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“Oh Yoshimi, they don’t believe me
But you won’t let those robots defeat me ”

— The Flaming Lips
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Abstract

The inverse kinematics problem of an articulated robot system refers to comput-
ing the joint configuration that places the end-effector at a given position and ori-
entation. To overcome the numerical instability of the Jacobian-based algorithms
around singular joint configurations, the inverse kinematics is formulated as a con-
strained minimization problem in the configuration space of the robot. In previous
works this problem has been solved for redundant and non-redundant robots using
evolutionary-based algorithms. However, despite the flexibility and accuracy of the
direct search approach of evolutionary algorithms, these algorithms are not suitable
for most robot applications given their low convergence speed rate and the high
computational cost of their population-based approach. In this thesis, we propose
a memetic variant of the Differential Evolution (DE) algorithm to increase its con-
vergence speed on the kinematics inversion problem of articulated robot systems.
With the aim to yield an efficient trade-off between exploration and exploitation of
the search space, the memetic approach combines the global search scheme of the
standard DE with an independent local search mechanisms, called discarding. The
proposed scheme is tested on a simulation environment for different benchmark
serial robot manipulators and anthropomorphic robot hands. Results show that the
memetic differential evolution is able to find solutions with high accuracy in less
generations than the original DE.
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Resumen

La cinemática inversa de los robots manipuladores se refiere al problema de calcular
las coordenadas articulares del robot a partir de coordenadas conocidas de posición
y orientación de su extremo libre. Para evitar la inestabilidad numérica de los méto-
dos basados en la inversa de la matriz Jacobiana en la vecindad de configuraciones
singulares, el problema de cinemática inversa es definido en el espacio de config-
uraciones del robot manipulador como un problema de optimización con restric-
ciones. Este problema de optimización ha sido previamente resuelto con métodos
evolutivos para robots manipuladores, redundantes y no redundantes, obtenién-
dose buenos resultados; sin embargo, estos métodos exhiben una baja velocidad
de convergencia no adecuada para aplicaciones robóticas. Para incrementar la ve-
locidad de convergencia de estos algoritmos, se propone un método memético de
evolución differencial. El enfoque de búsqueda directa propuesto combina el es-
quema estándar de evolución diferencial con un mecanismo independiente de refi-
namiento local, llamado discarding o descarte. El desempeño del método propuesto
es evaluado en un entorno de simulación para diferentes robot manipuladores y
manos robóticas antropomórficas. Los resultados obtenidos muestran una impor-
tante mejora en precisión y velocidad de convergencia en comparación del método
DE original.
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Chapter 1

Introduction

Kinematics is one of the most fundamental aspects of any robot system. From design
and calibration to simulation and control, a well defined kinematics plays a key role
in the efficient planning and accurate completion of the tasks commanded to the
robot.

Robot tasks can be manifold, but generally they are described as a set of target
trajectories in the Cartesian space. Accordingly, to perform the task the robot must
transform these target trajectories into suitable actuators’ actions. From a purely
kinematics approach, this implies to map the representation of the desired trajec-
tories into the motion variables of the robot. For instance, for a wheeled mobile
robot it means computing the velocities of the motors of each wheel. Whereas, for
an articulated robot system it means finding the configuration of all the joints in
the kinematic chain. This is known as the inverse kinematics problem. Conversely,
computing the robot motion in the Cartesian space from the robot variables using
the geometric relations between its kinematics components is called the direct or
forward kinematics problem.

Solving these two kinematics problems is at the core of the servo control system
of any robot. Their importance has been acknowledged over decades of research
devoted to find better and more efficient solutions. Therefore, their analysis repre-
sents one of the basic foundations of robotics.

Nonetheless, whilst the forward kinematics problem can be analytically solved
using a smart collection of geometric and algebraic tools, the same does not hold
true for the inverse kinematics. Although the analytical closed-form solution to this

1
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problem can be obtained for some special kinematic geometries, a general and sys-
tematic analytical method is not available. The main reason is that for most robots,
the inverse kinematics involves solving a system of coupled non-linear equations
with any, multiple, or infinite possible solutions, and whose complexity grows with
the number of degrees of freedom.

