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Abstract

In this thesis we address the development of a mobile brain scanner,
which is based on a wireless EEG neuroheadset, in charge of acquiring and
transmitting the electrical potential measured on the scalp, and one mobile
device (smartphone or tablet), in charge of receiving and processing these
data to produce the cortical activation maps, which show, using a 3D brain
model, the brain areas that are currently active. To generate the cortical
activation maps, the mobile brain scanner needs to solve an electromagnetic
inverse problem called the EEG inverse problem. The low spatial resolution
of the EEG caused by the low conductivity of the skull plus the small
number of EEG sensors available to capture the electrical activity produced
by thousands of brain current sources, imply that the EEG inverse problem is
underdetermined, ill-posed, and has infinite solutions. To make this problem
tractable, in this thesis we assume that the number of active sources is small,
that is, we assume that the set of active sources is a sparse set. Additionally,
we also assume a linear relationship between the elements of this set. If we
represent the set of brain current sources as a matrix (called the sources
matrix), where the rows denote how the electrical activity of the sources vary
over time, then the former assumptions lead to estimate a sources matrix
which is structured sparse and low rank. To solve this problem, in this
thesis we propose a method based on the factorization of the sources matrix
as a product of two matrices: the first one encodes the spatial dynamics
of the sources (how they change their spatial activation patterns), whereas
the second one encodes their corresponding temporal dynamics (how they
change their electrical activity over time). This method combines the ideas
of the Group Lasso (structured sparsity) and Trace Norm (low rank) into
one unified framework. We also develop and analyze the convergence of
an alternating minimization algorithm to solve the resulting nonsmooth-
nonconvex regularization problem. Finally, in order to implement a working
prototype of the mobile brain scanner, we bring our method to a real life
scenario: online solving of the EEG inverse problem on a mobile device,
which is continuously supplied with EEG data coming from the wireless
EEG neuroheadset.
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Resumen

En esta tesis se aborda el desarrollo de un escaner movil cerebral, el
cual estd basado en un casco inaldmbrico que captura y transmite senales
electroencefalograficas (EEG) a un dispositivo mévil (teléfono inteligente
o tableta). Este las recibe y procesa con el fin de generar mapas de
activacién cerebral, los cuales muestran qué areas de la corteza cerebral
estdn actualmente activas. Estos mapas son visualizados en la pantalla del
dispositivo mévil usando un modelo en 3D del cerebro. Para generar estos
mapas de activacion, el escdner moévil cerebral debe resolver el problema
inverso del EEG. La baja resolucién espacial del EEG, causada por la baja
conductividad eléctrica del craneo, anadida al bajo niimero de sensores EEG
disponibles para capturar la actividad eléctrica generada por miles de fuentes
cerebrales, hacen que el problema inverso del EEG sea mal condicionado e
indeterminado, admitiendo un ntimero infinito de soluciones. Para disminuir
la dificultad de este problema, en esta tesis se asume que el nimero de fuentes
eléctricas cerebrales, activadas por un determinado estimulo, es bajo; es
decir, se asume que el conjunto de fuentes activas es un conjunto disperso.
Adicionalmente, también se asume la existencia de una relacién lineal entre
los elementos de dicho conjunto. Si se representa el conjunto de las fuentes
eléctricas cerebrales usando una matriz, llamada de aqui en adelante matriz
de fuentes, las anteriores hipdtesis conducen a estimar una matriz de fuentes
que sea dispersa, estructurada y de bajo rango. Para resolver este problema,
en esta tesis se propone un método basado en la factorizacién de la matriz
de fuentes como el producto de dos matrices: la primera codifica la dindmica
espacial de las fuentes (cémo cambian sus patrones de activacion), mientras
que la segunda incorpora la dindmica temporal de las fuentes (cémo cambian
su actividad eléctrica en el tiempo). Este método combina las ideas de dos
regularizadores: el regularizador de Grupo Lasso (dispersidad estructurada)
y el regularizador de norma nuclear (bajo rango). Para resolver el problema
de estimacion resultante, el cual es no convexo y no diferenciable, en esta
tesis se desarrolla, y también se analiza la convergencia, de un algoritmo de
minimizacién por etapas. Finalmente, para llevar a cabo la implementacién
de un prototipo funcional del escaner movil cerebral, se ha trasladado
el método propuesto a un escenario de la vida real: solucién, en linea,
del problema inverso del EEG en un dispositivo moévil, al cual le llegan
continuamente datos EEG provenientes del casco inaldmbrico de captura de
datos.
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Chapter 1

Introduction and Motivation

The brain is the most intricate and complex organ known.  With
approximately 10" neurons and 10 synaptic connections, it performs
computations that exceed the capability of any computer. In order to
understand how it works, brain imaging methods combine cognitive science,
physics, signal processing and computer science to develop techniques that
allow us to see the inner workings of the living brain. These techniques can
be categorized as indirect or direct measures of the brain activity. Indirect
techniques measure changes in brain properties that are related to neural
activity, such as the increased consumption of oxygen in active areas of
the brain, whereas direct techniques measure electrical and magnetic fields
changes produced by neural action potentials and synaptic activity. The
most commonly used indirect techniques are functional Magnetic Resonance
Imaging (fMRI) and Positron Emission Tomography (PET). fMRI is a
noninvasive technique that measures the brain activity by detecting the
changes in the blood oxygenation and flow that occur in response to neural
activity. It has high spatial resolution, which allows to obtain detailed
activation maps showing which brain regions are involved in a particular
cognitive task. However, it has low temporal resolution limited by the slow
blood flow response it depends on, which disables it to study the dynamics of
the mental activity on the millisecond timescale on which neurons operate.
Besides, fMRI requires that the person being scanned stays still inside the
MRI scanner, which limits the variety of experiments that can be done
(e.g., study the brain under naturalistic conditions). Like fMRI, PET gives
access to the neural activity indirectly via the measurement of a metabolic
process (the glucose consumption of the different brain areas). It has similar
temporal resolution to fMRI, but its spatial resolution is lower. PET is an



invasive technique: it requires the injection of a radiactive tracer, which
limits the number of measurements that can be made on the patient.

On the other hand, the most commonly used direct techniques are
Magnetoencephalography (MEG) and Electroencephalography (EEG). Both
give direct access to neural activityy, MEG via the measurement of the
magnetic field outside the head, whereas EEG via the measurement of
the electrical potential on the scalp. Thanks to the rapid response of the
electric and magnetic fields to changes in the neural activity, both have high
temporal resolution. EEG has low spatial resolution, mainly because the
skull, given its low conductivity, disperses the electrical potential on the
scalp. MEG has also low spatial resolution, but it is higher than EEG,
because the magnetic field measured outside the head is less sensitive to the
conductivity properties of the skull.

Unlike fMRI, PET and MEG, EEG does not require very expensive
equipment. In fact, nowadays is possible to find low-cost wireless EEG
equipment. In this thesis, we propose to use a low-cost wireless EEG
neuroheadset, jointly with a mobile device, to develop a mobile brain scanner
that can be used to study the brain on a wide variety of scenarios, in which
the person being scanned can move and act under naturalistic conditions.
Thanks to the high temporal resolution provided by EEG, this mobile brain
scanner can be used to scan the brain on the millisecond timescale on
which neurons operate. In this system, the wireless EEG neuroheadset is
in charge of acquiring and transmitting the electrical potentials measured
on the scalp, and the mobile device (smartphone or tablet), is in charge
of receiving and processing these data to produce the cortical activation
maps, which show the brain areas that are currently active. To generate
the cortical activation maps, the mobile brain scanner needs to solve an
electromagnetic inverse problem called the EEG inverse problem. The low
spatial resolution of the EEG caused by the low conductivity of the skull
plus the small number of EEG sensors available to capture the electrical
activity produced by thousands of brain current sources, imply that the EEG
inverse problem is underdetermined, ill-posed and has infinite solutions:
the electrical potentials measured on the scalp may be generated by an
infinite number of different brain current sources distributions. To solve this
problem, in this thesis we propose a new method based on regularization
theory, which involves the replacement of the original problem with a nearby
well-posed problem whose solution approximates the required solution.
Solutions developed by this theory are stated in terms of a regularization
function, which helps us to select, among the infinite solutions, the one
that best fulfills some prescribed assumptions. To reduce the complexity



of this problem, in this thesis we assume that the number of active sources
is small, that is, we assume that the set of active sources is a sparse set.
Additionally, we also assume a linear relationship between the elements of
this set. If we represent the set of brain current sources as a matrix (called
the sources matrix), where the rows denote how the electrical activity of
the sources vary over time, then the former assumptions lead to estimate
a sources matrix which is structured sparse and low rank. To solve this
problem, in this thesis we propose a method based on the factorization of
the sources matrix as a product of two matrices: the first one encodes the
spatial dynamics of the sources (how they change their spatial activation
patterns), whereas the second one encodes their corresponding temporal
dynamics (how they change their electrical activity over time). We show
that the proposed method can be solved efficiently, so that it can be used in
the mobile brain scanner (more specifically, in the mobile device), to solve,
online, the EEG inverse problem to generate, as fast as possible, the cortical
activation maps showing the brain areas currently active.

1.1 Thesis outline

Each one of the concepts and ideas involved in the development of the
proposed mobile brain scanner, as well as the ones related with the new
method to solve the EEG inverse problem, will be explained in the following
chapters:

e Chapter 2, Anatomical and physiological basis of EEG,
gives an introduction to brain anatomy, neural activity and
electroencephalography (EEG). These basic concepts are necessary to
understand the behavior and the main features of the brain current
sources that we want to induce as solutions of the EEG inverse
problem.

e Chapter 3, EEG forward and inverse modelling, presents the
EEG forward problem, as well as the EEG inverse problem and how
they are related through the lead-field matrix. Additionally, it also
presents some basic approaches to solve the EEG inverse problem,
which is the main problem that we want to solve in this thesis.

e Chapter 4, Matrix factorization approach to solve the EEG
inverse problem, explains our proposal to solve the EEG inverse
problem, which is a new method that takes into account the structured
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sparsity and the low rank of the sources matrix. The method is based
on the factorization of the sources matrix as a product of a sparse
coding matrix and a dense latent source matrix. The structured
sparse-low-rank structure is enforced by minimizing a regularized
functional that includes the fo1-norm of the coding matrix and the
squared Frobenius norm of the latent source matrix. We develop an
alternating optimization algorithm to solve the resulting nonsmooth-
nonconvex minimization problem. We analyze the convergence of the
optimization procedure, and we compare, under different synthetic
scenarios, the performance of our method with respect to the Group
Lasso and Trace Norm regularizers when they are applied directly to
the target matrix.

Chapter 5, Mobile brain scanners, gives an introduction to
the mobile brain scanning paradigm. It presents the main building
blocks of a mobile brain scanner, as well as the main features of
the hardware and software components used in this thesis to build
a working prototype of such system.

Chapter 6, Development of a mobile brain scanner using
the matrix factorization approach, explains how to adapt the
batch matrix factorization approach, described in Chapter 4, into an
online approach, such that it can be used in a mobile brain scanner
to estimate the active sources as fast as possible. It also presents
an experimental validation of the proposed approach using the “right
index finger tapping experiment”, as well as some pictures of a mobile
brain scanner prototype running the proposed algorithm on a Samsung
Galaxy Note I smartphone and a Nexus 7 tablet.

Chapter 7, Conclusion and future work, presents the conclusion
of this thesis and proposes a selection of future research directions.



Chapter 2

Anatomical and physiological
basis of EEG

In this chapter fundamental theory related with biological aspects of the
physiology and functioning of the human brain will be introduced, in order
to understand how the EEG signal is generated, as well as how it can be
used to study the brain activity.

2.1 General structure of the human brain

The brain consists of two hemispheres, the right and the left hemispheres
(see Figure 2.1(a)), which are separated by the longitudinal fissure. These,
in turn, are divided into four lobes (frontal, parietal, temporal and occipital)
by two deep grooves: the Rolandic fissure (central fissure), which runs down
the side of both hemispheres, and the Sylvian fissure (lateral fissure), which
is almost horizontal (see Figure 2.1(b)). Fissures are also commonly called
sulci.

The counterpart of the cortical fissures are the gyri. As we can see
in Figure 2.2(a), gyri are the convolutions of the surface of the cerebral
hemispheres caused by the infolding of the cortex, separated by the fissures.
Some of the gyri contain brain regions with known cognitive functions, for
instance, Figure 2.2(b) shows the precentral and postcentral gyri, which
contains the primary motor cortex (M1) and the primary somatosensory
cortex (S1), respectively.

The outermost layer of the brain is known as the cerebral cortex. It
is about 2-4 mm thick [Kandel et al., 2000]. It is also referred to as the
gray matter as it consists of cell bodies and capillaries and contrasts with
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Right hemisphere
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(a) Cerebral hemispheres (b) The different lobes of the cerebral
cortex

Figure 2.1: Cerebral hemispheres and brain lobes (Source wikipedia.org).

Motor  Somatosensory
Fissuro i oS cortex cortex

Spinal cord

(a) General brain structures including (b) Motor and Somatosensory cortex (Source
sulci and gyri (Source wikipedia.org) http://hopes.stanford.edu/)

Figure 2.2: Cortical fissures and gyri.



the underlying white matter, which consists mainly of the white myelinated
sheaths of neural axons, see Figure 2.3.

White matter

Gray matter

Figure 2.3: Gray and white matter of the brain (Adapted from
http://www.nlm.nih.gov/).

The difference on the structure and organization of the cerebral cortex
cells led to the neuroanatomist Korbinian Brodmann to divide the cerebral
cortex into 52 distintic regions (see Figure 2.4), which are called Brodmann
areas [Brodmann, 1909]. Many of the Brodmann areas have been correlated
to diverse cortical functions. For example, Brodmann areas 1, 2 and 3 are
the primary somatosensory cortex, area 4 is the primary motor cortex, area
17 is the primary visual cortex and areas 41 and 42 correspond closely to
primary auditory cortex [Bear et al., 2007].

2.2 Neurons: basic functional units of the brain

From the microscopic point of view, the brain is composed mainly by two
types of cell: neurons and glial cells. Neurons act as the information
processing units of the brain, while the glial cells ensure the physical
structure of the brain, the proper concentration of ions and the transport of
the nutrients between the blood vessels and brain tissue [Phillips, 2000].

