations measure the social capital of a group, rather than its centrality. Formally:

Definition 4. Let (N, Γ) be a social network, and (N, v) a TU game reflecting the amount of
resources which are available to each group, i.e. its capital. Then, the social capital of the group
C ⊆ N, is defined to be:

κ
g
C(N, v, Γ) := ϕ

g
C(N, vΓ)− ∑

i∈C
ϕi(N, v), ∀ C ⊆ N. (9)

The above differences (8) and (9) represent the increase (or decrease) in the value of group C
due to two factors: its position in the graph, i.e. its positional value, and the synergies among their
agents, i.e. their integration effect -which depend only on the functionality of the network. In fact,
the centrality (social capital) of group C can be reformulated as

γ
g
C(N, v, Γ) =

(
ϕ

g
C(N, vΓ)− ϕ

g
C(N, v)︸ ︷︷ ︸

positional value

)
+

(
ϕ

g
C(N, v)− ∑

i∈C
ϕi(N, v)︸ ︷︷ ︸

integration effect

)
.

The first difference ϕ
g
C(N, vΓ)− ϕ

g
C(N, v) measures the variation in the value of group C due to
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their position in the social network, whereas the second difference accounts in turn for the benefits
derived from their agreement to act jointly taking into account the purpose of the network.

We will focus on measuring the centrality of a group and thus we will restrict ourselves to
the symmetric case (the general asymmetric case is left for subsequent work). Note then that
∑i∈C ϕi(N, v) = c

n v(N) if the game (N, v) is symmetric. Thus, if we are interested in comparing
centralities of groups of the same cardinality c, it is possible to avoid the last term in (8) and use
ϕ

g
C(N, vΓ) as a measure for the centrality of all groups of size c.

Definitions 2 and 3 provides us with two measurements of value and centrality which take
into account the ensemble issue. Next, we will show that the proposed Myerson group value si-
multaneously captures the positive and negative value of every group, which measure respectively
its value to achieve the specific goal that is being pursued, and its value to force its underachieve-
ment. First we recall the definition of the dual game, as well as the self-duality property of the
Shapley value.

Definition 5. Let (N, v) ∈ Gn be a TU game. Then its dual game, denoted by (N, vD), is defined
for all S ⊆ N by vD(S) = v(N)− v(N \ S).

The worth vD(S) of S ⊆ N in the dual game measures the losses of the grand coalition if
coalition S leaves the game (N, v). That is, vD(S) is the benefit that their members can block
in the situation without any coalition structure. Now, in order to properly measure the under-
achievement of the goal pursued by the network when coalition S leaves the society, then the dual
graph-restricted game, which we will denote by (N, vD

Γ ), must be defined as follows:

vD
Γ (S) := (vΓ)

D(S) = vΓ(N)− vΓ(N \ S), ∀ S ⊆ N. (10)

The worth of coalition S in the dual game is then v(N)− ∑Tk∈conΓ(N\S) v(Tk), whenever the social
network (N, Γ) is connected. Otherwise, the graph-restricted game is an additive game over its
connected components, and the dual operator applies to each of these components.

The Shapley value is self-dual, that is, the Shapley value of the game (N, v) equals the Shapley
value of its dual, and thus it simultaneously captures the positive and the negative value of every
player. Next proposition shows that the same remains true at a group level.

Proposition 1. Let (N, Γ) be a social network, and (N, v) be a general TU game reflecting its func-
tionality. Then, the Myerson group value and the game theoretic group centrality are self-dual, i.e.,
ϕ

g
C(N, vD, Γ) = ϕ

g
C(N, v, Γ) and γ

g
C(N, vD, Γ) = γ

g
C(N, v, Γ), for every group C ⊆ N.

All the proofs here and below are postponed to the Appendix, not to interrupt the natural flow
of the arguments. Next, we show an example to illustrate the previous definitions.

Example 1. Let us consider the same kite with 6 nodes as in Gomez et al. (2003), and let (N, vmsg)

be the messages game:
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1 2

3

4 5

6

Let us calculate the Myerson value and centrality of the group C = {1, 2, 5, 6}, whose a reasonable
size which allows to describe the corresponding merging game; observe, in particular, that the
merged player set is NC = {c, 3, 4}, of cardinality three. The characteristic function vmsg

Γ,C is given
by:

vmsg
Γ,C (c) = vmsg

Γ (C) = 2 + 2 = 4, vmsg
Γ,C (3) = vmsg

Γ (3) = 0, vmsg
Γ,C (4) = vmsg

Γ (4) = 0,

vmsg
Γ,C ({c, 3}) = vmsg

Γ ({1, 2, 3, 5, 6}) = 5 · 4 = 20, vmsg
Γ,C ({c, 4}) = vmsg

Γ ({1, 2, 4, 5, 6}) = 20,

vmsg
Γ,C ({3, 4}) = vmsg

Γ ({3, 4}) = 0, vmsg
Γ,C (NC) = vmsg

Γ (N) = 6 · 5 = 30.

The Myerson group value of C is:

ϕ
g
C(N, vmsg

Γ , Γ) = ϕc(NC, vmsg
Γ,C ) =

= ∑
S⊆{3,4}

s!(2 − s)!
3!

(
vmsg

Γ,C (S ∪ {c})− vmsg
Γ,C (S)

)
=

(4
3

)
+

(
2 · 20

6

)
+

(30
3

)
= 18.

Then, since ϕi(N, vmsg) = 30
6 = 5, its centrality is γ

g
C(N, vmsg, Γ) = 18 − 4 · 5 = −2.

The corresponding dual graph-restricted game (NC, (vmsg
Γ,C )D), which measures the blocking

worth of each coalition, will be given by:

(vmsg
Γ,C )D(c) = 30 − vmsg

Γ ({3, 4}) = 30,

(vmsg
Γ,C )D(3) = 30 − vmsg

Γ ({1, 2, 4, 5, 6}) = 10, (vmsg
Γ,C )D(4) = 30 − vmsg

Γ ({1, 2, 3, 5, 6}) = 10,

(vmsg
Γ,C )D({c, 3}) = 30 − vmsg

Γ ({4}) = 30, (vmsg
Γ,C )D({c, 4}) = 30 − vmsg

Γ ({3}) = 30,

(vmsg
Γ,C )D({3, 4}) = 30 − vmsg

Γ ({1, 2, 5, 6}) = 16, (vmsg
Γ,C (NC))

D = 30 − vmsg
Γ (∅) = 30.

It can be checked that

ϕ
g
C(N, vD, Γ) = ϕc(NC, (vmsg

Γ,C )D) = ϕc(NC, vmsg
Γ,C ) = ϕ

g
C(N, v, Γ),

and therefore ϕ
g
C(N, v, Γ) measures the negative and positive value of group C.

With respect to the smaller groups C1 = {1, 2} and C2 = {5, 6}, we omit the calculations which
are more tedious since the merging games (NC1 , vmsg

Γ,C1
) and (NC2 , vmsg

Γ,C2
) are 5-person TU games.
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We show the final results:

ϕ
g
C1
(N, vmsg

Γ , Γ) = ϕc1(NC1 , vmsg
Γ,C1

) =
286
30

,

ϕ
g
C2
(N, vmsg

Γ , Γ) = ϕc2(NC2 , vmsg
Γ,C2

) =
271
30

,

and thus group C1 is more valuable and central than it is group C2:

γ
g
C1
(N, vmsg

Γ , Γ) = ϕ
g
C1
(N, vmsg

Γ )− 2 · 5 = −14
30

,

γ
g
C2
(N, vmsg

Γ , Γ) = ϕ
g
C2
(N, vmsg

Γ )− 2 · 5 = −29
30

.

Now, if we compare the centrality and Myerson value of groups C1 and C2 separately with the
centrality and Myerson value that both groups have when they act as a unit and form group C
we obtain:

γ
g
C1
(N, v, Γ) + γ

g
C2
(N, v, Γ)− γ

g
C(N, v, Γ) = ϕ

g
C1
(N, v, Γ) + ϕ

g
C2
(N, v, Γ)− ϕ

g
C(N, v, Γ) =

17
30

.

This difference, which represents the 3.148% of their joint value, can be interpreted as a measure
of redundancy between groups C1 and C2.

♢

Now, in connection with the previous example, let us formalize the concept of redundancy
between groups of agents, which we will analyze in more detail in next section.

Definition 6. Let (N, Γ) be a social network, and (N, v) a TU game reflecting its functionality and
the a priori differences among the agents. Then, the redundancy between groups C1 and C2, is
defined to be:

Red(C1, C2, N, v, Γ) : = γ
g
C1
(N, v, Γ) + γ

g
C2
(N, v, Γ)− γ

g
C1∪C2

(N, v, Γ) =

= ϕ
g
C1
(N, v, Γ) + ϕ

g
C2
(N, v, Γ)− ϕ

g
C1∪C2

(N, v, Γ),

for every pair of groups C1, C2 ⊆ N.

Their relative redundancy is defined as the quotient

RRed(C1, C2, N, v, Γ) :=
Red(C1, C2, N, v, Γ)

ϕ
g
C1∪C2

(N, v, Γ)
.

Note that negative redundancies must be interpreted as a positive feature. If Red(C1, C2, N, v, Γ) <
0, then groups C1 and C2 strengthen each other, i.e., they are complementaries.
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5 Properties

In this section we show some interesting properties of the proposed group measures. It is orga-
nized in four subsections.

