
This document is published in:

Hundhausen, C. et al. (Eds.) (2010). 2010 IEEE Symposium on 
Visual Languages and Human-Centric Computing (VL/HCC). 
Leganés-Madrid, Spain 21-25 Septemebr 2010: Proceedings. 
IEEE, 127-130.
DOI: http://dx.doi.org/10.1109/VLHCC.2010.26

Ins t i tu t ional  Repos i tory  

© 2010 IEEE. Personal use of this material is permitted. Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/VLHCC.2010.26
http://e-archivo.uc3m.es/


Lightweight Executability Analysis of Graph Transformation Rules

Elena Planas
Univ. Oberta de Catalunya 

eplanash@uoc.edu

Jordi Cabot
INRIA - École des Mines de Nantes

jordi.cabot@inria.fr

Cristina Gómez
Univ. Politècnica de Catalunya

cristina@essi.upc.edu

Esther Guerra
Univ. Carlos III de Madrid
eguerra@inf.uc3m.es

Juan de Lara
Univ. Autónoma de Madrid
Juan.deLara@uam.es

Abstract—Domain Specific Visual Languages (DSVLs) play
a cornerstone role in Model-Driven Engineering (MDE), where
(domain specific) models are used to automate the production
of the final application. Graph Transformation is a formal,
visual, rule-based technique, which is increasingly used in MDE
to express in-place model transformations like refactorings,
animations and simulations. However, there is currently a lack
of methods able to perform static analysis of rules, taking into
account the DSVL meta-model integrity constraints.
In this paper we propose a lightweight, efficient technique

that performs static analysis of the weak executability of rules.
The method determines if there is some scenario in which
the rule can be safely applied, without breaking the meta-
model constraints. If no such scenario exists, the method
returns meaningful feedback that helps repairing the detected
inconsistencies.

I. INTRODUCTION
Domain Specific Visual Languages (DSVLs) play a fun-

damental role in Model-Driven Engineering (MDE), where
they are used to represent domain-specific concepts and
expert knowledge in both vertical and horizontal domains.
Their value dramatically increases when combined with
powerful code generators, so that (domain-specific) models
are no longer passive documentation, but actively used to
produce most of the code of the final application.
Graph Transformation (GT) [2] is a formal, declarative,

rule-based technique for expressing model manipulations.
It is gaining popularity in MDE due to its visual nature,
which makes rules intuitive. Hence, GT is used to comple-
ment meta-models (which describe the DSVL syntax) for
expressing the behaviour of the DSVLs. At the same time,
the formal basis of GT makes rules analysable, and thus,
facilitates the verification of the DSVL definition. However,
even though GT offers a rich body of theoretical results [2],
[7], there is still further work to be done regarding its
integration with MDE techniques. In particular, there is a
lack of methods to analyse rule correctness with respect to
the DSVL meta-model and its integrity constraints.
In order to alleviate this situation, we propose a

lightweight, efficient, static analysis method to check the

weak executability of rules. This is a basic correctness prop-
erty that studies whether there is a possible scenario where a
rule can be safely applied without breaking any meta-model
constraint. Our method translates the rule to be analysed into
operational actions, and checks the dependencies between
these actions and the structural constraints in the meta-
model (e.g. cardinalities). For each detected error, it suggests
possible corrections to make the rule weakly executable,
expressed in the form of modified rules or as graphical
patterns that the rule cannot contain. The method works
at design time without any need to execute the rules or
synthesize test scenarios.

Paper Organization. Section II introduces meta-modeling
and GT. Section III shows the translation of rules into
actions. Sections IV and V explain how to check rule
executability and build the feedback. Section VI discusses
related work and Section VII concludes.

II. SYNTAX AND SEMANTICS OF DSVLS

In this section we present a DSVL for production systems
that we will use to illustrate our method.

Part

capacity: int

1..*

0..1

0..1 0..1

0..1

0..1

0..1

cin

cout

0..1

**

1..*

1..*

1..* 0..1

context Conveyor inv:
self.capacity > 0 and

self.part->size()<=self.capacity

context Machine inv:
if (self.busy=false)
then self.part->size()=0
else self.part->size()>0 endif

{xor}

{xor}

busy: boolean

in out

out in

finished: int

inConv inMachine

Gen

N
e
x
t

Input

Output

Con

Generator
Container

[1,1]

Conveyor Machine

Figure 1. DSVL meta-model.