As we can see in Figure 2.5, the neuron is composed of a soma or cell
body, containing the nucleus, a dendritic tree which receives stimuli from
other neurons, and the axon, which is the transmitter in charge of carrying
the impulse from the soma to the other cells.
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(a) Lateral schematic view (b) Medial schematic view

Figure 2.4: Brodmann areas (Source wikipedia.org).

Dendrite Axon terminal

\ (e

Y\gxm ‘&Schwann cell
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Figure 2.5: Diagram of a neuron (Adapted from wikimedia.org).

The interconnection between neurons, called the synapse, behaves as
a simple switch but also has a special role in information processing. The
function of the synapse is to transfer electric activity (information) from one
cell to another. The transfer can be from nerve to nerve (neuro-neuro), or
nerve to muscle (neuro-myo). The region between the pre and postsynaptic
membrane is very narrow, only 30-50 nm. It is called the synaptic cleft
(or synaptic gap). There is not direct electric communication between the
presynaptic and postsynaptic cell; instead, a chemical mediator is utilized
[Malmivuo & Plonsey, 1995]. The sequence of events is as follows:

1. An action pulse reaches the terminal endings of the presynaptic cell.

2. A neurotransmitter is released, which diffuses across the synaptic gap
to bind to receptors in specialized membranes of the postsynaptic cell.

3. The transmitter acts to open channels of one or several ion species
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(Na+ and K+), resulting in a change in the transmembrane potential.
This is called a postsynaptic potential (PSP).

4. The resting state potential of the neuron is approximately -70 mV.

When a PSP arrives, it causes an increment in the resting state
potential of the neuron.

5. If many PSPs sum up, the resting state potential of the neuron can
locally reach a certain threshold (approximately -55 mV'), which causes

the neuron to spike. This is called an action potential (AP), see Figure
2.6.

Action
potential

+40
s
E S =
o 0 g 2
o b o
= g )
o o s
> 2 "S,f
Q i B
Threshold _ Failed } =
-55 initiations
70 T_" Resting state
SHmults Refractory
period
0 1 2 3 4 5
Time (ms)

Figure 2.6: Approximate plot of a typical action potential (Source
wikipedia.org).

2.3 How the neuron activity produces the
electroencephalographic (EEG) signals

The current sources and the electromagnetic field generated by a single PSP
or AP is not strong enough to be detected on the scalp. In order to have
measurable signals, these tiny fields need to sum up. Action potentials have a
temporal duration close to the millisecond making them hard to synchronize
in order to sum up [Gramfort, 2009]. On the contrary, PSPs have a temporal

9



duration around 10 ms. Therefore, even though APs are much larger in
amplitud than PSPs, it is accepted that the PSP are the generators of the
scalp fields usually recorded in EEG [M. Haméldinen et al., 1993]. If the
dendrites supporting PSPs are randomly oriented or radially oriented on a
complete spherical surface (or small closed surface), no net electromagnetic
field can be detected outside the immediate vicinity of the active neurons.
Pyramidal neurons are brain cells whose dendrites are perpendicular to the
brain cortex (see Figure 2.7). Due to their uniform spatial organization, they
are the only neurons that can generate a net current dipole over a piece
of cortical surface, whose field is detectable on the scalp [Phillips, 2000].
According to [Murakami & Okada, 2006], it is necessary to add the field of
approximately 10* pyramidal neurons in order to produce a field amplitude
that is detectable on the scalp. Thus, the EEG measurements corresponds
to the activity of one or several assemblies of neurons. The area of a neuron
assembly is small compared to the distance to the observation point (the
EEG sensors). Therefore, the electromagnetic fields produced by an active
neuron assembly at the sensor level is very similar to the field produced by
a current dipole [Gramfort, 2009]. This simplified model is known as the
Equivalent Current Dipole (ECD). These ECDs are also known by several
names, such as brain current sources, brain sources or simply sources.

Figure 2.7: A human neocortical pyramidal neuron stained via Golgi
technique (Source wikipedia.org).
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2.4 EEG recording and measurement

2.4.1 A bit of history

The first EEG recordings date back to the first measurements by the English
scientist Richard Caton in 1875. He used a galvanometer to observe electrical
impulses from the surfaces of living brains in animal subjects [Collura, 1993].
Caton initially described the general positivity of the surface of the gray
matter when measured in relation to deep structures. He also stated that,
“The electric currents of the gray matter appear to have a relation to its
function”. For this work Caton is recognized as the discoverer of the EEG
[Collura, 1993].

The first report of human EEG recording was made by the German
physiologist and psychiatrist Hans Berger in 1929. Berger pointed out in
his electrical brain recordings that there were regular rhythmic sequences of
waves at about 10 cycles per second in the relaxed adult subject and that
these were best seen with the eyes closed in the absence of stimulation or
other mental activities such as imaging or problem solving. He called these
waves alpha waves. He also observed smaller amplitude waves ranging in
frequency from about 18 to 50 cycles per second. He called these waves
beta waves. Berger called the entire electrical record of the brain’s activity
the Elektrenkephalogramm, abbreviated EEG, in keeping with the EKG
acronym for the Electrokardiogramm [Patterson, 1973].

2.4.2 Methods and devices

In conventional EEG, the recording is obtained by placing electrodes on the
scalp with a conductive gel or paste. Many systems typically use electrodes,
each of which is attached to an individual wire. Some systems use caps or
nets into which electrodes are embedded; this is particularly common when
high-density arrays of electrodes are needed.

EEG systems consist of a number of delicate electrodes, a set of
differential amplifiers (one for each electrode) followed by filters. The EEG
recording electrodes and their proper function are crucial for acquiring high-
quality data. Different types of electrodes are often used in the EEG
recording systems, such as:

e disposable (gel-less, and pre-gelled types)
e reusable disc electrodes (gold, silver, stainless steel, or tin)

e headbands and electrode caps

11



e saline-based electrodes
e needle electrodes

For multichannel recordings, electrode caps are often used, see Figure 2.8.
Commonly used scalp electrodes consist of Ag-AgCl disks, less than 3 mm
in diameter, with long flexible leads that can be plugged into an amplifier.
Needle electrodes are those that have to be implanted under the skull with
minimal invasive operations. The conversion from analogue to digital EEG is
performed by means of multichannel analogue-to-digital converters (ADCs).
The raw EEG signals have amplitudes of the order of uvolts and contain
frequency components of up to 100 Hz. To retain the effective information,
the signals have to be amplified before the ADC and filtered, either before
or after the ADC, to reduce the noise and make the signals suitable for
processing and visualization. The filters are designed in such a way that
they do not to introduce any change or distortion to the signals. Highpass
filters with a cut-off frequency of usually less than 0.5 Hz are used to remove
the disturbing very low frequency components such as those of breathing.
On the other hand, high-frequency noise is mitigated by using lowpass filters
with a cut-off frequency of approximately 50-70 Hz. Notch filters with a
null frequency of 50 Hz are often necessary to ensure perfect rejection of the
strong 50 Hz power supply.

(a) 256-128 channels (b) 64 channels (c) 32 channels

Figure 2.8: Multichannel EEG systems.

2.4.3 Electrode positioning

The clinical EEG is commonly recorded using the International 10/20
system, which is a standardized system for electrode placement [Jasper,
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1958]. This particular recording system employs 21 electrodes attached to
the surface of the scalp at locations defined by certain anatomical reference
points; the numbers 10 and 20 are percentages signifying relative distances
between different electrode locations on the skull perimeter, see Figure 2.9.
The spacing of electrodes with the 10/20 system is relatively sparse: the
interelectrode distance is approximately 4.5 cm on a typical adult head.

Masion
® 2 0%

Pln: ; :Pa:’ /
AT \I%

20%

~" Preaurical
a1 point

Figure 2.9: The international 10-20 system seen from (A) left and (B) above
the head. A = Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F
= frontal, Fp = frontal polar, O = occipital. (C) Location and nomenclature
standardized by the American Electroencephalographic Society. (Adapted
from [Sharbrough et al., 1991]).

Bipolar or unipolar electrodes can be used in the EEG measurement, see
Figure 2.10. In the first method the potential difference between a pair of
electrodes is measured. In the latter method the potential of each electrode is
compared either with a neutral electrode or with the average of all electrodes

13



[Malmivuo & Plonsey, 1995].

Time

Figure 2.10: (A) Bipolar and (B) unipolar measurements. Note that the
waveform of the EEG depends on the measurement location. (Adapted from
[Malmivuo & Plonsey, 1995]).

2.4.4 Classification of EEG signals

The EEG signals are conventionally classified into five different frequency
bands [Sérnmo & Laguna, 2005]:

e Delta, <4 Hz: it is typically encountered during deep sleep and has
a large amplitude. It is usually not observed in the awake, normal
adult, but is indicative of, e.g., cerebral damage or brain disease
(encephalopathy).

e Theta, 4-7 Hz: it appears as consciousness slips towards drowsiness.
Theta waves have been associated with access to unconscious material,
creative inspiration and deep meditation.

e Alpha, 8-13 Hz: it appears in the posterior half of the head and
are usually found over the occipital region of the brain. They can
be detected in all parts of posterior lobes of the brain. Alpha waves
have been thought to indicate both a relaxed awareness without any
attention or concentration. Most subjects produce some alpha waves
with their eyes closed, which is why it has been claimed that it is
nothing but a waiting or scanning pattern produced by the visual
regions of the brain. It is reduced or eliminated by opening the eyes,
by hearing unfamiliar sounds, by anxiety, or mental concentration or
attention.
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e Beta, 14-30 Hz: This is a fast wave with low amplitude, associated
with an activated cortex. It can be observed, for instance, during
certain sleep stages. The beta wave is mainly observed in the frontal
and central regions of the scalp.

e Gamma, >30 Hz: it is related to a state of active information
processing of the cortex. Using an electrode located over the
sensorimotor area and connected to a high-sensitivity recording
technique, the gamma rhythm can be observed during finger
movements [Andrew & Pfurtscheller, 1996].
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Figure 2.11: Sample EEG recordings. Electrodes have name (e.g., F3, C3,
etc.) function of their positions on the scalp (see Figure 2.9).

2.4.5 Event related potentials

Event related potentials (ERPs) are very small voltages generated in the
brain structures in response to specific events or stimuli [Blackwood &
Muir, 1990]. They are EEG changes that are time locked to sensory, motor
or cognitive events that provide safe and noninvasive approach to study
psychophysiological correlates of mental processes. They are thought to
reflect the summed activity of postsynaptic potentials produced when a large
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Figure 2.12: Four typical brain normal rhythms, from high to low
frequencies. (Adapted from [Sanei & Chambers, 2008]).
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number of similarly oriented cortical pyramidal neurons fire in synchrony
while processing information [Peterson et al., 1995].

The EEG reflects thousands of simultaneously ongoing brain processes.
This means that the brain response to a single stimulus or event of interest
is not usually visible in the EEG recording of a single trial. Thus, to obtain
an ERP, the experimenter must conduct many trials and average the results
together, causing random brain activity to be averaged out and the relevant
waveform to remain [Rugg & Coles, 1995].

ERP components are referred to by a letter (N/P) indicating polarity
(negative/positive), followed by a number indicating either the latency in
milliseconds or the component’s ordinal position in the waveform, see Figure
2.13. For instance, a negative-going peak that is the first substantial peak
in the waveform, and often occurs about 100 milliseconds after a stimulus
is presented, is often called the N100 (indicating that its latency is 100 ms
after the stimulus and that it is negative) or N1 (indicating that it is the
first peak and is negative). The stated latencies for ERP components are
often quite variable. For example, the P300 component may exhibit a peak
anywhere between 250ms-700ms. [Luck, 2005].

Some examples of ERP components are the following:
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Figure 2.13: A waveform showing several ERP components, including the
N100 and P300. Note that the ERP is plotted with negative voltages
upward, a common, but not universal, practice in ERP research. (Source
wikipedia.org)

e N170: it is a component of the event related potential that reflects
the neural processing of faces. When potentials evoked by images of
faces are compared to those elicited by other visual stimuli, the former
show increased negativity 130-200 ms after stimulus presentation. This
response is maximal over occipito-temporal electrode sites [Bentin et
al., 1996].

e P300: it is usually interpreted as the speed of stimulus classification
resulting from discrimination of one event from another [Sur &
Sinha, 2009]. Shorter latencies indicate superior mental performance
relative to longer latencies. P300 amplitude seems to reflect stimulus
information such that greater attention produces larger P300 waves.
A wide variety of paradigms have been used to elicit the P300, of
which the “oddball” paradigm is the most utilized. In this paradigm,
different stimuli are presented in a series such that one of them occurs
relatively infrequently, that is the oddball. The subject is instructed to
respond to the infrequent or target stimulus and not to the frequently
presented or standard stimulus.

e N400: It is a negative wave first described in the context of semantic
incongruity, 300-600 ms post-stimulus [Kutas & Hillyard, 1980]. N400
is inversely related to the expectancy of a given word to end a sentence.

e Movement-related cortical potentials (MRCP): MRCPs denote
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a series of potentials that occur in close temporal relation with
movement or movement-like activity. These may occur before, during
or after the movement and they refer to the associated preparedness

for movement in the cortex. [Deecke & Kornhuber, 1978] distinguished
4 components of the MRCPs:

Bereitschafts potential (Readiness
potential), Pre-motion positivity, Motor potential and Reafferent
potential.
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Figure 2.14: MRCP components: N1=Bereitschafts potential (Readiness

potential), P1=Pre-motion positivity, N2=Motor potential, P2=Reafferent
potential. (Adapted from wikipedia.org)
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Chapter 3

EEG forward and inverse
modelling

In this chapter, we introduce the EEG forward and inverse problems, and
how they are related through the lead-field matrix. Next, we focus on the
EEG inverse problem, which is the central component of the mobile brain
scanner. Solving this problem will let us uncover the brain current sources
whose electrical activity is producing the recorded EEG data. Additionally,
we present some standard approaches to solve the EEG inverse problem.
These approaches are based on the use of regularization functions, which
help us to select, among the infinite possible solutions, the one that best
fulfills some prescribed prior knowledge.

3.1 The EEG forward problem

The EEG forward problem consists in determining the EEG signals produced
by the activity of a known distribution of current sources located inside the
head, see Figure 3.1. This problem is well-posed, meaning that it has a
unique solution, which is stable with respect to small perturbations in the
data. To solve this problem, we first need to draw the attention towards
the basis of EEG. According to [Plonsey & Heppner, 1967], no charge can
be piled up in the conducting extracellular volume for the frequency range
of the signals measured in the EEG. At one moment in time, all the fields
are triggered by the active electric sources. Hence, no time delay effects are
introduced. All fields and currents behave as if they were stationary at each
instance. These conditions are also called quasi-static conditions. They are
not static because the neural activity changes with time, but the changes
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are slow compared to the propagation effects [Hallez et al., 2007].