First, we give a a general decomposition of the Myerson group value in two kinds of value:
communication and betweenness. As a result, we obtain that the Myerson value of a group counts
for its contribution to enable the formation of coalitions, either through mediation or connec-
tion, taking into account the benefit of each coalition, which is problem-specific and depends on
the selected game (N, v). Thus, game theoretic point of view allows to adopt the problem-specific
approach to centrality advocated by Friedkin (1991) and followed by Borgatti (2006), since the My-
erson value and centrality emerge as a result of a combination of two different features. Not only
the network topology determines the centrality of a group, but also the purpose of the network
does. We also use this decomposition to elaborate on redundancy in Example 2.

Then, in subsection 5.2, we study the marginal effect that the incorporation of a new member
has over an already integrated group. This marginal effect is related with a measure of average
complementarity between the entrant player and the incumbent group.

In the third subsection we identify, under some restrictions, the groups of lowest and highest
centrality of a given size k.

Subsection 5.4 concludes by showing that, for a particular type of connected graphs, the game
theoretic group measures we propose are closely related to certain standard measures of group
centrality and cohesiveness.

5.1 Myerson group value decomposition: communication and betweenness

The main goal of this paragraph is to give a a general decomposition of the Myerson group value
(see Propositions 2 and 3 below) in two kinds of value – communication and betweenness– along
the lines of Gomez et al. (2003). Next lemmas, that allow to express ϕC(N, vΓ) in terms of the
Harsanyi dividends of the original game (N, v), are needed for obtaining such decomposition.
Recall that the connected convex hull HΓ(S) of a subset S in Γ and the set MΓ(S) of its minimal
connection sets is defined in Section 3.

Lemma 1. Let (N, Γ) be a social network, and let (N, v) a TU game. If (N, Γ) is a tree, then

ϕ
g
C(N, vΓ) := ϕc(NC, vΓ,C) = ∑

HΓ(S)∩C ̸=∅

∆N(v, S)
|NC/HΓ(S)|

, (11)

where NC/S ⊆ NC is the coalition

NC/S =

(S \ C) ∪ {c}, if S ∩ C ̸= ∅,

S, if S ∩ C = ∅.

Lemma 2. Let (N, Γ) be a social network, and let (N, v) a TU game. If (N, Γ) is a general connected
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graph (N, Γ), let MΓ(S) = {S1, . . . , Sr} ̸= ∅ be the set of minimal connection sets of S in Γ. Then, we
have

ϕ
g
C(N, vΓ) := ϕc(NC, vΓ,C) = ∑

S⊆N
C∩AMΓ(S) ̸=∅

∆N(v, S)ϕc(NC, uS
Γ,C), (12)

where AMΓ(S) =
∪r
ℓ=1 Sℓ is the set of agents in MΓ(S) and (NC, uS

Γ,C) is the simple game with minimal
winning coalitions set:

MW(NC, uS
Γ,C) = {NC/S1, . . . , NC/Sr},

for all S ⊆ N.

From the previous lemmas the decomposition results established in Propositions 2 and 3 fol-
low straightforward. First, let us formalize the notion of being an intermediary. If (N, Γ) is a graph
abd S ⊆ N a coalition, then the set of intermediaries of S agents in Γ is determined by

BetΓ(S) = AMΓ(S) \ S = {j /∈ S / ∃ Sℓ ∈ MΓ(S) with j ∈ Sℓ}.

Now according to the group C we can distinguish two kind of coalitions S ⊆ N with C ∩
AMΓ(S) ̸= ∅: the coalitions S ⊆ N that incorporate C members, and the coalitions that do
not incorporate any member of C but in which some members of C may be needed to be con-
nected. Therefore, according to (12), the Myerson value of group C can be decomposed in two
kinds of value:

• communication value, which is the portion of value corresponding to those payoffs received
as members of different coalitions S with S ∩ C ̸= ∅, and

• betweenness value, which is the portion of value corresponding to those payoffs received as
intermediaries between members of different coalitions S such that S ∩ C = ∅.

Next propositions formalize this decomposition.

Proposition 2. Let (N, Γ) be a social network and let (N, v) a TU game. If (N, Γ) is a tree, then

ϕ
g
C(N, vΓ) = ϕCom

C (N, vΓ) + ϕBet
C (N, vΓ) =

communication value︷ ︸︸ ︷
∑
S⊆N

S∩C ̸=∅

∆N(v, S)
|HΓ(S) \ C|+ 1

+

betweenness value︷ ︸︸ ︷
∑

S⊆N\C
HΓ(S)∩C ̸=∅

∆N(v, S)
|HΓ(S) \ C|+ 1

(13)

Proposition 3. Let (N, Γ) be a social network and let (N, v) a TU game. If (N, Γ) is a connected graph,
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then

ϕ
g
C(N, vΓ) = ϕCom

C (N, vΓ) + ϕBet
C (N, vΓ) =

=

communication value︷ ︸︸ ︷
∑
S⊆N

S∩C ̸=∅

∆N(v, S)ϕc(NC, uS
Γ,C) +

betweenness value︷ ︸︸ ︷
∑

S⊆N\C
BetΓ(S)∩C ̸=∅

∆N(v, S)ϕc(NC, uS
Γ,C) . (14)

In the next example we use the above decomposition to analyze how the proposed group
measures account for the two kinds of redundancy considered by Borgatti (2006): redundancy
with respect to adjacency and distance, and redundancy with respect to bridging. We omit here
some of the algebraic manipulations because they are tedious and technical. They are available
upon request.

Example 2. Let us consider the following social network, and let (N, v) be a symmetric TU game:

Now let us consider the group C = {5, 6}; then the redundancy of agents 5 and 6 (see Definition
6) is given by:

Red({5}, {6}, N, v, Γ) = ϕ5(N, v, Γ) + ϕ6(N, v, Γ)− ϕ
g
{5,6}(N, v, Γ).

If we apply the formula (14) to the computation of ϕ5(N, v, Γ), ϕ6(N, v, Γ) and ϕ{5,6}(N, v, Γ), we
can make the difference between two kinds of redundancy of 5 and 6 : with respect to communi-
cation and with respect to betweenness. The variation of communication value when agents 5 and
6 form a group accounts for their redundancy with respect to adjacency and distance, which we
will call communication-redundancy, whereas the variation of betweenness value accounts for their
redundancy with respect to bridging, which we will call betweenness-redundancy, i.e.:

Red({5}, {6}, N, v, Γ) = ComRed({5}, {6}, N, v, Γ) + BetRed({5}, {6}, N, v, Γ).

The communication-redundancy of agents 5 and 6, using the first summand of expression (14) and
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after some calculations, is given by:

ComRed({5}, {6}, N, v, Γ) =
1
6

∆N(v, {5, 6}) + ∑
S⊆N

{5,6}⊂S

( |HΓ(S)| − 2
|HΓ(S)|(|HΓ(S)| − 1)

)
︸ ︷︷ ︸

≥0

∆N(v, S) (15)

Analogously, the betweenness-redundancy of agents 5 and 6, using now the second summand of
expression (14), is given by:

BetRed({5}, {6}, N, v, Γ) =

∑
∅ ̸=S1⊆{1,2,3,4}

∅ ̸=S2⊆{7,8,9,10}

( 1
|HΓ(S1)|+ |HΓ(S2)|+ 1

− 2
|HΓ(S1)|+ |HΓ(S2)|+ 2

)
︸ ︷︷ ︸

≤0

∆N(v, S1 ∪ S2). (16)

Thus, being the coefficients in (15) positive and the coefficients in (16) negative, we may state
that agents 5 and 6 are redundant for spreading purposes in this case, although both are strictly
necessary when the goal is to break the communications. The above coefficients only deal with
the structure of the network, but not with the interest on forming a coalitions. Such interests,
measured through the Harsanyi dividends of coalition S in (15), and those of S1 ∪ S2 in (16), also
determine the amount of positive and negative redundancy, respectively.

Now, if the functionality of the network is to transmit information through bilateral commu-
nications then, applying the above calculations to the messages game, we obtain the following
results:7

ComRed({5}, {6}, N, vmsg, Γ) =
1
6

∆N(vmsg, {5, 6}) + 0 =
1
3

,

BetRed({5}, {6}, N, vmsg, Γ) = ∑
i∈{1,2,3,4}

j∈{7,8,9,10}

(1
3
− 2

4

)
∆N(vmsg, {i, j}) = −8

3
.

If we go back to Example 1, then we can easily compute the communication and betweenness
values of each of the involved groups C1, C2 and C = C1 ∪ C2. We obtain:

ϕCom
C (N, vmsg, Γ) = 2 ∑

{i,j}⊆C
ϕc(NC, u{i,j}

Γ,C ) + 2 ∑
i∈C

(ϕc(NC, u{i,5}
Γ,C ) + ϕc(NC, u{i,6}

Γ,C ) =
52
3

,

ϕBet
C (N, vmsg, Γ) = 2ϕc(NC, u{5,6}

Γ,C ) =
2
3

.

For the subgroups C1 and C2 we obtain ϕCom
C1

(N, vmsg, Γ) = 136
15 , ϕBet

C1
(N, vmsg, Γ) = 7

15 , ϕCom
C2

(N, v, Γ) =

7Note that the Harsanyi dividends of the messages game verify ∆N(vmsg, S) = 2, for every coalition S ⊆ N with
|S| = 2, and ∆N(vmsg, S) = 0, otherwise.
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266
30 , and ϕBet

C2
(N, v, Γ) = 1

6 . Then

ComRed(C1, C2, N, vmsg, Γ) = ϕCom
C1

(N, vmsg, Γ) + ϕCom
C2

(N, v, Γ)− ϕCom
C (N, vmsg, Γ) =

3
5
> 0,

BetRed(C1, C2, N, vmsg, Γ) = ϕBet
C1

(N, vmsg, Γ) + ϕBet
C2

(N, v, Γ)− ϕBet
C (N, vmsg, Γ) = − 1

30
< 0,

and therefore groups C1 and C2 are redundant for spreading purposes, but they are complemen-
taries with respect to bridging. ♢

Previous decomposition results only deal with connected social networks. Nevertheless, they
are general enough since the Myerson value of a group in a disconnected graph can be obtained
as the sum of the Myerson value of its subgroups, when considered as a group in the different
connected subgraphs to which each subgroup belongs.

