® Universidad
& . & Carlos Il de Madrid

Research and

Resources

Bachelor’s degree Thesis

F

development of
Data technologi
the field of Human

Big
es In

Author: Ignacio Martin Martinez

Supervisor: Dr. José Alberto Hernandez Gutiérrez

Degree in Telematics Engineering

September 2014

Acknowledgements

First of all, | would like to thank my family, for being unconditionally supportive and helping, especially to
my father, David who has been listening and attending to all my crazy ideas and projects in the fields |
study. Also, | would really like to thank my close friends and relatives, who have supported or contributed
to my work and motivation in different ways and which, without them, | would not have been able to end
this huge work the cheerful way | have.

| would also like to thank all my university classmates, especially the ones with whom | have shared days,
classes, practices, projects and more. To all those who have helped me during the degree in one or other
way and have been supportive and have taken me out from more than one problem. All of them could be
considered a part of this work, since | have never had such a supportive and caring partners.

Finally, | would like to thank my supervisor, José Alberto for this year of ideas, new technologies,
unexpected turns and constant support and for the result of this journey which started a year ago and
have given us moments of trouble, anxiety, stress and complication. Thanks to our joint effort, we have
been able to develop a Bachelor’s degree thesis which | am very proud of.

Additionally, | would also like to thank Telefonica as due to its “Talentum Startups” scholarship | have
received additional means, formation and support to carry on with this amazing adventure which is now
ending and which, | hope, will bring more new adventures and projects for me to take partin.

Abstract

The aim of this work is to describe and report the achievements reached in the research and
development of Big Data technologies and frameworks. The document describes the research
process and the orientation towards the field of intelligent human resources management and
recruiting, retrieving information from LinkedIn, Tecnoempleo and Infojobs and its posterior
analysis inside a customized framework.

The whole report covers the entire process of data selection and retrieval by means of emerging
technologies such as Node.js or MongoDB, data processing using R programming language
supported by Hadoop and algorithms such as TFIDF or Okapi BM25 and finally reaches
conclusions and practical applications, which are considered either for future study or revision
during the project.

Most of the results are extracted from simple data analyses from the collections, which show very
relevant data for Internet enterprises such as the activity from users and companies in LinkedIn
or the most relevant aspects of job offers in Tecnoempleo. Additionally, a framework for this data
analyses is built and documented to allow further research on the subject from a very clear starting
point where all information can be gathered, processed and analysed within the same framework.

Finally, to all research work a business application is added with a developed prototype which
shows commercial possibilities for the data sets gathered. Such prototype is also developed by
emerging technologies and is highly connected to the framework and all the Big Data ecosystem.

Table of Contents

1.

Motivation and OBJECHVESoiviiiiiiiiiiiiiieeee ettt 1
i Y (o117 L1 [o] TP P PP PP PP PPPPPPPPPPPPT 1
2 @] o] 1= e 1)Y= T SRR 2
1.3. DiISSEItALION OVEIVIEW. ...ttt 3
State of the art and key teChNoIOgIESoiii i 4
2.1. Data ACQUISITION tOOISccoiiiiiiiiiiiiiiee 4
0 N R O = 111 1T Vo PP 4
2.0 2, REST AP s 5
2.2. Big Data TECHNOIOQIES.coeiiiiiiei e e e et e e e e e e e e e e e tta e e e e e aaeeaanne 5
2.2.1 HAOOOP ECOSYSTEIM ...ttt 5
2.2.2. GOOQIE ECOSYSIEIM .. .ciiiiiiiei e e e e et e e e e e e e ettt a e e e e e e e e ereraaas 8
2.2.3. MICTOSOFt AZUIE ..ottt e e e e s e e e e e e e 10
2.2.4. AMAZON WED SEIVICESuuiiiiiiiiiiiiiiiiiiiii bbb ebeeeeenene 10
2.2.5. SAP HEANA ... 11
2.2.6. StOrage SYSIEMIS ... ittt ettt e e ettt e et e e e r b e e e e e e rrrn s 11
G B T - WY, [T aTo JR (1o] OO USPPPPPRPRPN 12
A TR R o PSPPSR 13
23,2, PYHNON. ettt ettt ettt ettt ettt ettt ettt ettt ettt 14
2.3.3. JAVA OVEI HAOODOP ...ttt 16
2.304. IMMAHIAD ... 16
2.3.5. SCAIA. ...t e e e e e 16
2.4, Web teChNOIOGIEScoiiiiiiiie 17
S R N Yo L= £ 17
2.2, PHPP e 17
2.4.2. Djang0 and PYINON..........u e 17
P R o I I\ PP 18
2, S et a e e e et e e aaa s 18
2.4.5. R packages for web CommUNICAtION............uuuuuuuiiiiiiiiiiiiiiiiiiiieii e 18
2.5. Text mining and information retrieval algorithms............ccccccvviviiiiiie 19
P TN R I | B PSP UPPPTTR 19
2.5.2. OKAPI BIM25 ...t 20

vi

2.5.3. Clustering algorithims i 21

AR A £=Tor (0]] o F= 1ot Yot o] 11T PP 22

3. System architeCture and JESIGNccoee e 24
3.1. SYStem arChitECIUIE OVEIVIEWuuiieeiee it e e e et e e e e e e e e et e e s e e e e e e aa et e e e aeaaeaennnes 24
3.2. DAta ACOUISITIONceeiiiiiiiiieeee ettt 25
3.2.1. TechnologieS INVOIVEM ... 25
3.2.2. DEVEIOPMENT PIrOCESS ...uuuiieeiiieeitiiie e e e e e e e ettt e s e e e e e e e e e eee e s e e e e e e eesttt e e s aeaeeaeesrennans 27

3.3, DAtA ANAIYSIScciiiiiiiiei i 30
3.3.1. Technologi€S INVOIVEd...........oooiiiiiie e e e e 30
3.3.2. DEVEIOPMENT PIOCESS ... 31
I B T - Y 1111 11 T [SUSPPPPPRPRIN 35
3.4.1. TechnologieS INVOIVEM ... 35
3.4.2. DEVEIOPMENT PIrOCESS ..uuuuiieeiiiieiiiiiie e e e e e e e e ettt a e e e e e e e e e ettt aa s e e e e e e e sattta e e aeaaeeaerraaannnns 36
3.5. Data visualization and appliCation...............couiviiiiiiiiiiiiii 39
3.5.1. Technologies INVOIVEM ... 39
3.5.2. DEVEIOPMENT PIrOCESS ..uuuuiiieeiiieiitiiie e e e e e e ettt a e e e e e et e e e et aa s e e e e e e e e sttt e e e e eaeeeaesrreannans 40

4. EXPeriments and rESUILS........cooii i 43
4.1, Data SEt AESCIIPLIONot e e e e e e e e e e e e e et e e e e e e e eeareaaaes 43
4.2. LinkedIn job COIECHIONS ANAIYSISuuuuriiiiiiiiiiiiiiiiiiiiiiiieeiebeebeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenee 44
4.2.1. Job offer analysis: offer descriptive field selection. ..., 44
4.2.2. Companies offering jobs in LINKedIN..........coooiiiioiii e 47
4.2.3. Lifetime of job offers in LINKedIN ... 48
4.2.4. More relevant requirements and keywords in job Offers in LinkedIn......................... 49

4.3. Tecnoempleo jOb Offer ANAIYSISuuuuiiieiiiiiiiiiiiiiiiiiiiiieeiieae bbb eeeeeeereeereeaee 53
4.3.1. Tecnoempleo basiC @nalySISuuiiiii i 53
4.3.2. More relevant technological and profile terms ..., 55
4.3.3. Comparison of experience against formationccocoeioiiieiiiiiiiie e 56
4.3.4. Tecnoempleo Offers CIUSTEING ...ccoooeoee e 59

T o (011011 o1 TSP TUPPTTTPP 64
5.1. Prototype design and implementation...............cooiiiiiiiiiiiiiiiii 64
5.2, USB CBSE .t eiieeeet ettt ettt e et en e e e e eennne 66
6. Conclusions and FULUIE WOTKccooeiieeeeeeeee e 70
7. RETEIBINCES ...ttt e e e et e e e e e e e e e e 74

Vii

(o TT=Tod o] =T o 1T Vo PSR 76
UG BT . . 80
ANNEX Tl 82
All.1. MongoDB collections data SCHEMAS.............uuuuuuiiiiiiiiiiiii e 82
All.2. Additional code lines from Crawler Programseeeeeemmemmmmmmnneenninieeneeeeeeeee 85
All.3. Framework additional CapLUIESuuiiiii e e e e e e 87
All.4. MONgODB ColleCtioNS StatS IMAJESuuuuuiuiiiiiiiiiiiiiiiiiiiiieiie bbb aeeeeeennnnne 89

viii

Table of Figures

Figure 1.1 Objective schema during the pProject ..o 2
Figure 3.1 Objective schema during the ProJECTovvviviiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 24
Figure 3.2 Project architecture SChema............ccooooiiiiiiiii e 25
Figure 3.3 Crawler init FUNCHION..........oiiiiiiiiieiiee ettt 28
FIQUIE 3.4 Crawler SITUCTUIEoiiiiiiiiieeeeieeeee ettt ettt e e et e e e e e e e e e e eeees 29
Figure 3.5 Code fOr HTML PArSiNgccceiiiiiiiiiies et e et es e s e e e e e e et a s e e e e e e eaanean s 30
Figure 3.6 R base CONS0IE PrOgIamcovviiiiiiiiiiiiiiiiiii ettt 32
Figure 3.7 Hadoop file System root dir€CIONYcoovieiiiiiiiii e e 33
Figure 3.8 FrameWOrk SCREIMA..........cuiiiiiiiiiiiiiiiiiiiiiiieeee ettt 34
Figure 3.9 MapReduce SKEIetON COUE...........cuiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeee ettt 37
Figure 3.10 identifier-term mapper function COdeceeiiiiiiiiiiicce e 38
Lo 18 3 F0t I PP PP PP PP PP PPPPPPPPPP 41
Figure 3.12 REST AP COUE SNIPEL..... it e e e e aae s 42
Figure 4.1 Skill text length distributions with and without Stopwords.............ccccceeeeeveeeirieiiiiinnnnn. 44
Figure 4.2 Distribution of SKill teXt SPArSItYccvviiiiiiiiiiiiiiiiiiiiiiiie e 45
Figure 4.3 Description text length distributions with and without stopwords..................ccevvvvnnnn.. 45
Figure 4.4 Distribution of description teXt SPAISILYccvviiiiiiiiiiiiiiiiiiiiiieiieeee e 46
Figure 4.5 Number of jobs posted per COMPAaNY...........cuuiiiiiiieiiiiiicee e 47
Figure 4.6 Lifespan of Job offers N MoNthS...........ccooooiiii e, 49
Figure 4.7 Wordclouds from person profiles and job offers ... 51
Figure 4.8 Most relevant keywords from profiles and job offers.........ccccooooiiiiiiii . 51
Figure 4.9 Relevance of the 25 most offered skills among candidates in job offers................... 52
Figure 4.10 Tecnoempleo offers basiC parametersouvvvviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee 54
Figure 4.11 Number of jobs posted per COmMpPany...........cceeeieiiiiiiiiiiicie e e 55
Figure 4.12 technological and profile requirement wordclouds...............oovvvvviiiiiiiiiiiiiiiiiiiiiennn, 56
Figure 4.13 jobs offered according to experience and formationcccccccvviieeeeeeeeeeievviinnnnn. 57
Figure 4.14 salaries given to positions requiring certain experience and formation 58
Figure 4.15 Within groups sum of squares for the Tecnoempleo technologies collection 59
Figure 4.16 Wordclouds of the technology clusters in Tecnoempleo............ccccceeeeeeieeieiiiiiinnnnnn. 61
Figure 4.17 Salary summary of each of the professional groups inferred by clustering 62
Figure 5.1 Okapi implementation COOEiii i 65
Figure 5.2 Prototype architecture SChema.............ovvviiiiiiiiiiiiiiiiiiiiiieeeeee e 66
Figure 5.3 APPHCALION INUEXcviviiiiiiiiiiiiiiiiiiiiee ettt ettt et et e e e eeeees 66
Figure 5.4 Application logging with LinkedIn ... 67
Figure 5.5 SEarch reSUIL VIEWoviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 67
Figure 5.6 Pagination options detailoouuueiiii i 68
Figure 5.7 Capture of the LinkedIn Management profile for application testingcccc..e.... 69
Figure 5.9 Application output for a Java developer profile ... 70
Figure 5.8 Application output for a management profile ... 70
Figure ALL Gantt diagram.........oouuuuiiiie e e e e e e e e e e et a e e e e e e aara 78
Figure AL2 NetWOrK QIagIam........... et e e e e e e e e et a e e e e e e e eeannennnns 79
Figure All.1 Base crawler detail: LinkedIn crawling engine code snippet.........ccccoevveeeirieeieennnnnn. 85

Figure All.4 Tecnoempleo Crawler. This code snippet shows the extraction of a given URL.....86

Figure All.3 MoNgooSe Job Offer SCNEM@........ccviviiiiiiiiiiiiiiiiiieeeeeeeeeeee e 86
Figure All.2 Mongoose person profile schema ..., 86
Figure All.5 Mongo-framework connector based on Node.js solutions............ccccceeveeerriiiiiiinnnnn. 87
Figure All.6 RStudio server capture during a Hadoop MapReduce jobcccovvvvviiiiiiiiinnnnnn. 88
Figure All.11 Tecnoempleo and LinkedIn mixed job offer collection............ccccccoeeeiiiieiiiiiiiiinnnnn. 89
Figure All.10 Tecnoempleo job offer collection (TE).........cuvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 89
Figure All.8 LinkedIn job offer collection (LIJ)coouvviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 89
Figure All.9 LinkedIin company collection (LIC)oouiiiiiiiii i 89
Figure All.7 LinkedIn person profile collection (LIP)oovvvviiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeee 89

Xi

1. Motivation and Objectives

1.1 Motivation

At present, information society is gaining relevance and data production and consumption is
increasing. For years, the Internet has been focused on the information and contents generated
by human users, where each user shares his data with a limited number of users. Nowadays, with
the advent of social networks and the relevance acquired by smartphones and tablets, the Internet
is experimenting a huge development and turning into “The Internet of Things” where every device
is connected and generating more data to be processed as more devices are being connected at
all times.

Consequently, as new information is generated, new studies and use cases appear for this new
data which entail several ways of analysis, processing and computing. Moreover, the possibilities
of such a big and diverse dataset provide a huge amount of possibilities and results that tend to
be highly valued by top companies in the world.

This huge amount of information require new and advanced techniques for data processing,
where traditional programming has to evolve as traditional techniques are based on computer
power, which result useless when data size overcome single processor and memory capacity.
Due to the limitations on computer hardware, this project will be addressing software solutions to
optimize data processing over a common personal computer hardware with no improvements of
any kind.

In order to achieve the main goal of this project, we will target the field of human resources and
recruiting as application for the technologies and methods here described since the Internet offers
a great amount of information and new ways of job searching and job recruiting. Therefore, the
main sources of information will be professional networks such as LinkedIn or Techoempleo
where users can either post or apply job offers as well as publish any other relevant professional
information.

Actually, the field of talent hunting and human resources in businesses has not yet developed all
the power that Big Data technologies have to offer. Although there exist several solutions and
web services working on this field, no one offers solutions to analyse candidate profiles or job
offers in a very extensive way. In fact, these services are rather limited and underdeveloped, not
exploiting all the opportunities that datasets have to offer.

1.2. Objectives

Considering all the motivations explained in the previous section, this project addresses the new
situation in the Net, so new solutions based on new programming paradigms and technologies
have a strong starting point that takes advantage of Big Data technologies. Moreover, the project
also targets the statistical analysis of job offer and candidate analysis, which is a very useful
information both for enterprises and job seekers.

Thus, the aim of the project is to study and develop technologies for processing large amounts of
data at the lowest cost possible using software solutions. For this purpose, several existing
solutions and environments, such as MongoDB or Hadoop will be studied and tested in order to
find the proper starting point to develop new contributions in the field. Concretely, the means
defined to achieve our main objective are specified below:

Design and develop a framework for heterogeneous human-
Data capture resource and job hunting data capture from several sources
(LinkedIn, Tecnoempleo, Infojobs...)

Implement framework in Objective 1 using Big Data technologies,
Data analysis offering a powerful set of tools that allow easy and fast data
analysis and processing

Study and implement within the framework information processing
Data Mining and retrieval algorithms to analyse the dataset and extract concrete
results and conclusions from this analysis.

Data Extract from the dataset analysis in the framework (Objectives 1
visualization and 2) ideas for new services oriented to the Web. Design and
and application | implement a basic prototype of any of these ideas.

s = A 3 B t
LinkedIn, Tecnoempleo, "l Data Data Visualizatio igle

_Infojobs and other sourees / Acquisition EREE A Data Mining and Application z!nd.
) application

]
A

Figure 1.1 Objective schema during the project

Additionally, figure 1.1 illustrates the flow chart diagram to be followed in order to achieve the
goals and expected results from the project. Taking as input the sources of information, all the
steps will be performed until the final result is achieved.

1.3. Dissertation overview

This document is divided in 5 chapters where the methodology and processes of the project are
presented and explained.

Chapter 2 presents the state of the art and all key technologies from where the project starts. This
chapter is also divided in relevant sections which cover all the technologies and relevant solutions
inside the proper framework.

Chapter 3 justifies the selection of technologies and algorithms to be used as well as developing
the architecture of the full software solution developed. Additionally, it explains in detail how every
phase in the project is developed and how the framework is installed and configured.

Chapter 4 presents the results obtained from the studies performed and answers the questions
proposed. All the experiments undertaken are explained in detail in this section together with its
results.

Chapter 5 explains and shows the prototype application derived from the whole project, including
a brief description and a use case with detailed captures and descriptions of the application.

Finally, chapter 6 summarizes the conclusions extracted from the project and proposes new
studies and works to continue the research towards new applications and results as well as
describing the ideas which the team already though about.

Additionally, annex | includes the planning and cost of the full project from its beginning and annex
Il includes additional captures and tables which are referenced in previous chapters.

2. State of the art and key technologies

One of the most interesting features of Big Data processing is the huge amount of existing
solutions, which offer the best starting point to develop new technologies in the field. All the
technologies used in this project could be classified in four groups: Technologies for crawling
information, technologies for storing information, technologies for processing information and
technologies for web service design.

2.1. Data acquisition tools

At present, there exist several tools both from programmers and web services to extract
information from the Internet.

2.1.1. Crawling

A crawler is a computer program that navigates through the web searching information about one
or more topics by means of recursively accessing all the hyperlinks contained in the pages
retrieved. Generally a crawler works by downloading the full HTML page for future parsing of tags.

There exists several libraries in various programming language, which provide functions to
automatically download and even retrieve information from the selected XML tags based in XPath
routes. Some of this solutions include languages such as Javascript, Java, R or Python.

Javascript offers many libraries for HTML page retrieval, such as http and https from node, JQuery
or XMLHttpRequest, which perform various HTTP method requests to retrieve static web pages
for future processing. In order to process HTML Javascript provides some libraries like HTML
DOM API. However, Javascript HTML processing lacks some good libraries other programming
languages possess.

Java instead, offers several integrated web crawling tools which perform both page retrieval and
HTML parsing such as crawler4j, webSPHINX or JSpider. These crawlers allow programmers to
retrieve complete websites, parsing the HTML to recursively obtain new links and information.
Some of them even offer workbenchs and almost all of them are open source and supported by
big enough communities.

The R language programming also provides very specific libraries for web crawling: XML and
RCurl. RCurl allows to send an HTTP request to download HTML pages and XML is a tag parser
for both XML and HTML which, based on XPath sentences retrieve a concrete tag from the XML
tree or even convert a full HTML page into an R table.

Python, which is getting very popular in for web development and Internet related programs, offers
also a lot of libraries devoted to web crawling. Some of the most popular are urllib, which opens

a connection with an URL, HTMLParser, which parses HTML allowing the user to customize the
parsing functions. Other parsing modules are Beautiful Soup or Ixml and for HTTP requesting,
Requests module may be used.

2.1.2. REST API

Brute force crawling is usually efficiency expensive, as parsing a tree structure increases
complexity and therefore, operation time. Due to this, several web services, especially social
networks and user-based websites offer an especial tool for data acquisition called REST API.