Figure 3.1: Forward problem: given the position and the electrical activity
of the sources, estimate the resulting EEG signals.

Under the quasi-static approximation to Maxwell’s equations, the
electric fields and magnetic fields are decoupled in the sense that the electric
fields can be calculated or measured as if the magnetic fields do not exist
and viceversa [Nunez & Srinivasan, 2006]. Thus, at time ¢, we can express
the relation between the observed EEG vector y(t) € RM*1 and the current
sources s(t) € RV*! as a linear instantaneous form in the sources [Ou et al.,
2009]:

y(t) = As(t) +e(t) (3.1)

where e(t) € RM*! is the noise vector and M and N denote, respectively,
the number of EEG electrodes and the number of sources. The relationship
between the sensors and the current sources is given by the lead field matrix
(forward model) A € RM*N: the component A;; denotes how the j-th
source influences the measurement obtained by the i-th electrode. We can
express the former model for all time instants {t1,ts,...,tr} corresponding
to some observation time window as follows:

Y =AS+E (3.2)

where Y = [y(t1),y(t2),...,y(tr)] € RM*T is the EEG measurements
matrix, S = [s(t1),s(t2),...,s(tr)] € RV*T is the sources matrix and
E € RM*T ig the noise matrix.

Taking into account the orientation of the pyramidal neurons mentioned
in Section 2.3, we can now restrict the orientation of the sources to be
perpendicular to the brain cortex. Throughout the rest of this thesis we
will apply this belief. In order to determine the resulting EEG signals Y,

20



first we need to compute the forward fields associated to each source. To
accomplish this, we need to know a model of the head geometry, the EEG
sensor positions, the conductivity values for each one of the tissues involved
in the head model, and use all of these parameters to solve the corresponding
quasi-static Maxwell’s equations. For a more detailed overview on solvig the
EEG forward problem see [Mosher et al., 1999; Hallez et al., 2007; Gramfort,
2009] and references therein.

3.1.1 Head Models

To describe the lead-field matrix A associated with current sources within
the brain, we require a volume conductor model of the head. Modelling the
conductivity layers of the head is a key requirement as the layers (tissues)
attenuate the EEG signals differently due to their varying conductivity
values [Stahlhut, 2011].

Spherical head models

The first volume conductor model of the human head consisted of a
homogeneous sphere [Frank, 2004]. However it was soon noticed that
the skull tissue had a conductivity which was significantly lower than the
conductivity of scalp and brain tissue. Therefore, the volume conductor
model of the head needed further refinement, and a three-shell concentric
spherical head model was introduced, see Figure 3.2. In this model, the
inner sphere represents the brain, the intermediate layer represents the skull
and the outer layer represents the scalp [Hallez et al., 2007].

Realistic head models

The three-shell head model is a very simplified model of the human head.
In reality the head is not spherical, besides, it is highly anisotropic and
inhomogeneous. Therefore, more realistic head models are required, to
obtain a more accurate solution to the forward problem. These head models
use high resolution structural Magnetic Resonance Images (sMRI) to extract
anatomical information, see Figure 3.3.

The different approaches that take this anatomical information into
account to compute numerical solutions of the EEG forward problem are
the following: Boundary Element Method (BEM), Finite Element Method
(FEM) and the Finite Difference Method (FDM).
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Figure 3.2: A spherical model with three layers. From inside to outside:
brain cortex, skull and scalp. (Adapted from [Malmivuo & Plonsey, 1995]).

Boundary Element Method

The Boundary Element Method (BEM) is a numerical technique for
calculating the surface potentials generated by current sources located in
a piecewise homogeneous volume conductor. This method is capable of
providing a solution to a volume problem by calculating the potential
values (induced by a given current source) at the interfaces and boundary
of the volume. In practice, a head model is built from several surfaces,
each encapsulating a particular tissue. Typically, head models consist of 3
surfaces: brain-skull interface, skull-scalp interface and the outer surface.
The regions between the interfaces are assumed to be homogeneous and
isotropic conducting. To obtain a solution in such a piecewise homogenous
volume, each interface is tesselated with small boundary elements [Hallez et
al., 2007].

Finite Element Method

The Finite Element Method (FEM) is a technique, in which the entire 3D
volume conductor is digitized into small elements, typically tetrahedrons.
The most appealing factor of the FEM is the possibility of modeling tissues
as anisotropic [C. Wolters et al., 2002; C. H. Wolters et al., 2004]. A
drawback of the FEM is that it is normally regarded as being quite time
consuming, due to the greatly increased computation complexity involved
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Figure 3.3: Structural Magnetic Resonance Image, sagittal view. (Source
http://www2.fmrib.ox.ac.uk).

Figure 3.4: Example mesh of the human head used in BEM. From left to
right: scalp, outer skull and inner skull. (Adapted from [Im & He, 2006]).

by tesselating a volumen instead of a surface as in the BEM.

Finite Difference Method

An alternative realistic head model can be obtained by the Finite Difference
Method (FDM), which uses a cubic grid to discretize the volume conductor.
The main drawback of the FDM method for EEG forward modelling is that,
due to the cubic grid, the complex interfaces between brain structures and
thin layers cannot be precisely modeled [Gramfort, 2009].

In summary, the difference between BEM, FEM, and FDM is the domain
in which they are calculated. BEM solves the forward problem by boundaries
between homogeneous isotropic compartments, whereas FEM and FDM
solve the forward problem with an entire volume. Consequently, FEM
and FDM easily lead to larger number of computational points than BEM.
Typically, values for BEM are in the order of 5000 to 25000 computational
points whereas the computational points involved in FEM/FDM solutions
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Figure 3.5: Example mesh of the human head used in FEM. From inside
to outside: white matter, gray matter, cerebrospinal fluid, skull and scalp.
(Adapted from [C. Wolters et al., 2006]).

Figure 3.6: Example of the stencil used in FDM. A typical node in a FDM
grid with its neighbours. (Adapted from [Turovets et al., 2014]).

are in the range of 10* to 10° [Stahlhut, 2011]. Taking into account the
restricted resources of a mobile device, throughout this thesis we will use a
three-shell spherical head model.

3.2 The EEG inverse problem

Given the lead-field matrix A and the EEG measurements matrix Y,
the EEG inverse problem consists in estimating the sources matrix S by
solving the linear estimation problem (3.2), see Figure 3.7. Before we
address this problem, let us examine some important features related to
it. A standand EEG neuroheadset has approximately 10-200 EEG sensors,
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Figure 3.7: Inverse problem: Given the EEG signals, find the position and
the electrical activity of the sources that have produced the recorded data.

whereas the typical number of possible source locations is approximately 103-
10° (depending on the choice of the head model and the spatial resolution of
interest). Thus, the small number of EEG sensors available to capture the
electrical activity produced by thousands of brain electrical current sources,
plus the low spatial resolution of the EEG, caused by the low conductivity
of the skull, which blurs the electrical potential on the scalp, imply that
the EEG inverse problem is an underdetermined ill-posed problem with an
infinite number of solutions. From the electromagnetic point of view, the
nonuniqueness of the EEG inverse problem can be derived from the fact
that there are so-called electrically silent sources, which produce no electric
field outside the head. Such a current source can always be added to a
solution of the inverse problem without affecting the field outside the head
[Sarvas, 1987]. Besides the ill-posed nature of the EEG inverse problem,
another serious concern is its numerical instability often referred to as being
ill-conditioned, which will be discussed in the following section.

3.2.1 Numerical sensitivity of the EEG inverse problem

Without loss of generality, let us analyze the numerical sensitivity of (3.2)
in the noiseless case:
Y =AS=(UxV'")Y (3.3)

where A = UXV is the Singular Value Decomposition (SVD) of A. Using
the pseudoinverse of the lead-field matrix , AT = VETUT, we can estimate
the sources matrix as follows:

S=AlY = (vEiu")y (3.4)

where X = diag(1/01,1/03,...,1/0,) . To examine how perturbations in
the EEG measurements matrix Y affect the sources matrix S, let us expand
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(3.4) as follows:

Ty .
U; Yﬂ V; (3.5)

p
S; =(VsiuT)y; =>"
=1

where S; and Y; denote the j-th column of S and Y, respectively. This
expansion shows that small changes in Y can induce relatively large changes
in S if g; is small. To formalize this assertion, let us compute the relative
error in the values of the sources at time ¢; (6S;) caused by a perturbation
ocurred at the same time in the EEG measurements (6Y;):

AGS; =0Y; = [16S;ll, < [[[AT|Il, 5Y 1], (3.6)
1 Al
AS, =Y, = < (3.7)
S 1S5l = 1Yl
where ||-||, and [||-|||, denote, respectively, the ¢,-vector norm and the £,-

matrix norm [Horn & Johnson, 1990]. Combining (3.6) and (3.7), we get:

138511,
IS0, =

1Y 5|
Y51l

kp(A) (3.8)

The constant k,(A) = |||A]|[p|||AT]||, is called the condition number of
the system (matrix). Note that x,(-) depends on the underlying norm and
subscripts are used accordingly. Nevertheless, it is usual to compute the
condition number using p = 2:

Omax (A)

R(A) = ra(A) = [l[Alll AT = 225

(3.9)

where |||A|||2 = omax(A) denotes the spectral norm of A.

The inequality (3.8) shows that the relative error is determined by the
condition number k(A). Systems with relatively large condition number are
said to be ill-conditioned. These kind of systems are numerically unstable,
which means that small variations in the input (Y) lead to large variations
in the solution (S). In Figure 3.8, we can see the typical behavior of the
singular values associated to a lead-field matrix A: they decay gradually to
zero. Therefore, k(A) is large, which makes the EEG inverse problem ill-
conditioned. This behaviour in the singular values is common in problems
that result from the discretization of continuous ill-posed problem. In the
case of the EEG inverse problem, the continuous ill-posed problem involved
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is the following Fredholm integral equation of the first kind [Trujillo-Barreto
et al., 2004; Wing, 1991]:

Y(7;,t) = /A(?i,?j)S(?j,t)d?’?j (3.10)

It is well-known that problems arisen from the discretization of Fredholm
integral equations of the first kind lead to ill-conditioned problems [Hansen,
1998]. The overall behavior of the singular values is strongly connected
with the properties of the lead-field kernel A(T;, 7J) [Hansen, 1998]: the
“smoother” the kernel, the faster the singular values decay to zero (where
“smoothness” is measured by the number of continuous derivatives of A).
From the physical point of view, this smoothness may be explained by the
blurring effect induced by the low conductivity of the skull.
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Figure 3.8: Singular values of a lead-field matrix A associated to a three-
shell spherical head model.

A classical approach to cope with the ill-posedness and nonuniqueness
of the EEG inverse problems is to use regularization methods, which involve
the replacement of the original ill-posed problem with a nearby well-posed
problem whose solution approximates the required solution.
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3.3 Regularization of the EEG inverse problem

In order to regularize the EEG inverse problem, we need to use a
regularization function, which helps us to select, among the infinite solutions,
the one that best fulfills some prescribed prior knowledge. As prior
knowledge, we can use a mathematical constrain (minimum norm solution)
or use some known anatomical, physiological and functional feature of the
human brain, such as the smoothness and focality of the electromagnetic
fields generated and propagated within the volume conductor media (brain
cortex, skull and scalp), the dynamics of the electrical activity of the sources,
the clusters formed by neighboring or functional related sources, among
others [M. Haméldinen et al., 1993; Menendez et al., 2004].

The regularized EEG inverse problem can be stated as follows:

A 1
S = argmin {ZHAS ~Y|[Z+A2(S) , A > O} (3.11)
S

where 1||AS — Y||% is the reconstruction error (|| || denotes the Frobenius
norm), (S) is the regularization function (also called penalty term) and
A is the regularization parameter, which provides a tradeoff between the
minimization of the reconstruction error and the fulfillment of the prior
knowledge encoded by €Q(S). The regularized EEG inverse problem can
be interpreted as follows: among the infinite possible solutions, select the
one that best fulfills the prior knowledge encoded by the regularization
function ©2(S) and, at the same time, has the minimum reconstruction error.
If the regularization function (S) is a convex function, then (3.11) is a
convex optimization problem [S. P. Boyd & Vandenberghe, 2004], which
has several advantages, including: it has a global (unique) minimum, there
are several reliable and efficient numerical methods for solving it [S. Wright
& Nocedal, 1999] and there exist several numerical and analytic tools for
analyzing its mathematical properties [Rockafellar, 1997; Borwein et al.,
2006; D. P. Bertsekas, 2009).

In the following sections, we will visit some of the most commonly used
regularization functions in the EEG inverse problem.

3.3.1 Minimum norm solution

The minimum norm regularization, known as Minimum Norm Estimate
(MNE) in the EEG community [M. S. Haméldinen & Ilmoniemi, 1994], is
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based on the squared Frobenius norm:
& 1 2, Aiqi2
§ = argmin { [|AS ~ Y|} + SII8]3 (3.12)
S

This regularization function usually induces a solution that tends to be
spread over a considerable part of brain.
(3.12) admits a closed-form solution, which can be obtained as follows:

5% | 3148 - YIE + 31813| =0
=AT(AS—Y)+XS8=0

=S=(ATA+ Iy 'ATY (3.13)

The fact that the inverse solution is given by a simple matrix multiplication
makes the MNE an attractive approach. Nevertheless, it can happen
that computing the inverse matrix is intractable in practice due to its
computational complexity (the number of operations required to compute
it) is O(N?). Besides, it would require to store a matrix of dimension N x N.
For instance, let us assume we want to use (3.13) to solve an EEG inverse
problem involving N = 20000 sources and M = 100 EEG electrodes. This
would involve 8 x 10'? floating point operations and the storage of a matrix of
dimension 20000 x 20000, which would require = 3.2 GB of RAM. In order to
avoid these problems, we can use the Sherman-Morrison-Woodbury formula
to compute the inverse solution as follows:

S=AT(AAT + L)Y

In this case, we would need to compute the inverse of a much smaller matrix
of dimension 100 x 100. This would involve 10° floating point operations
and the storage of this small matrix would require ~ 80KB of RAM.