Proposition 4. Let (N, Γ) be a social network, and let (N, v) a TU game. If (N, Γ) is a disconnected
graph, let (Nk, Γk), k = 1, . . . , r, be its connected components. Then,

ϕ
g
C(N, v, Γ) =

r

∑
k=1

ϕ
g
Ck (Nk, vk, Γk),

where vk is the restriction of v to Nk and Ck = C ∩ Nk.

Note that the above lemma does not generalize straightforward when dealing with centrali-
ties. For instance, let us consider the case of two components. Then it follows that

γ
g
C(N, v, Γ) = γ

g
C1(N1, v1, Γ1) + γ

g
C2(N2, v2, Γ2)− ∑

i∈C1

(
ϕi(N, v)− ϕi(N1, v1)

)
−

− ∑
i∈C2

(
ϕi(N, v)− ϕi(N2, v2)

)
.

Observe that some externalities across disconnected components are present. The contribution of
N1’s players to the members of C2 and the contribution of N2’s members to the agents in C1 must
be subtracted.

5.2 Looking for the best partner

Now we analyze the elements that determine the contributions of each player i /∈ C to the Myer-
son value and centrality of a group C ∪ {i}, which are given by

∂iϕ
g(C, N, v, Γ) := ϕ

g
C∪i(N, v, Γ)− ϕ

g
C(N, v, Γ), (17)

∂iγ
g(C, N, v, Γ) := γ

g
C∪i(N, v, Γ)− γ

g
C(N, v, Γ) = ∂iϕ

g(C, N, v, Γ)− ϕi(N, v), (18)
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respectively. Next proposition shows that the contribution of player i to the Myerson value of
group C depends on his average complementarity with the group C, and on the part of his value
that is independent of C. These features are frequently conflicting.

Before stating that result, we recall the concept of being strategic complements and substitutes,
which in turn rely on the second-order difference operator for a pair of agents i, j ∈ N.

The second-order difference operator for a pair of players i, j ∈ N (Segal, 2003) is defined as a
composition of marginal contribution operators (i.e., first-order difference operators) as follows:

∂2
ijv(S, N, v) = v(S ∪ {i, j})− v(S ∪ j)− v(S ∪ i) + v(S) = ∂2

jiv(S, N, v), ∀ S ⊆ N \ {i, j}.

Here ∂2
ij(S, N, v) expresses player i’s effect over the marginal contribution of player j (or vice

versa). Note that v(S∪{i, j})− v(S) = ∂2
ij(S, N, v)+ ∂i(S, N, v)+ ∂j(S, N, v), and thus ∂2

ij(S, N, v) >
0 implies that the marginal contribution of player i, j as a group exceeds the sum of the individual
marginal contributions of each player. Therefore, ∂2

ij(S, N, v) can be interpreted as a measure of
players i and j complementarity with respect to the players in S.

In fact, following Bulow, Geanakoplos, and Klemperer (1985), players i and j are said to be
strategic complements whenever ∂2

ij(S, N, v) ≥ 0, for all S ⊆ N \ {i, j}. They are said to be strategic
substitutes whenever ∂2

ij(S, N, v) ≤ 0, for all S ⊆ N \ {i, j}.

In this framework we define the average complementarity of players i, j ∈ N as the following
average of second-order differences:

ψij(N, v) := ∑
S⊆N\{i,j}

s!(n − s − 1)!
n!

∂2
ij(S, N, v), for all i ̸= j ∈ N. (19)

Next proposition is a particular case of Proposition 4 in Flores et al. (2013), and shows that
the marginal contribution of a new player i to the incumbent group C is the sum of the a priori
value ϕi(N \ C, vΓ|N\C) in the social network of player i which does not emerge from his relation
with players in C, and the average complementarity between i and C. Here vΓ|N\C stands for the
restriction of the characteristic function v to the set of players N \ C.

Proposition 5. Let (N, Γ) be a social network, and (N, v) a TU game that reflects its functionality. Then
for every group C ⊆ N, and every player i /∈ C, the marginal contribution of player i ∈ N \ C to the
Myerson value of group C equals:

∂iϕ
g(C, N, v, Γ) = ϕi(N \ C, vΓ|N\C) + ψci(NC, vΓ,C), for all i /∈ C. (20)

We need to recall now a couple of definitions. Two nodes i and j are said to be automorphically
equivalent if there exists a bijection ζ : N → N with ζ(i) = j, ζ(j) = i such that the set of edges is
the same.8 Two groups C1 ⊆ N and C2 ⊆ N with |C1| = |C2| are automorphically equivalent groups
in (N, Γ) if there exists a bijection η : C1 → C2 between the agents of both groups verifying that

8Formally, the induced map over the edge set is also a bijection.
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i ∈ C1 is automorphically equivalent to η(i) ∈ C2, for every i ∈ C1. Symmetric groups are defined
accordingly.

Example 3. Let us consider again Example 1. Then, the individual Myerson value of each player
is (see Gomez et al., 2003):

ϕ(N, vmsg, Γ) = (
104
30

,
224
30

,
147
30

,
147
30

,
139
30

,
139
30

)

The two most valuable players are 2, and either 3 or 4 (who are in fact automorphically equivalent
to 3, see the remark below for a definition). Now we show that the best partners for player 2 are
either 5 or 6 (who again are automorphically equivalent), rather than players 3 or 4.

The Myerson value ϕi({1, 3, 4, 5, 6}, vmsg
Γ ) of players i = 3, 4, 5 and 6 that is independent of

2 equals the value of these players in the 4-nodes chain in which players 3 and 4 are the two
extremes:

ϕ3(N \ 2, vmsg
Γ |N\2) = ϕ4(N \ 2, vmsg

Γ |N\2) =
65
30

,

ϕ5(N \ 2, vmsg
Γ |N\2) = ϕ6(N \ 2, vmsg

Γ |N\2) =
115
30

.

The average complementarities of players 3 and 5 with player 2 equal:

ψ23(N, vmsg
Γ ) = ∑

S⊆{1,4,5,6}

s!(5 − s)!
6!

(
vmsg(S ∪ {2, 3})− vmsg(S ∪ {2})− v(Smsg ∪ {3}) + vmsg(S)

)
=

64
30

ψ25(N, vmsg
Γ ) = ∑

S⊆{1,3,4,6}

s!(5 − s)!
6!

(
vmsg(S ∪ {2, 5})− vmsg(S ∪ {2})− vmsg(S ∪ {5}) + vmsg(S)

)
=

17
30

.

Then, despite the fact that 3 is more complementary on average to player 2 than it is 5, and since
the value of player 3 depends more on the presence of player 2 than it does the value of 5, 5 is a
better partner for player 2 than it is 3:

ϕ
g
23(N, vmsg, Γ) = ϕ2(N, vmsg, Γ) + ϕ3(N \ 2, vmsg

Γ |N\2) + ψ23(N, vmsg
Γ ) =

353
30

<

416
30

= ϕ2(N, vmsg, Γ) + ϕ5(N \ 2, vmsg
Γ |N\2) + ψ25(N, vmsg

Γ ) = ϕ
g
25(N, vmsg, Γ).

The messages game is symmetric,so ϕ3(N, vmsg) = ϕ3(N, vmsg) = 1
5 , and therefore 5 is also a

better partner for player 2 than it is 3 when we measure centrality rather than the Myerson value.
♢

Remark 1. Note that if two agents i, j ∈ N are automorphically equivalent in the social network
(N, Γ) and they are also symmetric in the game (N, v), then they are symmetric players in the
graph-restricted game (N, vΓ). Thus, their individual Myerson values and their individual cen-
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tralities coincide. Likewise, if C1 ⊆ N and C2 ⊆ N with |C1| = |C2| are automorphically equivalent
groups in (N, Γ) and symmetric groups in (N, v), then their group Myerson values and their group
centralities coincide (since the Shapley group value verifies G-anonymity,9 see Flores et al., 2013)

5.3 The most and the least central group

In the sequel we identify, under some restrictions, the groups of lowest and highest centrality
of a given size k. Proposition 6 states that if the game (N, v) is symmetric and super-additive
the group of size k of highest centrality is such that their nodes shrink to the hub of a star in the
shortened graph, which is formally defined below. Under the same conditions, in Proposition 7, we
show that a group of k isolated nodes have lowest centrality among all the groups of size k. This
result can be strengthen when we restrict to symmetric convex games. In that case, Proposition
8 states that the k extreme nodes of a n–node chain have lowest centrality among all connected
groups of size k. Partial results about the order among groups for the particular case of a chain
are given in Proposition 9.

Definition 7. Let (N, Γ) be a social network, and let C ⊆ N. Then, the C-shortened graph (N/s C, Γ/C)
is given by N/s C = (N \ C) ∪ {j1, . . . , jp}, where there is a new node jℓ for every connected com-
ponent Tℓ of C in (N, Γ), and

Γ/s C = {{i, j} / i, j /∈ C} ∪
( p∪
ℓ=1

{(i, jℓ) / for all i /∈ C s.t. ∃j ∈ Tℓ with {i, j} ∈ Γ }
)

Let us illustrate this concept by means of the following example.