An REST API (Representational State Transfer Application Programming Interface) is simply a
web application which receives HTTP requests to several paths in its domain and answers with
structured information. Such information may be returned in several formats, such as XML or url-
encoded, although at present, JSON format is gaining most relevance. The returned information
may be paginated to improve efficiency.

The REST model is more extended day after day, since it provides easily manageable information
to any request and supports any platform. Thus, it is a very good alternative for web services
which support, for instance, both common web page and mobile application.

In order to improve security in these services, many APIs are protected by different methods,
such as OAuth. OAuth is a common three way authorization method developed to provide a user
with mechanisms for controlling which applications access his/her data and grant or revoke such
authorizations within an application.

At present, several Internet companies offer such tools to the open public. Generally, the
information provided is constrained both by the own user authorization and by the company by
means of daily query limits or strict registering of applications which use these tools. These
companies are the ones such as Twitter, Facebook or LinkedIn.

2.2. Big Data Technologies

2.2.1 Hadoop ecosystem

Apache Hadoop is a software framework supporting distributed applications under an open
source licence. It was inspired in Google technologies for Map Reduce and Hadoop Distributed
File System. The key for Hadoop functionality is its distributed architecture: every simple piece of
information stored is chunked and replicated by the Hadoop system, which keeps track of where
each chunk is and coordinates efficient information management and retrieval.

Hadoop is composed by two main components: Hadoop Distributed File System and MapReduce.
Both components are based on distributed programming and continuous communication.
MapReduce operations usually take as input a directory of files stored in the Hadoop file system
and computes the required operations in a distributed way.

In addition to this two main components, there exist several extensions based on Hadoop which
enlarge its processing possibilities to specific subjects which would have to be built over plain
Hadoop MapReduce otherwise.

2.2.1.1. Hadoop distributed file system

Hadoop Distributed File System (HDFS) is the storage component of the Hadoop platform. HDFS
consists on a set of distributed nodes which store information and their replicas. The main
components of HDFS are:

e NameNode: This is the primary node of the Hadoop File System and is in charge of
keeping track of all the documents stored in the system. It stores the metadata related to
all files and is in charge of starting and coordinating basic file operations such as opening,
creation or modification for clients. The name node also provides the end user with a
consistent file system management system and determines the mapping of information
blocks to DataNodes.

e Secondary NameNode: This element is in charge of creating checkpoints of the name
node contents by downloading name node contents, processing the information to merge
files and other efficiency operations and uploads the information back to the name node.
Secondary name node also stores a copy of the metadata for restoring in case of hame
node failure. However, the secondary NameNode is not a name node redundancy and will
not assume its functions in case name node goes down.

e DataNode: The DataNodes are responsible for serving read and write requests to the
clients. They store chunks of information under NameNode coordination. The DataNodes
lack the logic and capacity for information retrieval: they only read or write their chunks at
request

HDFS nodes are grouped in clusters. Each cluster must contain a NameNode and one or more
DataNodes and may contain a Secondary NameNode. Each cluster component may be either
installed in different machines communicated via Local Area Network or working in a single
machine by means of a software based pseudo-distributed mode.

Additionally, it is important to remember that HDFS is not a data base; it is a file system where
we can store folders and files. Therefore, in order to store information in HDFS some middle layer
such as a built in database or a custom file hierarchy is required.

2.2.1.2. MapReduce

The MapReduce component of Hadoop is in charge of performing MapReduce operations from
data stored into the Hadoop Distributed File System (HDFS). These MapReduce operations
consist on the parallel processing of documents by means of a Map operation, which receives a
set of documents, performs some operations and emits a set of key value pairs, and a Reduce
operation, which receives the key value pairs obtained by the mappers and sums them according

to their key values, as well as performing possible further operations. The Hadoop MapReduce
module is highly distributed and has two types of components:

e JobTracker: The JobTracker is the component responsible for distributed operation
management. It is the component which separates an entire MapReduce operation into
simple tasks which are sent to the TaskTrackers to be performed. The JobTracker decides
whether each TaskTracker performs a map or a reduce operation and coordinates the
input and output stream of TaskTrackers.

e TaskTracker: The TaskTracker component receives a chunk of the data set and performs
either a Map or a Reduce operation on such data set. Once the TaskTracker ends, it emits
its results and waits for more data.

Like HDFS, the Hadoop MapReduce component is separated in clusters of machines
interconnected where each machine can have installed 1 or more TaskTrackers. Additionally, one
machine should have installed the JobTracker and all configuration files should be edited
accordingly. It is important to remind that each of these components is a separate entity that can
be installed and configured independently from the rest.

2.2.1.3. Hive

Hive is a data warehouse which eases data management in an HDFS system. It provides a simple
language very similar to SQL called HiveQL which allows to perform SQL like queries to a Hadoop
Distributed File System transparently for the user.

Additionally, Hive allows the user to define Map Reduce operation code to be performed natively
and provides full index support. It supports many file formats and is open Source.

However, since a MongoDB database was deployed and working when Hadoop was introduced
and all data introduced in Hadoop was formatted using node.js programs, Hive was discarded as
it did offer no new or interesting feature.

2.2.1.4. Mahout

Mahout is a software project of the Apache foundation that pursues building a scalable machine
learning library. It implements the basic machine learning algorithms for clustering, classification
or filtering on distributed and scalable systems.

Mahout can be thus implemented on top of the HDFS, being able to exploit all the power of
Hadoop MapReduce operation into its own algorithms, making possible the application of
machine learning algorithms to huge data sets in a transparent way.

Although it has been usually deployed over Hadoop, there exist many other distributed systems
over which Mahaout can work, such as Spark.

2.2.1.5. Spark

Spark is an open source data analytics framework built on top of the Hadoop Distributed File
System. In contrast to Hadoop MapReduce component, Spark does not compile the MapReduce
classical implementation, providing efficiency improvements of a hundred times with respect to
Hadoop MapReduce.

The key to Spark performance is that it provides primitives for in-memory cluster computing, so
data can be loaded into a cluster memory and queried or processed repeatedly, which makes it
a good candidate over which machine learning algorithms can be deployed. There exists Spark
APIs for Java, Python or Scala, which combined with the power of these languages provide a
very easy and powerful starting point.

Each Spark application run as an independent set of processes on a cluster, coordinated by the
SparkContext object in the main program or “Driver program”. The SparkContext can connect to
several type of cluster managers, such as Hadoop YARN clusters or the own Spark clusters. To
allocate resources across applications.

Once connected, SparkContext acquires executors on nodes in each cluster. These executors
are processes inside each node dedicated to the task performed and therefore, they store data
and run computations. Once acquired, the SparkContext sends each executor the code for the
application and afterwards, the tasks each executor should perform.

2.2.1.6. Pig

Pig is a platform which provides a High-Level programming language, similar to SQL, over the
Hadoop MapReduce operation component in order to reduce MapReduce program development
complexity as well as increasing efficiency.

The language provided by Pig is called Pig Latin. Pig interprets Pig Latin commands and
translates them to Java MapReduce operation code for many basic MapReduce operations.
Additionally, Pig Latin code may be augmented by means of the User defined functions written in
Java, Python, Javascript or Groovy.

2.2.2. Google Ecosystem

2.2.2.1 Google File System

Google File System (GFS) is a distributed file system implemented by Google to run on
commodity hardware and meet some of the specifics needed for Google search service. Many of
the goals of GFS are shared with other file systems, such as scalability, performance or reliability.

GFS is meant to be deployed in a huge cluster of hundreds or thousands of machines built with
inexpensive components and is expected to be accessed by a similar or even larger number of
client machines. Therefore, there will be components failing at any time or even permanent
faliures, so the file system must be highly fault tolerant.

Google File system provides a familiar file system interface, even though it does not implement
any standard API such as POSIX. This API consists in a tree-like file hierarchy, where each
directory is identified by its pathname. Common file operations are supported.

A cluster in GFS consists on a single master and several chunkservers. Each chunkserver is a
Linux machine running a server process. Running a chunkserver and a client in any of this
machines is possible, as long as its resources meet the requirements. Files are diveided into
fixed-size chunks identified by a unique 64bit chunk handle. As a default, every chunk is stored
three times in different chunkservers in order to assure reliability and fault tolerance.

The master maintains and handles all file system metadata, including mappings from files to
chunks and viceversa. Clients communicate to the master for metadata information, but all
communications involving data management is managed directly by the proper chunkservers.
There is no cache in neither clients nor chunkservers in order to avoid coherence problems.

Chunk size in GFS is, by default, of 64MB. Each replica is stored as a plain Linux file on a
chunkserver. Due to this size, reads and writes of a normal file do not require more than one
interaction with the master, avoiding it to become a bottleneck.

2.2.2.2. MapReduce

MapReduce is, in fact, a Google creation. When the search engine started to get larger, a
programming paradigm for scalable and efficient computing was needed, and thus, MapReduce
appeared.

The MapReduce programming paradigm is based on taking a set of input key/value pairs and
producing a set of output key/value pairs. The map function takes the input set and produces an
intermediate set of key/value pairs according to the user code provided.The MapReduce system
then groups together values according to their keys and sends them to the reduce function. The
reduce function then accepts one or more keys and their set of values and merges them together
to form a smaller set of values for each key.

The implementation of MapReduce is based on a distributed architecture. The map invocations
are distributed across multiple machines which receive a chunk of the input data each. Reduce
invocations are also distributed by partitioning the intermediate key values into several pieces by
means of a hashing function. The number of partitions and partitioning functions are specified by
the user.

After MapReduce completion, the output of the process is stored in each of the reducer output
files, which can be combined or used as input for another MapReduce task or distributed
application. The master keeps several data structures, such as each MapReduce state or the
identity of the worker machine. Furthermore, the user coordinates the flow of information between
map and reduce functions as well as storing the location of the output results.

2.2.2.3. Big Table

Big Table is Google proprietary storage system. Each Big Table is a distributed multi-dimensional
persistent sorted map indexed by row and column keys and timestamp. Each value of this
structure is an array of bytes.

It is important to remember that Google Big Table is a storage system prepared to index web
pages and contents, and thus, its row indexes store the URL of each page in lexical order. Each
column key is grouped into families, which are tiny groups of readable string identifiers which
information is of the same type. Several column families may be defined in each Big Table and
each column is identified by ‘family:qualifier’, being the qualifier any random string. Each pair row-
column stores a cell with the information relevant to the indexes, that is, some feature (column
index) of a web page (row index). Finally, each cell in Big Table can contain many versions of
the information which are indexed by timestamp.

Google Big Table also offers an API with functions to perform basic operations to the data for
client operations.

However, since Big Table is a proprietary system and it is based in another proprietary system
(Google File System) it is not a good candidate for our storage system. Furthermore, Big Table is
optimized for webpage metainformation storage and provided we are searching a system capable
of storing as much information as possible, Google Big Table is limited for our intentions.

2.2.3. Microsoft Azure

Microsoft Azure (previously Windows Azure) is a cloud platform developed by Microsoft which
provides different services for many applications, such as cloud computing or hosting sites.
Microsoft Azure supports many programming languages, both from the Microsoft ecosystem and
other acknowledged solutions.

It is self-described as a clod layer which works over several systems using Windows Server.
Some of the supported services provided are non-relational storage, application hosting, or
security backups. However, Azure constrains applications to work in Windows Server 2008, no
matter the language or environment where they have been conceived.

2.2.4. Amazon Web Services

Amazon Web Services is a collection of cloud computing services available as a full cloud platform
offered by Amazon. It is one of the pioneers in the field of cloud computing services and is broadly
used by companies such as Dropbox or Foursquare.

AWS was launched in 2006. Its services online are available for any web service or other client-
side applications. AWS provides a REST API and access through SOAP and is charged by usage.
The AWS layer provides several services from scalable computing services to SQL databases,
NoSQL, mailing server solutions or web servers

10

2.2.5. SAP Hana

SAP Hana is an in-memory database solution from SAP AG. It provides a database with several
additional components, which add cloud computing and advanced analysis and modelling
functionalities to the basic database solution.

Hana rests on low cost RAM memory, multicore processing capacity and solid state disk fast
access to data in order to offer a high-performance solution of analytic and transactional
applications. The first version in the market appeared in 2010 and has been improved until the
present day.

2.2.6. Storage Systems

Data storage is another key point in Big Data since even with a really good processing system, if
the database or storage system is not able to retrieve quickly and efficiently the information
needed, the whole system will fail due to the bottleneck created.

2.2.6.1. MongoDB

MongoDB is the leading NoSQL database in the Big Data environment. It is a document oriented
database where documents are formatted as JSON and indexes are fully supported. Mongo offers
data replication, high availability and allows horizontal escalation transparently, so queries and
data insertion is optimized.

MongoDB is supported by node and R among other programming languages and there exists
several frameworks to model and schematize database contents. It also provides an easy tool for
efficiently backing up and restoring information, so the database contents are highly portable and
safe.

Thanks to the efficient horizontal replication and high availability support, queries to a mongo
database are extremely fast when the collection is highly populated, which makes mongo a very
good candidate for Big Data storage. Moreover, node offers with the connector a console program
to access the data stored and built in functions, such as map-reduce, which will be presented later
on this section.

Therefore, Mongo is a highly efficient, portable and complete solution for storage of large amounts
of data with good interfaces for the technologies used within this project, which added to being an
open source technology and having good documentation and community makes mongo the best
alternative for data storage in many Big Data projects.

2.2.6.2. SQL

SQL stands for Structure Query Language and it is a standard language for relational databases
access and management. A relational database is a database paradigm which defines tables of
information in which each entry is a row and has columns, which are common to all elements. In

11

a relational database, rows among tables are related by one or more columns, allowing to store
in a simple and ordered way thousands of entries.

Nevertheless, SQL is just a query language which allows managing a database manager. These
database managers are in charge of interpreting the SQL sentences and performing the proper
operations in the system for data storage. Many of these database managers (DBMS) are very
popular and used in many applications. Some of the most well-known are: MySQL, PostgreSQL,
Oracle, SQL lite and many others.

Relational databases follow the acronym ACID, which stands for:

e Atomic: All the steps that must be taken for the operation occur or the whole operation
fails.

e Consistency: Everything, once stored, must be consistent in all queries and updates of the
system. Whatever operation we perform, it must jump from a valid database state to
another valid state.

e |solation: Any number of transactions over the same information must not generate any
error. Each single operation over the information must be independent from all the other
ones.

e Durability: All changes performed to the information must be safely stored and definite,
without the possibility of turning back.

These behaviour is very important, since it allows SQL to be a reliable, quick and robust system
to manage and store information.

2.2.6.3. Cassandra

Apache project Cassandra is a NoSQL database which provides a Scalable and High available
solution efficiently on top of either commodity hardware or distributed systems. Cassandra
provides Linear scalability and fault-tolerance for the data stored in it.

The storage provided by Cassandra is structured in key/value pairs of data. The distributed
architecture is based on a P2P communication protocol among nodes, creating a high level of
redundancy.

2.3. Data mining tools

One of the key points for “Big Data” Analysis is processing information. Traditionally, data is
loaded to computer memory and processed sequentially following the execution thread of the
program. At present, this paradigm requires either hardware over scaling or a huge amount of
time, and thus neither of them are acceptable for an efficient application.

In contrast, when referring to Big Data, parallel processing is a key concept. Any Big Data
processing program takes advantage of all the parallel processing resources, such as multiple

12

core processors, by creating parallelizable and distributed algorithms which split data into
independent chunks in which simple tasks may be easily performed.

One of the most important paradigms for data processing is Map-Reduce. The Map-reduce
algorithm is a programming paradigm based on parallel processing which allows the user to define
in two stages(map and reduce) the way of processing the information receiving key-value pairs
and emitting new ones. This way of programming makes task performance really faster, although
adding complexity to the traditional paradigm.

2.3.1.R

The R programming language is a strongly functional language broadly used for statistical
analysis and information retrieval. R has a very efficient and strong base core which can be
extended with libraries natively programmed, so all methods offered by these libraries are also
highly optimized.

Once the information is stored, it can be loaded to R using a data structure called dataframe. A
dataframe is matrix with named rows and columns which can contain any mixture of any kind of
data. R provides several methods to efficiently traverse and perform operations over dataframes
and many R packages accept them as input. In addition, R provides several built-in statistical and
mathematical analysis libraries.

Thus, R is a more than appropriate candidate for data mining and processing. Especially in the
scope of this project, there are three relevant R libraries: tm, RHadoop and RHipe. The first one
is a data mining and processing library, whereas the other two are Hadoop connectors with R.

2.3.1.1. R: tm

The tm package is a text mining library which allows the user to prepare and process text in a
simple manner. It is based on creation of Corpora, which are collections of documents that tm
joins, process according to user commands and optimizes for term frequency matrices creation.
Other operations supported are text cleaning, text trimming or stopword removal based on given
lists for many languages.

2.3.1.2. R: RHadoop

RHadoop is a Hadoop connector for R developed by Revolution analytics. Hadoop is a very
powerful tool, but it is restricted to writing Java programs in order to perform a map-reduce job.
Although this is not a major inconvenience, it is an important drawback, since Java is not such a
statistical specific programming language as R is. Thus, having a Hadoop connector to R allows
to perform map reduces in an environment optimized for data mining and statistical analysis. The
RHadoop program is composed by three R libraries: rmr, rhdfs and rhive.

Rmr package is in charge of connect to the Hadoop MapReduce engine and perform map reduce
tasks defined by means of R code. Although working inside R, this package takes control of the

13

Hadoop cluster and performs all tasks using all the Hadoop daemons and resources, not just the
ones reserved for R.

Rhdfs is an interface package between the Hadoop Distributed File System and the R
environment. It basically allows Hadoop File System to be controlled from R console. This
package provides a low level interface to HDFS with functions to perform basic and advanced
operations over datasets stored in HDFS.

Rhbase is an interface for operating the Hadoop HBase data source stored at the distributed
network. It provides several methods for initialization and read, write and table manipulation
operations.

However, it is not necessary to install the three packages in order to run MapReduce operations
in R. If we use HBase, we need rhbase, else we will need rmr for MapReduce operations and
rhdfs for HDFS management interface.

2.3.1.3. R: RHipe

RHipe stands for R and Hadoop Integrated programming Environment and is a R and Hadoop
connector. It allows to perform map-reduce tasks using R. The working of the RHipe library
consists on an RClient program which maps and sends tasks to the Hadoop Job Tracker, passing
all needed parameters such as map and reduce functions or input and output files.

One of the most important keys in the RHipe library is that it provides a low level interface over
Hadoop. Any R user with RHipe can perform operations in R over a large dataset stored in HDFS,
which allows the user to process Hadoop stored data with the advanced tools available on R.

2.3.1.4. R: Wordcloud
The Wordcloud package is a simple library that allows the R programmer to create a wordcloud
by passing a set of words and their weight in order to create a weighted size cloud of words.

2.3.1.5. R: stats

The R stats library is a R library which offers many statistical, text mining and clustering functions.
Clustering algorithms for words based on relevance numerical measures allow the user to
separate words in groups (clusters) according to the measures given.

The stats function also provides statistical distribution generator functions and basic statistical
measures computation.

2.3.2. Python

Python is an interpreted multiparadigm programming language originally created as a successor
of the ABC programming language with a huge scientific orientation background in the Centrum
Wiskunde and Informatica in the Netherlands.

14

Nevertheless, in the past years, Python has become a very popular programming language,
which has provided an exceptional framework for the development of a lot of tools and libraries
for many subjects. As a matter of fact, Big Data and data analysis have been some of these
subjects, and thus, there are many tools in python, from MapReduce framework to natural
language processing and data analysis tools developed and supported for their use.

2.3.2.1. Octo

Octo.py is a simple MapReduce framework which provides a good approach for processing fair
big data sets by separation into parallel tasks. The system is based on a server-client approach
where the server coordinates all clients connected which will execute the map and reduce
functions defined by the user with the data provided by the server. Once each client is finished, it
will return the results to the server which will integrate all received data and finalise the execution.
Once they end, the clients wait for new tasks from the server.

2.3.2.2. Hadoop MapReduce

Hadoop ecosystem provides an API to run MapReduce operations which takes as input file texts
stored in HDFS and outputs files in another directory of HDFS. The python code to develop will
use Hadoop Streaming API to move information through MapReduce phases.

