
This document is published in:

Hundhausen, C. et al. (Eds.) (2010). 2010 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC).
Leganés-Madrid, Spain 21-25 September 2010: Proceedings.
IEEE, 235-239.
DOI: http://dx.doi.org/10.1109/VLHCC.2010.40

Ins t i tu t ional Repos i tory

© 2010 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/VLHCC.2010.40
http://e-archivo.uc3m.es/

Towards a Formal Notion of Interaction Pattern

Paolo Bottoni

Univ. La Sapienza (Rome)

bottoni@di.uniroma1.it

Esther Guerra

Univ. Carlos III (Madrid)

eguerra@inf.uc3m.es

Juan de Lara

Univ. Autónoma (Madrid)

Juan.deLara@uam.es

Abstract—While interaction patterns are becoming
widespread in the field of interface design, their definitions do
not enjoy a common standard yet, as is for software patterns.
Moreover, patterns are developed for diverse design aspects,
reflecting the complexity of the field. As a consequence,
research on formalization of interaction patterns is not
developed, and few attempts have been made to extend
techniques developed for design pattern formalization. We
show here how an extension to our recent approach to pattern
formalization can be usefully employed to formalize some
classes of interaction patterns, to express relations among
them, and to detect conflicts.

I. INTRODUCTION

Interaction patterns capitalize on experience on all differ-

ent aspects of interaction design, and pattern collections are

available in books [13], [14] and dedicated websites1.

The movement towards patterns in HCI started under the

influence of their success in Software Engineering (SE) [7],

but had to face the specific problem of the distinction

between the designer’s view of patterns (as typical forms of

collaborations among software components) and the user’s

view (where users are interested in reusing their experience

from familiar widgets, layouts or navigation strategies) [6].

As a consequence, while the components of a pattern

presentation are usually the same (as an example, see the

Pattern Language Markup Language2 for a comprehensive

list of elements), there is no common notation to specify the

solution, which is in most cases presented through examples

and explanatory text, leaving it to the developer to code its

details. Hence, it becomes hard to answer questions like:

“Is X a new pattern or just a variation of Y, or even Z in

disguise”? “Can I use X and Y together?” “Does the use of

X depend on using Y in the same interaction?”

As HCI patterns involve combinations of requests on

layout, individual or coordinated behaviours, or the struc-

ture of the domain model, presenting them only through

examples makes it hard to separate essential aspects from

features of the application domain. The compound of all

these characteristics hinders the definition of a “real” pattern

language, not restricted to simple pattern naming, but in

1http://quince.infragistics.com, http://ui-patterns.com,
http://www.welie.com/patterns

2http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html

which to express pattern composition, subtyping, depen-

dency and conflict, so as to support pattern-based design.
In this paper we extend our algebraic formalization of a

general notion of pattern [2] to found a notion of HCI pattern

languages. To this end, we define mappings between com-

ponents of an abstract User Interface specification (based

on the UsiXML meta-model3) and the roles played by these

components, thus developing methods to check whether an

implementation is an instantiation of a pattern, to construct

interface parts from specialisations of patterns, and to reason

on pattern compatibility. We also extend the theory in [2]

to describe relations between patterns, in particular pattern

subtyping, and to model composition of HCI patterns, as

well as conflicts or dependencies between them.

II. RELATED WORK

Literature on HCI patterns is expanding to cover different

aspects. For example, studies on usability have met archi-

tectural patterns to include interaction mechanisms from

the start of the design process [8]. Folmer et al. relate

architectural choices and usability patterns, through usability

requirements which might have an impact on the architec-

ture [5]. These are not expressed in terms of classes and

relations, but define sets of problems the architecture has to

solve. In this line, bridging patterns provide information on

how to implement usability patterns [6].
Borchers [1] gives a notion of pattern language as a

directed acyclic graph, where nodes are patterns and edges

describe references from a pattern to another. However, the

description of individual patterns does not rely on a formal

characterisation, and the existence of pattern relations must

be explicitly stated and cannot be derived from their analysis.
An abstract view of the components of an interactive

system is at the core of the UsiXML proposal, combining

approaches to model-driven platform-independent UI de-

sign [9] and abstract notions of interface objects [3]. In [11],

the authors present a methodology exploiting abstract inter-

action objects to derive interaction patterns from analysis of

domain and task models (e.g. patterns for handling entities

or drawing associations between them) relating them to spe-

cific interaction and presentation techniques. The templates

are defined in a semi-formal way but do not support the

definition of relations among patterns.