Example 4. Let us consider the social network (N, Γ) of Example 2 and the group C = {1, 5, 9}.
Then, the C-shortened graph (N/s C, Γ/s C) is depicted below:

���

�

�
�

���

�

�

�

Note that conΓ(C) = {{1, 5}, {9}} and thus N/s C = {2, 3, 4, 6, 7, 8, 10} ∪ {j1, j2}, where the
new nodes j1, j2 ∈ N/s C are the representatives of group C in the shortened graph. ♢

Now, using this concept we can state the following result about the most central group of a
given size.

Proposition 6. Let (N, Γ) be a social network, and let (N, v) a TU game. If (N, v) is symmetric and
super-additive, and C0 is a group of size k and (N, ΓS) such that C0 nodes shrink to the hub of a star in the

9That is, for every C ⊆ N, and for all permutations π ∈ Π(N), being Π(N) the set of permutations of n elements,
ϕ

g
π(C)(π(N), πv) = ξ

g
C(N, v), where πv(S) := v(π(S)), and being π(S) = {π(i) |i ∈ S}.
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C0-shortened graph, then

ϕ
g
C0
(N, v, ΓS) ≥ ϕ

g
C(N, v, Γ), for all C ⊆ N with |C| = k,

and for every social network (N, Γ).

Propositions 7 and 8 deal with the inverse problem. Previously, in order to prove Proposition
7, we need to analyze the behavior of the Myerson value and game theoretic centrality of group
C when they lose some of their connections, and also to obtain the centrality of a group of isolated
nodes C. These are relevant questions by themselves.

Lemma 3. Let (N, Γ) be a social network, and let C ⊆ N. If C ⊆ N is a group of isolated nodes in
(N, Γ), then the Myerson value of a group C is ϕ

g
C(N, v, Γ) = ∑i∈N v({i}), and its centrality equals

γ
g
C(N, v, Γ) = c( f (1)− f (n)

n ).

In this context, we will give the following formal definition of a connection of a group C.

Definition 8. Let (N, Γ) be a social network, and let (N, v) a TU game. Then, edge {i, j} ∈ Γ is a
connection of group C ⊆ N in (N, Γ) if C ∩ {i, j} ̸= ∅. If besides does not exist an alternative path
P(i, j) between nodes i, j in Γ with (P(i, j) \ {i, j}) ⊆ C, then {i, j} is said to be a vital connection
for C.

Lemma 4. Let (N, Γ) be a social network, and let C ⊆ N. If (N, v) is a super–additive game, then
removing a connection {i, j} of C in (N, Γ), the Myerson value of group C will not increase. Moreover, if
{i, j} is not a vital connection for C then ϕ

g
C(N, v, Γ) = ϕ

g
C(N, v, Γ−ij), where Γ−ij = Γ \ {i, j}.

If {i, j} is not a connection for C and there exists an alternative path P(i, j) between nodes i, j in Γ with
(P(i, j) \ {i, j}) ⊆ C, then the Myerson value of group C will not decrease.

Proposition 7. Let (N, Γ) be a social network, and let (N, v) a TU game. If (N, v) is symmetric and
super-additive, and C0 is a group of k isolated nodes in (N, Γ0), then

ϕ
g
C0
(N, v, Γ0) ≤ ϕ

g
C(N, v, Γ), for all C ⊆ N with |C| = k,

and for every social network (N, Γ).

If the game in convex and the group is connected we may provide a more precise statement.

Proposition 8. Let (N, Γ1,n) be the chain with n nodes numbered in the natural way10, and let (N, v) be
a TU game. If (N, v) is symmetric and convex, then

ϕ
g
{1,2,...,k}(N, v, Γ1,n) ≤ ϕ

g
C(N, v, Γ),

for every connected group C ⊆ N of cardinality 1 ≤ k ≤ n, and for all connected graphs (N, Γ).

Now, applying Proposition 5 to compare the Myerson value of consecutive connected groups
in a chain, we deduce the following result.

10That is, (N, Γ1,n) is the chain 1 − 2 − 3 − · · · − (n − 1)− n.
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Proposition 9. Let (N, Γ1,n) be the chain with n nodes numbered in the natural way, and let Ck
i =

{i, i + 1, . . . , k + i − 1}, 1 ≤ k ≤ n, 1 ≤ i ≤ n + 1 − k. If (N, v) is a symmetric and convex game then
for all k = 1, . . . , n − 2 the following holds:

ϕ
g
Ck

i
(N, v, Γ1,n) ≤ ϕ

g
Ck

i+1
(N, v, Γ1,n), for all 1 ≤ i ≤ n − k

2
,

and

ϕ
g
Ck

i
(N, v, Γ1,n) = ϕ

g
Ck

n−i+2−k
(N, v, Γ1,n), for all 1 +

(n − k
2

)
< i ≤ n − k + 1 .

In general, if we consider also disconnected groups the most central connected groups are
not in general the most valuable groups. Let us consider for instance a 5-nodes chain; then
ϕ

g
24(N, vmsg, Γ1,5) > ϕ

g
23(N, vmsg, Γ1,5) = ϕ34(N, vmsg, Γ1,5).

If the social network is a chain and we think that the above properties of the proposed group
measures must be satisfied, then we must define a convex TU game to describe the functionality
of the network. Observe that the three games defined in Section 3 are convex.

5.4 Particular cases and relation with classical measures

In this paragraph we obtain a general expression for the Myerson group value and game theoretic
group centrality measures for the games introduced in Gomez et al. (2003) in some particular
cases. These formulas show that, for a particular type of connected graphs, the game theoretic
group measures we propose are very related to certain standard measures of group centrality and
cohesiveness. In the sequel c denoted the cardinal of the distinguished coalition C.

Proposition 10. Let (N, Γ) be a tree. Then,

(i) The overhead-game Myerson group value can be obtained as

ϕ
g
C(N, v, Γ) = ∑

i∈C
ϕi(N, vΓ) =

1
2 ∑

i∈C
δi(Γ)− c, (21)

where δi(Γ) is the degree centrality of player i ∈ C.

(ii) The messages-game Myerson group value can be obtained as the sum of:

• A group closeness centrality, measured as the sum of the closeness of all members of C to every
player outside C (when distances are shortened if agents of C act as intermediaries):

∑
j/∈C
i∈C

2
d(i, j)− ∑

k∈C
δij(k) + 2

, (22)

where δij(k) = 1, if k is in the geodesic path from i and j in Γ, and 0 otherwise.
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• A cohesiveness index, measured by means of the number of agents in which group C has to
rely on for communicate:

∑
i,j∈C
i<j

2
1 + ∑

k/∈C
δij(k)

, (23)

which reaches its maximum v(C) when C is connected.

• A group betweenness centrality, measured by a weighted sum of the geodesics that connect
pairs of non-group members and, at the same time contain at least one member of the group.
The weight depends on the number of agents of C in the geodesic and its length.

∑
i,j/∈C
i<j

2
d(i, j)− ∑

k∈C
δij(k) + 2

δij(C), (24)

where δij(C) = 1, if ∑k∈C δij(k) ≥ 1, and 0, otherwise.

If the social network is a tree, the group centrality measure according to the overhead is addi-
tive and equal to:

γ
g
C(N, voverh, Γ) = ∑

i∈C
γi(N, voverh, Γ) =

(1
2 ∑

i∈C
δΓ(i)

)
− c

(n + 1)
n

. (25)

In the next example we show that the above additivity result does not generalize to graphs
with cycles.

Example 5. Let us consider following social network, and let (N, voverh) be the overhead game:

�

�

�

�

�

Now, let us consider the group C = {2, 3}, then:

ϕ
g
C(N, voverh, Γ) =

1
2
> ϕ2(N, voverh, Γ) + ϕ3(N, voverh, Γ) = 2 · 1

6
=

1
3

♢

With respect to the game theoretic group centrality measure based on the messages game, if
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the social network is a tree then the size of group C is penalized by a factor of n − 1:

γ
g
C(N, vmsg, Γ) = ϕ

g
C(N, vmsg

G )− ∑
i∈C

ϕi(N, vmsg) = ϕ
g
C(N, vmsg

G )− c(n − 1). (26)

6 Applications

We will show now the application of the Myerson group value and game theoretic group central-
ity to two social networks which have been considered by Everett and Borgatti (1999) and Borgatti
(2006) to illustrate the centrality group measures they proposed.

Following Castro, Gomez and Tejada (2009) and Castro et al. (2012) we have estimated in poly-
nomial time, via Monte Carlo simulation, the Myerson group value of the examples previously
described. We give the point estimation and the confidence intervals at the 99% of confidence
level for each of the estimations we made.

First, we analyze the Wolfe primate data, which appears as a standard dataset in UCINET
(Borgatti, Everett and Freeman, 2002). To be specific, we use the dichotomized data analyzed by
Everett and Borgatti (1999) and depicted in Figure 3. In the original data joint presence at the river
was coded as a interaction. They dichotomized the data by assuming the presence of a tie if there
were more than six interactions over the considered time period.
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Figure 3: Wolfe Primate binary social network

In that case, from the point of view of group selection in Evolutionary Biology, it is worthy to
evaluate the relevance of a group in order to promote the fitness of the troop. This fitness will
be given mainly by their ability to form groups which improve for instance their ability to feed
themselves, the defense of their territory, or their defense against predators. Taking this purpose
into account we propose two TU games to model the functionality of the social network:
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• On the one hand, we propose the overhead game (N, voverh) for describing the common
vital task of group survival. The workload is always the same regardless of the number of
primates in the group. Then, a bigger group is more efficient in a per capita basis than a
smaller one.