Each mapper or reducer function will be coded in a separated python file (mapper.py and
reducer.py respectively). Once everything is set, the user can start the Hadoop MapReduce task
by using the Hadoop Streaming APl command passing by parameters the location of the map
and reducer functions written in Python.

2.3.2.3. Natural Language Toolkit

Natural Language ToolKit (NLTK) is a platform to support the creation of programs that manage
human language data. It provides simple and easy interfaces to over 50 corpora and lexical
resources besides a good deal of text processing libraries which ease tasks such as classification,
tokenization, stemmeing or parsing.

Thanks to its good documentation on programming fundamentals as well as on computational
linguistics, it has become an easy and suitable tool for specialists in many subjects, such as
education, engineering or even linguists.

2.3.2.4. TextBlob

TextBlob library is a tool for textual data processing by means of a simple API which complements
tools such as NLTK or pattern. TextBlob provides functions for classification, parsing sentiment
analysis tokenization or even word and phrase frequency computation.

2.3.2.5. Pandas
Pandas provides high-performance and simple data structures and tools for data processing in
Python. Pandas helps to fill the lack of Python built-in tools for data analysis and modelling. It

15

provides the functions and resources to perform the whole data analysis process in python,
avoiding the user the need of changing to a more specific programming language.

2.3.3. Java over Hadoop

Although there exists many other solutions to analyse data in Java, the more relevant tool written
in Java for Big Data analysis is Hadoop. Due to this, the most basic Hadoop MapReduce operation
is easily performed in Java by defining the map and reduce operations inside Java.

Setting up a MapReduce operation in Java is as simple as programming a Java class extending
the Mapper class for mapper, another class extending the Reducer class and a Driver class which
will coordinate the Hadoop Streaming API during the operation. Once everything is developed
and tested, a Jar file should be created which, when executed, will trigger the MapReduce
operation.

2.3.4. Matlab

Matlab is a software mathematical tool which provides an Integrated Development Environment
(IDE) to develop mathematical computations with matrices, functions and other mathematical
elements by means of a proprietary programming language called M.

In spite of being a proprietary software solution, Matlab offers several libraries loaded with
solutions for many engineering problems, such as telecommunications, mathematical transforms,
photography and sound mathematical processing or even basical statistical distribution creation
and meassurements.

However, Matlab computing power decays with very large data sets, which turns to be together
with the lack of advanced data processing and statistical tools a huge disadvantage for Big Data
processing and management.

2.3.5. Scala

Scala is an acronym for “Scalable Language” and it is a multi-paradigm programming language
built over Java with a clear and easy syntax. It is also apt for mission critical server systems, as
precise typing forces the detection of many problems beforehand.

The main feature of Scala is its scalability as a result of integration of object-oriented and function
paradigms. The object orientation allows the creation of advanced component architectures
through classes and traits while its functional design provides support for evolving from a “java
without semicolons” state to functional composition patterns, always supporting the preferences
of the programmer.

Additionally, Scala can interoperate with Java sin a seamless manner. Classes may be mixed

and cross-referred, as the Scala compiler includes a subset of the Java compiler to allow such
mixtures. Furthermore, everything in Scala is an object, which provides the flexibility required to

16

make the language evolve and create scalable server software using concurrent and synchronous
processing, parallel processing or distributed processing on a cloud environment.

2.4. Web technologies

When developing web services, there exists a great deal of alternatives of several programing
languages and web frameworks which make web programming really easy. In the case of this
project, only a light and simple prototype was to be made, so many powerful web frameworks
were out of question due to complexity. Despite of this, we find several alternatives in order to
design a web service prototype.

2.4.1. Node.js

As stated before, Node.js is local adaptation of Javascript which was conceived for light backend
programming. In addition to npm, which allows package management easily, the node
environment offers several packages which make web development simple.

The Express framework is one of these packages. Express is a really easy framework in node for
backend programming. Using it jointly with npm, it provides the basic code for a server running in
host which can be easily modified to develop a powerful web application very quickly.
Furthermore, it provides Jade, which is an easy and powerful html template engine based on
Javascript.

Other relevant framework provided by the node community is sails.js, which provides ORM,
RESTful APl auto generation, basic security functions implementation and static file auto linking.
Another examples are RhapsodyJS, total.js or Locomotive.

2.4.2. PHP

PHP is a backend object oriented interpreted language very developed for web applications which
also provides several frameworks to develop simple and light web services. It runs on an Apache
Server and is open source.

PHP is introduced inside an html file and interpreted in the server before making the response to
the user. Furthermore, PHP provides a very complete documentation and a great user
community, as well as many third party sites devoted to the PHP programing.

2.4.2. Django and Python

Python is an interpreted multi-paradigm programming language which philosophy is writing code
easily readable for humans. Python is commonly used in scientific environments due to its easy
syntax and quick development and execution.

17

Django is a very easy web framework for Python which provides a very powerful set of functions
that ease hugely the labour of the programmers. Among Django facilities are included ORM,
REST API auto generation or user management.

Additionally, Django offers a simple template engine for html coding as well as an easy way of
linking static files and external source files.

2.4.3. HTML5

HTMLS is the fifth version of the HyperText Markup Language, which is a frontend markup
language which helps to define and state the layout and elements of a web page for a browser.
In addition to being the web standard, HTMLS5 includes several improvements with respect to
older versions that allow programmers to easily implement several modern functions, such as
drag and drop, form validation, special form fields creation and many others.

HTML allows the programmer to include Javascript code and style commands both in the same
html file or linking an external file. Additionally, many web frameworks provide template engines
which allow creating several html pages based on a few files with some additional code.

2.4.4, CSS

CSS stands for Cascading Style Sheets and is a standard for frontend style definition. CSS allows
the programmer to actually design and decorate web pages. CSS is really important when
developing a professional web service, since it allows element collocation and colour and styles
definition. In summary, CSS provides the mechanisms to turn an ugly HTML page into a more
readable and good looking page.

2.4.5. R packages for web communication

In order to establish a connection with the project framework, it is necessary to offer an API which
provides functions for data processing when required in any application. For this purpose, R
provides several packages which help developing a full HTTP server in R, which allows
performing computations and operations over our dataset.

2.4.5.1. Rook
Rook is an R package developed by Jeffrey Horner which creates an interface for R HTTP server
functions. This package abstracts a web server to several objects and methods over these objects
which are called in the same way as any other R object or method. Consequently, creating an R
server with Rook only requires to write an R script to perform the required functionality with some
calls to Rook functions.

Additionally, Rook allows writing HTTP responses to each request and customizing headers,
which offers more alternatives when writing server side web services.

18

2.4.5.2. Shiny

Shiny is a light RStudio Package prepared to deploy an HTTP web server for R. It provides
functions to develop a web page which allows the user to perform operations in R and deploy the
results, with graphical elements and in a more user-friendly interface.

Nevertheless, Shiny is a package aimed to web page development, and therefore, is not prepared
to deploy a REST API. There is no HTML code, only shiny functions, which handle the
presentation of the web underneath.

2.4.5.3. OpenCPU

OpenCPU is an R library that provides tools for developing a cloud server with statistical
computing capabilities and full compatibility to create HTTP interfaces. The HTTP API offers
support for the main HTTP methods and a good path creation system for API functions.
Additionally, it provides Javascript seamless integration and easy input and output methods and
data types.

However, it does not allow writing responses directly, which leaves the programmer constrained
to the existing methods, with little possibilities when none of them matches the project interests.

2.5. Text mining and information retrieval algorithms

Text mining consists in deriving high quality information from plain text. It is also known as text
analytics, since it performs analyses on the text passed as input. Text mining includes several
tasks such as text categorization, text clustering or stemming. Information retrieval refers to the
activity of obtaining information which satisfies the user needs from a collection of resources.
Such retrieval is based on either metadata or a user based query.

At present, there exist several algorithms both for data mining and information retrieval which
generally offer good results for different situations.

2.5.1 TF-IDF

The Term Frequency - Inverse Document Frequency algorithm is a “bag of words” algorithm
which scores all words appearing inside a document based on the number of times the word
appears in the document and the number of documents where the words appear within the
collection.

The algorithm starts from a collection of documents, such as a set of texts from a book or a
collection of web pages in plain text. After text cleaning and some other pre-processing, the words
inside each document are counted, which results in a set of “term frequencies” of each term for
each document in the collection. To obtain the inverse document frequency, it is necessary to first
obtain the document frequency, which is the count of documents where each term appears at

19

least once. Then, the inverse document frequency is just the quotient between the total number
of documents in the collection and the number of documents containing a particular term.

The TF-IDF algorithm implements the following formula

N
TFIDF,p =TF.p - logo-
t

where TFIDF, pis the TFIDF value for term t and Document D, TF, , The term frequency

of term t in document D, N the total number of document in the collection and N,the number of
documents containing term t

The result of the algorithm is a list of ranked terms per document. The numeric output is called
relevance of a term and it is the importance it has within the document. Therefore, the term with
the greatest relevance will be the one to consider, as it represents the keyword in the document,
whereas the term with the least relevance is a word which has no value at all.

One of the most important aspects of this algorithm is to know how does it discriminate between
relevant and not relevant terms. For that, we have to consider the two main parts of the formula:

e The term frequency makes a word which is mentioned several times in a document more
relevant

e The inverse document frequency gives importance to words that appear in a very limited
subset of the document collection with respect to words that appear in most documents.

2.5.2. Okapi BM25
BM25 algorithm is a word ranking algorithm which behaves in a very similar way to TFIDF, since
it discriminates terms by their numeric score of relevance. However, in contrast to TFIDF which
is a very simple algorithm, Okapi algorithm improves performance and results by considering
more aspects of the text and text collection.

The essential mechanism of Okapi is very similar to TFIDF: it contrasts the number of times a
word appears inside a document to the number of documents that contain that term, but instead
of just multiplying both terms, Okapi shapes the result introducing document lengths, as the term
frequency will tend to be greater in a document with many words. The Okapi BM25 algorithm is
based, among others, on the following formula:

20

£(t, D) (K + 1)
ft,D) + k-(1—b+b-

N
score(t,D) = DT log(ﬁ
t

avgdl)

Where t is a term in the document, D a document from the collection, f(t,D) the term
frequency of query term t in document D, |D| the document word length, avgdl the average
document length from the documents in the collection, N is the number of documents in the

collection and N is the number of documents where t appears. K and b are free parameters that
may be modified to refine the algorithm results.

From the formula, it can be appreciated the effect of the length on the result. An average length
of the document will not affect very much to the TFIDF result, whereas a greater length will reduce
the contribution of the TF and a smaller length will increase it.

2.5.3. Clustering algorithms

Clustering consists in separating documents in subsets that are coherent among them, but
different from others. Clustering is a very good example of unsupervised learning: there is no
human assigning documents to classes, but is the machine itself the one deciding which
document belongs to which class.

Itis very important to consider the classification of clustering algorithms in soft and hard clustering:
hard clustering implies a strict assignment where each document belongs exactly to one single
cluster whereas in soft clustering any document may belong to more than one cluster at the same
time.

2.5.3.1. K-means clustering

K-means clustering tries to create k groups of documents which present similar characteristics in
terms of Euclidean distance. When given a numeric value, such as relevance, K-means algorithm
can compute clusters based on the distance among such values.

This algorithm is based on the computation of centroids for each of the K clusters based on the
values given as input. Initially, the centroids are randomly assigned. Each value is assigned its
closest centroid according to Euclidean distance, conforming each of the K clusters. Once the
assignment is completed, the centroids are recalculated according to the points conforming the
cluster. This process is repeated until the recomputation of centroids results in almost the same
point.

K-means clustering is one of the most common clustering algorithms at present. Furthermore, it

has been broadly developed and possible to implement using MapReduce, which makes it a very
useful candidate for Big Data analysis.

21

2.5.3.2. Canopy clustering

Canopy clustering is commonly used as a pre-clustering algorithm to speed up the clustering,
especially in large data sets. The primary target of this algorithm is to partition data in overlapping
subsets or canopies and afterwards perform more refined clustering techniques.

The algorithm consists on setting two threshold values (T1and T.) so the first is greater than the
second, pick any data point to be the centroid for cluster X, compute the distance of all points to
such centroid and compare them to thresholds. If the distance is smaller than T, then the point
is added to the cluster X and if it is also smaller than T then the point is removed. The computation
and assignment of points to X is repeated until there are no points left and X is nhot empty.

2.5.3.3. Hierarchical aggregative clustering

Flat clustering is efficient and relatively simple, but outputs an unstructured set of clusters which
requires a specific number of clusters as input. Hierarchical clustering instead outputs a structured
result, a hierarchy, which gives a priori more information than the flat clustering approach.

One of the most common types of hierarchical clustering algorithms are the agglomerative
algorithms. A bottom-up approach to agglomerative clustering considers each document inside a
collection as a single cluster and successively agglomerates pairs of clusters until all clusters are
together below the same hierarchical structure. A top-down approach splits clusters recursively
in a hierarchical structure until single documents are reached.

Hierarchical agglomerative clustering results are usually represented as dendograms, which are
tree-like structures which leaves are documents from the collection which are merged one another
as branches go up to the root. Once a dendogram is created, the number of clusters created
depends on the point of cut desired, which allows the user to define the sharpness and proximity
among clusters.

However, Hierarchical clustering algorithms offer better results at the cost of increasing
complexity and therefore reducing efficiency, so the selection of a clustering algorithm must be
conducted by the selection between very good results or simplicity and speed.

2.5.4. Vector space scoring
The vector space scoring algorithm derives document vectors with a term for each word that
appears in the document. By default, each term weight is computed using TFIDF algorithm.
Therefore, the collection of documents can be considered a set of vectors in a vector space where
each term is a numerical value.

Consequently, the way to find the score of a document given a query, also in vector
representation, would be to compute the dot product of the document vector and the query vector.
Nevertheless, as document lengths may vary significantly, a query could result being closer to a
document just because that document is larger than others. To solve this problem, this dot product

22

should be normalized, so instead of computing the dot product, we will compute the cosine
similarity, which given two document vectors d: and dzis defined as:

V(dy) - V(d,)
V(d)]| - |V(dy)]

Where V (x) denotes the document vector of x and |V (x)| is the modulus of such document
vector. The formula shows the computation of cosine similarity between two documents, but any
of them could be a query document represented in our vector form. Additionally, it could be
appreciated that apart from comparing a document to a query, vector space scoring may be used
to contrast documents.

Sim(dl) dZ) —

It is very important to understand the results from this algorithm. Since the equation computes
similarity, a greater resulting value is a better match, so when applying this algorithm with a query
to find and order results, decreasing similarity ordering would output the best results.

23

3. System architecture and design

Within this project, several existing technologies have been selected, installed and developed to
achieve objectives. One of the main criteria taken into account when selecting technologies has
been to choose open source solutions as far as possible. This is due to the fact that open source
licenses are easier to obtain and use, documentation and user communities tend to be bigger and
more developed and open source programs usually are more flexible and allow changes in the
main program. Another key point has been documentation: if no documentation or not a very good
documentation was found, the technology was discarded, since without documentation, working
with a technology usually turns difficult and tedious.

Additionally, emerging technologies have been seriously considered, since we understand that it
is very important to create solutions adapted to the future tendencies and standards. It is also
very important to bear in mind that this project covers several aspects of data processing and
data mining and thus there are several requirements for technologies and programs which are
currently on research and development.

All the decisions and steps taken during the project have been undertaken in order to achieve the
primary goal of the project, and therefore, each of the steps in the development of the project
follows the consecution of one of the objectives established in chapter 2. Such steps, shown in
figure 3.1, will guide the development and structure of this chapter in order to present the
technologies selected, the methodology applied and the tasks undertaken during the project.

[LinkedIn, Tecnoempleo, ., Data Data Visualizatio e

__Infojobs and other sourees / Acquisition 2B sl and Applicatiop qnd.
“ B application

Figure 3.1 Objective schema during the project

3.1. System architecture overview

Such a big and complex framework requires a very defined and structured design in order to be
manageable, simple and extensible. The whole system is divided in smaller modules which can
be treated separately despite interacting among them with no problems. Each module is then
separated in smaller components which conform their functionalities.

The modules created are: the crawling module (O1), which is in charge of retrieving and storing
structured information, the data processing module (O2), which manages retrieving data from the

24

database and processing it as needed and the service module (O4), and it is in charge of
deploying and serving all web components, including the necessary database queries.

In addition, the database has to be a central element which serves to all modules with persistent
and updated information. For this purpose, there will only exist a central database system based
on MongoDB, although each module can implement and develop its own storage information
systems for other purposes.

All modules in the application will follow a Model View Controller (MVC) design pattern which can
be supported by different frameworks and all of them will work as independent entities of the main
framework. The architecture schema of the framework is illustrated on figure 3.2.

Crawler g mongoDB

Database
Connedtors

Figure 3.2 Project architecture schema

3.2. Data acquisition

3.2.1. Technologies involved

Node.js (node from now) was a technology emerging at the beginning of the project and showed
very good perspectives for crawling and as basic programming language in web development.
Node is a Javascript based programming language which is very close to the web environment,
very easy to understand and learn and highly compatible with many of the technologies and data
structures used in the project.

Furthermore, node provides several libraries to connect with MongoDB, which is the main
candidate for data storage, in contrast to many other programming languages which offer less

25

options. Moreover, node is a light environment, highly portable, easy to install on any operative
system and the language is Javascript, which is a well-known programming language with the
same code syntax on any platform.

In addition, node provides the “node package manager” (npm) which allows the user to easily
install all needed packages with a line or two and keep everything up to date automatically.
Furthermore, node was created to ease the development of web services and, therefore, there
exist a good deal of web frameworks and template engines. Although this may not seem useful
for web crawling, it could be a very good candidate for prototype development, so acquiring the
knowledge from the beginning will save time in the future.

LinkedIn offers a full REST API to retrieve diverse information, from public user profiles to job
offers and company information. This API is fully supported by the company and only requires
registering to develop applications interacting with it.

Once the application is registered, Oauth credentials and programmer user tokens are provided.
The Oauth credentials are needed for any request and allow the programmer to implement user
authorization of his application to the public. User tokens allow the programmer to access to all
the information of a user as well as other APl methods which must be called on behalf of an
authorized user.

There also exists a node package to send OAuth authenticated requests to the LinkedIin API.
Additionally, some node code is used to adapt the other crawler outputs to the database model
and the backend of the prototype obtained is also programmed in node using the Express
framework.

For this project, the most relevant methods on the LinkedIn API are the search methods (people-
search, company-search and job-search) which allow any user to retrieve user profiles, job offers
or company profiles according to some key parameters (hame and surname in profiles or
keywords otherwise).

However, the API has a limit of 500 queries per APl method and day, which results in a severe
limitation for data retrieval and the need of executing the crawler once a day. The requirement of
some key parameters in the search API methods also requires additional efforts finding the proper
parameters to query the API.

For the other source pages (Tecnoempleo and Infojobs) we used the R XML and RCurl libraries
since, in this case, no API was provided and XML library provides functions for easy and quick
html parsing and RCurl allows to easily download all the html pages needed. In any case, it must
be taken into account that this crawling method is much less efficient, since HTML parsing is
usually slow and many web pages understand several repeated HTTP request to them as harmful
and perform techniques to avoid such connections.

26

As it was the most well-known and handy solution for data storage, the selection for long term
data storage was MongoDB. MongoDB provides a NoSQL vary fast solution for JSON-like
document storage with a highly efficient index management system and several data processing
tools embedded, such as MapReduce. Additionally, there exist many node libraries for the
connection with MongoDB, such as Mongoose.

Mongoose, which is a node package for MongoDB and node communication, provides a really
easy way of connecting to MongoDB from node, modelling the raw data to be inserted into user
predefined schemas and also gives the possibility of performing built in operations over a whole
MongoDB collection.

3.2.2. Development process

The very first step in this project was to start obtaining any kind of Human Resources and Job
Hunting data from the web as soon as possible. The initial source of information was LinkediIn.
After some research on the subject and all the considerations stated in previous section, node
was the programming language preferred for LinkedIn application management.

Once the design decision was taken and after trying how all these APIs together work, some
design considerations had to be taken. The main design decision was that an MVC (Model-View-
Controller) architecture was to be used.

Initially, the design of the crawler proposed creating three different and separated crawlers, each
one containing its own controller, model and querying engine (according to the MVC programming
model) and managing just one kind of data. Thus, there was a crawler for person profiles, another
crawler for job offers and a last one for companies. Each crawler stores information following the
data structures specified in annex Il (All.1).