In this dissertation we revisit the inverse kinematics problem to formulate a so-
lution framework based on a direct search algorithm. Such that, instead of directly
solving the system of non-linear equations, the inverse kinematics problem is refor-
mulated as a constrained minimization problem defined in the configuration space
of the robot. Although the proposed formulation might accommodate the kinemat-
ics inversion problem of any type of robot; this dissertation will be limited to the
study of the kinematics of serial robot manipulators or a multibody arrangement of
them.

A serial robot manipulator is an articulated robot system with an open kinematic
chain topology. Kinematically it can be described as an assembly of links connected
by means of joints that provide relative motion between adjoining links. One end of
the kinematic chain is firmly attached to the base whereas the other end interacts
with the environment. Therefore, the inverse kinematics consists in finding the joint
coordinates that locate the free end at a given position and orientation coordinates
in the Cartesian space.

A large body of work has been devoted to address the kinematics inversion of
serial robot manipulators using numerical methods. A conventional, but not exclu-
sive, classification groups these approaches into symbolic elimination, continuation,
and iterative methods. Symbolic elimination methods reduce the inverse kinemat-
ics problem to a univariate polynomial by analytical manipulation of the system of
equations (Raghaven & Roth, 1990; Manocha & Canny, 1994). Continuation meth-
ods compute the solution by tracking paths in the complex space from a start sys-
tem with known solution (Wampler & Morgan, 1991). These methods are efficient
and provide all the possible solution to the inverse kinematics problem; however,
they are mostly limited to certain kinematic structures of serial robot manipulators.
Moreover, they are not easily adaptable when the kinematic layout of the robot
changes, e.g., reconfigurable robot manipulators.

In contrast to symbolic elimination and continuation methods, most iterative
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methods can only converge to one of the multiple solutions of the inverse kinemat-
ics problem. However, their formulation admits the solution of a wide range of
redundant and non-redundant serial robot manipulators. These methods include
Jacobian- and optimization-based methods, among others.

Jacobian methods linearize the inverse kinematics problem based on the differ-
ential kinematics equation that relates the end-effector and joint velocities through
the inverse Jacobian matrix (Goldenberg et al., 1985). These methods are local
and therefore their convergence strongly depends on a good initial estimation of
the solution and a suitable integration step-size value (Whitney, 1969a). Moreover,
Jacobian-based methods fail convergence at kinematic singular joint configurations,
because at these configurations the Jacobian matrix becomes rank-deficient, and
thus, not invertible. Damped-least-squares methods tackle the numerical instabil-
ity around singularities in detriment of motion accuracy by penalizing the norm
of the velocity vector with a damping factor, as the residual end-effector error is
minimized (Wampler, 1986). In this case, the damping factor value play a impor-
tant role in the fare trade-off between precision and speed of motion (Nakamura &
Hanafusa, 1986; Maciejewski & Klein, 1988).

Optimization-based methods circumvent altogether the singularities issues by
solving the inverse kinematics directly on the configuration space of the robot, and
consequently the Jacobian is no longer needed for mapping. Instead, the inverse
kinematics is formulated as a constrained optimization problem, such that, the so-
lution is obtained as the joint configuration that extremizes an objective function
subjected to the restrictions imposed by the mechanical structure of the robot or
by the task. This objective function could be defined as the end-effector pose error,
energy consumption rate, overall joint displacement, distance from an obstacle, or
as a combination of these criteria (Lenarcic, 1985; Wang & Chen, 1991).

For the inverse kinematics problem, optimization methods are robust, reliable,
and numerical stable around singularities since they do not depend on the Jacobian
matrix. However, most traditional optimization methods explore the solution search
space using a point-to-point approach, i.e., in each iteration the algorithm uses local
information about the search space landscape to decide which direction is best to
explore next. In multimodal optimization, such as the inverse kinematics problem,
this strategy may lead to premature convergence towards suboptimal solutions.
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Furthermore, in complex tasks in which the robot must meet multiple goals in
addition to follow a desired end-effector trajectory, the optimization scheme must
be flexible enough to cope with discrete, non-linear, and multi-modal search spaces.
In this scenario, population-based optimization algorithms are a good choice to find
a global optimal solution for the inverse kinematics problem. In this regard, evolu-
tionary algorithms (EAs) offer a number of advantageous features. First, its flexible
search scheme does not impose differentiability conditions on the objective func-
tion. Second, constraints are handled directly by the algorithm thus guaranteeing
feasibility of the solution. And third, in contrast to the local search approach of
traditional optimization methods, evolutionary algorithms are intrinsically global
search mechanisms thanks to their population-based search scheme.