3.3.2 Low Resolution Electromagnetic = Tomography:
LORETA

The LORETA regularization approach [R. D. Pascual-Marqui et al., 1994]
assumes that neighboring sources are simultaneously and synchronously
activated. This basic assumption rests on evidence from single cell recording
in the brain that demostrates strong syncronization of adjacent neurons.
LORETA leads to the following regularized EEG inverse problem:

. 1 A
S—argmin{QHAS—YH%—i—2HBWSH%} (3.14)
S
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where B is the discrete Laplacian operator of the cortical mesh (to
induce the spatial smoothness) [R. Pascual-Marqui, 1999] and W =
diag(||Aq]], [|Az]l,...,||An]||) is a weighting matrix that takes into account
the strength of the forward field of each source to avoid biased solutions
toward the surface of the cortex. (3.14) admits the following closed-form
solution:

N —1
S= (WB'TBW) AT (A(WBTBW)—lAT + )\IM> Y  (3.15)

3.3.3 Lasso regularization

The Lasso regularization [Tibshirani, 1996] (known as basis pursuit [Chen
et al., 1999] in the signal processing community and Minimum Current
Estimate (MCE) [Uutela et al., 1999] in the context of EEG inverse
problems), uses the ¢;-norm to enconde the following prior knowledge:
during a particular cognitive task, only the sources related with the brain
area involved in such a task will be active, therefore, it is expected a solution
with few nonzero components. Formally, the Lasso regularization can be
expressed as follows:

A 1
S = argmin {2||AS—YH%—|—)\]SH1} (3.16)
S

where ||S|l; = 2N, Z;‘-F:l]sm. Regularizing by the ¢1-norm is known to
induce sparsity in the sense that, a number of components of S, depending on
the strength of the regularization parameter, will be exactly zero [Friedman
et al., 2001]. A geometrical interpretation of this fact can be observed by
casting (3.16) into a constrained optimization problem:

N 1
S = argmin {QHAS—YH%} (3.17)
S
st [ISlh < p

for some p > 0 (the set of solutions of (3.16) and (3.17) are the same,
as described by some value A(u) depending on p [Borwein et al., 2006]).
At optimality, the level set of 1||AS — Y|% is tangent to the set {S €
RNXT: |IS||; < u}, hence, as we can see in Figure 3.9, the geometry of
the norm’s ball is directly related to the properties of the solutions S. If
Q(S) is taken to be the squared Frobenius norm, then the resulting ball
is the standard, isotropic, “round” ball that does not favor any specific
direction of the space. On the other hand, when Q(S) is the ¢;-norm, its
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corresponding ball presents a diamond-shaped pattern in two dimensions,
and a pyramid in three dimensions. In particular, this ball is anisotropic
and exhibits some singular points due to the extra nonsmoothness of the
¢1-norm. Moreover, these singular points are located along the axis, so that
if the level set happens to be tangent at one of those points, sparse solutions
are obtained (see Figure 3.10) [Bach et al., 2011].

Figure 3.9: In blue, balls for the ¢1-norm and fo-norm. In red, some level
sets of the squared loss function are plotted. At optimality, the level sets
are tangent to the blue balls.

Figure 3.10: Sparsity pattern induced by the ¢;-norm (nonzero components
are shown in blue).

3.3.4 Group Lasso regularization

In some situations, the components of the sources matrix S can be naturally
partitioned in groups. When this happens, we would like to select or
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remove simultaneously all the components forming a group. The Group
Lasso regularization [Turlach et al., 2005; Yuan & Lin, 2006] uses the /3 1-
norm to exploit this group structure. For instance, if the components of the
sources matrix are partitioned by rows, and we would like to select or remove
simultaneously all the components forming a row, the following Group Lasso
regularization function can be used to encode this behavior:

IS

N
21 =Y _IIS(i,)]2 (3.18)
=1

where S(i,:) denotes the i-th row of the sources matrix S. It behaves like
an (1-norm on the vector (|[S(i,:)||2)X,, and therefore, it induces group
sparsity: each [|S(7,:)]|2, and equivalently each S(i,:), is encouraged to
be set to zero [Bach et al., 2011]. These type of solutions, which involve
few nonzero components forming a well-defined pattern, are usually called
structured sparse solutions (see Figure 3.11). From the neurophysiological
point of view, the Group Lasso regularization can be used to extend the prior
knowledge introduced by Lasso: it is expected a solution with few nonzero
components, but in addition, these nonzero components will be grouped by
rows, that is, it is expected a solution with few nonzero rows (once a source is
active, it will remain active during the observation time window). Formally,
the Group Lasso regularization can be expressed as follows:

A 1
S = argmin {QHAS—YH%—F)\HSHQJ} (3.19)
S

The /5 1-norm penalty has also been used in regularization approaches that
involve the decomposition of the sources matrix S as linear combinations of
multiple basis functions, S = ©® ", where &' € RP*T is a basis matrix and
© € RV*P is a matrix that contains the coefficients of the decomposition. In
theses cases, the basis matrix is usually fixed whereas the f5 1-norm is used
to induce structured sparse solution by regularizing the coefficient matrix
as follows:

N 1
® = argmin {2|]AG)<I>T ~ Y2+ Aueug,l} (3.20)
(C]

These approaches often differ in the basis matrix used in the decomposition.
For instance, [Ou et al., 2009] uses temporal basis functions obtained from
the SVD of Y, [Gramfort et al., 2011, 2013] uses time frequency Gabor
dictionaries and [Haufe et al., 2011] uses spatial basis Gaussian functions.
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Figure 3.11: Sparsity pattern induced by the ¢3 ;-norm defined in (3.18).

3.3.5 Sparse Group Lasso regularization

In some situations, it is desirable to select or remove simultaneously all the
components forming a group and, at the same time, induce sparsity inside
the selected groups. The Sparse Group Lasso regularization [Friedman et
al., 2010; Sprechmann et al., 2011] uses the (¢31 + ¢1)-norm to exploit this

structure:
N

T
20+ (Sl =)_ [ ISGE )2+ lsisl (3.21)
j=1

=1

S|

In the EEG inverse problem, we can use this regularization function to
introduce the following prior knowledge: when the observation time window
is wide (with respect to the temporal dynamics of the neural signals), it is
expected that the sources change their state (on-off) one or several times
(depending on the amplitude of the observation window). Therefore, in
this case, it is expected a solution with few nonzero rows, with sparsity
inside each one of them (see Figure 3.12). Formally, the Sparse Group
Lasso regularization can be expressed as follows:

~ . 1
$ = argumin { J1AS - Y1} + A(ISlaa + (1= 9IS p € 0.1}
(3.22)

Figure 3.12: Sparsity pattern induced by the ({31 + ¢1)-norm defined in
(3.21).
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3.3.6 Trace norm regularization

The regularization functions that we have seen so far are useful to introduce
prior knowledge related with the sparsity pattern of the sources matrix S,
but they do not take into account possible functional dependencies among
the active sources. This kind of prior knowledge could be helpful to describe
the following scenario: it is expected that the main active sources induce an
electrical activity in their corresponding neighboring sources. Therefore,
there is a dependency between the induced activity and the precursor
activity, which could be modeled, for instance, as a linear relationship.
Hence, the expected solution will have a low rank. This prior knowledge can
be exploited using the Trace norm (Nuclear norm) regularization [Argyriou
et al., 2007; Abernethy et al., 2009], which is defined as the sum of the

singular values:
q

IS]« = oi(S) (3.23)
i=1

where ¢ = min{N,T} and o;(S) denotes the i-th singular value of
S. This norm is the convex relaxation of the rank function (the prior
knowledge previously mentioned could also be exploited using the rank
function directly, but this would transform the optimization problem
into a combinatorial NP-hard problem, since it includes the cardinality
minimization as a special case [Zhao, 2012; Recht et al., 2010; Natarajan,
1995]). Formally, the Trace norm regularization is defined as follows:

5 1
S = argmin {QHAS—YH%+MSH*} (3.24)
S

Figure 3.13: Dense pattern induced by the Z,-norm defined in (3.23). This
norm induces a dense low rank solution. Components with the same blue
intensity are linear dependent.

As we have seen in Sections 3.3.1 and 3.3.2, when we use the MNE
and LORETA regularization functions, the regularized EEG inverse problem
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(3.11) can be solved in closed-form. However, this is not the case when we use
the Lasso, Group Lasso, Sparse Group Lasso and Trace Norm regularization
functions. One characteristic common to these regularization functions is
that they are nonsmooth (nondifferentiable), unlike MNE and LORETA,
both of which are smooth. In the following section, we will see how to
solve the regularized EEG inverse problem when the regularization function
involved is nonsmooth.

3.4 Solving the regularized nonsmooth EEG
inverse problem

A standand approach to deal with the nonsmoothness introduced by
the f1, f21, f21 + £1 and /, regularization functions is to reformulate
the regularization problem as a second-order cone programming (SOCP)
problem [Haufe et al., 2011] and use interior point-based solvers. However,
interior point-based methods can not handle large scale problems, which
is the case of large EEG inverse problems involving thousands of sources.
Another approach is to try to solve the nonsmooth problem directly, using
general nonsmooth optimization methods, for instance, the subgradient
method [D. Bertsekas, 1999]. This method can be used if a subgradient
of the objective function can be computed efficiently [Bach et al., 2011].
However, its convergence rate is, in practice, slow (O(1/v'k)), where k is the
iteration counter. In this thesis, in order to tackle the regularized nonsmooth
EEG inverse problem, we depart from these optimization methods and use
instead efficient first-order nonsmooth optimization methods [Combettes &
Wajs, 2005; Combettes & Pesquet, 2011; Beck & Teboulle, 2009]: forward-
backward splitting methods. These methods are also called proximal
splitting because the nonsmooth function is involved via its proximity
operator, which is defined as follows:

Definition 3.4.1. Prozimity operator. The prozimity operator [Moreau,
1965] corresponding to a convex function F is a mapping from RY to itself
and is defined as follows:

1
proxp(Z) = argmin {F(X) + §||X - Z||2} (3.25)
X

where ||- || denotes the Fuclidean norm. Note that the proximity operator is
well defined, because the above minimum exists and is unique.
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Forward-backward splitting methods were first introduced in the EEG
inverse problem by [Gramfort et al., 2011], where they used them to solve
nonsmooth optimization problems resulting from the use of the {3 1-norm
penalty function. These methods have drawn increasing attention in the
EEG, machine learning, and signal processing community, especially because
of their convergence rates and their ability to deal with large problems
[Combettes & Pesquet, 2011; Nesterov, 2007; S. J. Wright et al., 2009].

3.4.1 Forward-Backward splitting methods

Forward-backward splitting methods (also called proximal splitting
methods) are specifically tailored to solve an optimization problem of the
form

Ininismize F(S) +Q(S) (3.26)

where F(S) is a smooth convex function, and Q(S) is also a convex
function, but nonsmooth (in the case of the regularized EEG inverse
problem, F(S) = 3||AS — Y%, whereas Q(S) is one of the nonsmooth
regularization functions mentioned in the previous section). From convex
analysis [D. Bertsekas, 1999], we know that S is a minimizer of (3.26) if and
only if 0 € (F + Q)(S), where O(F + )(S) denotes the subdifferential of

(F+ Q) at S. This implies the following [Combettes & Wajs, 2005]:

0€d(F+Q)(S) & 0e€{I0F(S)+0S)}
& —VF(S) € 9Q(S)
& —yVE(S) € v00(S)

& (S—9VFE(S)) —S € 0yQ(S)

Taking into account the following subdifferential-proximity operator
relationship, X € 0G(Z) & Z = prox,(X + Z)[Micchelli et al., 2011], we
get the following:

S = prox,o(S — YV F(S)) (3.27)

Equation (3.27) suggests that we can solve (3.26) using a fixed point
iteration:
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Sk+1 = prox,q(Sg — YVF(S)) (3.28)

In optimization, (3.28) is known as forward-backward splitting process
[Combettes & Pesquet, 2011]. It consists of two steps: first, it performs
a forward gradient descend step ST = Sy — YV F(Sy) and then it performs
a backward step Siy1 = prox.o(Sj).

From (3.28), we can see the importance of the proximity operator
(associated to the nonsmooth regularization function y€2(S)) with respect
to the forward-backward splitting methods, since their main step is to
calculate it. If we would have a closed-form expression for such proximity
operator or if we could approximate it efficiently (with the approximation
errors decreasing at appropriate rates [Schmidt et al., 2011]), then we
could efficiently solve (3.28). This is precisely the case for the nonsmooth
regularization functions mentioned in the previous section, whose proximity
operators can be computed, in closed-form, as follows [Bach et al., 2011; Sra
et al., 2011]:

e Lasso:

[proxy|.|, (X)]ij = sgn(Xi;) (X4 — A)+

where (-); = max(-,0). This is the so-called componentwise soft-
thresholding operator [Donoho & Johnstone, 1995].

e Group Lasso:

X
X)) = —=—=—([|X;:lla = A
[prOX/\H'||2,1( )] " ||)(27 2(” ) ||2 )+

where X . denotes all the elements of the i-th row of the matrix X.
e Sparse Group Lasso:

proxy, ., (Vi.:)
[PrOx a0 (Ki = ||{ﬂ.u,1||2 (IViilla = A)-

e Trace norm:
[proxy., (X)) = UMD - )V’
where X = UDV ' is the SVD of the matrix X.
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Furthermore, when F' has a Lipschitz continuous gradient, there are
fast algorithms to solve (3.28). For instance, the Iterative Shrinkage
Thresholding Algorithm (ISTA) has a convergence rate of O(1/k), whereas
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), which is the
algorithm used in this thesis, has a convergence rate of O(1/k?) [Beck &
Teboulle, 2009].