Initially, all controllers execute an init function which reads configuration files and opens a
connection to the MongoDB database. These configuration files mainly contain a set of search
parameters to query the LinkedIn APl (Names and surnames for person profiles and keywords
for the rest of collections). Additionally, the init function calls the init functions of the rest of
components (the querying engine and the database model). Figure 3.3 offers a snippet of the init
code from one of the controllers.

After initialization, the program calls the querying engine to start making queries to the API. The
guerying engine is a layered architecture with two levels:

1. Thefirst level offers a common querying engine which performs any type of query agnostic
to the specific contents of the query.

2. The second one adds the logic to specify the type of data and parameters of each query
over a common lower-layer interface.

27

Once the results of a query are received, the program checks if there exists any error, computes
whether the following query changes its offset or the query parameters and sends the results to
the modelling module to be processed.

wu

function init()

206 B {
208 readPersonFiles() ;
210 B eventEmitter.on('personInfoRead', function(){

212 persondb= new Db (DBname, new Server('localhost', 27017), {w:'majority'});
213 persondb.open (function(err, db)

214 H {
215 i if(err!=null)
> [{

21 console.log("ERRCR") ;

218 console.log(err) ;

219 | }

220 else

221 H {

222 personCol= require('../model/personDb') ;
223 personCol.init (DBname, DBcollection) ;

Figure 3.3 Crawler init function

The model module performs modelling and saving operations to the raw data obtained from the
API. Using Mongoose, the data is modelled according to the database schema and saved. To
this point, no data validation or duplicate removal is performed: everything downloaded is
modelled and stored in the database as it is.

After saving results, the program then decides whether the next step is a new page from the
current query or the beginning of a new query. When the proper action is undertaken, the querying
process is repeated until there are no more queries pending or the daily limit of downloads is
reached. If the later occurs, the program terminates its execution.

Nevertheless, once the prototypes of the three programs were developed, a “super controller”
managing the execution of each of the programs sequentially was proposed. The fundamental
advantage provided with this solution was the reduction of execution complexity, since the super
controller manages the order of the queries and the change of program when any of them reaches
its daily limit, leaving the user the lone task of starting the program.

The basic working of the “super controller” is to coordinate the work flow of controllers so they are
executed sequentially. The programming required for this element was really simple, as it only
needs to add events and their listeners at the beginning of each controller as well as triggers at
the right moment.

28

In fact, one of the most complicated elements to manage in a node program is the workflow, as
Javascript is a programming language hardly based on callback functions and does not provide
wait methods neither any blocking system to partially stop execution. Consequently, the crawler
program is strongly related to events and event listeners, as they are the most adequate way to
control workflow when callback functions appear.

Figure 3.4 shows a schema of the full crawler program working with all its modules and
dependencies. Additional code captures of the query engine as well as the rest of components
may be found in annex Il (All.2)

Main Controller

Controller
for
company
profiles

Controller
for
job offers

Controller
for
person profiles

personCrawl jobCrawl e s COMpanyCrawl

J
Data base Model i
Module companySchema

jobSchema

Figure 3.4 Crawler structure

Crawling
Core

Once a sufficiently large dataset had been downloaded, data processing started and it was
appreciated that there existed other sources that could enlarge and enrich the dataset.
Consequently, Tecnoempleo and Infojobs were added to the source list and crawlers for both
were developed.

The design and development of these crawlers was easier and faster. Using XML and RCurl
libraries a simple R script could be written that requested each web all the job offers and then

29

processed the results with the Html parsing functions of XML library. Once the information is
processed and prepared is stored in a structured dataframe which is saved in the computer hard
drive as an Rda file.!

The basic working of these crawlers consist on three steps starting from the search results page
of each web:

1. First, using XML library we retrieve the content from the HTML tag corresponding to each
job offer Universal Resource Locator (URL) and store them in a list using XML method
“xpathSApply”. The sentence in R used is shown in figure 3.5. This step can be repeated
until every search result page is traversed.

2. Once all the job offer URLs are stored in a list, RCurl sends GET request to each URL
and the HTML page is stored to be completely parsed and exported to an R list using
XML.

3. Finally, the proper element from the mentioned list is extracted to obtain all job offer fields,
create a dataframe row for that offer and add the row to the resulting dataframe.

11 html < htmTParsei‘scrw‘pt,encoding = "UTF-8")
12 ur]s -:-xpa;hSApp1){fjljhtm1_, l",.-",.-"d1'\-‘[@dass='search-resu]ts-h’st "1/ul/ 1 /div[@class="description'] /h2/a", xmlGetAttr, "href")

Figure 3.5 Code for HTML parsing

However, this new sources are not as populated as LinkedIn and, therefore, should not be
considered as primary sources but as a complement to the main one. Despite this fact, both are
a good enough source to take into consideration when performing different data processing
analysis separately. Additional captures on these crawlers code may be found in annex Il (All.2).

3.3. Data analysis

3.3.1. Technologies involved

Data analysis requires the setting up and configuration of a framework of great capabilities. Due
to the size of the data stored, traditional data analysis is out of question, as it is impossible to load
the full dataset to computer memory. Furthermore, single-threaded analysis fails to provide a fast
enough solution for this project to offer a feasible way of analysing data efficiently. Consequently,
data structuring and advanced efficient parallel operations are needed in the construction of a Big
Data framework.

In a first approach, the Hadoop ecosystem would be a very good alternative, since it offers really
nice applications to manage Big Data, is open-source and provides a really good supporting
community.

However, for data processing, the best alternative would be the R programming language, as it
offers the largest collection of data analysis and statistical tools, a good deal of mechanisms to
manage large amounts of data and several libraries for graphical representation of results.

1 Rda file: R data format to store dataframes in the hard disk

30

Moreover, it is an open-source alternative which is gaining a lot of relevance, increasing its
community and the enterprises interested in it.

Consequently, the most desirable combination for the framework would be to join both Hadoop
and R to get the higher efficiency in Big Data management from Hadoop and the best analysis
tools from R.

For this purpose, we found in RHadoop a real handy tool, since it allows to perform MapReduce
operations over R, which provides to mapper and reducer function development all the advanced
tools mentioned above and allows exporting results to a dataframe for further analysis. In contrast
to RHipe, we considered that RHadoop was more complete and had a more active community,
as well as a more defined architecture which helped to understand easily the package.

Therefore, rmr on top of Hadoop MapReduce engine and rhdfs on top of HDFS are the basic
components of this framework. Additionally, since the whole project is stored on a MongoDB
database, a MongoDB and R connector needed to be used to extract data necessary for data
analysis. For this purpose, two different alternatives were considered and included in the project:

1. Package rmongodb from R provides all kind of mechanisms to query information from
MongoDB with a relatively easy syntax. It deals with cursors and MongoDB BSON objects,
so efficiency is guaranteed.

2. Node.js Mongoose provides all needed tools for data extraction from a MongoDB
database and, with a little further processing, allows any data to be written to files which
can be easily stored in HDFS.

More precisely, the Hadoop implementation selected to be the core of the framework, was
Cloudera Hadoop (CDH4) [1] as it offered the best configuration documentation and an auto
configurable pseudo distributed cluster installation based on Ubuntu repositories.

The server machine available is a Dell OptiPlex 360 containing an Intel Core 2 Duo processor at
2.6 GHz, 160 GB hard drive disk and 4GB RAM memory running Ubuntu 12.04 LTS (Precise
Pangolin) with no graphical interface. This machine will host the entire framework as well as all
the add-ons the project shall develop. The machine is in the Carlos Il University of Madrid in the
Telematics department and is connected to the Internet behind a firewall which only allows
connections to ports needed for framework interaction.

During the project, a smaller framework based on built-in MongoDB MapReduce engine and node
Mongoose was considered, as it would avoid setting up the Hadoop ecosystem and thus reduce
the configuration workload. Nevertheless, the alternative was very quickly discarded as the
processing needs outran easily the solution capacity.

3.3.2. Development process
The first step in framework configuration was to physically install the computer in the provided
facilities and turn it on. Then, the Ubuntu 12.04 OS was installed and the machine was connected

31

to the Internet. In order to act as stable server, a static IP address from the university was
assigned to the machine and configured on start.

When the machine contained the operative system and the basic control and monitoring
programs, such as an SSH server and file sharing mechanisms, the Node.js and MongoDB
programs were installed from the Ubuntu official repositories. Both programs are included in
official repositories, so a simple apt-get install command was required for each.

Then, both R and Hadoop were installed. There was no necessary order of installation. The R
installation can be performed adding a repository to the Unbuntu repository list which can be
found in the Cran project official web page (reference 5). Once the repository entry is added and
authenticated, R may be installed with an apt-get install command.

However, the plain R installation is a console program as shown in figure 3.6, which is not very
desirable when the processing algorithms and variables become bigger. Consequently, Rstudio
server was installed. RStudio server is a tool which provides a web based IDE for R, which keeps
track of variables, functions, allows to develop code files among many other functionalities. This
IDE is accessible in port 8787 of the machine hosting it, so the framework is accessible from

‘help()

ay

Figure 3.6 R base console program

anywhere and therefore working on the project becomes really flexible.

Cloudera Hadoop installation and configuration was a bit more difficult, although Cloudera
provides a vert good userguide through the process which can be found in its webpage (reference
9). The installation process is based on a repository solution installed by a Debian page
downloadable from the Cloudera webpage and once installed allows the user to install everything
from repository.

Due to the resources available for the project, the pseudo cluster was developed. The Hadoop
pseudo cluster is an emulation of a distributed Hadoop cluster installed in a single machine which

32

provides all components from the Hadoop ecosystem and works exactly as an actually distributed
cluster. Although this solution is less efficient, it has less costs and requires less maintenance.

Since all Hadoop components are written in Java, it is necessary to have installed in the computer
the Java Runtime Environment (JRE).

Once CDH4 is installed, Hadoop start running its processes and is completely functional, so files
may be stored into the HDFS and MapReduce jobs may be started by any authorized user. The
Hadoop distributed File System can be accessed at any time as if it was a typical file system and
data storage may be performed in a similar manner. The file structure is exactly the same as a
traditional file system structure, as shown in figure 3.7. In fact, the most notable change with
respect to any other file system is the sentence to access the HDFS.

identifyKey
2 input
a

output
5 perso

Figure 3.7 Hadoop file system root directory

Finally, once both Hadoop and R are installed, the final step is to install RHadoop so they integrate
each other. For that purpose, the R packages needed for the installation may be downloaded
from Revolution Analytics GitHub account. In addition to the RHadoop R packages, some
additional packages have to be installed to solve compatibility issues, such as RJava, RISONIO
or others which provides RHadoop package with advanced tools not installed in the basic R
distribution. These packages must be installed before installing RHadoop and should be installed
in the system space.

By default, R packages are installed in the personal folder of the user who logged in. In the case

of RHadoop and its dependencies, this is not possible, as the user starting mapreduce operations
and HDFS operations would vary with respect to the R user. Consequently, all RHadoop

33

packages and dependencies must be installed by the root user account. This way, all packages
get installed inside the system files and permission issues are avoided.

After all these configurations, the basic framework is completed with the exception of MongoDB
integration for data analysis. Although direct connection to MongoDB from R is also possible,
most of the data analysis inputs rely on a variable node script which connects to MongoDB via
Mongoose and extracts the fields desired for each data analysis to store them in a set of plain
text files which will be introduced in HDFS for processing. An example script of this connectors
may be found in annex Il (All.3).

Rook P

Database

. mongoDB

Figure 3.8 Framework schema

The last part of the complete framework is the REST API to provide data processing functionalities
to external applications which do not manage R structures nor code. This REST API opens a set
of HTTP GET requests on server port 8080 (which is currently protected by firewall from external
connections) which allow external users to manage the framework for their information processing
needs. The implementation of this component is specified in section 3.4 with the rest of the web
application developments and is based on the Rook package. Figure 3.8 illustrates a diagram of
the full framework and their components.

34

3.4. Data mining

3.4.1. Technologies involved

The basic technologies involved in the consecution of this objective are mostly algorithms used
to classify, score or separate words of the data set. These algorithms are both well-known
algorithms with a clear and developed projection and new or improvements of other algorithms
which try to address the new problems here encountered.

Obviously, the main technological support for this objective is the framework developed for the
project, which will provide the starting point for data analytics. Additionally, many other R
libraries will be added to the framework ecosystem in order to improve and augment the
capabilities and functionalities of the framewaork. For instance, stats, plyr or tm libraries are
added to the framework.

Stats library provides a bunch of advanced statistical analysis tools as well as other data
analytic advanced tools, as the k-mean algorithm implementation. Plyr exploits many
possibilities of parallel computing and provides highly efficient functions to be applied to larger
data structures. Tm provides basic structures and algorithms optimized for data mining, as well
as the functions to manage and create them. For presenting the results, the libraries wordcloud
and gplots provide several advanced functions for graphical representation.

One set of algorithms highly involved in the project nature is the family of the word ranking
algorithms. Such algorithms include various mathematical models which try to discriminate and
punctuate words to extract the most relevant ones from a great collection of texts depending on
various factors. Thus, they allow the quantification of the relevance a term has inside one or
more documents.

Word ranking algorithms are strongly related to term frequency and document frequency values,
which we have seen can be obtained by means of a MapReduce program. Once these
frequencies are obtained, the computation of word scores is fairly simpler and requires less
computer resources.

The most relevant algorithms studied for this project are Term Frequency Inverse Document
Frequency (TF-IDF) and Okapi BM25. Both algorithms are strongly related to term frequencies
and inverse document frequency. Inside the framework, both can be implemented fairly easily
from a collection of terms and their frequencies obtained using the MapReduce word count.

The TF-IDF algorithm implementation is used mainly to extract keywords from huge text
collections. The actual TF-IDF algorithm computes the TF-IDF score for each term per document,
but in this project, it was adapted to compute a unique score for the whole document collection.
For that purpose, once we get the term and document frequencies for each word from the
MapReduce word count, we can add them up according to the following equation in order to
compute this custom TF-IDF measurement.

35

N
TF = IDFpyy = TF - log 57—
w

Where TF is the full term frequency, that is, the number of times a word appears in the
collection, N the number of documents inside the collection and N,,is the number of documents
containing the current word.

Okapi algorithm is a more complex algorithm that takes into account other aspects of the collected
texts, such as text lengths and other free parameters. Here, starting again from a MapReduce
word count containing the document term frequency of each term, the term itself and the identifier
of the text where it appears, we can compute text lengths and document frequency of each term
by means of the count R library ‘plyr’ function and then compute the okapi score, which follows
the following equation:

n

score(Q D)ZZ f@qi, D) (K+1)
i=1/(q;,D) + k-(1—b+b-

, N
avgdl

Where Q is a query of n words, D a document from the collection, f(q;, D)the term

frequency of query term g; in document D, |D| the document word length, avgd! the average
document length from the documents in the collection, N is the number of documents in the

collection and N, is the number of documents where g;appears. K and b are free parameters that

may be modified to refine the algorithm results and in this project are fixed to 1.2 and 0.75
respectively.

3.4.2. Development process

As stated before, there exist several programs in Node.js which open a collection, and write to a
set of files all the fields required for the data analysis to be performed. In order to assure
compatibility, each file of the set is structured separating fields of a same entity using the character
chain: “//I” and entities one another by means of the character chain: “asdfghjkl”.

The selection of such trivial chains is hardly conditioned by the nature of the documents
processed. Several texts retrieved contain typical separation characters such as the new line
character or the tab or space characters. In Addition, the export program is also responsible for
text cleaning, removing all unwanted characters, such as punctuation characters, characters
containing tildes or even numerical digits.

After the execution of any of these connectors, the data is stored inside a set of plain text files

compiling to the above format which are ready for further development. These files are then sent
to a HDFS directory which will be specified afterwards as the input path for a MapReduce task.

36

Then, the rmr package can be invoked. When Map and reduce tasks are programmed and a
MapReduce job starts, Hadoop opens in parallel all the files in the collections and sends their
content to various mappers that perform the programmed task by the user and emit key-value
pairs for the reducers, which perform on their pairs the task written by the user. A code skeleton
for MapReduce operations is shown in figure 3.9

wordcountTFIDF = function(input, output = NULL, pattern = " "
h wc.map = function(., lines)

: ##Mapper code goes here

@c.reduce = function({word, counts)

- ##Reducer code goes here

;FapReche defined here
mapreduce(input = dinput ,output = output,input.format = "text",map = wc.map,reduce = wc.reduce)

##0peration starts, job started
wordcountTFIDF(' /user/nacho/personspecialties’)

Figure 3.9 MapReduce skeleton code

It is important to remember that, even though Hadoop MapReduce is able to process huge
amounts of data more efficiently and faster, it is limited, and thus helps to reduce the information
to process for R to continue processing. When a MapReduce operation concludes, it can be
loaded into an R data frame containing two columns: one for keys and one for values. Then, this
dataframe can be processed very efficiently by R.

In this line, the first word ranking algorithm developed was the custom implementation of TF-IDF
described above. Using MapReduce, it is possible to count the number of appearances of any
word within a collection. For that purpose, we just need a mapper which cleans and separate
words in a text by whitespaces and a reducer that sums all the occurrences of each word.

Alternatively, it is possible obtain document frequency of each word, which is the number of
entities from the collection where a word appears, by extending the mapper to separate texts
using the separating chains and emitting for each word the term frequency of the word and an
additional instance of the word (with added characters, for example “%%”) which has a value of
one, so when the reducer sums values it will emit for each word the term frequency, identified by
the word itself, and the document frequency, which will be identified by the word itself followed by
a restricted chain of characters.

When this MapReduce task is finished, the output dataframe contains both global TF and IDF of
all words in the collection of documents examined, so with a little more processing consisting in

37

joining all terms together and applying the formula, it is possible to obtain a dataframe with each
single term appearing on the collection and the TF-IDF relevance value. Then, after ordering the
results, the dataframe contains a decreasing ordered list with the terms appearing in the text
collection, ready to be displayed with a histogram, a pie or a wordcloud.

Then, based on this TFIDF implementation, a point is reached when the implementation of a job
offer search engine seems feasible. Consequently, the first step is deciding which algorithm will
be used for this purpose. Okapi BM25 seemed a better candidate, as it considers text lengths and
the collection available contains a very length-variable collection.

Therefore, the implementation of Okapi BM25 started. It was discovered that, if given the proper
data input to the algorithm, the execution of a MapReduce task could be avoided. So initially, a
MapReduce task was developed to create such structure. The basic idea of the structure consists
on a dataframe which relates each word in the collection to its document identifier. For this, the
input data should contain the text identifier and the text contents adequately separated which the
map function would separate and process to emit as key the document identifier and as value
each term in each document.

This mapper function, as shown in figure 3.10, separates all lines received in ids and term chains
to continue cleaning and splitting the later into single words identified by their document id which
will be sent to the reducer function that will do nothing in this case, just emit the values as they
enter each reducer.

20+ EEEMAPHSSESHEEESRESSSSSSSERER SRS SES SRS
30 wc.map = function(., lines)

31~ 1

32 docs<-strsplit(x=1ines, split="asdfghjkl")

33 whole<-unlist(docs)

34 a<-as.data.frame(x=whole)

35 for(i in l:nrow(a))

36~ {

7 a[i,"ids"]<-as.vector(unlist(strsplit(as. character(atwhole[i]), split="///"
Ef:] a[i,"words"]<-as.vector (unlist(strsplit(as.character (atwhole[i]), split=
39 1
40 lines<-a%words
41 Tines<=- gsub("[[:punct:]]"," ",1ines)

42 lines=< b("[[:digit:1]1"," ", 1ines)
43 Tines<- gsub("t', " ", 1ines)
44 Tines<-tolower (1ines)
45 Tines=-gsub("A;", "a', lines)
46 Tines<-gsub('A8", 'e', l1ines)
7 Tines<-gsub("A", "i", Tines)
48 Tines=-gsub("A*", "o0', lines)
49 Tines<-gsub("A®","'u", lines)

50 Tines<-gsub(’''n", '", lines)

51 values<-data.frame(lines, row.names=aiids)

52 TistKeys=-unlist(x=as.character (row.names (values)))

53 Tistvalues<-unlist(x=as.character{valuesilines))

54 keyval (1istkeys,listvalues)

55 h

Figure 3.10 identifier-term mapper function code

Once this structure is created, R can handle it easily to perform further operations using functions
from libraries like plyr and count term and document frequencies and even word lengths. Then,
the Okapi algorithm implementation turns to be as simple as finding in this dataframe the values

38

included in the user query, separating them from the rest, computing the Okapi value for each
document and presenting the ordered results as an output.