3http://www.usixml.org/

1

III. FORMAL MODEL OF INTERACTION PATTERNS

A pattern expresses a collaboration of elements playing

specific roles to provide experimented solutions to recurring

problems. In HCI patterns, collaborations can be implicit

and simply recognised by the users, and roles can be

played by any element in the interaction space. Hence, we

separate the definition of a pattern vocabulary introducing

the roles, from that of possible role realisations. Moreover,

we allow for different types of collaborations by specifying

a pattern as a collection of synchronized diagrams, with a

designated structuring diagram introducing the roles. Also,

diagrams contain variability regions constraining the number

of elements which can play the same role in any given

realisation of the pattern. For example, the Button Group
pattern only makes sense when there are 2 or more buttons

to be presented together.

As the resulting notion of pattern is domain-independent,

domain-specific concepts can be used to express roles and

to specify the elements realising them. In our approach,

diagrams result from the annotation of model elements,

typed on the UsiXML meta-model, with roles from the HCI

pattern vocabulary. In addition, patterns are equipped with

constraints (invariants), expressing contextual conditions on

the correct application of the pattern.

A. A Meta-model for Interaction

We adopt the UsiXML meta-model to represent the inter-

action domain and relate its elements to pattern roles through

a specific correspondence layer. Its specification provides a

collection of modeling entities for the abstract and concrete

definition of interactive systems. With the UsiXML meta-

model, an interactive system is composed of several models,

and an abstract user interface is realized through concrete

elements and is connected to domain objects and workflow

descriptions. In addition, we identify a vocabulary of roles

as instances of the class PatternRole defined in Fig. 1.

In order to keep the domain and vocabulary models

independent, we adopt triple graphs [12], where a correspon-
dence graph relates the source and target graphs specifying

the two models. In our approach, triple graphs are typed

by meta-model triples, such as the one in Fig. 1. This has

the advantage that any meta-model for interaction could be

used, without affecting the definition of the roles. Roles are

given a name, and attributed with a list of labels defining

their Focus. Different UsiXML classes play different role

types as given by the role maps in the correspondence meta-

model. We have used abbreviations for these maps: from left

to right, we have Presentation, Affordance, Layout, Action,

Container and Element.

B. Pattern Specification

In its simplest form, a pattern consists of one root struc-

ture with the mandatory part that any pattern realization

must contain, and a number of variable parts or variability

Pattern
+name: String

PatternRole
+name: String
+space: Focus[*]

1..*

participant

method

triggers

output
abstract

Container domain
Class

abstract
InterfaceObject

source target

AUIRelationship
source

Pattern Vocabulary
Meta-model

UsiXML
Meta-model

target

Pattern
Instance

RoleMap PrsMap AfdMap LytMap ActMap CntMap ElmMap

Correspondence
Meta-model

*

<<enumeration>>

Focus

Component

Configuration

Coordination

Dynamics

Domain

Layout

attribute

control

observes

source

target

Figure 1. A fragment of the triple meta-model for the definition of
Interaction Patterns.

regions defining additional structures that can be replicated

several times for each instance of the root [2]. We use

symbolic graphs [10], where data nodes are replaced by

sorted variables, with a formula constraining their values.

Variable parts can be nested: a nested part can only

be instantiated by adding structures to an instance of its

parent. For each variable part, an integer variable is used in

equations restricting the allowed number of its replicas. If

the set of equations has no solution in the natural numbers,

the pattern cannot be instantiated.