In (Parker et al., 1989), a binary genetic algorithm was proposed to solve the in-
verse kinematics problem of a redundant robot manipulator by minimizing the end-
effector’s position error and the joint maximum displacement. This formulation was
extended to include obstacle avoidance in (Buckley et al., 1997; Nearchou, 1998).
In (Yang et al., 2007), a real-coded genetic algorithm was proposed to avoid the
inaccuracies of the binary representation of genetic algorithms. In (González et al.,
2009) the inverse kinematics associated to each node of an optimal path generation
problem was solved based on the differential evolution algorithm. Experimental re-
sults showed high accuracy in both end-effector position and orientation. More
recently, real-coded evolutionary algorithms combined with niching and clustering
methods have also proved to be an effective approach to obtain the multiple solu-
tions of the inverse kinematics problem of modular robot manipulators (Kalra et al.,
2004; Tabandeh et al., 2010).

Despite the overall good performance, the computational complexity of the
aforementioned EA-based kinematics inversion methods grows with the number
of degrees of freedom and the population size. This, coupled with the inherent low
convergence speed of most population-based algorithms makes EAs an unsuitable
choice for most real-world kinematic control applications.

However, the global search approach and flexibility of the evolutionary optimi-
zation strategy have motivated us to further explore new mechanisms to improve
the convergence speed for the inverse kinematics problem of robot manipulators.
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We have based our approach on the Differential Evolution (DE) algorithm, a sim-
ple direct search scheme that has proved to be an effective optimization tool for
several benchmark and real-world application problems. DE is a population-based
direct search mechanisms driven by a powerful arithmetic mutation and crossover
strategies and a greedy selection mechanism (Storn & Price, 1997). In DE scheme,
mutation is a mainly exploratory operator controlled by a constant factor. At early
stages mutation keeps the population diverse to efficiently explore the search space,
and then gradually clusters the population around the most promising solutions.
However, a major emphasis on exploration and the lack of effective exploitation
mechanisms leads the process to a low convergence speed rate.

With the goal to improve the convergence speed rate of the standard DE, in
this thesis we propose a memetic differential evolution for the inverse kinematics
problem of robots, hereafter denoted by δDE (González & Blanco, 2013).

Memetic algorithms (MAs) are defined as any evolutionary meta-heuristic direct
search method that embeds an individual learning or local refinement procedure.
They owe their name to Richard Dawkins’ memes theory. In this theory, Dawkins
draws an analogy between the genetic evolution of animals and the cultural evolu-
tion of the human society, by defining a unit of cultural information called meme.
A meme can be an idiom, idea, belief or any other cultural expression that can be
transmitted by imitation across generations. In this context, Imitation also con-
veys the enrichment of the meme by the own culture of each individual during its
transmission to other peers. Collectively this gives rise to a form of evolution.

In artificial systems, memetic algorithms aims to balance the collective evolu-
tion of a set of artificial entities (global search) with the individual learning of each
one (local search) for an effective trade-off between exploration and exploitation
of the search space. Similarly, our memetic differential evolution algorithm synthe-
sizes the global exploratory features of the standard DE scheme with a local search
mechanism, called discarding, to improve the efficiency of the search.

The discarding mechanism comprise migration and local search into a single op-
erator. On the one hand, migration injects new information into the population
by replacing poor performing solutions in each iteration (Goldberg, 1989; Moed
et al., 1990); and on the other hand, local search provides with a replacement
strategy that enhances exploitation in the neighbourhood of the fittest solutions
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of the population. Originally it was devised as a secondary operator within a dif-
ferential evolution-based localization filter for mobile robots (Martín et al., 2011;
Martín, 2012). Its role was to mitigate the deceleration effect introduced by the
noise handling selection operator (thresholding).