The score computation is made in parallel using the functions and libraries built in R, all needed
values are computed from the input dataframe and Okapi algorithm is performed in parallel to all
entries in the table. Once Okapi values are computed, they are re-joined. The Okapi
implementation returns a dataframe containing the identifier and the okapi score of each
document ordered by the later in decreasing order.

These results may be used for further analysis or even to consult which job offers are more
relevant with respect a given query. When this algorithm worked, it was clear that it had many
useful applications, and so the idea of creating a job offer search engine became clear.

In addition to this two main processing development lines, several experiments on data were
performed in order to extract new conclusions or confirm some theories. To implement such
studies, specific data was exported to the framework for analysis and further research. Many
algorithms and methods have been tested and used. The specific details of each experiment as
well as the result data and interpretation may be found in chapter 4. Most of the resulting
illustrations and tables have been obtained using the framework tools.

3.5. Data visualization and application

3.5.1. Technologies involved

Once the data is obtained and processed, any resulting application should be tested and
experiment, and for this, a prototype would be one of the best alternatives. For this purpose, it is
desirable to define a common collection of web development technologies to be able to quickly
create prototype applications of the results.

Consequently, back-end and front-end solutions must be chosen to set a good environment. Due
to the development of the project, the best candidate for back-end programming is Node.js, since
it has been very used and the team has practise in programming it. Besides, node offers the
Express framework, which allows the developer to easily set up a web service based on HTTP
requests.

In fact, Express manages transparently most of the issues of web server development, is highly
connected to the node package manager, assuring a very fast and agile deployment, and provides
a very simple Html template engine: Jade. Therefore, the front-end scheme is based on the Html
code generated by Jade and Express, with static CSS and Javascript linked files which add style
and LinkedIn connection features.

39

Since we are dealing with LinkedIn data, the Linkedin APl may be useful, both for data consulting
or even user logging to the application developed. For the later, LinkedIn provides a Javascript
library which helps to connect and retrieve all needed user information from the client.

Additionally, in order to access to the Big Data sets and perform operations over them using our
framework, it needs to have a connector which allows compatibility of node server-side processing
with the R framework. For this, an REST API would be one of the best alternatives, as it would
ease data exchange over a standard protocol unaware of the technologies below and also will
grant any web application in the world to easily connect to the framework. Rook library provides
functionalities to easily deploy any kind of web server based on the R language, allowing the
connection of the data and the data processor with any web service over a common interface.

3.5.2. Development process

For data visualization and application validation, a prototype methodology was proposed as a way
of testing the results of such application at a moderate effort. Such web service had to be easy to
implement and deploy. In order to create such a prototype based on the application idea, node
was used.

The web page developed has to be fully functional and intuitive, granting the basic functionalities
of the application as well as a friendly design. Node and express provided the starting point to
create and improve a light web server with the three following views:

e Index view: The page displays a welcome message and invites the users to login the
application using LinkedIn

e Search view: Once the search task is complete, the service displays the results in a new
page, ordered decreasingly by relevance and paginated.

e Error view: Whenever there is an error in the web or in the API, the server displays an
error page with its corresponding error.

Additionally, the web server is in charge making requests to the APl with the proper queries based
on the data extracted from the user LinkedIn account. For this purpose, the API provides a method
which given a query in text format returns the ten most relevant job offers in JISON format. Once
this JSON is received, the server displays its contents on the search view in different boxes
containing a brief description, the source and the link of each job offer.

The development of a web server based on npm and express is fairly easy. The node package
manager provides tools to create a functional skeleton which sets connections and bindings to
port 3000 as well as the full file system, which contains the auto generated code for a “hello,
world” program. These file structure is shown in figure 3.11.

40

— o The structure shows various folders:
¥ pele modules e bin folder contains an executable file (www) for starting up the web server
> body-parser e node_modules folder contains all the additional node packages included in
: ;‘:‘;‘:‘;‘pa’“’ the project
b express e public folder contains static files, Javascript program files and CSS style
: ::fgan sheets
[gD e routes folder contains node files which define the actions to be taken when
¥ public a certain path of the server file system is reached by a client. The bindings of
e each path to a specific node file and function is undertaken in the file app.js
P stylesheets ¢ views folder contains all jade templates developed which will be rendered
’ '°T'::;Js when the programmer calls the function render over the template name
userjs e app.js is the main controller file of the application. Bindings of paths and
v ‘”e:‘r’:orme methods to functions is performed there as well as many other server settings
indexjade and values.

S e package.json is a file containing a JSON structure which defines all
:f,fn'{zebug,log dependencies of packages of the project, so when it is built, npm manages the
package json download and installation of such modules.

Figure 3.11

Once this structure is created and all dependencies fixed, the only things to do
are developing the functionalities of the application and creating the templates used.

The main functionality of the application is the search engine. When any user logs with its LinkedIn
account, a Javascript routine retrieves the data relevant for analysis and sends it as a form to the
server. The server then receives the information from the user and sends it to the framework API,
which will return a collection of job offers in JISON format prepared for visualization. When every
job offer is received, the server calls the result page rendering and sends it the results and thus,
the result page is shown in the application.

Whenever there is an error, the application will show a generic error page in order to inform the
user that the processing should wait. If the user wants to log out from LinkedIn from the result
page, there is a button that calls the LinkedIn Javascript APl and unlogs the user. During the
waiting period for the results, the application displays a processing gif

The REST API is an important part of the framework, as it provides external communication for
the processing capabilities of the framework. This API is built using the web library Rook in R,
which provides methods and variables to manage external connections via HTTP. The API
developed is just in charge of receiving queries from the web server, calling the okapi function
implemented passing as a parameter the queries and the collection dataframe and returning the
results via an HTTP response to the web server in JSON format. Figure 3.12 shows a snippet of
the code of the API.

41

queryaPI<-function{env)

print("connected")

req <- Requestinew(env)
res <- Responseinew()
resSheader (" "Content-Type": "application/json”")

if (lis.null(regiPosT()))

data <- reqfPOST()[["query"]]
jobInfo=-reqiPosT()[["jobs"]]
offset<-reqiPosT()[["start"]]
print{req$PoOsT())

print{offset)

print(paste("received: ", data, sep=""))
#received<-fromison(data)
st<-tostring{data)
st2<-tostring{jobInfo)
offset<-tostring(offset)

st<-gsub{ "query’, "", st)
st<-gsub("[[:punct:]]", "", st)
st<-gsub("[[:digit:1]", "", st)
print{st)

st=-gsub(%\s5%%", °", st)
st2<-gsub(’"jobquery', "", st2)
st2<-gsub("[[:punct:]]", "", st2)
st2<-gsub("[[:digit:]]", "", st2)
st2<-gsub({ "% \s¥*$", "', st2)

print{st2)

offset<-gsub('"start', "", offset)
offset<-gsub("[[:punct:]1]1", "", offset)
print{offset)
offset<-as.numeric(offset)

print("let’'s go querying")

g<-paste(st, st2)
g<-gsub(" s+, "
print(q)
results<-query(q, new.wval)
indexl<-1+offset

index2<-10+offset
results<-row. names (results[indexl:index2,])
results<-tolsoN(results)

. q)

print(paste("rResults:", results, sep=" "})

#Mongo

id<-urls<-description<-reguirements<-Source=-NULL

crawl =- mongo.create()

buf <=- mongo.bson. buffer.create()

query<-paste(" {"jobID":{ "$in":", results,"}}", sep="")

cur <- mongo.find(crawl, 'CrawlerDB.job_offer_dbs’, query = query)

Figure 3.12 REST API code snippet

The API is also connected to the MongoDB database of the framework, to a collection which
merges job offers from all the sources of the project in order to retrieve all the relevant information.
As a security measure, this API runs on a local port on the framework machine and cannot be
accessed from the outside, so only a local web server may access it. The MongoDB collection
used for this web service contains job offers from all sources in a common format, so information
about any job offer can be retrieved at any time. Further details on the collection parameters may
be found in annex Il (All.4)

42

4. Experiments and results

4.1. Data set description

As a result of all the crawling efforts during the project, several Gigabytes of information have
been retrieved and different types of structured data have been prepared and processed for data

analysis, as shown in the following table.

LinkedIn: Personal
Profiles 67071 13858
LinkedIn: Companies 515000 866284
LinkedIn: Job Offers 170536 633478
Tecnoempleo: Job 2691 4562
Offers
Infojobs: Job Offers 1223 957.4

All these collections contains structured information as described in section 3. 2. In order to be
processed, any of these collections must be exported to the framework as described in section
3.3. Additional information on the data stored may be found in annex Il (All.1) and captures of the

collections may be also found in annex Il (All.4).

Consequently, once the crawlers retrieved information enough, the information could be exported
and processed in the framework. Most of the experiments undertaken try to address the following

issues:

© NGO LDNE

Are job offers in LinkedIn a good collection for analysis? (4.2.1)

How do companies take advantage of social networks as LinkedIn (4.2.2)
What is the average active duration of a job offer in LinkedIn (4.2.3)

Which are the most demanded skills in LinkedIn? (4.2.4)

Do candidates in LinkedIn know how to meet employers’ requirements? (4.2.4)
What are the basic parameter from offers in Tecnoempleo? (4.3.1)

Which skills are demanded in Tecnoempleo?(4.3.2)
What do employers seek: experience or formation?(4.3.3)

Which profiles can be found in networks as Tecnoempleo? (4.3.4)

43

4.2. LinkedIn job collections analysis

LinkedIn analyses in this project focus on person profiles and job offers collections in order to
obtain information related to the job recruiting process as well as the existing offer in LinkedIn.
The collections studied offer several fields such as job offer description or candidate skills lists
which are very interesting for word scoring and clustering algorithms.

4.2.1. Job offer analysis: offer descriptive field selection.

In order to analyse the collection of job offers extracted from LinkedIn, we need to consider two
relevant fields: “skillsAndExperience” and “description. Both these fields contain descriptions of
the job offer; the first more oriented to job requisites and the other more oriented to job description.

Although both may seem perfect candidates to use in offer analysis, we will study both and extract
a conclusion from both. In order to perform this analysis, we will find the lengths in number of
words of each fields and the percentage of “stopwords”, which are common use words that result
meaningless for our analysis.

SkillsAndExperience field

Initially, we consider the field skillsAndExperience, which is supposed to contain requirements for
the offer candidate. By means of R functions we count the field lengths in each job offer after and
before removing “stopwords”. Once this is achieved, we can plot the histograms containing the
frequencies of each length.

Distribution of skill text lengths(with stopwords) Distribution of skill text lengths(without stopwords)
_ withsw withoutsw
Min. 1.0 min. : 1.00
e 1st Qu.: 64,0 1st Qu.: 46.00
= Median :106.0 Median : 76.00
Mean :126.8 Mean i 90.12
g 3rd Qu. :166.0 3rd Qu. :118.00
C
g Max. :613.0 Max. :465.00
g 3 NA's 11
r 2
o
g
w
o J
| | T T | T 1 | T T | 1
0 100 200 300 400 500 600 0 100 200 200 400
skill text length(number of words) skill text length(number of words)

Figure 4.1 Skill text length distributions with and without stopwords

44

Figure 4.1 shows the skill text with and without stopwords lengths. It can be appreciated that the
skillsAndExperience field is a moderate length text, which contains between 90 and 126 words in
average, which is a brief description. Besides, the noise introduced by the stopwords is not very
relevant in terms of text length.

However, the computation of sparsity in figure 4.2 shows that the noise produced by stopwords
in the skillsAndExperience field is small indeed. The sparsity is the percentage of words from the
field which give no information at all, that is, stopwords. A mean spartisty of 27.54% makes this
field a certainly reliable field which contains a good deal of meaningful words which, being
contained in such short texts, suggest that the field will contain a sufficiently specific terminology
to provide notable results after text analysis.

Sparsity of skill texts
(]
S . ‘ %sparse
a | Min. : 0.00
i 1st Qu.:23.08
] M L Median :27.50
- O I Mean :27.54
& g 4 T L 3rd Qu. :32.32
g @ Max. :80.00
g | NA'S 111
L
(]
o |
L]
o
I T T T 1
0 20 40 60 80
% of Sparse words
Figure 4.2 Distribution of skill text sparsity
Distribution of description text lengths(with stopwords) Distribution of description text lengths(without stopwords)
' withsw withoutsw
Min. 1.0 min. : 1.0
- 1st qQu.: 183.0 1st qQu.: 118.0
g _ Median : 305.0 median : 200.0
e Mean : 352.9 Mean : 233.6
2 5 3rd Qu.: 476.0 3rd Qu.: 317.0
5 2 | Max. :3555.0 Max. 12591.0
2 o
e
[1}]
II o
(=
(=)
[Ty)

8]
1

T \ T \ \ \ \ 1 \ T \ T \ 1
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500

description text length(number of words) description text length(number of words)

Figure 4.3 Description text length distributions with and without stopwords

45

Description field

The description field is longer and contains more common use terms than the skillsAndExperience
field. Therefore, it contains less specific information as it is a description of the job offer and may
contain whatever the employer considers relevant instead of a detailed list of requisites. We
repeat the text length analysis to the description field and obtain figure 4.3 which shows the
lengths of the text with and without stopwords.

Here, the mean length of texts goes from 234 and 355 terms per text on average, although
reaching thousands of words in some cases. Although is a bigger difference with respect to the
skillsAndExperience field, this is an expected behaviour as we are dealing with longer text fields
which will necessarily contain more stopwords.

In contrast to the skills and experience though, the percentage of meaningless words increases,
which suggests that even though texts are longer, they provide less meaningful information, as
empty words are more common. In fact, as texts are longer, a more general description of job
offers could be expected and thus, a less relevant result would appear from such analysis. Figure
4.4 illustrates this sparsity increase.

Sparsity of description texts

§ B 1L . %Sparse
N | Min. : 0.00
_ 1] 1st Qu. :30.16
o 5 Median :33.57
= L] M .
S g - | Mean :33.92
z @ N 3rd Qu.:37.63
2 7 Max. :87.50
r g |
L]
=
o d =
| | | | |
0 20 40 60 80

% of Sparse words

Figure 4.4 Distribution of description text sparsity

46

4.2.2. Companies offering jobs in LinkedIn

4.2.2.1. Experiment overview

Each job offer in LinkedIn is related to a company present in the Social Network. Thus we can
obtain the average number of job offers per company as well as the company more active and
offering more job offers.

Performing a simple counting Map Reduce operation with RHadoop we obtain a dataframe
containing the company identifier and the number of job offers recorded for that company. Once
the results are gathered, the output structure is ordered in decreasing order and by means of the
summary function, the basic analyses are performed.

4.2.2.2. Experiment outcome

Each company in LinkedIn posts on average 6.65 jobs, although most companies had post no
more than one or two job offers. Figure 4.5 shows the graphical representation of the distributed
outcome. The result has the shape of a Pareto distribution, which is a very well-known distribution
which usually occurs when resources are distributed.

Number of job offers posted per company

=
L]
g jobCount
Min. 1.000
— 15t Qu. : 1.000
Median : 1. 000
- § | Mean : 5.874
2 S 3rd Qu. : 3.000
5 Max. 14747 . 000
O
2 _
(=]
L&]
B g |
a 3
=
S _
=
(e]
o _|
(o]
(&
(o] — I o eon = sm s
| | T T | | 1
0 5 10 15 20 25 30

Number of jobs
Figure 4.5 Number of jobs posted per company

The basic idea of such distribution is to support the theory that when it comes to share resources,
there is always a small fraction of the users of resources who are in control of most resources,
leaving the rest of the population the smaller share of resources.

47

Additionally, the company that has posted more job offers (4747 offers) is Hays (www.hays.com).
It is important to remind that this analysis considers both currently active job offers and past job
offers and, therefore, this results do not necessarily mean that Hays is currently offering 4747
jobs, but that it has been a very active company in LinkedIn posting job offers and recruiting
people.

It can be thus proved that apart from compiling with the Pareto distribution, most of companies in
LinkedIn are not very active in job hunting using the tools provided by the social network, as there
are several well-known companies with resources showing no interest or giving no importance to
job offer posting.

In any case, these results show that even though many companies do not consider seriously
LinkedIn recruiting mechanisms, there are other companies very active at recruiting through
LinkediIn.

4.2.3. Lifetime of job offers in LinkedIn

4.2.3.1. Experiment overview

Thanks to the posting and expiration timestamps in LinkedIn, the mean lifetime of a job offer can
be inferred with a little computing effort. Consequently, we can compute it and obtain the lifespan
of each job offer as well as mean statistical parameters.

4.2.3.2. Experiment outcome

The mean job offer duration is 47 days and 22 hours approximately, the median and the minimum
job offer duration is 30 days, and the longest lifespan job offer is 12300 days long. Figure 4.6
depicts the lifespan of job offers in months posted in LinkedIn.

48

http://www.hays.com/

Lifespan of job offers in LinkedIn

- (In months)

[en]

(=

(=] —

= . =

A times. months

— Min. 1.000

o 1st Qu.: 1.000

a2 | Median : 1.000
® 2 Mean 1 1.598
5 3rd Qu.: 1.000
5 . Max. :410.079
©
P (o]
L] (o]
O 8 —
E &
z

o

(]

g

(]

o4

o - _'_‘_|_|_v—|_.—

T T T T 1
2 4 6 8 10
Time active

Figure 4.6 Lifespan of Job offers in months

Once again, figure 4.7 shows a Pareto distribution, which shows that most companies in LinkedIn
expect to have a suitable candidate within a month whereas a very small amount of them accepts
increasing the period. Consequently, we can see that candidate hunting in LinkedIn has an
average duration of 1.598 months with a median of 1 month duration. This also proves that
LinkedIn is a social network immerse in change and fast development and thus, any company
looking for success inside it must be prepared to deal with very fast changes.

This result also gives LinkedIn candidates a good piece of advice: It is crucial to keep up the pace
of the network and to apply for the interesting jobs at once, since at any time any offer can be
covered or its time expired.

4.2.4. More relevant requirements and keywords in job Offers in LinkedIn

4.2.4.1. Experiment overview

From the field “skills and experience” from the retrieved LinkedIn job offers, we can extract the
most demanded skills in the market. Applying our custom variant of the TF-IDF algorithm, where
the term frequency is global and the inverse document frequency is computed based on each
different job offer, we can obtain a collection of key terms for businesses in the LinkedIn
environment.

In the same line, using the field “description” from the user public profiles retrieved from LinkedIn,

we can analyse the offered skills by means of the same variant of TF-IDF algorithm to extract
another collection of keywords offered by the users of the social network.

49

In order to count word and document frequency, a MapReduce algorithm is used. This algorithm
cleans the text from punctuation signs and common “empty” words and emits values of term
frequencies and document counts into an R data structure called data frame. Once we have this
data frame, we apply a R script which sorts and performs TF-IDF computation to return another
data frame containing each word and its relevance.

4.2.4.2. Experiment outcome

Once the analysis is performed, two dataframes containing lists of key words for each collection
can be illustrated using the wordcloud R library. This wordclouds will show at a first sight the key
terms of each collection in a very simple way.

Figure 4.7 shows both collections. The left figure shows the result of the person profile collection
wordcloud and the right figure shows the result of the job collection wordcloud.

It can be appreciated that the job offer collection analysis results in a greater set of skills which
is also less specific than the person profile collection. The skills most valued in job offers are
those, which although seeming more generic, are basic requirements for any job. In contrast,
the skills offered by candidates are more specific and focused in more professional tasks.

Figure 4.8 illustrates two pies with the 25 most relevant skills as ordered by TFIDF relevance of
the skills offered by LinkedIn users (left) and the skills required by employers (right). It can be
observed that although there are some matches, most of required skills are different to the ones
offered by possible candidates.