3.4.2 Fast Iterative Shrinkage-Thresholding Algorithm

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck &
Teboulle, 2009] is an iterative method for solving the nonsmooth convex
optimization problem (3.26). It requires that the smooth function F'(S) has
a Lipschitz continuous gradient, meaning that:

IVE(S1) = VF(Sa)[l2 < LI[S1 — Saf2 (3.29)

where |[|-|[2 is the Euclidean norm (equivalent to the Frobenius norm for
matrices). This requirement is fulfilled by the smooth function involved in
the regularized EEG inverse problem:

IVE(S1) = VE(S2)ll} = [[AT(AS: —Y)—AT(AS; —Y)|3
< ATAJIZIS: — S2l3
= |[VF(S1) = VF(Sy)[l2 < L|S1— Salf2 (3.30)

where L = |||ATAl||2 is an upper bound on the Lipschitz constant of VF.
FISTA works as follows [Beck & Teboulle, 2009]:

Algorithm 1 FISTA with constant stepsize

Require: L (an upper bound on the Lipschitz constant of VF)
initialization: X =Sy € RV*T ¢, =1
repeat

Si = Proxaq (X%)
14+ \/1+483
lgt1 = B S—
tr—1
tkt1

X1 =Sk + < ) (Sk — Sk—1)

until stopping condition is met
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Instead of working with a constant L, it is also possible to work with a
local estimate of L, which can be obtained, for instance, using a backtracking
search routine [Beck & Teboulle, 2009].
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Chapter 4

Matrix factorization
approach to solve the EEG
inverse problem

In this chapter, we propose a new method to solve the EEG inverse
problem, which takes into account the structured sparsity and low rank
of the sources matrix S. The method is based on the factorization of the
matrix S as a product of a sparse coding matrix and a dense latent source
matrix. The structured sparse-low-rank structure is enforced by minimizing
a regularized functional that includes the /5 ;-norm of the coding matrix
and the squared Frobenius norm of the latent source matrix. We develop
an alternating optimization algorithm to solve the resulting nonsmooth-
nonconvex minimization problem. We analyze the convergence of the
optimization procedure, and we compare, under different synthetic scenarios,
the performance of our method with respect to the Group Lasso and Trace
Norm regularizers when they are applied directly to the target matrix.

4.1 Introduction

As we have seen in the previous chapter, the main task of the regularization
function, used in the regularized EEG inverse problem, is to induce
neurophysiological meaningful solutions, which take into account the
structured sparsity of the sources matrix: during a particular cognitive
task, only the sources related with the brain area involved in such a task
will be active, that is, the sources matrix will have few nonzero rows. In
this chapter, we propose a regularizer that takes into account, not only
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the structured sparsity of the sources matrix S, but also its low rank,
capturing this way the linear relationship between the active sources and
their corresponding neighbors. In order to do so, we propose a new method
based on matrix factorization and regularization, with the aim of recovering
the latent structure of the sources matrix. In the factorization, the first
matrix, which acts as a coding matrix, is penalized using the /5 ;-norm, and
the second one, which acts as a dense, full rank latent source matrix, is
penalized using the squared Frobenius norm.

In our approach, the resulting optimization problem is nonsmooth and
nonconvex. In order to handle the nonconvexity of the optimization problem,
we use an iterative alternating minimization approach: minimizing over
the coding matrix while maintaining fixed the latent source matrix and
viceversa. Both optimization problems are convex: the first one can be
solved using proximal splitting methods, while the second one can be solved
directly in terms of a matrix inversion.

4.2 Problem formulation

In order to induce structured sparse-low-rank solutions, we propose to
reformulate (3.2) using a matrix factorization approach, which involves
expressing the matrix S as the product of two matrices, S = BC, obtaining
the following nonlinear estimation model:

Y =ABC+E (4.1)

where B and C are penalized using the /5 1-norm and the squared Frobenius
norm, respectively. The resulting optimization problem can be stated as
follows:

B,C

N K
A A . 1 . P .
.6~ snguin{ Jlamo) - ¥1§ 3 (Simal + £3 1) |
=1 i=1

.1 P
— orguin {5 1A(BC) - Y1 + A (1Bl + § 1) } (1.2
B,C

where A > 0, p > 0, B € RVXK C ¢ REXT and B(4,:), C(i,:) denote the
i-th row of B and C, respectively. K < {N,T}, A, and p are parameters of
the model that must be adjusted.

42



In this formulation, which we denote as matrix factorization approach,
the f5 1-norm and the squared Frobenius norm induce structured sparsity
and smoothness in the rows of B and C, respectively, and therefore also in
the rows of S. Finally, the parameter K encloses the low rank of S:

rank(B) < min{N, K} = rank(B) < K

rank(C) < min{K,T} = rank(C) < K
rank(BC) < min{rank(B),rank(C)} < K
= rank(S) < K

Hence, the proposed regularization framework takes into account all the
prior knowledge about the structure of the target matrix S.

4.3 Optimization algorithm

4.3.1 Matrix factorization approach

In this section, we address the issue of implementing the learning method
(4.2) numerically. We propose the following reparametrization of (4.2):

B:\/EB,C:\/%)C N BC:(\/TpB)(\/lTpC>
- BC=BC (4.3)

Using (4.3) in the objective function of (4.2), we get

1 ~ ~ ~ p 1 ~
~|ABC) - Y[i+ A A\p B “|l—= CJ}
= JIABE) - Y12+ (VA Bl + 5l CIR )

1 - _ Ao =
= Z[|ABC) - Y2+ /B — 0 __IC|I?
2H (BC) Iz + Pl H2,1+2(\/)\—p)2H (R

1, == - 1, -
= gHA(BC)—YH%+>\HBH2,1+§HCH%

where A = A/ , and therefore, we get an optimization problem with only
one regularization parameter:

. 1
B,C = argmin {2||A(BC) ~Y|§+ B

1
l2,1 + §HC||% > 0}(4.4)
B,C
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The optimization problem (4.4) is a simultaneous minimization over
matrices B and C. For a fixed C, the minimum over B can be obtained
using FISTA. On the other hand, for a fixed B, the minimum over C can be
solved directly in terms of a matrix inversion. These observations suggest
an alternating minimization algorithm [Argyriou et al., 2008; Micchelli et
al., 2013]:

Algorithm 2 Alternating minimization algorithm to solve the matrix
factorization-regularization-based approach
Require: Y € RMXT A ¢ RMXN Cy e REXT K, )

repeat

.1 1
B, — arguin { S1A(BCev) - YIB + AlBlls + 5 ICealB ) (45

. 1 1

until stopping condition is met

In order to obtain the initialization matrix Cg, we use an approach based
on the singular value decomposition of Y. Without loss of generality, let us
work with (4.1) in the noiseless case:

Y = ABC (4.7)

From (4.7), we can see that {Y1,Yz2,...,YMm} C Row Space(C), where
Y; denotes the i-th row of Y.

Now, let us obtain a rank-K approximation of Y by using a truncated
SVD (truncated at the singular value o ):

Y ~ UMXKEKXKV[—ExT (4.8)
From the SVD theory [Horn & Johnson, 1990], we know that

{Y1,Y2,...,Ym} C Row Space(VT); therefore, we can choose Co = V.
Then, given Cg, we can start iterating using (4.5) and (4.6).

Minimization over B (fixed C)

The minimization over B can be stated as follows:
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B¢ = argmin {Fg(B) + A||B||2,1 ,A > 0} (4.9)
B

where Fg(B) = J||A(BCy—1)—Y|3+3|/C¢—13. This is a composite convex
optimization problem involving the sum of a smooth function (Fg(B)) and
a nonsmooth function (A||B||2,1). As we have seen in Section 3.4.1, this kind
of problem can be efficiently handled using FISTA. In order to apply FISTA
to solve (4.9), we first need to compute the following:

1. The gradient of the smooth function Fg(B)

Fu(B) = apgéB)

— AT(A(BC1) - Y)C[,

2. An upper bound on the Lipschitz constant (L) of VFg(B) (as was
mentioned in Section 3.4.2, it can also be estimated using a backtracking
search routine)

IVFg(B1) — VFg(B2)|3 = |[ATABC_1C/ , — ATAB;C;_1C/ |3
= |ATA(B; - By)Ci—1C/ |3

K
= > I(ATA(B; - By)(Ciar G )53
j=1

where (C;—1C/ ;); denotes the j-th column of the matrix C;_1C/ ;.
Taking into account that ||Qz|l2 < |||Q|||2]|z]]2, V2 € RN, vQ € RM*N
[Horn & Johnson, 1990}, we get

K
IVFp(B1) — VFa(B2)|3 > I(ATAB - B2))(Ci1C/Ly)5l5

j=1
K
< Z|\|ATA(B1 - By)ll[5 (Ci1CL )53
j=1
K
< [JATAB; - By)[[[3)_I(CerCy);l3
j=1
< |IATA(B: —By)||f3 |C—1C/y | (4.10)
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From (4.10), taking into account that the spectral norm is
submultiplicative (|||[PQ||l2 < [[|P|ll2 |||Q]ll2, VP € RMXN vQ ¢
RNV*T) it follows that

IVFg(B1) — VFa(B)[3 < [[[ATA|I3 [IIB1 — Ball3 | Ci-1C 4 |13

and using the fact that |||P|||2 < ||P||%, VP € RM*Y  we obtain

IVFg(B1) — VFg(B2)|3 1A A3 1By — Bal3 [Ci-1C/ 4 3

<

< LBy - B3 (4.11)
where L = [[[ATA]||2 [|Ci—1C[ |2

3. Finally, we need to compute the proximal operator associated to the

nonsmooth function A|- ||2,1, whose closed-form expression was given in
Section 3.4.1.

Minimization over C (fixed B)

The minimization over C can be stated as follows:

Ci = argénin {Fc(C)} (4.12)

where Fo(C) = 4[|A(B¢C) — Y|+ A|Bg||2,1 + 3[|C||? is a smooth function
of C. In what follows, we show how the minimum over C can be solved
directly in terms of a matrix inversion:

VFe(C)=0 = B{'AT(AB(C)—-Y)+C¢=0
-1
= Cy= [BJATABt +IK] B ATY (4.13)

The matrix [BtTATABt + IK] € REXK "and K is supposed to be small;
therefore, calculating its corresponding inverse matrix is quite cheap.
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4.4 Convergence analysis

We are going to analyze the convergence behavior of Algorithm 2 by using
the global convergence theory of iterative algorithms developed by Zangwill
[Zangwill, 1969]. Note that in this theory, the term ‘global convergence’
does not imply convergence to a global optimum for all initial points.
The property of global convergence expresses, in a sense, the certainty
that the algorithm converges to the solution set. Formally, an iterative
algorithm &, on the set X, is said to be globally convergent provided, for
any starting point xgp € X, the sequence {z,} generated by ¢ has a limit
point [Sriperumbudur & Lanckriet, 2009].

Before we state the Zangwill’s global convergence theorem, we need a
formal definition of iterative algorithm, as well as the definition of a set-
valued mapping (point-to-set mapping) [Zangwill, 1969]:

Definition 4.4.1. Set-valued mapping. Given two sets, X and Y, a set-
valued mapping defined on X, with range in the power set of Y, P(Y), is a
map, ®, which assigns to each v € X a subset (x) € P(Y),

:X o PY)

Definition 4.4.2. [terative algorithm. Let X be a set and zg € X a given
point. Then, an iterative algorithm &, with initial point xqg, is a set-valued

mapping
£: X = P(X)
which generates a sequence {xy}r- | via the rule 41 € {(xy), n=0,1,...

Theorem 4.4.1. [Zangwill, 1969] Zangwill’s global convergence theorem.
Let the set-valued mapping M,(z) : X — P(X) determine an algorithm
that given a point xo generates a sequence {x,},., through the iteration
Tnt1 € My(xy,). Also, let a solution set T' be given. Suppose

1. All point x,, are in a compact set S C X.
2. There is a continuous function o : X — R such that

(a) if © ¢ T, then a(z') < a(x) V' € My(x).
(b) if x €T, then a(z') < a(z) Vo' € My(z).

3. The map M,(x) is closed at x if x ¢ T.
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Then, the limit of any convergent subsequence of {xn}, o is in I'. That
is, accumulation points x* of the sequence x, lie in T'. Furthermore, a(xy,)
converges to o, and a(x*)=a* for all accumulation points x*.

In order to use Theorem 4.4.1 to analyze the convergence properties of
Algorithm 2, we will need the following definitions and theorems:

Definition 4.4.3. Compact set. A set X is said to be compact if any
sequence (or subsequence) contains a convergent subsequence whose limit
is in X. More explicitly, given a subsequence {m"}neﬁ i X, there exists a

]/\7\1 C N such that .
Tn — Too, N E Ny

with oo € X (we write convergence of subsequences as x, — Too, which is
equivalent to lim x, = Too ).
n—oo

Definition 4.4.4. Composite map. Let 14 : X =Y andllgp : Y — Z be
two set-valued mappings. The composite map g = Il o I14 which takes
points x € X to sets llo(x) C Z is defined by

Me(2):= | J Tsly)

yEHA(l’)

Definition 4.4.5. Closed map. A set-valued mapping I1 : X — P(Y) is
closed at xy € X provided

1. xp, > x0a8NM — 00, T, € X
2. Yn —> Yo SN — 00, Yn, Yo €Y

3. yn € (zy)

implies yo € I(xg). The map 11 is called closed on S C X provided it is
closed at each x € S.

Theorem 4.4.2. Composition of closed maps. Let 114 : X — Y and
I : Y — Z be two set-valued mappings. Suppose

1. 114 is closed at xq
2. Ilp is closed on I14(xg)

3. if xy — x9 and y, € Ua(zy), then there exists yo € Y, such that for
some sequence {yn].}, Yn; — Yo as j — 00.
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Then, the composite map Ilg = Ilg oIl 4 s closed at xy.

Lemma 4.4.1. [Gunawardana & Byrne, 2005] Given a real-valued function
defined on X XY, define the set-valued mapping ¥ : X — P(Y') by

U(z) = argmin h(zx,y)
yey

then, U is closed at x if ¥(x) is nonempty.

Theorem 4.4.3. Weierstrass theorem. If f is a real continuous function
on a compact set S C R™, then the problem

argmin { f(z), x € S}
TER™

has an optimal solution x* € S.

Now that we know the main building blocks of the global convergence
theory of iterative algorithms, we are in a position to state the convergence
theorem related to Algorithm 2. This convergence theorem is a direct
application of Theorem 4.4.1:

Theorem 4.4.4. Let ® denotes the iterative Algorithm 2, and suppose that
given Y € RMXT A ¢ RMXN By € RV*K Cy € REXT | K, and X, the
sequence {Byg, Ci}io, is generated and satisfies {Bgy1, Cey1} € @(By, Cy).
Also, let Qp and Q¢ denote the solution sets of (4.5) and (4.6), respectively:

1 1
0p = {BeRX|0co(FIABC) - YIE + Bl + 5lICcal} ) |

1 1
tc = {CeRNT| T (FIABO) - IR+ NiBilles + HlICI) =0}

Then, the limit of any convergent subsequence of {By, C¢}ioy is in Qp and
Qc.