Def. 1 (Pattern): A pattern is a construct 𝑉 𝑃 =
(𝑃, 𝑟𝑜𝑜𝑡, 𝐸𝑚𝑏, 𝑛𝑎𝑚𝑒, 𝑣𝑎𝑟), where:

∙ 𝑃 = {𝑉1, ..., 𝑉𝑛} is a finite set of non-empty graphs,

where each 𝑉𝑖 is called variable part,
∙ 𝑟𝑜𝑜𝑡 ∈ 𝑃 is a distinguished element of 𝑃 ,

∙ 𝐸𝑚𝑏 is a set of morphisms 𝑣𝑖,𝑗 : 𝑉𝑖 → 𝑉𝑗 with 𝑉𝑖, 𝑉𝑗 ∈
𝑃 , s.t. it spans a tree rooted in 𝑟𝑜𝑜𝑡 with all graphs

𝑉𝑖 ∈ 𝑃 as nodes and the morphisms 𝑣𝑖,𝑗 ∈ 𝐸𝑚𝑏 as

edges,

∙ 𝑛𝑎𝑚𝑒 : 𝑃 → 𝐿 assigns each variable part a name from

a set of variables 𝐿, of sort ℕ,

∙ 𝑣𝑎𝑟 ⊆ 𝑇𝐴𝑙𝑔𝐼𝐸𝑞(𝑛𝑎𝑚𝑒(𝑃)) is a set of equations govern-

ing the number of possible instantiations of the variable

parts, using variables in 𝑛𝑎𝑚𝑒(𝑃) ⊆ 𝐿.

The semantics of a pattern 𝑉 𝑃 (written 𝑆𝐸𝑀(𝑉 𝑃)) is

given by the set of all valid expansions of its variability

regions [2]. A model satisfies a variable pattern when some

pattern expansion is found in the model. Fig. 2 shows

the theoretical notation for pattern ButtonGroup, a compact

notation we prefer to use, and an expansion where the

Action variable part is replicated twice. The pattern contains

a formula that enables expanding Action between 2 and 5

times.

As the definition of an HCI pattern involves several mod-

els, and in particular the abstract and concrete UI models,

the problem of checking whether a model 𝑀 of an interface

satisfies a HCI pattern 𝑉 𝑃 has to take care of this fact.

In particular, 𝑀 could specify only some components, for

example providing only an abstract UI model, leaving the

2

:abstractContainer :domainClass

var={Action >= 2, Action <= 5}

:triggers

source ta
rg

e
t

VBG, name(VBG)=ButtonGroup

:abstractContainer :domainClass

VAct, name(VAct)=Action

vBG,Act

Action >= 2, Action <= 5

:aio :control

:triggers

source ta
rg

e
t

:abstractContainer :domainClass

:aio :control

ButtonGroup

Action

:method

:method

:control :method

:triggers

source target

:abstrContainer :domainClass

:control

:method

:triggerssource
target

:aio:aio

Figure 2. ButtonGroup in theoretical (left) and compact forms (top right),
expansion (low right).

choice of concrete widgets to developers. Hence, we will

consider the expansions of 𝑉 𝑃 only with respect to the

UsiXML models used in 𝑀 .

Using triple graphs as objects in the set 𝑃 , elements

in the model are annotated with their roles in the pattern.

The source graph is given by a model in a domain-specific

language (e.g. UsiXML), while the target contains nodes

with the roles the elements can take. The assignment of

roles to elements is made through the correspondence graph.

As our formalization is given categorically, all definitions

remain the same when replacing graphs by triple graphs.

We do not explicitly show triple graphs, but use a compact

notation similar to stereotypes, like the one in Fig. 3. As

the definition of an HCI pattern may extend over several

diagrams, we introduce synchronisation graphs to specify

which elements in every variable part of a pattern correspond

to each other and should be synchronized [2].