50

Person profile collection

communications COMPUIET - oy inic ation operaciones
O

security direcci
powerpaint implementation™ information
adnp(mistrlat[\jon general industéia\ consultoria
\raining nowledge personal redes comorate

7] Sy: stem
S senvicios msexcelventastrabalo experienciacapacidad
Pteam analisis Manejo skills

comerciales

compras,
languages power

0S5

Lo
2 javascript finance

% 5 ﬁdmlnlslracmn data td\se salesjava english public

gw & derecho® verprojectdesign oracle photoshop ="@in

= product @ marketlng proyectos sapleadershiy

#2682 management 2¢ -
2'MIiCrosoft geston g2

social npet Q_
memfe?ax“"'a' tr‘” “ihusiness ¢ webanalysis S

em Spanish ><
proects 2 i, developments.ys.temspmcess”ﬁ‘w

d:msphp adobe desarro”o IS0 VISl,Ia|CSS negociaci

| officease wsector
et stomer windows S diseRo & glente strong
“sistemas gesti gresearch
‘ productionempresas | certified @ oiigns
095152 niomational PI@NNING procesos 2, Zestudios
architecture aqministraci ser\ncehnuxaccess
P’ngamm'ngespe::|al|sta Services media seguridad database

programas aprsoaduclos engineering negociacionrelaciones outlook

conocimisnto negotiation t€chnologyaytocad networking
estrategica ¢isco ~ technicalempresarial online

strategy

Job offer collection

short necessresiI sesmenc

highly"microsoftike requirements information
Egﬁj{goulgcustomer"‘I““technlcal Hinancial.build
Swithin degree styleunderstandlngbr,g’g{gﬁ
o2 >=|eve|.,pabledevelopment office,

10 o 2preferred; ; =oiee

iclient
5 S decdines < /PWOTK eXCellentiz e

.marequwed knowledges:: zgood@at

iSpah iermanagement et

Nteam'...
Y basicu b Ween® "

(o) a strack p|e$ic>|
data str ng I t :projectsys

cmnrtextE i

new’ ® %mUSthi(ellé? 2 deSIgnroIe
=self 3 s ‘l 'E’EnamvarmusfﬂmeEt
“hmet © 'c experlence““ > c-.software

H

field ® Deea Z5finance o
van %*:Sadﬁ marketing; 'CE]—“ “gproven
worg™ =%environment O ; Tproducts

we ",
end indust oS and o =21 ,_serwce 5
sty nclucing {120, Sente
Rdesired oracieve needsvaleoralCOMMuUNIcation Sap

Figure 4.7 Wordclouds from person profiles and job offers

Person skills offered

gestion desarrollo

business
development

marketing management
proyectos

microsoft

design
oracle
windows

sql

web office

project administracion
control software
sales analysis

sistemasmmeJO System%nahsm

Person skills demanded

ability

skills

knowledge

management

work experience

strong
requirements

able

business
written
includin
degree d
design
required marketing
understanding

communication project

years

WaEIDGpment

Figure 4.8 Most relevant keywords from profiles and job offers

51

One of the possible reasons for this result is that both enterprises and LinkedIn users write their
profiles or offers with a different focus. On the one hand, Companies tend to focus on teamwork
and personality skills, leaving professional skills behind. On the other hand, LinkedIn users, and
by induction most of job seekers, focus on what they know, the professional skills they have
acquired, forgetting the personal skills they reached.

Therefore, it could be stated that in a Big Data context, job seekers fail to offer in their profiles the
abilities companies search. Consequently, the application of matching algorithms will not be totally
accurate, although good enough to provide a collection of the better subjects for each job or vice
versa.

It is important to remember that we are working over a limited collection of candidate profiles and
job offers. Besides, not all candidates work on their LinkedIn profile in the same way. Thus,
although the study is reliable, some details may change when the subjected population changes.

Relevance of most demanded People Skills among Candidates

prgggggngHI c business

marketing management
desarrallo
design . ‘ microsaoft
web »
| "’ ‘\— skills
windows
i contral
project oracle
sq gestion

Figure 4.9 Relevance of the 25 most offered skills among candidates in job offers

In addition, figure 4.9 shows the relevance given in job offers to the 25 most relevant skills offered
by candidates. As stated, the match is not perfect, but is able to satisfy many of the needs of the
job recruiting side, allowing matching algorithms to provide a good result. As an example of the
TFIDF algorithm and results, the table below shows the information and computation of the TFIDF
of the 25 most relevant skills among candidates.

52

Skills Term Number of Relevance Inverse Document

Frequency Candidates Frequency

1 microsoft 605 245 869.5258 1.437233
2 management 816 606 851.8437 1.043926
3 business 394 335 512.7335 1.301354
4 desarrollo 349 299 471.4039 1.350728
5 gestion 346 304 464 .8597 1.343525
6 development 338 285 463.5852 1.371554
7 marketing 336 284 461.3550 1.373080
8 proyectos 337 296 456.6711 1.355107
9 C 286 202 435.0196 1.521047
10 design 235 183 367.5277 1.563948
11 windows 224 155 366.4790 1.636067
12 web 242 219 359.6010 1.485955
13 project 241 225 355.2861 1.474216
14 control 237 222 350.7709 1.480046
15 sales 225 192 347.1969 1.543098
16 sistemas 219 185 341.4707 1.559227
17 manejo 222 197 340.0890 1.531933
18 systems 202 155 330.4856 1.636067
19 analisis 216 200 329.4797 1.525369
20 analysis 199 162 321.7599 1.616884
21 software 204 180 320.5098 1.571126
22 administracion 199 181 312.1753 1.568720
23 office 197 179 309.9885 1.573546
24 sql 191 161 309.3384 1.619573
25 oracle 180 130 308.2420 1.712455

4.3. Tecnoempleo job offer analysis

4.3.1. Tecnoempleo basic analysis

4.3.1.1. Experiment overview

Once the Tecnoempleo search page is crawled, there exists a collection 2691 job offers to
analyse. From this collection, it is very easy to extract the basic raw data and present it in a more
descriptive way.

Additionally, we compute the number of jobs offered by each company and take a look at the
distribution they follow.

53

4.3.1.2. Experiment outcome

Distributuion of salaries in Tecnoempleo (€) Tecnoempleo Offers Location
10000 - 20000 Madrid-Spain
Below 100,
more than QSOUO Others in Europe
20000 - 30000 40000 - 50000
Others in Spain
Sevilla-Spain
Valencia-Spain
30000 - 40000 Barcelona-Spain

Experience Required in Tecnoempleo offers

2 years
1 year

Less than a year
No Experience
More than 10 years

More than 5 years

3-5years

Figure 4.10 Tecnoempleo offers basic parameters

Figure 4.10 shows the basic parameters which can be extracted from Tecnoempleo. As
expected, most of job offers are located in either Madrid or Barcelona, which are the biggest cities
in Spain. Abundant salaries rest between the 10000€ and 40000€ range and the mean experience
required is 3.06 years.

From these results, we can appreciate that almost everything expected applies. Since Madrid and
Barcelona are the biggest and more developed cities in Spain, most of the jobs should be located
there, followed by Sevilla and Valencia, which are two other important cities. The more common
salaries are the ones which offer an acceptable amount of money and the experience required do
not surpass 5 years, being very uncommon not requiring any experience at all.

Besides, there exists 390 companies offering positions in Tecnoempleo. Such enterprises have

published on the web page at least one active job offer. Figure 4.11 illustrates how many
enterprises offer how many jobs.

54

Frequency of offered jobs in Tecnoempleo

freg
o Min. 1.000
a 7 1st Qu.: 1.000
Median 1.000
Mean : 7.082
@ 9 _ 3rd Qu.: 4.000
% — Max. :177. 000
O
=
(o]
L]
5 8 _
E b
i)
£
g
Z
o |
L
o 4 Mkl
| | | |
0 50 100 150

Number of jobs offered

Figure 4.11 Number of jobs posted per company

Once again, Pareto distribution appears again, and shows that most enterprises offer, at most, 5
active job offers whereas some few companies surpass the 50 active job offers at the time. In
contrast to LinkedIn analysis, here only active offers are shown, as the Tecnoempleo page only
displays interesting offers for its users.

The fact that companies in Tecnoempleo have the same behaviour than the ones in LinkedIn
suggest that this is a common behaviour in recruiting web services. In fact, it seems very
reasonable that many enterprises here provide a modest amount of offers, since most of the
companies belong to the group known as PYMES, which refers to small and medium size
enterprises in Spain. Consequently, these PYMES are unable to perform big job offers, as they
have no resources nor such a big employee need.

4.3.2. More relevant technological and profile terms

4.3.2.1. Experiment overview

Using packages wordcloud and tm from R and the collection of required technologies in each job
offer from Tecnoempleo, it is easy to infer the collection of technologies most demanded in the
site. Additionally the profile requirements collection can be also inferred and compare it to see
whether the most demanded technologies match the profile requirements.

55

4.3.2.2. Experiment outcome

Technological requirements

seveloper o e ond 208 siebel
g
Jensns prquaﬁ'E g5 tomcgrggweb\oglc
s " Srede mvsal Pa solaris "oUting
e i TiCTOSOR Y S a”“éﬁé’;:;iu;:‘:;
S testing
mﬂlnfﬂgernsp shimlserver b2 S0t
|eray b "
m.pmg
s htmi5 Oracle plsgl owen
PrOYRCIOSjynit U 'o EI donran £
= df an
o gmlnuxeﬂ CU By L unlxmsm
directory = t i J ee @ cnhm,, o
wordpress shell O office
8 “" @
direciorio e > wnfweb b

backbone ym| sas |t|| Em
deudcentsr C553 S a
dba basicios £ p p e

remedy crm ©

Profile requirements

en strong certificaciones 5 ganas funcionslesgess consisteobra
ificacidn Ger YN torags Lot iNetie 1 =
luEbss consultora =

ST e e Y ST e
control pagsD’”EESUS gal;tle g C):frecemusdssssldas.,
=2 imprescindible = g=servicionacionsl

BE asmaog PlSistoma demostrable P = senor meres :I::SP‘::“ .
£ Zproductosfilequipesnecesitamos CONSUItOra £ umano 0TrECaoral=studios

= DiUE resoiuei
o 2 hibemate Cambito 8NtOTNOS byscamos § £ Q) _heramientagases . Sinen

contrats years valorable administracian # ppqg ﬁ ghﬂ;ﬂﬂenuew sharepoint "oy
Frnsescopsater Tormacian _ profesional Ega £ _tranajar principales” Ty
o enga carrera g R fghv.a resss
=)-xnal'§“ Sewwesmwmpor‘tame inglds "¢y 22 S@E2 manimos gosais
jo tecnoiagica software Java = yalorard dsta 0.3 £ -0 ingeniero pescnnel
ot clientes AVaGHEAYE TS 28 =S Fgurtous manizo o
2 my=al Informacién % C 2L, O famevor MedEE g
P nawewnauramedesarrolIo Q= S g 57 perii- 35, 28 3
e knowle 9 informtica_alto uné yeb OB~ g server quﬁssms

guridad & Zoieud
~‘experiencias:
car © o &

B nans;s pma-s sistemas and -theetcequwpo o

geogle senices XMl aspm _‘ gnve esvisual ¢ -

'"Ed'.”m“ sencii 2 Il rabajo njye| wih incorporar

salserveraclipseson S rin pes n pedoshiml gl ., B
srupsl pbas\s J avascri pt isf Sludlogsun:% an "?"' ”egUC'UD“?:Eu?QQCWS Pee proyec‘tos SECOr e =5
topip @ Jquery g e @P"”” maheger Drograrﬂnaman IaCﬂICCt! C||9ﬂtef5“EEXp?r‘ET? S2
management JSON d ee = 2 duracian that gesfian roresionales datos o
""’“”‘”‘e"‘ge"':eWIn O\Asl?uts‘sa‘ﬁ dales = ¢ reports 'ﬂbml SHREnor gmprﬁafprogramador bu?smgss Oé’
jira tiboo h|bernate sistemas = 5'"’”%?'tﬁcmca o android
J f ticaframework PUSINESS “ciroc Ssdministrador works, mamma compada entorno ocalldada’ea realizar © andrad
redhat 5, Nformatica [Criiiey ui= management Siguientss ¢ oo o Mmadrid microgoft tacnicos balharquitecturs —

-h';:s)l websphere mayen wethsﬁ"ngglis 2
photoshop powercenter . CUE"J;'NS R
seguridad quality P
tesponsive marketing

Echmcalaammummnsnss ed 1O Comunicacian | nuevas€quendo pringipal
s onESrequisitos re Pb ral 2

=3 configuracidn @g_Incorporacian g % funcionalsitos e
O support ,EW ibm customer programadures maners Z0M0 o lader gen systemsy

rolar SSPECISNIZR0R yids telecomunicacionesics PUSE” o Stiuladlsn english

datawareh

Takats Studio’ amplia
technology Geoisa el &
rew intermacional d P
esants QULSOUICING e svanzados mes sales " project
present= wabaiancs o122 TG Instalanan S indehnida g B

Figure 4.12 technological and profile requirement wordclouds

Figure 4.12 depicts both wordclouds, the one for technological requirements on the left and the
one for profile requirements on the right. This result suggests, as in LinkedIn, that companies
seek common personal skills and capabiliies more than professional skills. Although
Tecnoempleo offers an especial section for professional skills, the profile, the expected behaviour
and capabilities of any candidate is hardly conditioned on keywords which are not strictly related
to any field.

Nevertheless, the technologies collection of keywords shows clearly that Tecnoempleo is a highly-
oriented professional environment which focuses on technological knowledge about web
development. Thus it would be the perfect job finder for any candidate involved in programming,
database management or even system administration.

4.3.3. Comparison of experience against formation

4.3.3.1. Experiment overview

One of the key aspects to be taken into account when either recruiting new workers or applying
for any job is the importance given to experience and formation. Both are usually considered for
any candidate purposed, but it is hardly ever clear which of both receives more importance by
employers.

56

The aim of this experiment is to unveil which of the later is better considered and helps when
achieving better positions inside a company. For that purpose, we will analyse Tecnoempleo
collection to cross-correlate experience and formation in order to obtain quantitative measures
like the number of jobs offered per formation and experience combination as well as the salaries
offered for them.

4.3.3.2. Experiment outcome

Once processed, we obtain an experience-formation matrix which can be easily depicted as a
color map using the package “lattice” for R inside our framework. Consequently we can show
results for each formation-experience pair of values as the number of jobs offered(figure 4.13)
and the mean salary rewarded in positions requiring such formation and experience (figure 4.14).

Number of jobs offered per formation-experience combination No studies School Education PF (medium degree)
min. : 0.000 wMmin. : 0 Min. 1 2.00
1 1 1 1 1 1 1 1 __ 1st Qu.: 3.250 1st Qu.: 4 1st Qu.: B8.75
Median : 5.500 Median : 7 Median : 56.00
Master(Bolegne)engineer/Degree - - | s Mean : 6.125 Mean 114 Mean : 54.38
250 3rd Qu. :10.250 3rd Qu. :26 3rd Qu.: 85.75
Max. :12.000 Max. 134 Max. :129.00
Degree{Bologne)Technical degrees - o)
5 200 PF (High degree) Degree(gologne)/Technical degrees
2 Mmin. : 4,00 M™in. : 4,00
= PF (High degree) - . 1st Qu.: 15.75 1st Qu.: 36.00
& 10 Median : 95.50 Median : 63.50
3 Mean :109.12 Mean : 78.25
g PF (medium degree) - B L 100 3rd Qu. :173.00 3rd Qu. :138.00
= Max. 1271.00 Max. :161.00
School Education B | 50 Master (Bologne) /engineer /Degree
Min. : 1.00
No studies B 1st Qu.: 7.25
o Median :11.00
. . . . T T - T L Mean : 9.75
=0 <1 =1 2 *3 235 5 =10 3rd qQu.:13.00
)) Max. :16.00
Required experience (years)
>0 <1 >1 >2 >3 >3-5 >5 >10
Min. : 4.00 Min ©1.000 Min 4.0 Min : 12,8 Min : 10.00 Min : 10.00 Min : 4.00 Min :0.000
i1st Qu.: 5.75 1st Qu.: 4.250 1st Qu.: 17.50 1st Qu.: 20.0 1st Qu : 13.50 1st Qu.: 11.50 1st Qu.: 7.75 1st Qu.:0 250
Median : 8.00 Median : 7.000 Median : 44 50 Median : 80.5 Median : 57.50 Median : 48.50 Median :35.00 Median :1.500
Mean 014,17 Mean 7.333 Mean 48.33 Mean 103.5 Mean : 82.83 Mean : 68.67 Mean :35.56 Mean 1.833
3rd Qu.:13.25 3rd Qu.: 9.000 3rd Qu.: 61.75 3rd Qu.:153.8 3rd Qu.:130.75 3rd Qu.:123.00 3rd Qu.:61.50 3rd Qu.:3.500
M_ax, :45.00 Max 16. 000 Max 121.00 Max 271,80 Max :218.00 Max :158.00 Max $70.00 Max 4. 000

Figure 4.13 jobs offered according to experience and formation

PF means Professional Formation and it is the Spanish name for non-university after school
education for non-academic disciplines. All titles which are related to Bologne refer to the new
European plan for University education.

If we consider figure 4.13, we can appreciate that job offers highly depend on the formation
required, since the jobs offered for a certain position are more or less proportional for the
experience period increase, whereas the increase of experience do not entail any increase in jobs
offered. However, figure maximum is located in the middle area of the graph, which suggests that
formation may not be so relevant as it seems, since better formation does not necessarily
guarantees better positions.

57

Mean salary of jobs offered per formation-experience combination

1 I 1 1 1 1 1 1

[} eoooo
Master(Bologne)engineer/Degree - r
- 50000
Degree(Bologne) Technical degrees - &
[~ 40000
PF (High degree) - s

I 20000

PF (medium degree) - r

Required formation

[20000

School Education - +
I 10000

No studies | i
I No dats

T T T T T T T T
=0 <1 >1 =2 >3 >35 =5 >10

Required experience (years)
No studies School Education PF (medium degree) PF (High degree) Degree(Bologne)/Technical degrees Master(Bologne)/engineer/Degree
- 0

Mmin. :0 Mmin. s 0 Mmin. :10950 Min. g 0 vin. 2 0 Mmin. H
1st Qu.:0 1st Qu.: 0 1st Qu.:17500 1st Qu.: 6825 1st Qu. :12538 1st Qu. :12544
Median :0 Median :17498 Median :22035 Median :17679 vedian :21166 Median :20813
Mean :0 Mean 115026 Mean 125854 Mean :16130 vean :19080 Mean 118544
3rd Qu.:0 3rd Qu. :22469 3rd Qu. :29203 3rd Qu. :26046 3rd Qu. :25957 3rd Qu. :28250
Max. :0 Mmax. 136000 Max. 157000 Max. 130036 vax. 132500 Max. 133000
>0 <1 >1 >2 >3 >3-5 >S5 >10
Min 6 Min 0 Min 0 Min 0 Min 0 Min 0 Min 0 Min 0
ist Qu 0 1st Qu.:16200 1st Qu.:15234 1st Qu.:20463 1st Qu.:23846 1st Qu.:19750 1st Qu.: 7509 1st Qu 0
Median 0 Median :15750 Median :16362 Median :21298 Median :24703 Median :28500 Median :31268 Median 0
Mean 3433 Mean 13406 Mean 14223 Mean 19091 Mean 22834 Mean 22300 Mean 21391 Mean 9500
3rd Qu.: 7238 3rd Qu.:19125 3rd Qu.:17678 3rd Qu.:22552 3rd Qu.:27205 3rd Qu.:29542 3rd Qu.:32734 3rd Qu]

Max 10956 Max 20333 Max 19638 Max 28875 Max 36000 Max 30075 Max 33000 Max 57000

Figure 4.14 salaries given to positions requiring certain experience and formation

Figure 4.14 depicts a more complex result, as the salaries earned by all jobs offered seem to
increase according to experience more than formation. The salary count increases according to
the years of experience of the candidate equally for all kinds of formation. In fact, the maximum
medium salary offered is one with a lot of years of experience but not a so high formation level.

In contrast to figure 4.13, figure 4.14 offers a good appreciation of how experience is better
considered than formation. Additionally, mean salary is a better measure of relevance than jobs
offered, as the collection in Tecnoempleo may lack job offers for certain sectors of experience or
formation whereas average salary gives a more fair result even if there is only one occurrence of
each experience and formation pair.

Therefore, experience is more valuated when it comes to remuneration, although there do not
exist such as many job offers for positions of those characteristics. In fact, one of the most
surprising results is that the most valued formation, at least in Techoempleo, are the Professional
formation titles, both in salary and number of jobs. This is a bit strange as there are available
other titles which traditionally provide greater remunerations.