In these previous works, the intuition behind the discarding operator was super-
ficially presented. A first attempt to provide a mathematical formulation was made
in (Monar et al., 2010), but the analysis of its control parameters was neglected.
The first objective of this thesis is to afford a sound mathematical description of the
elements that intervene in the discarding mechanism, identify its control parameters
and define their role within a memetic search scheme.

Second, analyse the dynamic of the convergence behaviour of δDE in relation of
the setting of its control parameters. Given the difficulty of the analytical study of
the interaction of the control parameters with the search mechanisms and among
themselves, we will rely the analysis on the empirical data obtained from simulation
experiments on the inverse kinematics problem of robot manipulators. Therefore,
the results will be only valid for this particular optimization problem, and the gen-
eralization to other kinematics geometries will be limited.

Third, evaluate the performance of δDE as kinematics inversion method for dif-
ferent arrangements of serial robot manipulators; and compare these results in
terms of accuracy, convergence speed, success rate, and computational time with
the performance assessment of the standard DE.

Fourth, investigate alternative applications for δDE in the kinematics analysis of
articulated robot systems with a large number of joint variables.

1.1 Thesis outline

This dissertation is organized in chapters. Next we provide a brief synopsis of
these chapters:

• Chapter 2. In this chapter we briefly present the basic notions of robot ma-
nipulators and their kinematics components. Further, the forward and inverse
kinematics problems are formally defined for these articulated mechanisms
together with the concepts of kinematic redundancy and singularity. The last
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part of the chapter is devoted to summarize the most relevant numerical meth-
ods for kinematics inversion found in the literature.

• Chapter 3. This chapter provides an introductory overview on the evolution-
ary optimization paradigm. In the first part of the chapter, the search prin-
ciples of this biological-inspired optimization approach are described using
three different perspectives: Genetic Algorithms (GAs), Evolution Strategies
(ESs), and Evolutionary Programming (EP). Once a general overview on the
common mechanisms of the evolutionary search scheme has been provided,
we proceed to describe in detailed the operators and control parameters of
the Differential Evolution (DE) algorithm.

• Chapter 4. The proposed memetic differential evolution scheme (δDE) is
described in this chapter. First, a survey on the state-of-the-art of the accel-
eration mechanisms of the differential evolution scheme is presented. Within
this context, a novel acceleration mechanism, called discarding, is introduced.
The search behaviour of the proposed memetic algorithm is illustrated with
practical examples on three benchmark objective functions.

• Chapter 5. In this chapter we provide the mathematical formulation of the
kinematics inversion of serial robot manipulators as a constrained optimiza-
tion problem in the configuration space of the robot. The kinematics inversion
solution is presented as the joint configuration that minimizes the position
and orientation error of the end-effector, relative to an arbitrary target pose
coordinates defined in the workspace of the robot. In addition, the same for-
mulation is extended to a set of consecutive target pose coordinates, known
as the path generation problem.

• Chapter 6. This chapter presents a comparative evaluation between the pro-
posed memetic scheme (δDE) and the standard DE as kinematics inversion
methods. The simulation-based study compares the performance of both al-
gorithms in terms of accuracy, success rate, and convergence speed on three
benchmark serial robot manipulators.

• Chapter 7. In this chapter we address the role of the control parameters
setting in the convergence behaviour of the memetic approach as kinematics
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inversion method. δDE has six different control parameters, three are diver-
sification parameters since they control the exploratory variation mechanisms
(standard DE); and the other three are intensification parameters that regu-
late the local search mechanism (discarding). Based on empirical simulation
data we explore the influence of the intensification parameters under different
diversification scenarios.

• Chapter 8. In this chapter we examine the performance of the δDE on kine-
matics applications with a higher-dimensional search space. Here we consider
the inverse kinematics problem involved in two different tasks for anthropo-
morphic robot hands. The first task consists in the path generation problem
of simultaneously bending all the fingers to make a fist. The second tasks re-
produces a set of routines used for the clinical evaluation of the human hand
mobility, called the Kapandji method.

• Chapter 9. In this chapter we draw some conclusions on the performance of
the memetic differential evolution scheme δDE, and mark the route to future
research and developments.