Proof. The iterative algorithm ® can be decomposed into two well-defined
iterative algorithms ®p and ®¢:

.1 1
®4(C-1) = By = arguin { 5 |A(BCs-1) - Y|} + A[Blas + 51Cealf
(4.14)

.1 1
B (By) = Ci = arguin { 5 |A(BeC) ~ Y} + AlBulles + It
(4.15)
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As we can see from (4.14) and (4.15), at iteration ¢, the result of ®p
becomes the input of @, and at iteration ¢ + 1, the result of & becomes

the input of ®pg; therefore, we can express ® as the composition of ¢ and
®p, that is, P(Ci_1) = Po(Pp(Ci_1)):

.1 1
o (#5(Ci 1)) = Cs = arguin { 5 1A (BC) ~ Y} + AlBulles + I
(4.16)

) (1 1
subject to B¢ = argmin {QHA(BCt_l) — YH% + A||B||21 + 2[Ct_1H%}
B

Let IT" be the solution set of ®:

= {C e RFXT | 8Zgg’t) - o}

where Z(C, #) = 4[|A(B¢C) — Y|[2 + A[[By |2, + 3/|C 12

To prove this theorem by using Zangwill’s global convergence theorem,
we need to prove that all its corresponding assumptions are fulfilled. In order
to prove assumption 1, let us analyze the sequences {B¢};~; and {C¢};2;.
The sequence {Bg};~, is generated using FISTA, which is a convergent
algorithm (By — By) that guarantees that By € Qp [Beck & Teboulle,
2009; Combettes & Wajs, 2005]. Hence, using Definition 4.4.3, we can see
that the sequence {By};~, generated by (4.14) lies in a compact set. On the
other hand, the sequence {Cy},2, is generated by (4.13), which guarantees
that C¢ € Q¢. This sequence always converges to a point inside 2¢, which
implies that Q¢ also lies in a compact set. This concludes the proof of
assumption 1.

To prove assumption 2, let us use Z(C,t) as the function a(-); thus, in
order to verify the fulfillment of assumption 2, we need to prove that

(a) if Cy ¢ r, then Z(Ct+1,t + 1) < Z(Ct,t) vct+1 € (I)(Ct)
(b) if C¢ € I', then Z(Ct+1,t + 1) < Z(Ct,t) VCtJrl S (I)(Ct)

From (4.16), we can see that the sequence {Ct},°, will always lie in T
(because Cy is generated by (4.13)); therefore, we only need to prove (b).

Let C¢41 be the solution of (4.16) at iteration ¢ + 1; this implies
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1 1
SIlABe11Ce11) — Y[ + AlBesall21 + §||Ct+1|!%
1 1
< SllA(Be41C) — Y[F + ABerall21 + QIICII%, vC e RFT

1 1
< §|!A(Bt+1ct) — Y2 + AlBetall21 + §||Ct|f%
(4.17)

On the other hand, if B¢y1 is the solution of (4.14) at iteration ¢ + 1,
this implies

1 1
S[[A(Be11Ce) — Y[+ A[Berall2 + §|\Ct||%

1 1
< SIIABC) = YI[i + Al[Bl21 + 5 [|Cell, ¥B € RV

1 1
< §’|A(Btct)_YHI%“+)‘||Bt”2,1+§||ct||12? (4.18)

and from (4.17) and (4.18), we can prove assumption 2(b):

1 1
S [[ABt+1Ct41) — Y[E + A[Berall2 + §|!Ct+1||%

1 1
< SIA(BLCY) — VIR + AlBellas + 1 ICul B
Z(Ct-l-lat + 1) < Z(Ctvt)

In order to prove assumption 3, we need to prove that ® is closed at C
if C ¢ I'. To do so, we are going to use Theorem 4.4.2; therefore, we need
to prove that ®p and ®¢ are both closed maps: from (4.14) and (4.15),
we can see that their corresponding objective functions are both continuous
VB € RVXK and VC € REXT | respectively; hence, by using Weierstrass
Theorem and Lemma 4.4.1, we can conclude that ® 5 and &+ are both closed
maps for any C¢_1 and By, respectively, and by using Theorem 4.4.2, we
can conclude that ® is closed on any Ci_j.

Finally, from all the previous proofs and Zangwill’s global convergence
theorem, it follows that the limit of any convergent subsequence of
{B¢,Ct}y2y is in Qp and Qc.
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4.5 Numerical experiments

In this section, we evaluate the performance of the matrix factorization
approach and compare it with the Group Lasso regularizer:

N
. 1
S = argmin{ZHAS—YH%—i—)\E \S(z',:)||2,A>o} (4.19)
S i=1

and the Trace Norm regularizer:

. 1 a
S = argmin{QHAS—YH%+)\ZU@-(S) ,)\>O} (4.20)
S i=1

where ¢ = min {N, T} and 0;(S) denotes the i-th singular value of S. Both
problems (4.19) and (4.20) were solved using the FISTA implementation of
the SPArse Modeling Software (SPAMS) [Jenatton et al., 2010; Mairal et
al., 2010].

In order to have a reproducible comparison of the different regularization
approaches, we generated two synthetic scenarios:

o M = 128 EEG electrodes, T = 161 time instants, N = 413 current
sources within the brain, but only 12 of them are active: 4 main
active sources with their corresponding 2 nearest neighbor sources also
active. The other 401 sources are not active (zero electrical activity).
Therefore, in this scenario, the synthetic matrix S is a structured
sparse matrix with only 12 nonzero rows (the rows associated to the
active sources).

e M = 128 EEG electrodes, T" = 161 time instants, N = 2052 current
sources within the brain, but only 40 of them are active: 4 main
active sources with their corresponding 9 nearest neighbor sources also
active. The other 2012 sources are not active (zero electrical activity).
Therefore, in this scenario, the synthetic matrix S is a structured
sparse matrix with only 40 nonzero rows (the rows associated to the
active sources).

In both scenarios, the simulated electrical activity (simulated waveforms)
associated to the four Main Active Sources (MAS) was obtained from a
face perception-evoked potential study [Friston et al., 2008; Henson et al.,
2003]. To obtain the simulated electrical activity associated to each one
of the active neighbor sources, we simply set it as a scaled version of the
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electrical activity of its corresponding nearest MAS (with a scaled factor
equal to 0.5). Hence, there is a linear relation between the four MAS and
their corresponding nearest neighbor sources; therefore, in both scenarios,
the rank of the synthetic matrix S is equal to 4.

As forward model, we used a three-shell spherical head model. To obtain
the values of each one of the components of the lead-field matrix A, we solved
the EEG forward problem using the SPM software [Litvak et al., 2011].

Finally, the simulated EEG signals were generated according to (3.2),
where E is a Gaussian noise G(0,02I) whose variance was set to satisfy a

Signal to Noise Ratio (SNR) = 201log;, (H&SHHFF) = 10 dB. Summarizing,

our synthetic problems can be stated as follows: Given matrices Y €
RIZ8XI61 and A € R8N recover the synthetic sources matrix 8 € RV *161,
According to this, in both scenarios, we want to estimate a sources matrix
which is structured sparse and low rank, with its rank equal to the number
of MAS simulated. The activity of the four MAS, the synthetic EEG
measurements as well as the sparsity pattern of the synthetic sources matrix
are shown in Figures 4.1 and 4.2 (Ground Truth).

We have used cross-validation to select the regularization parameter
A associated to the Group Lasso and Trace Norm regularizers, as well as
the parameters A and K in the case of the Matrix Factorization approach
(K € [1,2,3,...,10], A € [1073,1072,1071,...,10%]): the rows of Y are
randomly partitioned into three groups of approximately equal size. Each
union of two groups forms a train set (TrS), while the remaining group forms
a test set (TS). This procedure is carried out three times, each time selecting
a different test group. Inverse reconstructions are carried out based on the
training sets, obtaining different regression matrices S,. We then evaluate
the root mean square error (RMSE) using the test sets and the regression
matrices SZ

3
1 1 A

RMSE : = ——————=|A71s,Si — Yrg,||r
3 ; ( Mrs, x T

where Yrg, € RMrs;xT and Arg, € RM7s; XN (TS; denotes the index set of
the rows that belongs to the i-th test set). Once the estimated matrix S has
been found, we apply a threshold to remove spurious sources with almost
zero activity. We have set this threshold equal to the 1% of the mean energy
of all the sources.
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4.5.1 Performance evaluation

In order to evaluate the performance of the regularizers, we compare the
waveform and localization of the four MAS present in the synthetic sources
matrix against the four MAS estimated by each one of the regularizers.
We also compare the sparsity pattern of the estimated sources matrix S
against the sparsity pattern of the synthetic sources matrix S, as well as the
synthetic and predicted EEG measurements.

As we can see from Figures 4.1 and 4.2, the Group Lasso and Trace Norm
regularizers do not reveal the correct number of linear independent sources,
while the Matrix Factorization does: it finds out four linear independent
sources in both scenarios. To select such four linear independent MAS, we
find a basis for the Column Space(ST) (using a QR factorization), where
S is a matrix whose rows are a sorted version of the rows of S (sorted in
a descending order of their corresponding energy value). To get the four
linear independent MAS estimated by the Group Lasso and Trace Norm
regularizers, we followed the same procedure described before and retained
the first four components of the basis of the Column Space(ST).

According to Figures 4.1 and 4.2, the Matrix Factorization approach is
able to estimate a sources matrix with the correct rank and whose sparsity
pattern follows closely the sparsity pattern of the true sources matrix, that
is, both matrices have a similar structure, which implies that the proposed
approach is able to induce the desired solution: a row-structured sparse
matrix, whose nonzero rows encode the linear relationship between the
active sources and their corresponding nearest neighbor sources. Using the
estimated sources matrix S, the Matrix Factorization approach is also able
to predict a smooth version of the noisy EEG, and the waveforms of the
estimated MAS follow closely the waveforms of the true MAS.

As we can see from Figures 4.1 and 4.2, Group Lasso is able to estimate
a sources matrix with a similar row-sparsity pattern to the true sources
matrix, but it does not take into account the linear relationship between
the nonzero rows, which can be seen from the rank of the estimated sources
matrix. The waveforms of the estimated MAS are very similar to the true
MAS, but they are not so smooth as the ones estimated by the Matrix
Factorization approach.

As we can see from Figures 4.1 and 4.2, the Trace Norm regularizer
takes into account the linear relationship of the active sources by inducing
solutions which are low rank, but, on the other hand, it does not take into
account the structured sparsity pattern of the sources matrix. All of this
implies that the Trace Norm tends to induce low rank dense solutions, which
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are not biologically plausible.

According to Figures 4.3(a) and 4.3(b), the position of the MAS,
obtained from the matrices estimated using the Matrix Factorization
approach, the Group Lasso, and Trace Norm regularizers, respectively,
follows closely the position of the true MAS. Nevertheless, it is worth to
highlight that before selecting the MAS, we first need an accurate estimation
of their number, and the Group Lasso and Trace Norm regularizers were not
able to get a precise estimate of it, only the Matrix Factorization were able
to.

From these results, we can see that the proposed Matrix Factorization
approach outperforms both the Group Lasso and Trace Norm regularizers.
The main reason for this is because it combines their two main features:
it combines the structured sparsity (from Group Lasso) and the low rank
(from Trace Norm) into one unified framework, which implies that it is
able to induce structured sparse-low-rank solutions which are biologically
plausible: few active sources, with linear relationships between them.
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Figure 4.1: Simulation results: waveforms of the MAS, EEG estimated and
sparsity pattern of the estimated sources matrix S. Experiment setup: 413
sources, 128 EEG electrodes, 161 time instants, 4 main active sources with
their corresponding 2 nearest neighbor sources also active.
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Figure 4.2: Simulation results: waveforms of the MAS, EEG estimated and
sparsity pattern of the estimated sources matrix S. Experiment setup: 2052
sources, 128 EEG electrodes, 161 time instants, 4 main active sources with
their corresponding 9 nearest neighbor sources also active.
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(a) N=413 sources.

(b) N=2052 sources.

Figure 4.3: Localization of the MAS. From left to right: Ground Truth,
Matrix Factorization, Group Lasso and Trace Norm.
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Chapter 5

Mobile brain scanners

Mobile brain scanning is a new neuroinformatics paradigm that combines
a wireless EEG neuroheadset, in charge of acquiring and transmitting the
electrical potentials measured on the scalp, with a mobile device, in charge of
receiving and processing these data to generate 3D cortical activation maps,
which show us the brain regions that are currently active. To generate such
activation maps, the mobile brain scanner needs to solve, as fast as possible,
the EEG inverse problem. Therefore, the EEG inverse solver is the most
important component of the system: it determines how fast is the scanning
process and how relieble are the active sources that it estimates. In this
chapter, we describe each one of the hardware and software components
of a mobile brain scanner and how they work together to generate the
cortical activation maps. We also mention the components that we have
selected to develop a working prototype of a mobile brain scanner, whose
implementation details will be explained in the following chapter.

5.1 Mobile brain scanner: hardware components

The hardware components of a mobile brain scanner consist in a wireless
EEG neuroheadset and one mobile device (smartphone or tablet). Unlike
fMRI, this mobile system can be used to study the brain on a wide variety
of scenarios, in which the person being scanned can move and act under
naturalistic conditions. Besides, it has direct access to the brain electrical
activity, which is useful to study the dynamics of the brain processes on the
millisecond timescale on which neurons operate.
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Figure 5.1: Main components of a mobile brain scanning system.

5.1.1 Wireless EEG neuroheadset

The wireless EEG neuroheadset is in charge on acquiring and transmitting
the electrical potentials measured on the scalp. Recently, several low-
cost wireless EEG neuroheadsets have been made available, including the
Emotiv EPOC neuroheadset!, NeuroSky?, Muse® and Melon* (see Figure
5.2). These EEG platforms support applications ranging from emotion
recognition, Brain Computer Interface (BCI), game control, stress reduction,
cognitive training, to sleep monitoring.

(a) Emotiv EPOC (b) NeuroSky

\

(¢) Muse (d) Melon
Figure 5.2: Wireless EEG neuroheadsets.

Throughout this thesis we use the Emotiv EPOC neuroheadset. This

http:/ /www.emotiv.com
http:/ /neurosky.com
3http://www.choosemuse.com
“http://www.thinkmelon.com
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EEG neuroheadset includes 14 EEG sensors, see Figure 5.3, aligned with
the 10-20 system (AF3, F7, F3, FC5, T7, P7, O1, 02, P8, T8, FC6, F4, F8,
AF4), plus to sensors (P3 and P4) which work as ground reference point
and feed-forward reference to help reducing external electrical interference,
respectively.