• On the other hand, we propose an alternative symmetric game which evaluates the expected
size of the group, considering that the probability of survival of each primate increases when
he/she is integrated in a bigger group. To be specific, let p ∈ (0, 1) be the probability of
mortality of a primate when he stays alone in a given period of time. We consider that each
primate’s mortality probability decreases to ps when he takes part of a group S os size s.
Then, assuming independence, the expected number of survivors of a given group S will
be given by s(1 − ps) = f (s). For illustrative purposes, we choose p = 0.5 and denote the
game as (N, vsur).

The results obtained for individuals are listed in Table 1. The figures correspond to the individ-
ual Myerson value of each primate. Note that the value of primates 2, 6, 16, 18, 19 and 20 are calcu-
lated with no error. These primates are isolated nodes in the social network, so they are dummy11

players in the graph-restricted game, and their individual values are therefore ϕi(N, vΓ) = v({i}),
for every i = 2, 6, 16, 18, 19, 20.

Monkey Age Sex ϕi(N, voverh, Γ) ϕi(N, vsur, Γ) Deg. Close. Betw.
1 14-16 M −0, 0833 ± 1, 3 · 10−4 0, 9922 ± 2, 3 · 10−4 4 142 1
2 10-13 M −1 0, 5 0 380 0
3 10-13 M 1, 3000 ± 3, 0 · 10−4 1, 7621 ± 5, 4 · 10−4 13 133 44, 5
4 7-9 M −0, 2500 ± 1, 0 · 10−4 0, 9012 ± 1, 7 · 10−4 3 143 0
5 7-9 M −0, 3333 ± 1, 0 · 10−4 0, 8494 ± 1, 8 · 10−4 2 144 0
6 14-16 F −1 0, 5 0 380 0
7 4-5 F −0, 2500 ± 1, 0 · 10−4 0, 9403 ± 2, 2 · 10−4 3 143 0
8 10-13 F −0, 1667 ± 1, 3 · 10−4 0, 7609 ± 1, 9 · 10−4 3 143 0, 5
9 7-9 F −0, 5000 ± 1, 2 · 10−4 0, 9000 ± 1, 7 · 10−4 1 145 0
10 7-9 F −0, 2500 ± 1, 0 · 10−4 0, 9021 ± 1, 7 · 10−4 3 143 0
11 14-16 F −0, 3333 ± 1, 1 · 10−4 0, 8537 ± 1, 9 · 10−4 2 144 0
12 10-13 F 0, 3832 ± 2, 2 · 10−4 1, 2617 ± 4, 1 · 10−4 9 137 10, 33
13 14-16 F −0, 0333 ± 1, 2 · 10−4 1, 0222 ± 2, 2 · 10−4 6 140 1, 83
14 4-5 F −0, 2000 ± 0, 9 · 10−4 0, 9302 ± 1, 6 · 10−4 4 142 0
15 7-9 F −0, 0334 ± 1, 2 · 10−4 1, 0220 ± 2, 2 · 10−4 6 140 1, 83
16 10-13 F −1 0, 5 0 380 0
17 7-9 F −0, 2500 ± 1, 0 · 10−4 0, 9020 ± 1, 7 · 10−4 3 143 0
18 4-5 F −1 0, 5 0 380 0
19 14-16 F −1 0, 5 0 380 0
20 4-5 F −1 0, 5 0 380 0

Table 1: Linda Wolfe primates network individual rankings

The relative order among the most central primates remains the same for the five rankings.

11A player i ∈ N is dummy in the game (N, v) whenever v(S ∪ {i}) = v(S) + v({i}), for all S ⊆ N \ {i}.
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However, it is remarkable that the centralities of primates 13 and 15 on the one hand, and the
centralities of 4, 7, 10 and 17 on the other, are the same for all the classical measures. The reason
for the centralities of 13 and 15 to coincide is that they are automorphically equivalent. The same
remains true when comparing the centralities of monkeys 10 and 17. However, this is not the case
of monkeys 4 and 7, as they do not take up the same position in the social network, and also they
have a different position from 10 and 17. In this example, the unique measure which distinguishes
among them is the game theoretic centrality obtained through the survival game (N, vsur), that
gives the relative order:

ϕ4(N, vsur, Γ) < ϕ10(N, vsur, Γ) = ϕ17(N, vsur, Γ) < ϕ7(N, vsur, Γ).

Here, when we compare two estimates we say that they are equal when their difference is not
statistically significant at a 1%.

Everett and Borgatti consider six different groups to illustrate the group measures they pro-
posed. Four of the groups were formed by age: (i) Age 14-16 (1,6,11,13,19); (ii) Age 10-13 (2,3,8,12,16);
(iii) Age 7-9 (4,5,9,10,15,17); (iv) Age 4-5 (7,14,18,20); and two formed by sex (v) Male (1 to 5); and
(vi) Female (6 to 20).

We compare the importance of each group according to Everett and Borgatti group measures
with our two game theoretic proposals. Following their approach, we first compute the Myerson
value of each group ϕ

g
C(N, v, Γ). Then, in order to avoid the influence of the different sizes of each

group, we compute the game theoretic centrality of each group γ
g
C(N, v, Γ); that is, we adjust

the Myerson value of each group by means of substracting the individual value of each member
derived form the functionality of the network:

γ
g
C(N, v, Γ) = ϕ

g
C(N, v, Γ)− ∑

i∈C
ϕi(N, v).

Then, we compare our results with the absolute and relative group centralities obtained by Everett
and Borgatti. These authors obtained their results deleting the isolated nodes D = {2, 6, 16, 18, 19, 20},
so we do the same for comparative purposes.12

Table 2 shows the results for the six groups. Group closeness depends on the definition of dis-
tance from the group to an outside node. Everett and Borgatti considered the minimum distance
to each of the group’s nodes, the average of the distances, and the maximum distance.

Note that the group closeness centralities and the Myerson group value based on the sur-
vival game are highly dependent on the size of the group. In fact, the Myerson group value
ϕ

g
C(N, vsur, Γ) preserves the relative order given by the sizes of the groups, even for the female

group. However, not only the size matters: the group (ii) (age 10-13) takes more advantage
of its position than the group (i) (age 14-16) does, which has its same size when isolated mon-
keys are removed. For the remaining measures, degree, betweenness and Myerson group value
ϕ

g
C(N, voverh, Γ), the presence of monkey 3, who is related to all other monkeys, is crucial.

12Since the Shapley group value verifies the G-dummy player property, then the value of each group C including the
isolated monkeys can be calculated as ϕ

g
C(N, voverh, Γ) = ϕ

g
C\D(N \ D, voverh|(N \ D), ΓN\D)− |C∩ D|, and ϕ

g
C(N, vsur , Γ) =

ϕ
g
C\D(N \ D, vsur |(N \ D), ΓN\D) + 0.9999 · |C ∩ D|.
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Myerson group value Closeness
Group ϕ

g
C(N, voverh, Γ) ϕ

g
C(N, vsur, Γ) Degree Min. Average Max. Between.

Age 14-16 −0, 45 ± 2, 8 · 10−4 2, 87 ± 1, 5 · 10−4 8 14 18 20 2, 84
Age 10-13 2, 33 ± 4, 1 · 10−4 4, 44 ± 2, 1 · 10−4 11 11 15 21 43, 5

Age 7-9 −1, 28 ± 3, 6 · 10−4 5, 54 ± 1, 8 · 10−4 5 11 13, 7 15 0
Age 4-5 −0, 45 ± 1, 8 · 10−4 1, 83 ± 1, 0 · 10−4 5 19 20, 5 22 0

Male 1, 30 ± 3, 0 · 10−4 4, 90 ± 1, 6 · 10−4 10 10 16 20 24, 34
Female −0, 83 ± 3, 0 · 10−4 10, 0 ± 1, 4 · 10−4 4 4 6, 4 7 0, 5

Table 2: Myerson group value for the Primate data. Classical absolute values.

Game theoretic group centrality Closeness
Group γ

g
C(N, voverh, Γ) γ

g
C(N, vsur, Γ) Degree Min. Average Max. Between.

Age 14-16 −0, 236398 −0, 129248 0, 73 0.7 0,61 0,55 0,03
Age 10-13 2, 548456 1, 445639 1 1 0,73 0,52 0,41
Age 7-9 −0, 854471 −0, 454262 0, 625 0,73 0,58 0,53 0
Age 4-5 −0, 306954 −0, 168622 0, 42 0,63 0,59 0,55 0

Male 1, 585754 0, 899111 1 1 0,63 0,5 0,23
Female −0, 118949 0, 004103 1 1 0,63 0,57 0,05

Table 3: Group centrality for the Primate data. Classical normalized values.

Next we do the same comparisons avoiding the size effect. According to Everett and Borgatti
we normalize the classical group measures dividing the centrality of each group of size c by
the maximum centrality that a group of size c can achieve. When considering the game theoretic
group measures derived from the survival (N, vsur) and the overhead (N, voverh) games, we adjust
the Myerson value of a group by substracting the amount c f (n)

n , being f (n) = v(N) (−1 for the
overhead game and 13, 999 for the survival game). Again, the results depicted in Table 3 are
obtained deleting the isolated nodes D = {2, 6, 16, 18, 19, 20}.