Fig. 1 shows the meta-model that defines the syntax of
the DSVL. It includes elements of type conveyor that can
be connected to other conveyors, to generators of parts,
to containers or to machines. Conveyors can contain parts
up to its maximum capacity (attribute capacity), which is

1



controlled by the OCL invariant in class Conveyor. Parts
can either be transported in a conveyor or processed in a
machine, but not simultaneously. Containers are terminal
elements that count the number of parts that have finished.
Production systems must contain exactly one generator, and
we show this restriction in the top-right corner of class
Generator.
In order to specify the DSVL operational semantics, we

use GT as it allows using the concrete syntax of the DSVL
in the rules, making them intuitive for the designer. A graph
grammar is made of a set of rules and an initial graph (host
graph) to which the rules are applied. Each rule is made of
a left and a right hand side (LHS and RHS) graph. The LHS
expresses pre-conditions for the rule to be applied, whereas
the RHS contains the rule’s post-conditions. In order to apply
a rule to a host graph, a morphism (an occurrence or match)
of the LHS has to be found in it. Then, the rule is applied
by substituting the match by the rule’s RHS. The grammar
execution proceeds by applying the rules to the host graph
as long as possible in non-deterministic order.

Figure 2. Some rules of the DSVL.

Fig. 2 shows some rules describing the DSVL operational
semantics. Even though rules are declarative, we use a
compact and operational notation. The elements created by
the rules are enclosed in a polygon labeled new, while
the elements deleted by the rules are labeled del. Rule
“startMachine” starts the processing of a part (depicted as a
white square) taking out it from the conveyor (lattice box),
putting it into a free machine (colored square), and changing
its state to busy (the pre and post value of this attribute
is controlled by the attribute condition and computation
sections). Rule “newMachine” incorporates a new machine
to the plant, receiving parts initially processed by existing
overloaded machines. Rule “optimize” maximizes the use of
conveyors by allowing two machines to share them as output,
whereas rule “disconnectGenerator” disconnects a generator
(triangle). This latter rule uses a Negative Application Con-
dition (NAC), a pattern that is forbidden to occur for the
rule to be applicable.

III. DERIVING ACTIONS FROM GT RULES
Prior to check the executability of a rule, our method

performs a pre-processing step to translate the rule into
an action-based representation that captures the structural
changes the rule produces on the host graph. Hence, given a
rule and the DSVL meta-model, we express the rule effects
as a list of the following actions:

• CreateObject(t:Type):Object: Creates and returns a new
object that conforms to the type t.

• DestroyObject(o:Object): Destroys the object o.
• UpdateAttribute(o:Object, attr:Attribute, v:Value): Sets

v as the new value for the attribute attr of o.
• CreateLink(as:Association, ra:Role, o1:Object,

rb:Role, o2:Object):Link: Creates and returns a new
link (i.e. association instance) in the binary association
as between objects o1 (role ra) and o2 (role rb).

• DestroyLink(as:Association, ra:Role, o1:Object,
rb:Role, o2:Object): Destroys the link between
the objects o1 (role ra) and o2 (role rb) from the
association as.

In particular, the effect of a rule consists of creating
the elements labelled new, deleting the elements labelled
del, and updating the attributes according to the attribute
computation section. NACs and attribute conditions are not
considered since they do not produce modification effects
on the host graph.
For instance, the actions derived from rule “startMachine”

are the following:

Rule “startMachine”
(1) l := CreateLink(inMachine,part,p,machine,m)
(2) DestroyLink(inConv,part,p,conveyor,c)
(3) UpdateAttribute(m,busy,true)

The first action creates the link between the part p and
the machine m; the second action deletes the link between
p and the conveyor c; and the last action tags the machine
as busy.