Figure 5.3: Emotiv EPOC neuroheadset sensor positions.

The Emotiv EPOC neuroheadset uses felt-based sensors with gold-plated
contacts, which need to be soaked in saline solution before connecting
each sensor to the scalp (to improve the electrical conductivity). Its
corresponding sampling rate is 128 Hz (downsampled from 2048 Hz
internally) and its effective bandwidth is 0.2-45 Hz’.

The low-resolution recordings and artifacts induced in a mobile setup
both present significant challenges. Nevertheless, the Emotiv EPOC
neuroheadset has proven to be a valid alternative to laboratory ERP systems
for recording reliable ERP components, such as the P300 [Debener et al.,
2012] and the mismatch negativity (MMN) [Badcock et al., 2013]. It has
also been used successfully in a wide variety of applications, including BCI
[Campbell et al., 2010], neurofeedback [Stopczynski, Stahlhut, Petersen, et
al., 2014] as well as in the EEG inverse problem [Stopczynski, Stahlhut,
Larsen, et al., 2014].

5.1.2 Mobile device

The mobile device is in charge of receiving the electrical potentials sent
by the wireless EEG neuroheadset, processing such data to generate the
cortical activation maps and visualizing, using a 3D brain model, the brain

Shttp://emotiv.com/eeg/download_specs.php
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regions that are currently active. As mobile computing platform, in this
thesis we use the Samsung Galaxy Note I smartphone (Dual-core 1.4GHz
ARM cortex-A9 Processor, 1 GB RAM) and the Nexus 7 tablet (Quad-
core 1.3GHz Nvidia Tegra3 Processor, 1 GB RAM), both with an Android
Operating System (OS).

(a) Samsung (b) Nexus 7
Galaxy Note I

Figure 5.4: Mobile devices.

In order to communicate the Emotiv EPOC neuroheadset with the
smartphone/tablet, we need to use the Emotiv USB dongle, which can be
connected to the mobile device using a micro USB OTG cable, as shown in
Figure 5.5.

"

| .

Figure 5.5: From left to right: Emotiv EPOC neuroheadset, Emotiv USB
dongle, micro USB OTG cable and Nexus 7 tablet.
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To interact with any electronic gadget, the mobile device requires drivers,
either standard kernel modules or propietary drivers created by the vendor.
In the case of the Emotiv EPOC, to interact with it, the mobile device
requires the HIDRAW driver, which provides a raw interface to USB and
Bluetooth Human Interface Devices (HIDs). It also requires USB host mode
enabled, to power the USB bus and enumerate connected USB devices (USB
host mode is supported in Android 3.1 and higher). Most desktop Linux
distributions have both by default, but currently most Android mobile
devices support only USB host mode out-of-the-box. Therefore, we need
to build and install a custom Android kernel with the HIDRAW module
enabled. The basic steps to build a custom kernel are shown in Figure 5.6
(for a more detailed overview on compiling and flashing Android kernels see
[Yaghmour, 2013] and references therein). In this thesis, we built a custom
kernel for the Nexus 7 tablet, which is based on the Android 4.4.2 factory
image® (this is the latest Android OS version in the time of writing this
thesis). For the Samsung Galaxy Note I, we used the custom kernel image
provided by the Smartphone Brain Scanner project’.

[ Unlock the Bootloader ]

|

Download the linux

kernel of the mobile device

{

Compile the kernel with the

HIDRAW module enabled

!

Flash the kernel

to the mobile device

l

[ Enable root privileges ]

Figure 5.6: Low level prerequisites to use the Emotiv EPOC neuroheadset
on Android devices.

Shttps://developers.google.com/android /nexus/images?hl=es
"https://github.com/SmartphoneBrainScanner /smartphonebrainscanner2-
core/wiki/Downloads
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5.2 Mobile brain scanner: software framework

A mobile brain scanner requires a software framework, which eases to
program the interaction between the wireless EEG neuroheadset and the
mobile device. Using this software framework, we could access the raw EEG
data sent by the wireless EEG neuroheadset, we could apply digital signal
processing methods to the raw EEG data (e.g., filtering data), we could
apply an EEG inverse solver to the raw EEG data in order to generate 3D
cortical activation maps, which would be visualized on the mobile device,
showing us the brain regions that are currently active. As we have seen
previously, the main task of a mobile brain scanner is to scan the brain and
to estimate the active sources whose activity is producing the recorded EEG
data. Therefore, the most important component of the software framework
is the EEG inverse solver, because it determines how fast is the scanning
process and how reliable are the active sources that it estimates. According
to this, the component that makes the main difference between two mobile
brain scanners is the EEG inverse solver that they use.

The software framework used in this thesis is the Smartphone Brain
Scanner framework® (SBS2) [Stopczynski et al., 2011]. SBS2 is aimed for a
modular framework, allowing for adding and modifying data acquisition and
processing blocks. The modules are created as C++ classes and integrated
directly with the core of the framework [Stopczynski, Stahlhut, Petersen, et
al., 2014]. SBS2 allows to work directly with the raw EEG data, which can
be recorded, including timestamped events (stimuli onsets, user response,
etc). It has several signal processing methods, including filtering, and the
Fast Fourier Transform, among others [Stopczynski, Stahlhut, Larsen, et
al., 2014]. The EEG inverse solver currently implemented in the SBS2
framework is the LORETA EEG inverse solver [R. D. Pascual-Marqui et
al., 1994]. In this thesis we propose and develop a mobile brain scanner
based on the matrix factorization EEG inverse solver described in Chapter
4. The implementation details of the proposed mobile brain scanner will be
explained in the following chapter.

SBS2 is written in Qt°, a cross-platform application and UI framework
for developers using C++4 or QML (a CSS-JavaScript like language). Qt
is currently supported on the main desktop operating systems (Linux, Mac
OS, Windows), as well as on mobile devices (Android, Blackberry10, iOS
and partially on Windows phones). This enables us to program one SBS2

Shttps://github.com/SmartphoneBrainScanner
“http://qt-project.org/
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application and compile and use the same application on different target
platforms.

Figure 5.7: Running SBS2 on multiple target platforms.
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Chapter 6

Development of a mobile
brain scanner using the
matrix factorization
approach

As we have seen in Chapter 5, the main component of a mobile brain scanner
is the EEG inverse solver, which is in charge of estimating the active sources
from the recorded EEG data. In this chapter, we address the development
of a mobile brain scanner based on the matrix factorization approach to
solve the EEG inverse problem, which was described in Chapter 4. In this
chapter we explain how to adapt the batch matrix factorization approach
into an online approach, such that it can be used in a mobile brain scanner to
estimate the active sources as fast as possible. We also show an experimental
validation of the proposed approach, using the right index finger tapping
experiment.

6.1 Implementing an online version of the matrix
factorization approach

The matrix factorization approach, described in Chapter 4, works in batch
mode: it receives the whole EEG matrix Y, collected during a complete EEG
experiment, and then estimates the sources matrix S using the alternating
optimization algorithm 2. All this process is done in offline mode, this way,
the time to compute the best parameters of the algorithm (the regularization
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parameter (M), the estimated rank (/) and the matrices B and C) is not
a concern. Moreover, we do not have any restriction on the computational
resources used to run the algorithm, we can use cross-validation on a desktop
machine or in a High Performance Computing (HPC) cluster to find the best
parameters of the algorithm. However, as soon as we move to a mobile real-
time scenario, like the one established by a mobile brain scanner, both, the
time to compute the best parameters, as well as the computational resources,
become into main restrictions to take into account: we receive EEG data
continuously, and we need to be able to estimate and visualize the active
sources as fast as possible, all this in a resources restricted device such as a
smartphone or a tablet.

6.1.1 Selecting the dimensions of Y and S

In order to adapt the batch matrix factorization approach into an online
approach, such that it can be used in a mobile brain scanner to estimate the
active sources as fast as possible, we need to work with small matrices Y and
S, whose dimensions need to be selected properly. The EEG matrix Y has
14 rows (the number of EEG sensors of the Emotiv EPOC neuroheadset)
and T columns, which correspond to the number of EEG packets to collect
(in this context, we call EEG packet to a column vector (14 x 1) whose
i-th entry corresponds to the electrical potential measured by the i-th EEG
sensor). On the other hand, the sources matrix S has N rows (the number of
sources to work with) and 7' columns. In the matrix factorization approach,
the sources matrix is decomposed as the product S = BC, where B € RV*K
and C € REXT,

To decide the number of EEG packets to collect (7') and the number
of sources to work with (N), we analyzed the time required to estimate
the matrices B and C, each time using a different value for T and N
(T € {2,4,8}; N € {1028,2028}; and fixing K = T to estimate C, which
involved finding the inverse of a K x K matrix, as fast as possible). The
results can be seen in Figures 6.1, 6.2, 6.3 and 6.4. In each one of these figures
we can see the mean time plus/minus one standard deviation, required
to estimate the corresponding matrix using a Nexus 7 tablet, a Samsung
Galaxy Note I smartphone and a Laptop (Intel Core i7-3630QM CPU at
2.4GHz, running Ubuntu 13.04). The average time was obtained using 100
repetitions.

From Figures 6.1, 6.2, 6.3 and 6.4, we can see that the fastest times
were obtained, as expected, using the Laptop. With respect to the mobile
devices, we can see that the Samsung Galaxy Note I was a little bit faster
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Figure 6.1: Average time to estimate C, using N = 1028 sources.
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Figure 6.2: Average time to estimate C, using N = 2028 sources.
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Figure 6.3: Average time to estimate B, using N = 1028 sources.
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Figure 6.4: Average time to estimate B, using N = 2028 sources.
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than the Nexus 7. This result, which seems strange at first sight (given the
computational resources of each device), can, in fact, be explained taking
into account that each time we estimated B and C, we used only one CPU
per estimation task, and each one of the Samsung Galaxy Note I cores runs
at 1.4GHz, while each one of the Nexus 7 cores runs at 1.3GHz, but they
are limited to 1.2GHz when there is more than one core in use. These
figures also show that the most time consuming task is the estimation of
B, while the estimation of C can be done really fast. By analyzing these
results, we decided to work with N = 1028 sources, collecting T' = K = 4
EEG packets, that is, we decided to work with matrices of the following
dimensions: Y € R'** and S € R!028X4 The way we store the received
EEG packets to create the matrix Y is shown in Figure 6.5. Using these
values for N, T and K, according to Figures 6.1 and 6.3, we can estimate (in
average) the matrix C in less that 10 ms and the matrix B in less that 100
ms (to accelerate the convergence of the FISTA algorithm used to estimate
B (explained in Section 3.4.2), we use warm-restart, taking the previous
value of B as a starting point for the new estimation).

Get the next
» EEG packet
/
/
/

— Y=

! Get the next -
EEG packet Y=

Get the next -
EEG packet Y=

\
\

\
Get the next -
~ EEG packet Y=

EEG matrix ready to be processed

Figure 6.5: Storing EEG packets: every time a new EEG packet is received,
we move the columns of Y to the right, this way we create a space in
the first column for storing the new EEG packet received. Using this
storing procedure, we guarantee to always have an EEG matrix ready to
be processed.
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6.1.2 Updating B and C

Given that the active sources’ electrical activity changes over time (temporal
dynamics enconded in C) quicker than their corresponding spatial locations
(spatial dynamics enconded in B), as it is shown in Figure 6.6, the matrix C
needs to be estimated more often than the matrix B. In order to accomplish
this, we propose to compute B and C in parallel, using one thread for
estimating B and one thread for estimating C. This gives as a result an
online multi-threading matrix factorization approach, whose flow diagram
is show in Figure 6.7. In this figure, we can see that the Callback object
is in charge of coordinating all the processes: assemble the EEG matrix Y,
receive and send the signals necessary for coordinating the threads in charge
of estimating B and C, and request an update of the 3D brain model each
time a new sources matrix is available.

Same active set

Same active set

State change

Figure 6.6: Spatial and temporal dynamics of the active sources: the set of
active sources (red circles) changes slower than their corresponding electrical
activity (green line).
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Send matrices Y and B
to estimate a new C

Send matrices Y and C
to estimate a new B

New C available

New B available

Send matrices Y and B
to estimate a new C

New C available

Send matrices Y and B
to estimate a new C

Send matrices Y and C
to estimate a new B

Figure 6.7: Online multi-threading matrix factorization approach.

6.1.3 Updating the regularization parameter \

In the batch matrix factorization approach, we select A using cross-
validation, but in an online scenario this presents a big challenge:

e A big range [Amin, Amax| to analyze, would imply a lot of computations
for a constrained resource device, such as a mobile device.

e It is difficult to select the appropiate range [Amin, Amax] @ priori such
that contains the optimum value of A. In the offline scenario, we can
work with a big logarithmic range in the cross-validation, and if the
best A found is equal to either Apin or Amax, we simply increase the
searching range and run the cross-validation process again in order to
verify that we are obtaining the optimum value for the parameter A,
but, as we can see this is not feasible in an online scenario.