All the group measures except maximum group closeness rank groups of Male, Female and
Age 10-13 primates as the three best ones. However, there are some interesting aspects support-
ing game theoretic group centralities that should be remarked. With respect to its relation with
closeness, first note that minimum and average closeness do not provide much sensitivity. All
the three aforementioned groups attain the maximal value with the minimum method, whereas
the average method does not make difference among Male and Female groups. On the contrary,
as they use more information, game theoretic centralities appear to be more sensitive. The same
occurs when comparing with betweenness, which do not discriminate among the groups with a
minimum value of zero. Note that the female group is now less central than the male group when
considering the survival game.

The second example we analyze here is the network within a consulting company analyzed
in Borgatti (2006), which consists of advice-seeking ties among members of a the global company.
The data were collected on a one to five strength-of-tie-scale, but for his analysis the author ex-
amined only the strongest ties (rated 5). The derived social network is shown in Figure 4 below.

29



 
!

"

#

$

%

&

'

(

 )

  

 !

 "

 #

 $

 %

 &

 '

 (

!)

! 

!!

!"

!# !$

!%

!&

!'

!(

")

" 

"!

Figure 4: Strong advice-seeking ties in a global consulting company (Borgatti, 2006)

As commented, the social network of informal relationships between the members of an orga-
nization have “become a pervasive feature of organizations” (see Cross and Parker, 2004). Thus,
the identification of a small group C of agents who are able to lead the formation of efficient work-
ing teams, or whose deletion would disrupt most the ability of the social structure to form them,
is crucial for the top managers of the organization.

If the purpose of the organization is the identification of a small group C who is capable to
integrate all the agents in the development of a common project, the overhead game describes ap-
propriately the functionality of the social network. If the social network is intended to collaborative
learning, the model game must take into account what is the ideal group size for that purpose. The
main idea in the literature about this facet is “to keep groups midsized: small groups of 3 or less
lack enough diversity and may not allow divergent thinking to occur. Groups that are too large
create “freeloading” where not all members participate. A moderate size group of 4-5 is ideal”.13

We propose a trimmed version of the conferences game in which the worth of coalition S ⊆ N
counts the subsets of midsized (4 or 5) conferences S. Formally, the trimmed conference game
(N, vcon f−mid) is defined as

vcon f−mid(S) =
min{5,s}

∑
k=4

(
s
k

)
, ∀ S ⊆ N with |S| ≥ 4, and vcon f−mid(S) = 0, otherwise.

We analyze the most valuable groups up to size 4 when the purpose of the organization is
to promote small collaborative learning groups, and we compare our results with those ones
obtained by Borgatti in his analysis of the network of advice seeking. As a result we obtain that
the trimmed conference game gives results that are related to the Key Player Problem Negative
analysis (KPP-Neg in the sequel).

13Cited from: http://www.opencolleges.edu.au/informed/features/facilitating-collaborative-learning-20-things-you-
need-to-know-from-the-pros/
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Ranking 1 member 2 members 3 members 4 members
1 {12} {12, 18} {7, 12, 18} {7, 12, 18, 23}
2 {7} {12, 23} (*) {7, 12, 23} (*) {7, 12, 18, 19}
3 {18} {7, 18} (*) {12, 18, 23} (*) {7, 12, 19, 23} (*)
4 {23} {7, 23} {7, 18, 23} {12, 18, 19, 23} (*)
5 {19} {12, 19} {7, 19, 23} (*) {7, 18, 19, 23}
6 {25} {7, 12} {12, 18, 19} (*) {7, 12, 18, 25}
7 {13} (*) {7, 19} {7, 18, 19} (*) {7, 12, 13, 18}
8 {9} (*) {18, 19} {12, 19, 23} (*) {12, 18, 23, 25}
9 {21} (**) {12, 25} {7, 12, 19} (*) {7, 12, 23, 25}
10 {26} (**) {19, 23} {12, 18, 25} {7, 9, 12, 18}

Table 4: Game theoretic group centrality rankings for the advice-seeking data based on (N, vcon f−mid).

Clearly, this social network has three distinguished subsocieties that have not too many links
connecting them: the first one, S1 made up by agents 1 to 11, the central one S2 made up by agents
12 to 22, and the third one S3 that comprises the remaining agents 23 to 32. Agents 7 in S1, 12
and 18 in S2 and 23 in S3 represent the unique connections among two consecutive groups. Note
also that agents 7, 12, 18 and 23, together with player 19 ∈ S2, form a chain that pass through
the three subsocieties. Considering the three subsocieties in an isolated way, the two most central
agents of S1 are 9 and 9; agents 19 and 13 are the two most central of S2, and agents 25 and 23
are the two most central of S3. All of them, according to both game theoretic centralities, with the
overhead and the trimmed-conference games. Apart from player 23, who is highly central inside
his own subsociety, the remaining connection agents are more peripheral: agents 7 and 12 are in
the fourth position inside their own subsocieties, and player 18 occupies the seventh position.

In a natural way these nine agents {5, 7, 9, 12, 13, 18, 19, 23, 25} are always in the top positions
for all the considered criteria. When the underlying game is the trimmed-conferences game, the
ten best groups up to size 4 -arranged in decreasing order of importance- are listed in Table 4.
Non-statistically significative differences (at a 99% of confidence level) between two groups cen-
tralities are labeled with an asterisk.

In this case, from an individual point of view, the four most central agents are 12, 7, 18 and
23, which are respectively the unique agents connecting consecutive subsocieties. With respect
to groups of two agents, the most central is {12, 18}, which selects the two agents from S2 who
connect this central subsociety with the other two extreme subsocieties. For a KPP-Neg analysis
the algorithm proposed by Borgatti (2006) selects the group {7, 23}, which is similar to {12, 18}
but selecting the intermediaries in S1 and S3. Note that the most central group of two agents
consists on the respectively the first and the third more central agents from and individual point
of view, rather than the first and the second ones 12 and 7. In this case, player 18 is a better partner
for 12 than it is 7; note that the group {12, 7} is in the sixth position. Also remark that the two
groups {12, 23} and {7, 18} that are tied in the second place select, in one hand, one of the agents
in S2 who connects with one of the other two subsocieties, and in the other, the player in the
remaining subsociety that serves as a bridge.

With respect to the most central groups of three and four agents, the groups with highest cen-
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trality consist on the three and four more individually central agents: {7, 12, 18} and {7, 12, 18, 23}.
For a KPP-Neg analysis the algorithm proposed selects {7, 19, 23}, in which the intermediary
player 12 ∈ S2 is replaced by 19 ∈ S2 who is the most central player inside his subsociety.
This group {7, 19, 23} is in the fifth position according to the trimmed-conferences game theoretic
group centrality.

7 Conclusions

Our interest has been centered in the valuation of the centrality of groups. We have undertaken
this problem by means of a twofold approach, whose first ingredient is the game-theoretic cen-
trality measure defined by Gomez et al. (2003). Assuming a social network where the agents are
connected by a graph, and in which the functionality of the network is modeled by means of a
cooperative game where the agents act as players, these authors defined an individual centrality
measure by means of the (classical) Myerson value of the graph-restricted game.

The goal is to generalize this individual measure to a group valuation concept. For that, we
need our second basic ingredient, which is the Shapley group value defined in a previous work
(Flores, Molina and Tejada, 2013), and that is constructed by computing the usual Shapley value
of a certain super-player that represent the group of interest in an appropriate quotient game.
In this way, we have defined the Myerson group value, which is our key concept to describe a
centrality measure when the game is symmetric (and then only positioning is important) and a
measure of the capital of the group, when there is no symmetry in the game. So, given a TU-game
defined in the set of agents, a graph that relates them and a group of agents, these measures will
be defined as the difference between the Myerson group value and the individual Shapley values
of the agents in the group. This difference expresses both the value of the agents own to their
position and own to the external information codified by the game.

In this paper we have dealt mainly with the first instance, while the non-symmetric case has
been left for subsequent work. After describing some motivating examples, we have investigated
different properties of the Myerson group value, as its relationship with classical centrality mea-
sures, possible redundancy, relevance in the search of the best partner, or identification of the most
and least central groups. We end up our analysis by identifying influential groups in two well-
known networks of a very different type, as Wolfe primate binary social network and Borgatti
advice-seeking network.

It is remarkable that one of the main features of our proposal is that it offers a wide framework
to model many kinds of centrality measures. For example, in our study of the advice-seeking net-
work, we have showed that our centrality measure referred to the trimmed conferences game
gives rise to similar results than Borgatti’s algorithm for solving the key player problem in the
negative form (KPP-Neg). At this point it is worth to mention that our definition of group cen-
trality is very flexible, in the sense that it can be combined with any game –which in turn should
be selected according to the nature of the concrete problem- and also that other similar measures
can be defined starting from other individual values, and not only the Shapley value. In this
paper we have analyzed the Myerson group value mainly from the point of view of the optimal
group selection problem in social networks. In forthcoming work we plan to describe this value
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more from the point of view of Cooperative Game Theory, including if possible an axiomatic ap-
proach. Moreover, the problem of computing this measure for big networks is very interesting
in itself; the computations in this paper have been undertaken using Castro-Gomez and Tejada
algorithm, but more sophisticated methods will be needed when the number of nodes is bigger
and/or the characteristic function of the game cannot be computed in polynomial time. Finally,
another interesting extension of this work may include the identification of central groups in di-
rected graphs, or else in networks where the influence between agents is pondered with weights.
This approach may be specially interesting for networks that model diffusion processes.