Patterns may also include conditions for their correct ap-

plication, expressed as graph constraints [4]. A pattern with
invariants is a pattern together with sets 𝑃𝐶(𝑉𝑖) of pattern
constraints 𝑉𝑖 → 𝑋 → 𝐶𝑗 . An atomic constraint has one

premise graph 𝑋 (related to the variable part 𝑉𝑖 it constrains)

and a set of consequence graphs 𝐶(𝑋) = {𝑋 → 𝐶𝑗}𝑗∈𝐽 .

If the premise graph 𝑋 is found in a model, then some

of the consequence graphs 𝐶𝑗 have to be found as well.

More complex constraints can be formed by using boolean

formulae over atomic constraints. In particular, one can

require that no instance of 𝑋 be found.

IV. A PATTERN LANGUAGE

We extend our formalisation to handle pattern subtyping,

conflict and composition to provide an effective basis for the

construction of a HCI pattern language.

A. Subtyping

We start by identifying a Unit as the fundamental brick

in the construction of a HCI pattern. A unit is formed by a

container where some individual components contain output
messages providing explanations to the user and some others

offer facets for user input. The left of Fig. 3 presents a unit

as a pattern with role realisations given via abstract elements

from the auiModel.

«Unit»
:abstContainer

«UserInput»
:absIndComp

:input

Inputs Explanations

Unit Form extends Unit

FormInput
extends Inputs

«Closeness»
:abstractAdjacency

:output

«Label»
:absIndComp

«Unit::UserInput»
:absIndComp

«Form, Unit::Unit»
:abstContainer

AlignedLabels
extends Form

Adj extends FormInput

sr
c tg
t

ASrc
«LabClose»

:abstractAdjacency

«Form::Label»
:absIndComp

ATgt

ASrc < 2, ATgt < 2

«Explanation»
:absIndComp

:output

Figure 3. Unit (left), Form⊑Unit (center), AlignedLabels⊑Form (right).

A form is a unit presenting labels adjacent to the user

input. Hence, we define Form as a subtype of Unit, noted

𝐹𝑜𝑟𝑚 ⊑ 𝑈𝑛𝑖𝑡, by adding new elements and describing their

relation to the elements of Unit as in Fig. 3 (center). Subtyp-

ing can add new elements to a pattern, possibly introducing

further constraints, or adding new variable parts as children

of the root or of other existing variable parts. However,

the subtype cannot relax the constraints on the parent type,

nor can it introduce intermediate regions between the root

and the original regions. When extending a pattern, we only

show in the child those elements of the parent pattern needed

for the extension (but as in OO programming, all elements

of the parent are incorporated into the child). Definition 2

formalises this idea.

Def. 2 (Extension): Given two patterns 𝑉 𝑃 and 𝑉 𝑃 ′, an

injective morphism 𝐸𝑥𝑡 : 𝑉 𝑃 → 𝑉 𝑃 ′ is defined as the

tuple 𝐸𝑥𝑡 = (𝐸 = (𝐸𝑉 , 𝐸𝐸), 𝑓), where 𝐸 is an injective

morphism on trees that preserves the structure of the trees

𝐸𝑚𝑏 and 𝐸𝑚𝑏′ with:

∙ 𝐸𝑉 : 𝑃 → 𝑃 ′ s.t. 𝐸𝑉 (𝑟𝑜𝑜𝑡) = 𝑟𝑜𝑜𝑡′,
∙ 𝐸𝐸 : 𝐸𝑚𝑏 → 𝐸𝑚𝑏′ s.t. 𝐸𝐸(𝑣𝑖𝑗 : 𝑉𝑖 → 𝑉𝑗) =