Therefore, in an online scenario would be much better to tune A\
automatically as a function of the EEG data that we are processing. As
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we will see in the following, this can be done by analyzing the dual function
of the optimization problem associated to B. For readibility, let us recall
here the optimization problem for estimating B:

mingnize F(ABC) + \2(B) ,A >0 (6.1)
where F(ABC) = [|[ABC — Y|/}, Q(B) = | B||2,; and A and C are fixed

matrices (we can get rid of the factor 3[/C||% because it does not depend on
B). We can rewrite this problem as a constrained optimization problem:

miréin%ize F(Z) + X\Q(B)
subject to Z = ABC (6.2)

where F(Z) = %||Z — Y||3. The Lagrangian function associated to this
problem is
L(B,Z,v) = F(Z) + Q(B) + (v, ABC — Z)

where (P, Q) denotes the standard inner product for matrices:
(P,Q) = trace(P'Q), P,Q € RM*¥

To obtain the dual function g(v) associated to (6.2), we need to find the
infimum of L(B,Z,v) with respect to B and Z:

gv) = éI}féL(B,Z,l/)
— i {~ ((v,Z) ~ F(Z))} + inf {— ((—ATVCT,B) - AQ(B))}

= —sup{((v,Z) ~ F(2))} ~ sup { (<fATuCT, B) - AQ(B)) }

= —F*(y) -\ <—/1\AT1/CT> (6.3)
where F* and * denote the conjugate function of F and €2, respectively:
F*(v) = %HV”% + trace(r'Y)
(o) - {1 e

Note that Q* (—%ATVCT) is the indicator function of the unit-ball
associated to the dual norm of Q (the dual norm associated to |[-||2,1 is

[RIERSSE
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The primal problem (6.2) is convex and satisfies the Slater’s conditions,
therefore strong duality holds and the KKT conditions also holds:

ABC = Z (6.4)
Viz(Z,v) = 0 (6.5)
0 ¢ 9{L(B,v)} (6.6)

where Lz (Z,v) = F(Z) — (v,Z) and Lg(B,v) = (ATvCT B) + \Q(B).
Using (6.5) we get the following:

Vigz(Z,v)=VF(Z) —v = 0
= v=VF(Z)=Z-Y
v=ABC-Y (6.7)

We need to guarantee that g(v) is finite. In order to guarantee this, we
use the condition that appears in the definition of 2* (—%ATUCT), in
combination with (6.7):

1
-5
|AT (ABC-Y)C'|200

AvC 200

IN

1

IN

A

Let us denote by Apax the value of A that yields the null solution B = 0,
hence:
”ATYCTHQ,OO = )\max (68)

Note that using any value of A greater than A .x will yield the null solution
B = 0. As we can see, A\pax depends on the EEG matrix Y, as well as on
the matrices A and C, therefore, it could be used to tune A\. We propose to
tune A as follows:

A = factor - Apax (6.9)

where factor € (0,1) is a scalar that the user should specify, and denotes the
percentage of the Ap.x to be used as regularization parameter. Note that
(6.9) should be evaluated before running FISTA for estimating B. This
way, every time we need to update B, we will use a different regularization
parameter that depends on the geometry of the problem (the lead-field
matrix A), the current EEG matrix that we are processing (Y), as well
as the current estimation of the temporal dynamics of the active sources
(C).

Using the online multi-threading matrix factorization approach showed
in Figure 6.7, together with (6.9) for updating the regularization parameter
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A, we can update the temporal and spatial dynamics of the active sources
several times a second. Figures 6.8 and 6.9 show a snapshot of the Samsung
Galaxy Note I and the Nexus 7 while running the proposed online multi-
threading matrix factorization EEG inverse solver.

Figure 6.8: Online matrix factorization solver running on the Samsung
Galaxy Note I (gray = no activity, blue = low activity, green = medium
activity, red = high activity).

Figure 6.9: Online matrix factorization solver running on the Nexus 7.

In order to implement this solver as a C++ module, we use the Eigen
library [Guennebaud et al., 2010], which is a C++ template library for linear
algebra. This library supports all the matrix sizes, all the standard numeric
types and includes various matrix decompositions. It performs explicit

76



vectorization for SSE 2/3/4, ARM NEON and AltiVec instruction sets,
and fixed-sized matrices are fully optimized: dynamic memory allocation
is avoided and the loops are unrolled when that makes sense. This library is
very friendly to use with the Android OS, it does not have any dependencies
other than the C++ standard library. Besides, Eigen is a pure template
library defined in the headers, therefore there is no binary library to link to.

6.2 Experimental validation: right index finger
tapping

The exact validation of EEG inverse methods is not possible due to the
lack of a ground truth. Therefore, a standard way of evaluating inverse
methods is to assess their ability to estimate known activity. This is done
here by estimating the electrical activity of the active sources related to
the right index finger tapping experiment. It is known that the voluntary
movement of one finger of the right hand leads to a suppression in the
electrical activity of the alpha band (8-13 Hz) over the left pre-motor region.
Hence, in this section, we use the online matrix factorization approach to
estimate the electrical activity of the active sources that belong to the left
pre-motor region, in order to verify if our approach finds the expected
suppression in the electrical activity. We compare the performance of
the online matrix factorization approach against the performance of the
LORETA EEG inverse solver (explained in Section 3.3.2), which is the one
used in the standard mobile brain scanner currently implemented in the
SBS2 framework. We also compare, visually, the position of the active
sources found in the left pre-motor region using fMRI [Taniguchi et al.,
2000] against the ones found using the online matrix factorization and the
LORETA EEG inverse solvers, respectively.

6.2.1 Experimental setup

The subject sat comfortably in front of a table, with his right hand resting
on the table. The hand was positioned palm down, so that the index finger
could be moved to tap on the table, as it is shown in Figure 6.10. A motor
sequence is defined by a successive tapping of the index finger. Visual
stimuli were presented at a constant viewing distance, and consisted of a
“X” to indicate the starting of the motor sequence. The subject was asked
to continue tapping until the word “Relax” appears on the screen. We
presented 100 times the visual stimuli.
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Figure 6.10: Finger tapping experiment using the Samsung Galaxy Note I
as recording device.

6.2.2 Performance evaluation

Figure 6.11 shows how the alpha activity is suppressed over time in the left
pre-motor region, which corresponds to the Pre-central Left AAL region of
the Automated Anatomical Labeling (AAL) brain atlas [Tzourio-Mazoyer
et al., 2002]. This demostrates the ability of the online matrix factorization
approach and the LORETA EEG inverse solver to reconstruct meaningful
activity within the given region. However, the suppression, as well as the
recovery, is more pronounced in the alpha activity estimated using the online
matrix factorization approach. This rapid and pronounced change of state,
suppression-recovery, is the expected behavior, according to [Pfurtscheller
& Lopes da Silva, 1999]. This figure also shows that the alpha activity is
suppressed as soon as the finger starts to move. Both responses shown in the
Figure 6.11 were generated as the average response over the 100 trials of the
motor sequence. Note that, while the result is presented as an average over
runs, the sources localization was carried out in online mode with model
parameters and sources matrix estimated online.

Figures 6.12 and 6.13 show the localization of the active sources in the
Pre-central Left AAL region during the right index finger tapping. As we
can see from Figure 6.13, LORETA does not promote sparse solutions, and
according to it all the sources in the Pre-central Left AAL region are active
during the right index finger tapping. Unlike LORETA, the online matrix
factorization approach obtains a sparse and focal solution. By comparing
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Figure 6.11: Right index finger tapping experiment using the Emotiv EPOC
neuroheadset. The black line indicates the starting of the finger movement.

Figures 6.12 and 6.13 with Figure 6.14, which shows the fMRI statistical
image of power changes in the alpha band during the right index finger
movement, we can see that both methods found active sources in the area
highlighted by the fMRI image. Nevertheless, the solution found by the
online matrix factorization approach is as focal as the active region shown
in the statistical image, unlike the solution found by LORETA, which is too
diffuse, hence proving the efectiveness of the proposed approach.
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(a) Axial view of the Pre-central (b) Sagittal view of the Pre-central Left AAL
Left AAL region region

Figure 6.12: Active sources estimated by the online matrix factorization
approach.

(a) Axial view of the Pre-central (b) Sagittal view of the Pre-central Left AAL
Left AAL region region

Figure 6.13: Active sources estimated by the LORETA EEG inverse solver.
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right index finger extension

Figure 6.14: fMRI statistical image of power changes in the alpha band
during the right index finger movement (adapted from [Taniguchi et al.,
20001).

81



82



Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis we have addressed the development of a mobile brain scanner,
which is based on a wireless EEG neuroheadset, in charge of acquiring and
transmitting the electrical potential measured on the scalp, and one mobile
device (smartphone or tablet), in charge of receiving and processing these
data in order to estimate and show, using a 3D brain model, the cortical
areas that are currently active.

Unlike fMRI, this mobile brain scanner has direct access to the brain
electrical activity, hence it is not susceptible to influence by non-neural
changes in the body; it has high temporal resolution, which enable to scan
the brain on the millisecond timescale on which neurons operate; and it can
be used on a wide variety of scenarios, in which the person being scanned
can move and act normally, without being restricted to a tiny closed space
(like the MRI scanner), which enable to study the brain under naturalistic
conditions.

To estimate the cortical areas that are currently active, the mobile
brain scanner needs to solve an electromagnetic inverse problem called the
EEG inverse problem. This problem is underdetermined, ill-posed and has
infinite solutions, mainly because of the small number of EEG electrodes
available to capture the electrical activity produced by thousands of brain
current sources and the low spatial resolution of the EEG caused by the
low conductivity of the skull, which blurs the electrical potential on the
scalp. To solve this problem, in this thesis we have proposed a new method
based on regularization theory, which involves the replacement of the original
problem with a nearby well-posed problem whose solution approximates the
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required solution. To reduce the complexity of this problem, in this thesis
we assumed that the number of active sources is small, that is, we assumed
that the set of active sources is a sparse set. Additionally, we also assumed a
linear relationship between the electrical activity of the main active sources
and the electrical activity that they induce on the surrounding neighbors.
The proposed method is able to handle, explicitly, the spatial and temporal
dynamics of the active sources by decomposing the sources matrix into the
product of two matrices, each of which encodes the spatial and temporal
behavior of the active sources, respectively.

To develop the mobile brain scanner, in this thesis we have used the
Smartphone Brain Scanner software framework (SBS2), which is a software
platform that provides the basic infrastructure for developing a mobile brain
scanner. SBS2 eases to program the interaction between the wireless EEG
neuroheadset and the mobile device. As a wireless EEG neuroheadset, we
have used the Emotiv EPOC neuroheadset, which has 14 EEG electrodes
and a sampling rate of 128 Hz. Finally, as a mobile device, we have used the
Samsung Galaxy Note I smartphone and the Nexus 7 tablet, both running
an Android Operating System.

To summarize:

e We have developed a novel approach to solve the EEG inverse problem,
which takes into account the structured sparsity and low rank of the
sources matrix.

— The method is based on the factorization of the sources matrix
as a product of two matrices: the first one encodes the spatial
dynamics of the sources (how they change their activation
patterns), while the second one encodes their corresponding
temporal dynamics (how they change their electrical activity
over time). Our method combines the ideas of the Group Lasso
(structured sparsity) and Trace Norm (low rank) into one unified
framework.

— We have also developed and analyzed the convergence of
an alternating minimization algorithm to solve the resulting
nonsmooth-nonconvex regularization problem.

— We brought our method to a real life scenario: online solving
of the EEG inverse problem on a mobile device, which is
continuously supplied with EEG data coming from a wireless
EEG neuroheadset.
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e We have developed a mobile brain scanner, which is able to show,
online and using a 3D brain model, the cortical areas that are currently
active.

— To solve the EEG inverse problem in the mobile brain
scanner, we developed an online multi-threading version of the
matrix factorization approach, and implemented it as a C++
multiplatform module that can be used on mobile devices as well
as on desktop platforms.

— We contributed to extend the SBS2 framework with the following
additions:

* An EEG inverse solver based on the online multi-threading
version of the matrix factorization approach.

x An EEG inverse solver based on the Lasso regularizer.

* An EEG inverse solver based on the Group Lasso regularizer.

* We have updated the SBS2 framework to Qt5.3, which is the
lastest version of the Qt framework in the time of writing
this thesis.

* We have added a new 3D brain visualization class, which is
based on the new QWindow and QOpenGL* classes.

The code is available at:
https://github.com/jmontoyam/SBS2_Qt5_and _SSO

— We contributed to provide to the EEG, machine learning
and signal processing communities with a new C++ template
library for Structured Sparse Optimization, which can be
used on mobile devices (currently tested on Android OS),
as well as on desktop platforms. The code is available at:
https://github.com/jmontoyam/SSO

e The research work done during this thesis has generated the following
publications:

— Montoya-Martinez, J., Artés-Rodriguez, A., Pontil, M. and
Hansen, L.K. “A regularized matrix factorization approach to
induce structured sparse-low-rank solutions in the EEG inverse
problem.” EURASIP Journal on Advances in Signal Processing
2014, 2014:97.

— Montoya-Martinez, J., Artés-Rodriguez, A. and Pontil, M.
“Structured Sparse-Low Rank Matrix Factorization for the EEG
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Inverse Problem.” Proceedings of the 4th International Workshop
on Cognitive Information Processing (CIP), Copenhagen,
Denmark, 2014.

— Montoya-Martinez, J., Artés-Rodriguez, A., Hansen, L.K and
Pontil, M. “Structured sparsity regularization approach to the
EEG inverse problems.” Proceedings of the 3rd International
Workshop on Cognitive Information Processing (CIP), Baiona,
Spain, 2012.

7.2 Future work

As a continuation of the research work that we have done in this thesis,
we propose to incorporate new neurophysiological prior knowledge into the
formulation of the EEG inverse problem, in order to improve the estimation
of the active sources, as well as their corresponding electrical activity. We
also want to use this new prior knowledge to solve the EEG inverse problem
in such a way that the resulting solution helps the researcher to answer the
following questions:

1. Which are the most active brain areas related with the processing of
a given stimulus?

To answer this question, we propose to group the sources that belong
to the same brain area into one single group. Then, we can use a
regularization function that induces sparsity inside the set of all Brain
Areas (BA), such as the following one:

|BA|
Q({set of all BA}) = > || BA]|2 (7.1)
=1

where |[BA| and BA; denote the cardinality of the set of all brain areas
and the ¢-th brain area, respectively.

2. Which are the most active brain areas, as well as the most active
sources inside them, related with the processing of a given stimulus?

In order to answer this question, we propose to use a regularization
function that induces sparsity in the set of all BA, as well as inside
each one of them. This can be done by using the following regularizer:

|BA
Q{set of all BA}) = > [ [BAila+ > [B]l2 (7.2)
i=1 JEBA;
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where Bg denotes the row of the coding matrix B that corresponds to
the j-th source, which belongs to the i-th brain area (the matrix B
encodes the spatial dynamics of the sources).

These brain areas could be taken from a brain atlas that creates the
areas based on anatomical features or functional connectivity of the brain.
Usually, these brain areas could be overlapped. When this happens, the
proximity operators associated to the regularizers (7.1) and (7.2) may not be
easily computable, which could degrade the performance of the optimization
algorithm used to estimate the position of the active sources (FISTA). To
tackle this scenario, we propose to use other optimization methods that can
efficiently handle this overlapping, such as the Alternating Direction Method
of Multipliers (ADMM) [Hestenes, 1969; Powell, 1969; D. Bertsekas, 1996;
S. Boyd et al., 2011] or the fixed point based method proposed in [Argyriou et
al., 2011], which computes the proximity operator of a composite regularizer
from the solution of a certain fixed point problem, which depends on the
structure of the function 2 as well as the corresponding overlapping pattern.
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