Appendix

Proof of Proposition 1. It follows straightforward from the Shapley value self-duality (ϕi(N, v) =
ϕi(N, vD)), for every i ∈ N, and for every n-person TU game (N, v)) because (vD)C ≡ (vC)

D.
Then, ϕ

g
C(N, vD, Γ) = ϕ

g
C(N, vD

Γ ) = ϕ
g
C(N, vΓ) = ϕ

g
C(N, v, D), and γ

g
C(N, vD, Γ) = γ

g
C(N, vD

Γ ) =

γ
g
C(N, vΓ) = γ

g
C(N, v, D). 2

Proof of Lemma 1. Given a fixed player set N and a fixed social network (N, Γ) it is evident that
the Γ-graph-restriction of games on this player set is a linear function. Hence, we have

vΓ = ∑
S⊆N

∆N(v, S)uS
Γ, (27)

where (N, uS
Γ) is the Γ-graph-restriction of the unanimity game (N, uS), which is given by (see

Lemma 2.1 in Gomez et al. (2003) for a proof)

uS
Γ = 1 −

r

∏
i=1

(
1 − uSi

)
. (28)

Here 1 is the game defined by 1(S) = 1, for all ∅ ̸= S ⊆ N, and MΓ(S) = {S1, . . . , Sr} ̸= ∅ is
the set of minimal connection sets of S in Γ. Note that this expression equals uS

Γ = uHΓ(S) when
MΓ(S) has only one set14. HΓ(S) = S for the special case in which S is connected in Γ.

Now, given a fixed set of agents C ⊆ N acting as a group, the transformation of games on
the fixed player set N into quotient games with respect to the partition PC = {C, {j}, j /∈ C} is a
linear function, and the quotient game derived from the unanimity game with respect to coalition
S ⊆ N, (N, uS), is given by the unanimity game (NC, uNC/S). See Derks and Tijs (2000) for a proof.

Then, if (N, Γ) is a tree and C ⊆ N,

vΓ,C = ∑
S⊆N

∆N(v, S)uS
Γ,C = ∑

S⊆N
∆N(v, S)uHΓ(S)

C = ∑
S⊆N

∆N(v, S)uNC/HΓ(S). (29)

14If there are no cycles in Γ connecting two agents in S, then there is only one smallest connected set HΓ(S) ⊆ N which
contains S ⊆ N.
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Since the Shapley value is also linear, and ϕi(N, uS) = 1
s , for all i ∈ S, ϕi(N, uS) = 0, for all i /∈ S.

Therefore, taking into account that the set of all coalitions S such that c ∈ NC/HΓ(S) equals the
set of coalitions S with HΓ(S) ∩ C ̸= ∅, we have

ϕ
g
C(N, vΓ) := ϕc(NC, vΓ,C) = ∑

HΓ(S)∩C ̸=∅

∆N(v, S)
|NC/HΓ(S)|

2

Proof of Lemma 2. The proof follows the same argument than that of previous lemma. That is,

ϕ
g
C(N, vΓ) := ϕc(NC, vΓ,C) = ∑

S⊆N
∆N(v, S)ϕc(NC, uS

Γ,C).

Now, we have to consider that

uS
Γ,C = 1 −

r

∏
i=1

(
1 − uNC/Si

)
, (30)

for every coalition S ⊆ N, and therefore ϕc(NC, uΓ,C) = 0, for every S with C ∩ Si = ∅, and for
every Si ∈ MΓ(S). 2

The reader interested in a explicit formula for ϕc(NC, uS
Γ,C) is referred to Gomez et al. (2003)

(formula (11) in page 36); there, using expression (28) above, ϕi(N, uS
Γ) is evaluated in the case in

which there are alternative paths in Γ connecting the agents of S.

Proof of Proposition 4. It follows straightforward from (12). 2

Proof of Proposition 6. The proof resembles much that of Proposition 3.4 in Gomez et al. (2003),
so we refer to them for the details. We must take into account that if (N, ΓS) is a social network
such that C0 ⊆ N shrinks to the hub of a star in the C0–shortened graph, then every coalition
S ⊆ N \ C0 is a group of |S| = s isolated nodes, whereas S ∪ C0 is a connected group in ΓS. Thus,

vΓS,C0
(S ∪ {c0}) := vΓS(S ∪ C0) = v(S ∪ C0) = f (s + k)

and vΓS ,C0
(S) := vΓS(S) = ∑i∈S v(i) = s f (1), for all symmetric (N, Γ), where f (·) is the real

valued function which defines the game. Recall from the preliminaries that f (·) only depends on
the cardinal of the coalition.

Now let C ⊆ N and T ⊆ N be any pair of coalitions with |C| = |C0| = k, and T ⊆ N with
|T| = |S| = s. Then, super-additivity implies:

vΓ,C(T ∪ {c}) := vΓ(T ∪ C) ≤ v(T ∪ C) = f (s + k) and vΓ,C(T) := vΓ(T) ≥ s f (1).
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Therefore, the marginal contributions of c0 in (NC0 , vΓS ,C0
) are always greater or equal than those

of c in (NC, vΓ,C), and the result holds. 2

Proof of Lemma 3. In order to prove this lemma we recall the notion of dummy player. A player
i ∈ N is dummy in the game (N, v) whenever v(S ∪ {i}) = v(S) + v({i}), for all S ⊆ N \ {i}.
The Shapley value verifies the dummy player property, which states that ϕi(N, v) = v({i}), for
every dummy player i ∈ N. Analogously, the Shapley group value (see Flores et al., 2013) verifies
the G-dummy player property, which implies that ϕ

g
C(N, v) = ∑i∈N v({i}), for every group C of

dummy players. Then, the result follows trivially from the fact that every isolated node in (N, Γ)
is a dummy player in the graph-restricted game (N, vΓ). Since the game (N, v) is symmetric then
γ

g
C(N, v, Γ) = ∑i∈C(v({i})− ϕi(N, v)) = c( f (1)− f (n)

n ). 2

Proof of Lemma 4. Let {i, j} ∈ Γ a connection of C, then conΓ(S) = conΓ−ij(S), for all S ⊆ N \ C,
since {i, j} /∈ ΓS. If {i, j} is not vital for C then the equality conΓ(S ∪ C) = conΓ−ij(S ∪ C) also
holds for all S ⊆ N \ C. Thus,

ϕ
g
C(N, v, Γ) = ∑

S⊆N\C

s!(n − c − s)!
(n − c + 1)!

(
vΓ(S ∪ C)− vΓ(S)

)
=

= ∑
S⊆N\C

s!(n − c − s)!
(n − c + 1)!

(
vΓ−ij(S ∪ C)− vΓ−ij(S)

)
= ϕ

g
C(N, v, Γ−ij)

Next we show that vΓ(S ∪ C) ≥ vΓ−ij(S ∪ C), for all S ⊆ N \ C in case {i, j} was vital for C. Let
S ⊆ N \ C such that {i, j} ⊆ S ∪ C, and let Tij(S) be the connected component of S ∪ C in (N, Γ)
that contains agents i, j. Two cases are possible:

(i) If there exists an alternative path P(i, j) between nodes i, j in Γ with (P(i, j) \ {i, j}) ⊆ C ∪ S,
then conΓ(S ∪ C) = conΓ−ij(S ∪ C).

(ii) Otherwise, conΓ−ij(S ∪ C) = (conΓ(S ∪ C) \ Tij(S)) ∪ Ti(S) ∪ T j(S), where Ti(S) = {ℓ ∈
Tij(S) / ∃ P(ℓ, i) ⊆ (S ∪ C) \ {j}} and T j(S) = {ℓ ∈ Tij(S) / ∃ P(ℓ, j) ⊆ (S ∪ C) \ {i}}.
Thus, super-additivity of (N, v) implies:

(
vΓ(S ∪ C)− vΓ(S)

)
−

(
vΓ−ij(S ∪ C)− vΓ−ij(S)

)
= v(Tij(S))− v(Ti(S))− v(T j(S)) ≥ 0.

Thus, the statements about removing a connection for C hold.

Let {i, j} ∈ Γ with i, j ∈ N \ C. Then, conΓ(S) = conΓ−ij(S) and conΓ(S ∪ C) = conΓ−ij(S ∪ C),
for all S ⊆ N \ C with {i, j} * S. Now, let us consider the case S ∪ {i, j}, then conΓ(S ∪ {i, j} ∪
C) = conΓ−ij(S ∪ {i, j} ∪ C) since there exists an alternative path P(i, j) which uses agents of
C as intermediaries. However, coincidence between conΓ(S ∪ {i, j}) and conΓ−ij(S ∪ {i, j}) can
not be assured and vΓ(S ∪ {i, j}) ≥ vΓ−ij(S ∪ {i, j}). Thus, the marginal contributions of group
C not decrease when edge {i, j} is removed. Note that ϕ

g
C(N, v, Γ−ij) > ϕ

g
C(N, v, Γ) whenever
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v({i, j}) > v({i}) + v({j}). 2

Proof of Proposition 7. The proof resembles much that of Proposition 3.3 in Gomez et al. (2003),
taking into account Lemma 4 to analyze the effect of stepwise elimination of the k edges incident
in a node j of degree k, so we refer to them. 2

Proof of Proposition 8. Again, the proof follows the lines of that of Proposition 3.5 in Gomez et
al. (2003), and we refer to them. In this case, the nodes in (N, Γ) must be relabeled in such a way
that C = {1, . . . , k}, which it is possible since C is connected in Γ. We must take into account also
that convexity implies v(S ∪ C)− v(S) ≤ v(T ∪ C)− v(T), for all S ⊆ T ⊆ N \ C. 2

Proof of Proposition 9. In this case, the reasoning followed in the proof of the analogous result
for connected groups of size 1, Proposition 3.6 in Gomez et al. (2003), cannot be generalized to
larger groups.