𝐸𝑉 (𝑉𝑖) → 𝐸𝑉 (𝑉𝑗) ∈ 𝐸𝑚𝑏′,
and 𝑓 = {𝑓𝑖 : 𝑉𝑖 → 𝐸𝑉 (𝑉𝑖) ∣ 𝑉𝑖 ∈ 𝑃} is a set of

injective (triple) graph morphisms s.t. the square (1) in the

figure below commutes, and ∀𝑉𝑖 → 𝑋 → 𝐶𝑗 ∈ 𝑃𝐶(𝑉𝑖),
∃𝐸𝑉 (𝑉𝑖) → 𝑋 ′ → 𝐶 ′

𝑗 ∈ 𝑃𝐶(𝐸𝑉 (𝑉𝑖)) s.t. squares (2)

and (3) in the figure below are pushouts and ∣𝐶(𝑋)∣ =
∣𝐶(𝑋 ′)∣. Regarding the set of equations 𝑣𝑎𝑟, we demand

𝐸𝑉 (𝑣𝑎𝑟) ⊆ 𝑣𝑎𝑟′ and that no formula of 𝑣𝑎𝑟′ ∖ 𝐸𝑉 (𝑣𝑎𝑟)
contains variables in 𝐸𝑉 (𝑃).

𝑉𝑖
𝑓𝑖 ��

𝑣𝑖𝑗

��
(1)

𝐸𝑉 (𝑉𝑖)

𝐸𝐸(𝑣𝑖𝑗)��

𝑉𝑖
��

��
(2)

𝑋 ��

��
(3)

𝐶𝑗

��
𝑉𝑗

𝑓𝑗 �� 𝐸𝑉 (𝑉𝑗) 𝐸𝑉 (𝑉𝑖) �� 𝑋 ′ �� 𝐶 ′
𝑗

Given patterns 𝑉 𝑃 and 𝑉 𝑃 ′, if ∃𝐸𝑥𝑡 : 𝑉 𝑃 → 𝑉 𝑃 ′

s.t. 𝐸𝑥𝑝 preserves role names and focus we say that 𝑉 𝑃 ′

extends 𝑉 𝑃 , and we write it 𝑉 𝑃 ′ ⊑ 𝑉 𝑃 .

The requirement of 𝑓 for constraints of extended parts is

that they should be provided exactly with the new elements

added to the variable part they constrain (hence the pushouts)

and they should not add new consequence graphs. However,

𝑉 𝑃 ′ can add new premises 𝑋𝑘. The condition on the

formula states that 𝑉 𝑃 ′ cannot modify the formulae of

𝑉 𝑃 , but can add equations involving new variable parts. In

3

Fig. 3, if a variable part 𝑉𝑖 of 𝑉 𝑃 is extended by 𝐸𝑉 (𝑉𝑖)
of 𝑉 𝑃 ′, we label the extended part as “𝑛𝑎𝑚𝑒′(𝐸𝑉 (𝑉𝑖))
extends 𝑛𝑎𝑚𝑒(𝑉𝑖)”.

Our set-based semantics for patterns enables the usual

replaceability of supertypes by subtypes as subsetting of the

respective expansions, as stated in Theorem 1, whose proof

is immediate.

Th. 1 (Subtyping): Given patterns 𝑉 𝑃 and 𝑉 𝑃 ′, if

𝑉 𝑃 ′ ⊑ 𝑉 𝑃 then 𝑆𝐸𝑀(𝑉 𝑃 ′) ⊆ 𝑆𝐸𝑀(𝑉 𝑃).
Specific types of Form require some forms of alignment

of labels with inputs and between themselves. The Quince

pattern repository distinguishes between left, right and top

aligned labels. We introduce the abstract 𝐴𝑙𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠 ⊑
𝐹𝑜𝑟𝑚 pattern to the right of Fig. 3, by adding a role for

adjacency, with each label adjacent to one or two other ones.