IV. EXECUTABILITY OF GT RULES

A rule r is weakly executable if it has a chance of being
successfully executed. That is, if we can find at least one host
graph G on which r can be applied and the direct derivation
G ⇒

r H generates a graph H consistent with the system’s
integrity constraints. Otherwise r is useless, as every time it
is executed, an error arises becauseH violates some integrity
constraint.
Rules may fail to be weakly executable when their post-

conditions do not take into account the possible dependen-
cies between the actions performed by the rule on the host
graph. Due to the integrity constraints some actions may
require executing other actions as part of the same rule in
order to leave the system in a consistent state.
Note that we define our executability property as weak

executability since we do not require all executions of the
rule on a matching host graph to be successful, which could
be defined as strong executability. Weak executability is a
prerequisite for strong executability (the latter implies the
former). Hence, designers can check first weak executability,
which is simpler to verify, and then they can apply other
techniques to determine the stronger property if necessary
(see Section VI).

2



As an example, rule “newMachine” is not executable
since, every time we create a new machine and do not asso-
ciate it to any output conveyor, we reach an erroneous state
where the minimum 1 cardinality of the Output association
on the role out is violated. Instead, rule “startMachine” is
weakly executable since we are able to find an execution
scenario where we can successfully move a part from a
conveyor to a machine.
In order to check the weak executability of a rule we

proceed by first deriving the modification actions it performs
and then applying a two-step process sketched in Fig. 3. Both
steps are done at design-time, taking into account only the
definitions of the meta-model and the rules. Moreover, our
method is static, improving its efficiency.

Input Rule

1

2
F

e
e
d

b
a
c
k
/R

e
p

a
irin

g
 a

c
tio

n
s

0

Figure 3. Overview of the process.

A. Step 1: Dependencies
The executability of a rule depends on the actions it

performs. In particular, problems may arise when some
action requires the presence of other actions within the same
rule in order to reach a consistent state after executing the
rule. Therefore, to be executable, a rule r must satisfy all
dependencies for every action ac in r. Dependencies for a
specific action are drawn from the structure and constraints
of the DSVL meta-model and from the kind of modification
the action performs. It may happen that an action depends
on several actions or that we have different alternatives to
keep the consistency after executing it. In the latter case,
the dependency is satisfied as long as one of the possible
dependee actions appears. The dependencies shown in this
paper are an adaptation of the ones appearing in [5].
For example, as shown in top of Fig. 4, rule “newMa-

chine” has three mandatory dependencies. They express that
every time we create a new machine we must link it with
an input and an output conveyor (dep1.1 and dep1.2) to
avoid violating the minimum cardinality “1” of association
Input and Output respectively, as well as update the value

of its attribute busy (dep1.3). The rule “newMachine” does
not include some of these changes and, hence, it is not
executable.
In contrast, actions of rule “startMachine” (down of

Fig. 4) have several alternative dependencies. In particular,
the creation of the link between the part and the machine
(action labeled “1”) has three disjoint dependencies: taking
out the part from another machine (dep1.1), taking out the
part from a conveyor (dep1.2) or creating the part itself
(dep1.3). The deletion of the link between the part and
the conveyor (action labeled “2”) has also three disjoint
dependencies: putting the part in a conveyor (dep2.1), putting
the part in a machine (dep2.2) or deleting the part (dep2.3).
The rule satisfies one of the disjoint sequences of dependee
actions (dep1.2 and dep2.2), hence, it is weakly executable.

Figure 4. Dependencies for rules “newMachine” and “startMachine”.

Rules that do not satisfy some dependency can be ex-
tended by adding the missing actions. This extension is
a necessary condition but not sufficient to guarantee the
executability of the rule, as the added actions may introduce
new dependencies. Thus, after extending a rule, it must be
checked again. Dependencies for the added actions can be
satisfied by previous existing actions.

B. Step 2: Applicability conditions

As a result of the previous step we know whether there
are some host graphs that satisfy the meta-model constraints
after applying the rule. This second step characterizes those
host graphs and checks that at least one of them can actually
be a match for the rule considering its LHS and NACs.
Otherwise, the rule is useless since it can never be applied
on graphs that would satisfy the meta-model constraints at
the end of the rule execution.
For instance, the rule “optimize” is not weakly executable

since the single scenario in which the rule can be success-
fully executed (the one in which the conveyor c is not the
output of any machine before executing the rule) is forbidden
by its LHS (which forces the conveyor to be the output of
machine m2 in order to be a match for the rule).