58

4.3.4. Tecnoempleo offers clustering

4.3.4.1. Experiment overview

Using hierarchical clustering, any collection of documents can be clustered according to the
existent relation among its words with the words of other documents. Hierarchical clustering
separates each document to one single cluster, so a differentiation among documents from
different clusters should be appreciated.

Thus, once the documents are separated by clusters, a wordcloud of each cluster can easily be
invoked in order to have the possibility of visually analyse each of the clusters and see whether
the separation is relevant or it does not differentiate well.

4.3.4.2. Experiment outcome

Using tm library in R and with the Techoempleo collection as input data, all the technology fields
in Tecnoempleo are processed, cleaned and stripped of stopwords and additional spaces.

In order to decide the number of clusters to create, we need to consider the within groups sum of
squares, which is a mathematical measure for the variance of the distance to each document to

Number of clusters and their within groups sum of squares

o]
o]

o
[3] —]

L]
r > \
g
o o0
o
u
5 _ \
E o |
- L] I}
w m "o
2 °.

o]
3 - Is)
o I .,
n o o Is)
c o LR
£ © 7 0" ™y,
= - -
= 0 o)
o]
[} -
o 0N

2 O“o.

O o]

w I I I I I

5 10 15 20 25

MNumber of Clusters

Figure 4.15 Within groups sum of squares for the Tecnoempleo technologies collection

59

its cluster centroid. In order to decide, we want our elements inside a cluster to be as close to the
centroid as possible, but on the other hand, we do not want to raise too much the total number of
clusters, as given that case, the clusters would provide very little information.

The computation of the within groups sum of squares is very simple and may be performed with
a simple R algorithm. The formula for such calculus is the following.

T
wss = (N —1) = Z Var|t]
1

where N is the total number of documents in the collection, T is the total number of terms
in the document-term matrix and Var|t] is the variance of each term value over the whole set of
documents. Once the computation is finished, we can plot the results in a graph such as figure
4.15.

From figure 4.15 we easily observe that at a first glance, the most clusters created, the least the

within groups sum of squares is. Although this is true, a greater number of clusters implies a
bigger degree of separation and thus makes our trial of grouping documents together worthless.

60

Programming and
web development

baststrap responsive’
wordpress, routing datawarehuusepm

o S\Wmmngfrarr\s.‘wnrk json. i .

syst basic “emgintelligence

Emobile

int
iog moodle Osusi
i uen 508D 1313(:]2

suite favision “CSSS e web asp

‘“Pshe\laﬂdrold

voip dnscontrol el]a

- sh arepointd
I2

™ PTOYESSS ol rest, gt
E'“;\'gfcemer SIStemaS mglesmlsI:nnxnhulosnup .

B OmMmeree m|crosoﬁ bpmara

s EZEHdaclwo UJ soa ren

1

marketing” ange

rollo
Shfs networking
sq Iserver

I..s pyﬂ‘lUﬂ

“htm

sex
ors i

u n |X db2 solAns 2o0sien i ., samtroe
Sq d\remﬂw reports gwla\a,e'mms",nmm},as_“fgg’:lal
3PEE = CEE pr
dynamms DD §m;§m§ e mmlfj =0
: suiic
vascri t WEOOTC -
usSﬂSscrumnm
backbone2000 san $v1 office cloud

d\re:mrm redhst

2

SAP and other
management technologies

etz

3

atg
atm

sage;

natur.
altltude

adabastal acme

o C|sa o

dh”b31

Another office skills

alndocumentum telefonia
msmcahdadlnteracmon

- ips microinformaticas
aapasilea banksphere?

U < gsmmu rex umtsftp

mansger mysq
:uaremedynb\ aix
Sooss E‘

E wpf:

redes ity

s £ comercial s
atp & 400gsmeftthasni

perl 52

lsual,m.j..g.mb

xml 1 i) argis

g umlg 3 : ajax utmgu:s i - IT'IC
e s o—%": : :josml pisal C° o pigam ’ m‘:“‘mi‘“ : am 3255 ¢ fatwire NaSaw awaf
:E;“=¢2::1:ﬂ‘¥n?‘war|e clava 35 B e cognos Efunmonal adwords M
e oS apaches-—_ ‘server = <% eries soporteg'
n olies Junip ciclo com

Wmmm testing 2hysiness Ecobol gesuon m'cw
engulasjs Jalos 8 mfurmatma powercenter & postgresql
sol

r (U 254 meta4 action
w,0fimaticafrances

If|

58 2 ‘programauon I devel L . |
;fgrnsagémem ngr;madﬂfwsgy%m"ny et biztalk agile canales t
Srees st e (s ToUIS htte mainframe mcafee sec OI'

4
Java development environment

5
Net development environment

Fl
g 't weboenier
wonsgace 5 wmioeroe

- e e
E] sﬂrh}% TEEE e
v,}g ee LT S umer rezpomegoet 2 conpcn

K ety SRR et £ h,mm,mmmmw gt

eics. JcRrtroRooKR oresertaton

S oot ¢ eosewsmsm
12 ‘me”as nmml'mems

powerouiicer

e
= m;qm'm;;ﬁm
rk vignettepm oorerense nr'v' sl s 3 e
SCIUMPYTON gy e e = g
] .,mm 3 g Wf Shimi: - .
o s £ & a0 websnter
Sesle ot ispring o s O
acknl ornenn 209" 2 web fimi g Pl s o wpf H
e 2 m iquery mw:}‘nﬁ"“ g-m MR s s JmThé‘E’hn'!A‘mk)& ssis %"?
i snng & Sl
na-nf:swhael‘m ee avascrlpt a0k graton S8BT poo By E ehe @ U; o aﬂﬂ\wm“?"‘ §-
e > gxm\ tomeat 0 er e £ 3%33.8 G,) S < S ES = i
e ess o £ g ; Java 5 wesirier
L e S 0 B Zisf o framework N
B g e sdlt i S M
g e e ven e postatsa it aSp”s W s S
? a tmees report Uery £8 =y g
ib\lferav tm Bﬂ'saimlf:;‘a,ah,su sharepumt VISUa' 9 ry magers ey £ £
T g £ e javascrlptstudlo = g
s maa\ hlb ; s UM SBIVICES micrasoft b §
]
e 10t
ol

canciies
§w\'\mws‘ﬂre'\s¢ Moot
DQ dao‘f I fe—
mmnh,nlmm e ezt
e
o

et

ez sogne 5 gt

Tesponsheppm PIOGRETECEN
SRR e e

s o
o I s congaa gy K34 o : b=
memeass o mrer = .

g o en e

nbemariefest PAO ooy - smancard

i
Sresceal TR0 moiican noon zoto A0

ey pobCTSSiPEr
o | iy
moiogiss Sopenizer pospitocs

et i

Figure 4.16 Wordclouds of the technology clusters in Tecnoempleo

For that reason, selecting between five and ten clusters seems to be a good choice, since less
than five clusters increase too much the distance of each document to its centroid and more than
10 clusters do not entail such a distance decrease.

For this experiment, five clusters where chosen, as the result is easily recognizable and
separable. Once the clustering, based on tm library, is performed, wordclouds from each cluster
may be plotted, grouped and named, as shown in figure 4.16.

Each of the wordclouds represent one cluster. In spite of existing at least 3 clusters very similar

(1, 4 and 5) they represent to different development environments, which makes them relevant
for the analysis.

61

Cluster 1 is devoted to job offers which focus on programming and general web development,
which includes all basic web development technologies, systems and environments. Cluster 2 is
much related to SAP and the business management ecosystem. Cluster 3 contains other office
skills, which are related to office suites, computer support, telephony or languages.

Clusters 4 and 5 are devoted to two specific technologies for web development: Java and Net
respectively. Both ecosystems have acquired such relevance that are two of the most deployed
and considered solutions in many companies, so it is natural their appearance as their own
clusters. In fact, they have become so relevant that they take a 23.78% of the Tecnoempleo job
offer collection.

Finally, once the clusters are defined, it is possible to separate job offers according to their clusters
and compute the average expected salaries for each professional profile. Figure 4.17 provides an
overview of the salaries offered for some of the offers in each cluster collection.

General programming cluster (1) wanagement and finantial software cluster (2) cCommon ortice sk111s cluster (3)

Min. @ 6300 min., 113500 Min. @ 5400
lsthu.:lQSDD 15t Qu. :22500 15T qu. 17250
Median :24000 Median :28500 Median :22050
Mean 124658 Mean 1IR750 Mean 12377
3rd qu. :28500 Ird qu. :33000 ird Qu. :28500
ng. 160000 Max. 142000 Max. 148000

Java ecosystem cluster (4) .Net ecosystem cluster (5)

Min. : 8400 Min. 115000

1st Qu. :19500 1st Qu. :19500

Median :22500 Median :22500

Mean 123663 Mean 123632

3rd qQu. :27375 3rd qQu. :27000

Max. 149500 Max. 139000

Figure 4.17 Salary summary of each of the professional groups inferred by clustering

From the image we can see that salary ranges are very similar. In case of cluster two, there are
many high salaries (as the third quartile overpasses 33000 euros), which suggests that, in
general, SAP technologies and environment offers better salaries than other professional
profiles.

However, the greater maximum salary is in professional profile one, which suggest that cluster
one offers jobs to a more general profile of employer and so it includes a bigger range of positions

which require different qualifications and skills.

In order to provide a broader view on this clustering and to give the reader all the facts involved
in the experiment, the following table includes additional data on the clusters.

62

60.05%

243 9.03% 30
192 7.13% 34
427 15.87% 76
213 7.92% 53

63

5. Prototype

After achieving the previous results and implementing the Okapi BM25 scoring algorithm, the
possibility of developing a web service based on a keyword ranking from the job offers stored
seemed viable. Therefore, we created a very simple web service capable of searching for the
most apt job offers for the profile of the studied candidate.

However, creating a simple web search engine was not the objective, since there exist several
sites devoted to search and extraction of job offers based on user queries. Due to this, the service
offers a job finder based on LinkedIn user profile. In order to obtain a suitable result for each
individual, the user must log in the Linkedln application with his credentials and authorise the
service. Once correctly authorized, the service performs an Okapi BM25 word ranking based on
different fields of the user profile.

5.1. Prototype desigh and implementation

Based on the joint collection of Linkedln and Tecnoempleo job offers, we can provide data
analysis to find the most appropriate job offers according to the qualifications and experience of
a given candidate. For this purpose, the only requirement is to create a query containing the most
relevant terms for the candidate and have a term-scoring algorithm prepared to score all terms in
job offers.

In order to score terms, it was decided that Okapi BM25 algorithm was the best option, as
performs a TFIDF-like scoring considering text lengths, which is a crucial element in such a
diverse collection. Thus, Okapi algorithm was implemented and tested inside the framework and
an R function which receives as parameters the collection term structure and a query and returns
a dataframe containing the documents ordered by Okapi relevance becomes available for this
purpose. Figure 4.13 contains a code snippet of such function.

Finally, instead of creating queries from a given user search, we found very useful the LinkedIn
user profile API, which provides functions to retrieve all the information needed from any user
who gives authorization. Consequently, a query based in several fields from LinkedIn profiles is
created each time any user uses the application. The algorithm for query creation is still very
simple and basically merges some fields, but improvements based on TFIDF ranking of such
fields or stopword removal are considered and listed for future improvements. The drawback of
such model is that a LinkedIn account is required in order to use the application, even though
LinkedIn is a very relevant and implanted subject in many professional environments.

Once this is achieved, it is only necessary to wrap everything into a user-friendly environment,

such as a web service and create the proper interfaces and connections to make everything work.
For this project, we have implemented a web service prototype for this functionality.

64

The interface and design of the service must be prepared for simple use and should not implement
anything apart from the basic requirements for the service. These services include:

LinkedIn authentication and authorization, query development and job offer retrieval. It is
important to bear in mind that this service is a prototype which has to be improved and extended
before being deployed for production.

55 guery<-function(gquery, values.df)

56~ 1

57 #free parameters

58 ki=1.2

39 b=0.75

60 #basic needs

61 docCount. df<-count (values. df fval)

62 word. Tength<-count (values. df tkey)

63 avg. docLength<-mean(word. Tengthifreq)

64 word. lengthifreq=1-b+b*word. lengthifreq /avg. docLength
65 #process guery

66 query<-gsub (" [[:punct:]]1","", query)

67 query<-tolower (query)

68 query<-gsub(’ §°, "', query)

69 query<-gsub('A ", "', query)

70 val<-unlist(strsplit(query, split=" "))

71 query.terms=-as.data.frame(val)

72 query.terms<=-query.terms[!query.terms$val %in% myStopwords,]
73 query. df<-values. df [values.dfival %in% query.terms,]
7 #rownames<-as. vector (count (query. df $key) $x)

5

[docCount. df ["1df"]<=-Tog(nrow(word. length) /docCount. df ifreq)

7 colnames (query. df) [3]=-"tf"

8 query. df<-merge(query. df, word.length, by.x="key", by.y="x", all.x=TRUE)
9 colnames (query. df) [4]<=-"w1"

81 #actually perform okapi BM25 algorithm
82 query.df ["okapi"]<-docCount. df [query.dfival, "idf"]*(query.dfitf*(kl+1))/(query.dfitf+kl=query.dfiwl)

84 #To split according to values, create factors in query.df$val
85 query. df ival<-factor (query. dfival)
86 splitted<-split(query.df, query.dfival)

87 #split + Tapply to arrange column names
88 splitted<-Tapply(splitted, function(x)
89 - 1
90 x[as.character (x3val[1])]<-x5okapi
91 #we do not want these rows any longer
92 x$okapi<-NULL
93 x$val<-NULL
94 xitf<-NULL
95 XSwl<-NULL
96 return(x)
a7 1)
98 #merge everything (use Reduce with merge to merge n dataframes)
99 okapi = Reduce(function(...) merge(..., by="key",all=7), splitted)
100 #now prepare the result matrix presentation
101 row. names (okapi)<-okapifkey
102 okapifkey<-NULL
103 okapi[is.na(okapi)]=-0
104 okapi["total"]<-rowsums (okapi) /Tength(query.terms)
105 okapi<-okapi[order (okapiftotal, decreasing=TRUE),]
106 return{okapi)
[P — ne

Figure 5.1 Okapi implementation code

The service currently includes job offers from Linkedin and Tecnoempleo which are stored in a
MongoDB collection optimized for this service. Additional sources can be added easily by storing
the required information in this collection. Detail captures on the collection may be found in annex
Il (All.4).

In order to illustrate the architecture, integration and technologies involved in the prototype design,
figure 7.2 shows a schema of the whole system.

65

Linked|f3].

REST API Ccss

]
®o
e

express

node

Figure 5.2 Prototype architecture schema

5.2. Use case

The first view to appear when we browse the web page is a very brief description of the service
and an authentication button (Figure 7.3).

— ——

i) sign n it Linkedin I

Figure 5.3 Application index

66

If we press this button, an auto generated
LinkedIn Authorization window appears
and guides us through the process of
logging in to the application. Figure 7.4
shows a capture of such logging in.

Job Web deployment would like to access

Then, after correct authorization, the some of your Linkedin info:
profile will be analysed in order to create a 9 vouRFUL PROFLE o
suitable query for Okapi BM25 ranking. A Fatommendatans e Sduean, sl and
Waltlng ICOn WIII appear In the WEbpage ;}?Euparﬁgnrf;\;néﬁgffiiynu use for your Linkedin
. account
until results are ready to be shown and B OUR CoNECTIONS
. . . . Your1stand 2nd degree connections
they will be displayed, as shown in figure B 0UR CoNTACT IFO
75 Address, phone number, and bound accounts

Sign in to LinkedIn and allow access:

In order to show whether a user is

connected as well as the user whose Join Linkedin
profile is considered, a very simple detall — Linked B,
is displayed on the right side of the view.

Additionally, a logout button allows the A Apscaens canve i v s
user to exit his account and repeat the
search or try with another account.

Figure 5.4 Application logging with LinkedIn

The results are paginated. Each page will show 10 results in decreasing order of relevance
(Oakpi score) starting in page 1. There is a limit for the prototype of 5 pages of results, although
the program support the retrieval of more than 50 job offers.

Figure 5.5 Search result view

67

Figure 5.6 Pagination options detail

Figure 7.6 shows the pagination detail at the end of the search results page. The number of the
current page on display is on the top of the view, as shown in figure 7.5. Whenever a new page
is selected, the okapi algorithm is recomputed.

5.3. Example

Once the application is settled and deployed into the server, we can use any LinkedlIn account
to provide it with data to create a query and obtain the best results. As a demonstration, we will
make and document a sample query using the fake Linkedln account created for the project.
Such account was created to interact with the LinkedIn API and its profile may be altered to our
convenience.

For this example, we will develop a profile of project team leader with telecommunications and
team working background. Figure 5.7 shows a capture of the LinkedIn profile of such candidate.
It is important to bear in mind that this is an emulation of a user, and thus, the profile does not
contain a full candidate profile but instead a proof of concept prepared profile.

In figure 5.7 can be appreciated that the candidate has written an extract talking about its
background and experience, at least one job position and some skills sent in the skill field.

68

people, jobs, comy s re Q Advanced | (@)

Profile Strength

Complete your profile Edit Profile | ~ . pie ‘0
° _ Advanced
[es.linkedin.com/pub/pedro-pérez/34/085/104/ M Contact info .
Background Improve Your Profile Strength »

% Summary

Expert in leadership and team management. | have been managing teams from a very early stage in my
career. Currently, i work in the project management area for my own company

| have a telecomunications background which helps me in my business, related to technology

g Experience

CEO

Auténomo

| manage operations of my own company. Software solutions for small businesses and other partners
Project assig and devel , as well as candidate recruiting and product selling.

Project Manager
My enterprise

As team leader. i was in charge of a group of engineers to develop Java-based server-side programs
Common J2EE and web technologies were involved as well as the management and direction of human
resources

& Skills

T icati Mar Business development project management

Figure 5.7 Capture of the Linkedln Management profile for application testing

Once the query is executed the results are shown as in figure 5.8. Additionally, and in order to
also try results obtained in experiment 4.3.4, we will feed the application with a profile in
LinkedIn containing the basic technologies and experiences from cluster four, the Java
ecosystem cluster.

As expected, results shown in figures 5.8 and 5.9 are quite different, as they address different

profiles written in a different way and that for almost sure belong to candidates with different job
hunting interests and careers

69

Figure 5.8 Application output for a management profile

Figure 5.9 Application output for a Java developer profile

6. Conclusions and Future Work

To conclude this report, it is important to add some global considerations and conclusions to be
considered. The project started as a research project seeking for new applications and
developments based on Big Data, and after all the research and work undertaken, it is ending
with satisfying results. All objectives have been achieved and many unexpected results have been
reached, as well as many others which were expected.

Certainly, the main conclusion that could be extracted at the end is that Big Data technologies
together with a good data set offer almost unlimited opportunities for new developments and
applications. Furthermore, such applications can be also applied to other data sets to contrast
and complement them and extract new conclusions.

Moreover, Big Data enhance data processing techniques to the point of increasing their efficiency
and thus contributing to enlarge companies’ profits, since data processing is becoming a more
important subject in all modern companies. Besides, there is a huge environment behind Big Data
techniques with tons of different solutions and implementations and many more appearing each
day, so Big Data processing is also becoming easier and more common.

Concretely, in the scope of this project, we can state that Big Data is a powerful tool for job hunting
and human resources applications, as it allows to compare and contrast much more job offers or
candidates in much less time. In fact, the applications described in this report are just a small
subset of all the possibilities open for study and development.

Actually, all the studies and applications described are the most interesting and the ones adjusting
to our planning of all the ones we had in mind. Nevertheless, further work and ideas should be
considered, since the data set contains much more information.

Essentially, the data set retrieved contains information used for this project that can be correlated
in a different way or with other data to obtain more results. Additionally, there is a good collection
of company information stored which has not been processed due to the lack of time and
resources.

Furthermore, the application prototype should be extended and improved in order to offer new
functionalities, such as candidate finder, enterprise finder, new opportunities or better
performance in the service. Besides, other applications and web services could be developed,
since the prototype developed covers one of the opportunities that arise in this context.