Then, all of Left Aligned Labels, Right Aligned Labels and

Top Aligned Labels are defined as subtypes of AlignedLabels
by adding a set of suitable constraints for each specific type

of alignment. For example, the left of Fig. 4 shows the

constraints for left alignment. The pattern contains three con-

straints 𝑋𝑖 → 𝐶𝑖, presented as overlapping graphs. The first

constraint states that if the user input and the label are reified

by cio elements (𝑋1) those should be horizontally aligned

(grphAlgn indicates an instance of graphicalAlignment).
The second constraint states that if the label has a closeness

adjacency with another label (of an instantiation of another

AlignedLabel), then the cio reifications of both should be

vertically aligned. Finally, the last constraint states that if

the output is reified by the concrete outputText element, this

should be aligned to the left.

B. Conflicts

When certain roles in different patterns are identified

with each other, conflicts may arise either between the

constraints of the pattern, or caused by incompatibilities with

the integrity constraints of the domain specific language.

The way to proceed is to encode the meta-model constraints

using graph constraints, and then detect incompatibilities

statically through compositions. For example, on the right of

Fig. 4 a negative constraint (NAC) states that two elements

can only share one type of graphicalAlignment at most.

Hence, all the AlignedLabel specialisations are in conflict

with each other. Indeed, if two pattern instantiations share a

common UserInput, 𝑋1 → 𝐶1 would demand two graph-
icalAlignments, in contradiction with the global constraint.

These conflicts can be computed statically by performing

pattern compositions, described next.

C. Pattern Composition

To compose two patterns, one glues their roots via their

pushout through elements selected to be identified, yield-

ing the root of a new composite pattern. The process is

repeated for the elements to be identified in the variable

parts. Merged variable parts receive the same name, the

original equations are united (after renaming), and most

restrictive ones subsume the others. As an example, in

Fig. 5 the Quince patterns Command Area and Clear Entry
Points are composed. The first pattern groups commands

together (modelled by variable part Commands) into a

unified area of the interface (role CommandArea). The

second pattern provides a set of entry points (region En-
tries) into an application or Web site, based on their most

common tasks or destinations. The diagram to the left shows

CommandArea

EntryPointArea

ClearEntryPoints

Ir

P.O.

Commands Entries

IVP

CEntries

P.O.

u= =

the composition scheme. In

the resulting pattern, the

root elements with roles

Main and HomePage are

identified (graph 𝐼𝑟), as

well as Command and En-
tryPoint (and linked object

control) in the variable parts (graph 𝐼𝑉 𝑃). The composed

pattern is built by the pushouts of the roots and the variable

parts, where the embedding 𝑢 of the resulting root is given

by the universal pushout property. The resulting pattern

groups commands to entry points into a common area.

CommandArea

«Main»

:abstractContainer

«Command»

:absIndComp

:control

Commands>1

«CommandArea»
:abstractContainer

Commands

«HomePage»

:abstractContainer

«EntryPoint»

:absIndComp

:navigation

:control «EntryTask»

:task

«EntryPage»
:abstractContainer

:isExecutedIn

Entries

Entries>0

:transition

:triggers

src

tgt

:abstract

Containment
src

tgt

tgt

src

Clear Entry Points

«HomePage, Main»
:abstractContainer

CEntries>1

:abstract
Containment

src
EntryPoint

Area

«Command,EntryPoint»

:absIndComp

:control

:navigation
«EntryTask»

:task

«EntryPage»

:abstractContainer

:isExecutedIn

CEntries

:transition

:triggers

src tgt

tgt

tgt

src

«CommandArea»
:abstractContainer

src

src

:triggers

tgt

:triggers

tgt

src

Figure 5. Composing patterns.

V. CONCLUSIONS AND FUTURE WORK

The theoretical foundation of a notion of HCI pattern

language is challenged by the heterogeneity of the in-

volved aspects, from classical SE concerns to cognitive

issues. Currently, the definition of pattern languages is based

on structured textual descriptions of motivations, contexts

and solutions, and exemplar realisations. Hence, relations

between patterns can only be explicitly posed, typically

in terms of dependencies and conflicts, but they cannot

be properly identified, nor can it be determined if some

implementation is a realisation of a known pattern.