Chapter 2

Notions of Robot Kinematics

2.1 Robot Manipulators

A robot manipulator is a kinematic chain set as an assembly of rigid bodies
(links) connected by means of kinematic pairs (joints) that provide relative motion
between adjoining links. In a typical configuration, one end is rigidly constrained
to a fixed point and the other is attached to a customized tool (end-effector) that
interacts with the environment. The end-effector could be any device that can be
installed at the robot wrist to perform an specific task. In industrial applications
some of the most common end-effector types include: grippers, cutting and drilling
tools, welding torches, force/torque and collision sensors, etc.

Joints are essentially of two types: revolute and prismatic. Both are kinematic
pairs with one-degree of freedom, such that, their motion is constrained to single-
axis rotation or linear displacement, respectively. From a kinematic point of view
any joint with more than one degree of freedom can be easily simplified as an ar-
rangement of revolute and/or prismatic joints connected by zero length links (e.g.,
screw and ball joints).

Robot manipulators can be divided according to their kinematic topology into
open and closed kinematic chains. An open kinematic chain is an articulated struc-
ture with a serial arrangement of links and joints, as illustrated in Figure 2.1. Note
that the degrees of freedom (DOF) of a serial robot manipulator are determined by
the total number of joints in the open kinematic chain. In contrast, closed kinematic

9
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Figure 2.1: Open kinematic chain config-
uration of a robot manipulators.
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Figure 2.2: Closed kinematic chain con-
figurations of robot manipulators (So-
molinos et al., 2002).

chains show loops in their mechanical structure, as depicted in Figure 2.2.

Serial robotic arms are widely extended in industrial applications since they
provide a relatively large workspace with a compact mechanical structure. In par-
ticular, the large workspace and high dexterity of anthropomorphic robot manipu-
lators (Figure 2.1) have shown to be advantageous in complex manipulation tasks.
Nonetheless, a heavyweight structure, low stiffness and low effective load are also
inherent features to their open kinematic configuration. Hence, alternative kine-
matic structures with higher complexity have been introduced in an attempt to
increase stiffness and to reduce the total weight of the mechanical structure. In
Figure 2.2 such mechanism is illustrated. In this example, the closed kinematic
configuration allows to locate all actuators at the base of the structure which yields
lightweight robot manipulators suited for high speed operation tasks. For simplicity,
in this document only serial robot manipulators with revolute joints will be consid-
ered.

2.2 Kinematics of Robot Manipulators

Given a serial robot manipulator with N degrees of freedom, each joint in the
kinematic chain is represented by a variable qj in the robot manipulator configura-
tion space Q ⊆ RN . Such that, at any time instant the overall robot configuration
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Figure 2.3: Definition of the position and orientation of a rigid body.

can be defined by a vector

q = (q1 . . . qj . . . qN)> ,

where q ∈ Q. In practice, joint variables are bounded values within the angular or
linear displacement range of the joint mechanical actuators.

During the performance of a task the end-effector is the interacting tool of the
robot manipulator with the environment. It is therefore convenient to define robot
tasks in the Cartesian space in terms of target pose coordinates, i.e., position and
orientation of the end-effector. According to rigid body transformations, the transla-
tion and rotation of a given reference frame E attached to a body (end-effector) can
be described relative to a fixed inertial reference frame W by the pose coordinates

ξ = (p,R)

where p ∈ Rn is the position vector of the origin of frame E from the origin of
frame W, and the rotation matrix R ∈ SO(n) represents the orientation of frame E

relative to frame W (see Figure 2.3). It follows that the robot task space is defined
as C ⊆ SE(n) = {(p,R) | p ∈ Rn,R ∈ SO(n)}, where n is dimension of the task
space, and m = n(n + 1)/2 is the minimal number of task variables necessary to
completely define any arbitrary pose in C. For robot manipulators only the two-
and three-dimensional cases apply, i.e., n = 2, 3.
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In the most general case, the robot manipulator moves in a three-dimensional
task space (n = 3), such that, the end-effector’s position is defined by the vector

p =

pxpy
pz

 , (2.1)

and the orthonormal rotation matrix

R =

 nx ox ax

ny oy ay

nz oz az

 (2.2)

represents the end-effector orientation. Vectors n, o, a are mutually orthogonal unit
vectors, and therefore, only three independent variables are needed to represent
the nine parameters of the rotation matrix: Euler angles, Roll-Pitch-Yaw angles,
etc. Therefore, in a three-dimensional task space the end-effector’s pose can be
completely defined with six variables, three in translation and three in rotation.