The table below shows a more specific and precise list of the applications and studies that are
considered for future work

71

Identifier Name Description
The experiment consists on performing a hierarchical
FT1 Hierarchical Clustering clustering algorithm to a collection of documents from
in LinkedIn LinkedIn in order to find keywords which appear
together within the collection.
Due to our limited resources, the company collection
FT2 Studies on Companies could not be processed in order to reach new
conclusions, so studies inside this collection could
result in more interesting results
Candidate Matching Create an application that given a set of requirements
FT3 Application for an specific job offer returns the most appropriate
candidates subscribed to the service
Using the positions field from LinkedIn user profiles
Relation of candidates to | and the companies collection find the companies each
FT4 companies user has been working in and define the skills and
characteristics of candidates expected by each
company.
Search new information | Search new information sources and design the
FT5 sources crawler to retrieve more data and define the structure
they will have inside the framework
FT6 Develop the prototype Finish the testing of the prototype application here
application showed and start its production as market product.
This development includes: New functionalities, refine
the current functionalities and revise design.
Study and develop an application capable to suggest
the user with the best knowledge, professional work or
FT7 Application for candidate | course to be taken in order to improve its possibilities
profile improvement for job offer selection. Such application shall be based
on the user professional profile and the skill information
extracted from job offers and companies.
Development of a From the studies performed during the project and
FT8 candidate guide for job adding new results, a tip guide for job selections could
seeking be written in order to provide help for candidates
through selection processes.

Additionally, the experiments undertaken have proved that all the information retrieved and
processed through the whole project provides the basis for a broad study on the field of human
resources which will provide very valuable information to both employers with job hunting and

candidates through selection processes.

In fact, most of studies have shown that there are some issues to be considered at present which,
if resolved, would improve the process of job recruit and job finding. Probably, the most important

72

of them would be the results of the experiment described in section 4.2.4, as the inability to
highlight the proper key terms could make any potential candidate seem inappropriate for a given
job offer even though he has the required personal profile due to a failure of such candidate to
highlight the correct skills.

Not only have the experiments served to detect such different points of view, but also to find
preferences when selecting candidates such as the discovering on experiment from section 4.3.3
where we found that experience is more appreciated than the formation required or the one in
section 4.3.2 where the key terms in profiles and technological knowledge fields give some pieces
of advice when deciding which skills improve or what new technologies learn.

Moreover, we have been able to try the potential of clustering algorithms, which efficiently create
subsets of documents with an astonishing relation among them. It is certainly an advanced
technique which requires time and understanding but which outputs a satisfactory result. In this
project, clustering has helped to separate job offers according to the technological profiles they
require, which allows us to find professional profiles and estimate job parameters as well as
applying the key terms of each cluster to other collections to study the outputs.

73

/. References

[1] node.js.2009. node.js. [ONLINE] Available at:http://nodejs.org. [Accessed 31 July 14].
[2] npm.2010. npm. [ONLINE] Available at:https://www.npmjs.org. [Accessed 1 August
14].

[3] LinkedIn.2002. Linkedin Developer Network. [ONLINE] Available at:
https://developer.linkedin.com. [Accessed 1 August 14].

[4] Linkedin-js. 2007. masylum/linkedin-js. [ONLINE] Available
at:https://github.com/masylum/linkedin-js . [Accessed 14 August 14].

[5] Cran Project. 1999.The Comprehensive R Archive Network. [ONLINE] Available
at:http://cran.r-project.org/. [Accessed 1 August 14]

[6] 2008. MongoDB. [ONLINE] Available at:http://www.mongodb.org. [Accessed 14
August 14].

[7] Express framework. 2010. Express-node.js web application framework. [ONLINE]
Available at:http://expressjs.com. [Accessed 14 August 14].

[8] Apache Hadoop. 1995. Welcome to Apache Hadoop. [ONLINE] Available
at:https://hadoop.apache.org. [Accessed 14 August 14].

[9] Cloudera. 2006. Cloudera. [ONLINE] Available at:http://www.cloudera.com.
[Accessed 14 August 14].

[10] E. Dede, M. Govindaraju, D. Gunter, R. Canon, L. Ramakrishnan. 2013. Performance
Evaluation of a MongoDB and Hadoop Platform for Scientific Data Analysis. [ONLINE]
Available at:http://datasys.cs.iit.edu/events/ScienceCloud2013/p02.pdf. [Accessed 14
August 14].

[11] 2013. MongoDB MapReduce with Hadoop. [ONLINE] Available
at:https://engineering.groupon.com/2013/big-data/mongodb-mapreduce-with-hadoop.
[Accessed 14 August 14].

[12] 2007. mongo-hadoop connector. [ONLINE] Available
at:https://github.com/mongodb/mongo-hadoop/blob/master/README.md. [Accessed 14
August 14].

[14] rud.is. 2012. Get an R Data Frame from a MongoDB query. [ONLINE] Available
at:http://rud.is/b/2012/10/22/get-an-r-data-frame-from-a-mongodb-query/. [Accessed 19
August 14].

[15] Manning, C. D., 2009. An Introduction to Information Retrieval. 1st ed. Cambridge:
Cambridge University Press.

[16] E. Dede, M. Govindaraju, D. Gunter, R. Canon, L. Ramakrishnan. 2013. Performance
Evaluation of a MongoDB and Hadoop Platform for Scientific Data Analysis. [ONLINE]
Available at:http://datasys.cs.iit.edu/events/ScienceCloud2013/p02.pdf. [Accessed 14
August 14].

74

[17] S. Ghemawat, H. Gobioff, S. Leung. 2003. Google Research: The Google File
System. [ONLINE] Available at: http://research.google.com/archive/gfs.html. [Accessed
09 September 14].

[18] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh. 2006. Google Research: BigTable.
[ONLINE] Available at:http://research.google.com/archive/bigtable.html. [Accessed 09
September 14].

[19] J. Dean, S. Ghemawat. 2004. Google Research: MapReduce. [ONLINE] Available
at:http://research.google.com/archive/mapreduce.html. [Accessed 09 September 14].
[20] Lantz, B., 2013. Machine Learning with R. 1st ed. Liverly Place: Packt Publishing Ltd.
[21] Williams, G. 2014. Data Science with R - Text Mining. [ONLINE] Available
at:http://handsondatascience.com/TextMiningO.pdf. [Accessed 18 September 14].

75

http://handsondatascience.com/TextMiningO.pdf

Annex |
Project planning

The expected duration for the project is of 12 months starting in October of 2013. In order to
develop the project and achieve a correct use and management of time and resources, different
work packages (WP) containing various tasks (T) each have been defined as follows:

e WHPI1. Study and research on Big Data Technologies and possible data sets:
o TL1.1: Study of the main Big Data concepts and Technologies
o T1.2: Search of a data set and exploration of possibilities
o T1.3: Preparation of a Crawling Strategy on the selected data set
e WP2. Crawling of Data:
T2.1: Design and prototype of a Crawler programme.
T2.2: Development of the main Crawler.
T2.3: Testing of the Web Crawler.
T2.4: Installation and preparation of storage systems.
T2.5: Data Crawling.
. Configuration and installation of the data processing framework:
T3.1: Selection of framework components.
T3.2: Installation of framework components.
T3.3: Testing of framework with independent data sets.
T.3.4: Testing of framework with project data sets.
e WP4, Data Processing:
T4.1: Data manual study to extract possible analyses
T4.2: Data processing inside framework
T4.3: Result Checking
e WPS5. Application prototype development:
T5.1: Selection of technologies involved in the application
T5.2: Development of a connector for the project framework.
T5.3: Development of the application prototype.
T5.4: Testing of the application prototype.
e WP6. Report and documentation.
T6.1: Partial documentation of components during development.
T6.2: Report structure and milestones.
T6.3: Report writing.
o T6.4: Report revision and corrections.
e WP7. Presentation preparation:
o T7.1: Elaboration of presentation slides.
o T7.2: Presentation preparation.

O O O O O

e WP

O O O W

o O O

o

o O

o

Additionally, we will define points when the project will reach a milestone to help the work plan
and the project development control. Such milestones (M) are defined in the table below:

76

Project orientation After the initial research, the team finds a proper
orientation in the subject to work with.

First Crawler The first crawler version is functional and tested.

Good data set The information collected is big and good enough to start
performing reliable studies.

Application An application for the results and data obtained has
arisen and the team has approved it.

Prototype The prototype of the application is apt for demonstration.
developed

Report written The report is written and delivered for corrections.
Presentation The presentation is prepared.

In order to have an illustration of this plan, we show the Gantt and network diagrams in the
pages below:

77

»» Sep2013 | Oct2012 | Mow 2013 | Dec 2013 Jan 2014 | Feb 2014 | Mar 2014 | Apr 2074 | May 2014 | Jun 2014 Jul 2014 | Aug 2014 | Sep 2014
TFG O 6w u—..—..-l..H. 252 B 2 PR A e e i e ko D 23 B 2 2 G i 23 0 o 2 2 s i 25 B i 22 2
WWNP1 Study and research
T11 Study of concepts

T1.2 Data set search
T1.3 Cramding strateqgy
M1 Project crientation

WWP2Z Data crawling
T2.1 Design and protctype
T2.2 Programme dewvelolpment
T2.3 Testing
M2 First crawler
T2.4 Storage set up

T2.5 Data crawling [IJI

M3 Good data set 1

0

WWP3 Processing framework installation
T3.1 Selection of components
T3.2 Installation of components.
T3.3 Testing with independent D5
T3.4 Testing with project DS

WWP4 Data processing
T4.1 Data manual revision
T4.2 Deta processing
T4.2 Result Checking %

M4 Application i

WWPS Application prototype development
T5.1 Selection of technologiss involved
T5.2 Development of a connector with FW
T5.3 Development of prototype
T5.4 Testing
M5 Prototype developed i

WWPE Report and decumentation
T6.1 Partial documentation of components
T6.2 Report structure '-I
TE.3 Report writing
MG Report written .
T5.4 Report revision and comrections

WWP7 Presentation preparation
T7.1 Blaboraticn of slides
T7.2 Prezentation preparation
M7 Presentation is prepared 1

Figure AlL.1 Gantt diagram

78

WE1 Study and research “T1.1 Study of concepts. -
Durac_ 40 days? ‘Dufat, 40 o .

. M1 Project orientation
. Durac_ 0 dzys

‘WP2 Data crawling
Durac_. &

M2 First crawler
Durac_ 0 days

. M3 Good data set
Durac_ 0days

Dufat 20

“T2.4 Storage set up- T2.5Data crawling - - - -
Duiap. Tésvs [0 ‘Dufag ¥ .

'WP4 Data processing T4 e “T4.2 Data processing - - -
: C T 100 Duiat Biemis) |00

WPS Application prot... o Ms Prototype developed

Durac. 21 ézy= : Durac. Ddays

M4 Application
Durac_. davs

T5.2 Development of a...
Duiat 35

“T6.2 Report struceure
Duiap dsvs |

M6 Report written
Durac_ 0 dzys

'WET Presentation pre.
Durac 11

M7 Presentation is pre...
Durac_ 0days

ME Project deadline
Durac_ 0dz

Figure Al.2 Network diagram

Budget

A research project like the one being described requires a very detailed and exhaustive budget
in order to take the maximum possible efficiency out of the resources provided. Due to this, the
budget in the project must contain all costs, including possible unexpected expenses, in order to
achieve the best optimization possible.

The main cost in the project is human resources, as the working materials are computers and
other goods that are very common in any ordinary company. Concretely, in this project, there are
two team components: The Thesis tutor and the student. The student has devoted 4 hours per
day during 5 ordinary week days for 12 months, which is a total of 960 hours in total. The tutor
has not devoted as much time, since he has more functions in his job. Consequently, as an
estimation, we will consider that he has devoted the 10% of the time the student has: 96 hours.

In order to estimate both salaries, we will consider Person Month measure (PM). PM is a measure
of time where the employee is devoted to a job. Typically, the PM for any worker is stablished at
160 hours, although in the case of university professors it is fixed at 130 hours for research, as
they must impart classes. Consequently, considering an income of 24000€/ year for the student
and 48000<€ for the professor, we can obtain the salary per PM by dividing brute salaries by the
months worked. As a result we obtain 2000€/PM for the student and 4000€/PM for the professor.
Then, we multiply the PMs devoted to the project of each and obtain a reward of 12000€ (6 PM)
for the student and of 2400 € (0.6 PM) for the professor. The detailed cost report is reflected in
the following table.

Other relevant expenses are all the computers used during the project. For all hardware used
during the development a lifetime of 3 years has been considered and consequently the prize of
such equipment is adjusted proportionally to the duration of the project. Software licenses should
not be considered since the totality of the project has been undertaken using Open Source
software.

Identifier Name Description Total Cost
C1 Professor’s Salary and costs of maintenance of the tutor 2400€
Expenses
Cc2 Student’s Salary and costs of maintenance of the 1200€
Expenses student
Computer used as server during the project. 400€
C3 Computer Cost of a year considering a lifetime of three
years.
Laptop computer used by the student to
C4 Student’s access server and programming operations.
Laptop The cost is considered for a year of use 300€
considering a lifetime of three years.

80

Professor’s
Laptop

Laptop computer used by the professor to
supervise and contribute to the student’s
work. Cost of a year considering a lifetime of

three years.

81

Annex |l

All.1. MongoDB collections data schemas

LinkedIn: Personal
Profiles

personSchema
e name

surname
headline
linkedinld
industry
location
specialties
profileURL,
positions
o company:
= id
= pointerToMongo
o current
o StartDate
o positionTitle

LinkedIn: Companies

companySchema

e blogRssUrl
e description: String,
e employeeCountRange
o code
o hame
foundedYear
id
industries
locations
logoUrl
name
numFollowers
specialties
status
o code
o hame
o twitterID
e universalName
e WebsiteUrl

82

LinkedIn: Job Offers

jobSchema
active

company
o id
o pointerToMongo
description
descriptionSnipet: String,
expirationDate
o day
o month
o Yyear
expirationTimestamp
joblD: String,
jobPoster
location
position:
o experiencelLevel
= code
= name
o industries
= values
o jobFunctions
= values
jobType
= code
= description
o locationName
o title
postingDate:
o day
o month
o Yyear
postingTimestamp
siteJobURL
skillsAndExperience

o

Tecnoempleo: Job
Offers

Company

State

Candidate Profile
Minimum requirements
Experience
Description
Professional Level
Contract Type

83

Tecnoempleo: Job
Offers

Dedication

Functions
Technologies Involved
Url

Salary

Incentives

Needed Stay

Info about other States
Freelance

Dependent People

Infojobs: Job Offers

Categories

Number of Jobs offered
Description

Url

Job level

People organized
Department

84

All.2. Additional code lines from crawler programs

var params={
token:{
cauth token secret: usersecret,
ocauth token: usertoken

I}

console.log("La guery g5: " + query);

linkedin.apicall ('GET', query, params, function(error, result){
if (result!=null)

{

console.log(result) ;

if(result.numResults<l)
console.log{"No hay resultados™):

else

{

print_people{result};
}
elge if(query type=="company")
print companies(result);
else if(query type=="Job")
print jobs(result);
elge if(query type=="group"
print groups(result) ;
else

console.log(error) ;
return null;

Figure All.1 Base crawler detail: LinkedIn crawling engine code snippet

db=mongoose.connection;
db.on('e

r', console.error.bind{console, 'con

db.once('open', function callback()

{

console.log{"Connected to "+ dbName) ;

//We define here the person schema
personSchema= mongoose. Schema (
{
name: String,
surname: String,
headline: String,
linkedinId: String,
industry: String,
location: String, //just store the name
specialties: String,
profileURL: String,

positions: [{company: {id: String, pointerToMongo:String}, current:Boolean, startDate: Date, positionTitle:

13

//Bnd we model it to create/open the collection

person= mongoose.model (dbCollection, personSchema) ;

Figure All.2 Mongoose person profile schema

jobSchema= mongoose.Schema (
{
active: Boolean,
company: {id: String, pointerToMongo:String},
description: String,
descriptionSnipet: String,
expirationDate: {day: String, month:String, year:String},
expirationTimestamp: String,
jobID: String,
jobPoster: String, //person ID
location: String,
position: {experiencelevel:{code:String, name: String}, industries:

jobFunctions: {values:[]}, JjobType:{code: String, description: String},

locationName: String, title: String},
postingDate: {day: String, month:String, year:String},
postingTimestamp: String,
siteJdobURL: String,
skillsindExperience: String

Figure All.3 Mongoose job offer schema
extract =- function{urlNews)

script <- tryCatch{getURL{urlNews) ,HTTPError = function(e)

cat("HTTP error:
9]

html <- htmlrarse(script,encoding = "windows-1252")
table<-readimLTable(html, encoding="windows-1252")
names<-as.data.frame(table[[4]][1], stringsAsFactors=FALSE)
values<-as.data.frame(table[[4]][2], stringsAsFactors=FALSE)
info<-names
info["values"]<=-values
info<-na.omit(info)
values<-infofvalues
data<-as.data.frame(values)
data<-data.frame{t{data))
colnames{data)<=-{infofoferta)
returnidata)

, eimessage, "\n')

Figure All.4 Tecnoempleo Crawler. This code snippet shows the extraction of a given URL

String}l,

86

All.3. Framework additional captures

console.log("Connected to "+ DBname) ;
{
if(err==null)
{
console.log{"Something not null");
eventEmitter.on("newResult", function(index)
{
if(docs[index] .skillsBndExperience l=undefined)
{
console.log({"something")

console.log(docs[index] .skillsEndExperience) ;

var toExport=docs[index].skillshEndExperience.replace(/‘\n|\t/gi,
toExport=toExport.replace{/([~rc])/gi, "");
toExport=tcExport.replace("3", "a");
toExport=toExport.replace("s", "e");
toExport=toExport.replace("1", "1"):
toExport=toExport.replace("9", "g"):
toExport=toExport.replace (""", "u"):
toExXport=toExport.replace("4", "nnon"):

toExport=toExport.replace (" (htitps?:\/\/[~\s]1*)/gi", ""):
toExport=toExport.replace(/ (<\/?.[a-zB-Z0-9\s|=|"|"|;]1*>) fgi,
//toExport= toExport.replace(/[~a-zR-Z\s]l/gi, " ");
toExport=toExport.replace(/ (\s+)/gi, " "):

toExport=toExport.replace("gnnn™, "a"):
buffer+=docs[index] . jobID+"/// "+toExport+"z5d
index++;

if({index»>=docs.length)
eventEmitter.emit ("endF:
else
{
if(index%5000==0)
eventEmitter.emit ("checkpoint”, index) ;
else
eventEmitter.emit ("newResult", index);

Figure All.5 Mongo-framework connector based on Node.js solutions

")

i

87

) Rstudio x \ = &
“B@B% S =

<« C [3163.117.140.12:

it Aplicaciones Twitter Aula Global Runkeeper % Delegacion de Estud... #F Wolfram|Alpha: Co... ﬂ Mi cuenta - PayPal B Santander 0 GitHub [C7] Otros marcadores
O File Edit Code View Plots Session Build Debug Tools Help nacho | Sign Out
G-l B3 &] Project: (None) -
@] Untitled1# @7 Idcount.R# @] MRV1.R @] IDTextR @] better-TF-IDF.R* @] okapi.R | new.val Environment | History
= Source on Save L A =@ Run | o8| [#Source ~| 3] #* [| 2 Import Dataset - __»’C‘Iea' List~
1 % Global Environment~
2 vaiues .
3 D docs List of 1
5 hh NULL (empty)
6 i 18L
7 lines chr [1:18] " the successful candidate will have excellen.
8 myStopwords chr [1:483] "de" "1a" "que"™ "el™ "en" "y" "a" "los" "del.
e Dss Large list (1578 elements, 2.6 Mb)
Jtable.count List of 18
Jtable.list List of 18
term chr [1:417 "" "ability" "acca" "acumen” "and" "apart" "b..
test.string LN12838509/// The successful candidate will have excelle..
Dtf.idf List of 18
whole chr [1:18] "LN1283850%/// The successful candidate will ..
Functions
IDText function (input, output = NULL, pattern = " ", keywords ..
init function (values.df)
query function (query, values.df)
tfidf function (keywords, values.df)
wordcount function (input, output = NULL, pattern = " ")

Files Plots Packages Help Viewer

@5 New Folder | @ | Upload | €] Delete [5] Rename | 4G More~

Map Reduce for W unt version 1 E Script

Console @

M

Figure All.6 RStudio server capture during a Hadoop MapReduce job

88

All.4. MongoDB Collections stats images

1}

anies

Figure All.11 Tecnoempleo and
LinkedIn mixed job offer collection

89