4

«Form::Closeness»
:abstractAdjacency

«Form::Label»
:absIndComp

Left Aligned Labels extends AlignedLabels

:isReifiedBy

:cio

:isReifiedBy

:cio

X1«Unit::UserInput»
:absIndComp

:grphAlgn

isHoriz=true C1

:isReifiedBy:cio

«LabClose»
:abstractAdjacency

«Label»
:absIndComp

:output

:isReifiedBy:cio

:grphAlgn

isVert=true

X2

C2

:isReifiedBy

textHorizontalAlign=left

:outputText

C3X3LeftAdj extends Adj

:cio

:cio

:grphAlgn

NoTwoAdj (NAC)

:grphAlgn

:output

Figure 4. Constraints for LeftAlignedLabels (left). Global Negative Condition (right).

A recently proposed formal definition of pattern, based

on triple graphs, has been used here to describe the solution

component of a HCI pattern, with reference to its several

aspects and different levels of abstraction. In particular, the

identification of relevant roles in a pattern, from the point

of view of the domain, presentation and dynamics aspects

of interaction definition, provides a basis for determining

the existence of relations between patterns, in particular

subtyping, conflicts and decomposition.

We plan to test this approach on complete existing collec-

tions of patterns, possibly identifying common abstractions

for families of patterns and exploring the limitations of the

current proposal. In particular, we envisage that imposing

the structure of a directed acyclic graph, rather than of a

tree, on the set of morphisms between variable parts will

conquer more patterns to formalisation.

ACKNOWLEDGEMENT

Work funded by the Spanish Ministry of Science and

Innovation through mobility grants JC2009-00015 and

PR2009-0019, project TIN2008-02081 (METEORIC) and

the R&D programme of the Madrid Community, project

S2009/TIC-1650 (e-Madrid).

REFERENCES

[1] J. Borchers. A Pattern Approach to Interaction Design. Wiley,
2001.

[2] P. Bottoni, E. Guerra, and J. de Lara. A language-independent
and formal approach to pattern-based modelling with support
for composition and analysis. Inf. Soft. Technol., 52(8):821–
844, 2010.

[3] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon,
and J. Vanderdonckt. A unifying reference framework for
multi-target user interfaces. Interacting with Computers,
15(3):289–308, 2003.

[4] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory
of constraints and application conditions: From graphs to
high-level structures. Fundam. Inform., 74(1):135–166, 2006.

[5] E. Folmer, J. van Gurp, and J. Bosch. A framework for
capturing the relationship between usability and software
architecture. Software Process: Improvement and Practice,
8(2):67–87, 2003.

[6] E. Folmer, M. van Welie, and J. Bosch. Bridging patterns: An
approach to bridge gaps between SE and HCI. Information
& Software Technology, 48(2):69–89, 2006.

[7] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[8] N. J. Juzgado, M. López, A. M. Moreno, and M. I. S. Segura.
Improving software usability through architectural patterns. In
SE-HCI, pages 12–19. IFIP, 2003.

[9] G. Mori, F. Paternò, and C. Santoro. Design and develop-
ment of multidevice user interfaces through multiple logical
descriptions. IEEE TSE, 30:507–520, 2004.

[10] F. Orejas. Attributed graph constraints. In ICGT’08, volume
5214 of LNCS, pages 274–288. Springer, 2008.

[11] C. Pribeanu and J. Vanderdonckt. A transformational ap-
proach for pattern-based design of user interfaces. In ICAS,
pages 47–54. IEEE Computer Society, 2008.

[12] A. Schürr. Specification of graph translators with triple graph
grammars. In WG, volume 903 of LNCS, pages 151–163.
Springer, 1994.

[13] B. Scott and T. Neil. Designing Web Interfaces: Principles
and Patterns for Rich Interactions. O’Reilly, 2009.

[14] J. Tidwell. Designing Interfaces. O’Reilly, 2006.

5