3



Applicability conditions are defined as anti-patterns (i.e.
a kind of graph constraints [2]) expressing conditions that
are not allowed to be found in the rule, as otherwise
those patterns would forbid the match that makes the rule
executable. In the rule “optimize”, the anti-pattern would
state that the LHS cannot contain a graph pattern including
a link of Output between c and a machine.

V. FEEDBACK
Our method processes the results of the previous verifica-

tion steps to provide a more amenable feedback, graphically
expressed using the same DSVL syntax used in the rules.
The first step of our process returns the possible dependee

actions that should be added to the rule in order to make it
executable. We translate back these missing dependencies,
incorporating them into the semantics of the original rule.
As an example, Fig. 5 shows to the left a new version of
rule “newMachine”, now weakly executable since the added
actions ensure the rule satisfies its dependencies.

Figure 5. Feedback.

The second step of our process returns the set of patterns
that are not allowed to be found in the LHS or NACs of the
rule. This feedback is presented to the user as a graphical
pattern that is forbidden to occur either in the LHS or the
NAC, but which may include some initially bound elements.
For example, the center of Fig. 5 shows a forbidden pattern
for rule “optimize” (the c node in the pattern is bound to the
c node in the LHS). To make the rule executable, designers
have to modify the rule in order to avoid any occurrence
of this pattern in it. Similarly, the right part of the figure
shows a forbidden pattern for rule “disconnectGenerator”
(according to the DSVL constraints, a generator must be
connected with at least one conveyor).

VI. RELATED WORK

GT has developed a number of analysis techniques [2],
[3], [4], [7] which however do not consider the meta-model
integrity constraints. There are some efforts to integrate
GT with meta-modeling, though. In [8], graph constraints
are derived from restricted sets of meta-model integrity
constraints, which can be used to generate pre-conditions
for the rules, ensuring strong executability. Our goal instead
is different, as we analyse rules to detect (the lack of) weak
executability.
Other methods are based on the enumeration of all possi-

ble conflict contexts [2], on constraint solving techniques [1]
or on model checking [6]. In contrast, our method performs a
static analysis of the rules and hence it is more efficient. As

a trade-off, these other methods can verify more complex
correctness properties. Therefore, both approaches can be
combined depending on the property to verify.
With respect to the used techniques, they have also

been exploited to verify specifications in other domains,
specifically, to verify operations defined by means of Action
Semantics in the UML context [5].
Finally, an important difference with respect to the previ-

ous works is that our feedback is given visually, minimizing
the need of interpretation by the designer.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented a method for the design-
time analysis of the executability of GT rules.
The method provides feedback enabling the semi-

automatic correction of the rules, or visually highlighting
the problems detected in their LHS and NACs.
In the future we would like to cover new properties like

completeness or redundancies and to give as feedback the
possible modifications in the meta-model (and not only in
the rule) that would make the rule executable. We also plan
to provide tool support, integrating it into a tool for GT.

VIII. ACKNOWLEDGEMENTS
Work funded by the Spanish Ministry of Science and

Innovation through mobility grants JC2009-00015 and
PR2009-0019, projects TIN2008-02081 and TIN2008-00444
and the R&D programme of the Madrid Community, project
S2009/TIC-1650.

REFERENCES
[1] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. A UML/OCL

framework for the analysis of graph transformation rules.
Software and Systems Modeling, 9(3):335, 2010.

[2] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of algebraic graph transformation. Springer-Verlag, 2006.

[3] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of typed
attributed graph transformation systems. In ICGT, volume
2505 of LNCS, pages 161–176. Springer, 2002.

[4] L. Lambers, H. Ehrig, and G. Taentzer. Sufficient criteria for
applicability and non-applicability of rule sequences. ECE-
ASST, 10, 2008.

[5] E. Planas, J. Cabot, and C. Gómez. Verifying action semantics
specifications in UML behavioral models. In CAiSE, volume
5565 of LNCS, pages 125–140. Springer, 2009.

[6] A. Rensink, Á. Schmidt, and D. Varró. Model checking graph
transformations: A comparison of two approaches. In ICGT,
volume 3256 of LNCS, pages 226–241. Springer, 2004.

[7] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations.
World Scientific, 1997.

[8] G. Taentzer and A. Rensink. Ensuring structural constraints in
graph-based models with type inheritance. In FASE, volume
3442 of LNCS, pages 64–79, 2005.

4