We apply Proposition 5 to compare the Myerson value of two consecutive connected groups
in a chain to prove the result. For every pair k, i such that 1 ≤ k ≤ n − 2 and 1 ≤ i ≤ n−k

2 , let us
consider the set Dk

i = {i + 1, . . . , i + k − 1}. Then, we will show that i + k is a better partner for
Dk

i than it is i and thus ϕ
g
Ck

i
(N, v, Γ1,n) ≤ ϕ

g
Ck

i+1
(N, v, Γ1,n).

In the rest of the proof we will denote the chain Γ1,n simply as Γ .

First, we will prove that

ϕi(N \ Dk
i , vΓ|N \ Dk

i ) ≤ ϕi+k(N \ Dk
i , vΓ|N \ Dk

i ), (31)

for every k = 1, . . . , n − 2, and for every 1 ≤ i ≤ n−k
2 .

Taking into account Proposition 4 about the Myerson value of a group in a disconnected graph,
it follows that the Myerson value of agents i and i + k in (N \ Dk

i , vΓ|N \ Dk
i ) equals the Myerson

value of a extreme15 in the two subchains Γ1,i, 1 − 2 − · · · − i and Γi+k,n, (i + k)− (i + k + 1)−
· · · − n, respectively. Moreover, since i ≤ n−k

2 < n−k+1
2 , the subchain Γ1,i is shorter than the

subchain Γi+k,n. Therefore, Lemma 3.4 in Gomez et al. (2003) implies inequality (31).

Next we prove that also the interaction between Dk
i and i + k is greater or equal that the

interaction between Dk
i and i. The interaction indices ψdk

i ,i(NDk
i
, vΓ,Dk

i
) and ψdk

i ,i+k(NDk
i
, vΓ,Dk

i
)

15Note also that the two extremes of a given chain are automorphically equivalent.
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can be rewritten. The index ψdk
i ,i(NDk

i
, vΓ,Dk

i
) equals the sum:

∑
S⊆N\Dk

i
i,i+k/∈S

{
s!(n − k − s + 1)!

(n − k + 2)!

(
vΓ(S ∪ Dk

i ∪ {i})− vΓ(S ∪ Dk
i )− vΓ(S ∪ {i}) + vΓ(S)

)
+

+
(s + 1)!(n − k − s)!

(n − k + 2)!

(
vΓ(S ∪ Dk

i ∪ {i, i + k})− vΓ(S ∪ Dk
i ∪ {i + k})−

− vΓ(S ∪ {i, i + k}) + vΓ(S ∪ {i + k})
)}

, (32)

while ψdk
i ,i+k(NDk

i
, vΓ,Dk

i
) can be expressed as:

∑
S⊆N\Dk

i
i,i+k/∈S

{
s!(n − k − s + 1)!

(n − k + 2)!

(
vΓ(S ∪ Dk

i ∪ {i + k})− vΓ(S ∪ Dk
i )− vΓ(S ∪ {i + k}) + vΓ(S)

)
+

+
(s + 1)!(n − k − s)!

(n − k + 2)!

(
vΓ(S ∪ Dk

i ∪ {i, i + k})− vΓ(S ∪ Dk
i ∪ {i})− vΓ(S ∪ {i, i + k}) + vΓ(S ∪ {i})

)}
.

(33)

Let us denote the marginal contributions of group Dk
i to a given coalition T ⊆ N \Dk

i as MC(Dk
i , T) =

vΓ(Dk
i ∪ T)− vΓ(T). Then, the difference ψdk

i ,i+k(NDk
i
, vΓ,Dk

i
)− ψdk

i ,i(NDk
i
, vΓ,Dk

i
) is given by:

∑
S⊆N\Dk

i
i,i+k/∈S

s!(n − k − s)!
(n − k + 1)!

(
MC(Dk

i , S ∪ {i + k})− MC(Dk
i , S ∪ {i})

)
. (34)

Next, we show that (34) is non–negative. There are two types of coalitions S ⊆ N \ Dk
i with

i, i + k /∈ S, taking into account whether {i + k + 1, . . . , 2i + k − 1} ⊆ S or not. Such a difference
emerges from the fact that the subchain Γi+k,2i+k−1 has the same length than the subchain Γ1,i.

Let us denote by Ti+k(S) and Ti(S) the connected components of conΓ(Dk
i ∪ S ∪ {i + k}) and

conΓ(Dk
i ∪ S ∪ {i}), respectively, that contain Dk

i . Note that since i /∈ S then Ti+k(S) = Dk
i ∪

{i + k, . . . , ℓi+k(S)}, for some i + k ≤ ℓi+k(S) ≤ n. Analogously, since i + k /∈ S then Ti(S) =

Dk
i ∪ {ℓi(S), . . . , i}, for some 1 ≤ ℓi(S) ≤ i. Let us also denote Si = S ∩ {1, . . . , i − 1} and Si+k =

S ∩ {i + k + 1, . . . , n}. Thus:

(i) If {i + k + 1, . . . , 2i + k − 1} * S, then Ti+k(S) = Dk
i ∪ {i + k, . . . , ℓi+k(S)} with i + k ≤

ℓi+k(S) ≤ 2i + k − 1, and thus it holds:

MC(Dk
i , S ∪ {i + k}) = v(Ti+k(S))− v({i + k, . . . , ℓi+k(S)}).

Now, let us define the coalition S̃ ⊆ N \ Dk
i with i, i + k /∈ S̃ as follows:

37



• For every j ∈ Si consider 2i + k − j ∈ S̃i+k.

• For every i + k + j ∈ Si+k being j ≤ i − 1 consider i − j ∈ S̃i.

• For every i + k + j ∈ Si+k being j > i − 1 consider i + k + j ∈ S̃i+k.

Thus, Ti(S̃) = Dk
i ∪ {ℓi(S̃), . . . , i} and the cardinality of {ℓi(S̃), . . . , i} is the same as that of

{i + k, . . . , ℓi+k(S)}. Therefore,

MC(Dk
i , S̃ ∪ {i}) = v(Ti(S̃))− v({ℓi(S̃), . . . , i}) = v(Ti+k(S))− v({i + k, . . . , ℓi+k(S)}) =

= MC(Dk
i , S ∪ {i + k}).

Analogously, MC(Dk
i , S̃ ∪ {i + k}) = MC(Dk

i , S ∪ {i}). Therefore, since |S̃| = |S|, the sum
of the values corresponding to S and S̃ in (34) is zero.

(ii) Otherwise, if {i + k + 1, . . . , 2i + k − 1} ⊆ S, then Ti+k(S) = Dk
i ∪ {i + k, . . . , ℓi+k(S)} with

2i+ k− 1 ≤ ℓi+k(S) ≤ n. Thus, |{i+ k, . . . , ℓi+k(S)}| = i+ t, for some 0 ≤ t ≤ n− 2i− k+ 1,
and

MC(Dk
i , S ∪ {i + k}) = v(Ti+k(S))− v({i + k, . . . , ℓi+k(S)}) = f (i + k − 1 + t)− f (i + t),

(35)
where f (·) is the real function which defines the symmetric and convex game (N, v). Con-
vexity implies

f (i + k − 1 + t)− f (i + t) ≥ f (i + k − 1)− f (i) =

= v(Dk
i ∪ {1, . . . , i})− v({1, . . . , i}) ≥ MC(Dk

i , S ∪ {i}). (36)

Thus the statement about the positiveness of (34) follows from (35) and (36).

The equalities

ϕ
g
Ck

i
(N, v, Γ1,n) = ϕ

g
Ck

n−i+2−k
(N, v, Γ1,n), for all 1 +

(n − k
2

)
< i ≤ n − k + 1 ,

follow from the symmetry of the Shapley group value taking into account that nodes i and n −
i + 1 are symmetric players in the graph-restricted game (N, vΓ). 2

Proof of Proposition 10. Since the Harsanyi dividends of the overhead game (N, voverh) are given
by ∆N(voverh, S) = (−1)s, for all ∅ ̸= S ⊆ N, being s = |S|, it follows trivially that

∑
HΓ(S)∩C ̸=∅
|HΓ(S)|>2

∆N(v, S)
|NC/HΓ(S)|

= 0.
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Thus, taking into account expression (11):

ϕ
g
C(N, voverh

Γ ) = ∑
i∈C

(−1)1 + ∑
i,j∈C

{i,j}∈Γ

(−1)2 + ∑
i∈C,j/∈C
{i,j}∈Γ

1
2
(−1)2 =

= −c + ∑
i∈C

(
∑

{i,j}∈Γ
j∈C

1
2
+ ∑

{i,j}∈Γ
j/∈C

1
2

)
= ∑

i∈C

(
1
2

δΓ(i)− 1
)
= ∑

i∈C
ϕi(N, voverh

Γ ).

The last equality, which establishes the additivity of the overhead Myerson group value measure,
follows from Gomez et al. (2003). There, for the special case in which (N, Γ) is a tree, formulas of
the individual value measures for the overhead and messages games are given.

A similar reasoning gives us the result when the functionality of the network is modeled by
means of the messages game. In that case, we must take into account that the Harsanyi dividends
of the messages game (N, vmsg) are given by ∆N(vmsg, S) = 2, for every two person coalition
{i, j} ⊆ N, and ∆N(vmsg, S) = 0, otherwise. Then, taking into account

|NC/HΓ({i, j})| = d(i, j)− ∑
k∈C

δij(k) + 2 for all i ̸= j ∈ N,

which equals 1 + ∑k/∈C δij(k) for each pair i, j ∈ C. The result follows. 2
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