Conventionally, these pose coordinates are compactly represented as homoge-
neous transformation matrices of the form

T =


px

R py

pz

0 0 0 1

 . (2.3)

Another aspect to be considered in the kinematic analysis of robot manipulators
is the kinematic redundancy. This occurs when the number of joints variables is
greater than the number of task space variables (N > m), meaning that a given
end-effector pose would correspond to infinite joint configurations in Q. Functional
redundancy can be regarded as a concept mainly inherent to the task and not to the
robot. Given that, the same robot manipulator can be redundant for one task and
non-redundant for another, e.g., a 6DOF robot manipulator is non-redundant for
any task in the three-dimensional Cartesian space requiring a certain end-effector
position and orientation (m = 6). However, it becomes redundant for any task
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in the two-dimensional Cartesian plane (m = 3). On the other hand, intrinsic
redundancy occur when the robot manipulator has more than the six degrees of
freedom required to position and orient the end-effector in the three-dimensional
space (n > 6). Further, in some applications kinematic redundancy is a desirable
feature since it increases dexterity and enhances the tractability of secondary goals,
such as, collision avoidance or joint saturation, without modifying the main task,
e.g., following a prescribed end-effector path.

From a kinematic point of view the motion of an articulated body can be de-
scribed by the functional mapping between the configuration and Cartesian space
variables, which in turn arise two different kinematics subproblems, namely: for-
ward and inverse kinematics.

2.3 Forward Kinematics Problem (FK)

The forward kinematics problem refers to computing the end-effector pose ξ

given a known joint configuration vector q, this is:

ξ = fk (q) , (2.4)

where fk : Q → C is the forward kinematics function.

For most serial robot manipulators the forward kinematics problem can be ana-
lytically solved with the Denavit-Hartenberg (D-H) convention and matrix transfor-
mation algebra (Denavit & Hartenberg, 1955). The D-H convention establishes a
set of rules to assign a suitable reference frame to each link in the kinematic chain,
such that, each joint-link pair j is characterized by four parameters, namely: link
length aj, link offset dj, joint twist αj, and joint angle θj. These four parameters are
used to build homogeneous transformation matrices expressing the relative position
and orientation between two consecutive links. Once all transformation matrices
are defined, the forward kinematics problem can be solved as

T 0
N = T 0

1 · · ·T
j−1
j · · ·TN−1N ,
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which relates the position and orientation of the base and end-effector frames. Ma-
trices T j−1j are of the form

T j−1j =


cθj −cαjsθj sαjsθj ajcθj

sθj cαjcθj −sαjcθj ajsθj

0 sαj cαj dj

0 0 0 1

 ,

if joint j is revolute, and as

T j−1j =


1 0 0 0

0 cαj −sαj 0

0 sαj cαj dj

0 0 0 1

 ,

if joint j is prismatic1. A comprehensive overview on the D-H convention and trans-
formation matrices algebra can be found in (Sciavico & Siciliano, 1996).

2.4 Inverse Kinematics Problem (IK)

Robots tasks are naturally defined as a set of pose, velocity, and acceleration tra-
jectories in the Cartesian space. To attain these trajectories in a given time interval,
the servo control system has to rapidly generate the corresponding joint actuators
commands. Therefore, the inverse kinematics can be stated as the problem of com-
puting the set of joint variables q corresponding to a given end-effector pose ξ,
expressed as

q = fk−1 (ξ) . (2.5)

Obtaining analytical closed-form solutions for the inverse kinematics problem is
not a trivial task, since it involves solving a system of coupled non-linear equations
with any, multiple, or infinite possible solutions. Only when the robot manipulator
has intersecting and/or parallel consecutive joint axes, it is possible to express the
kinematics inversion problem as a simplified decoupled system of equations (Paul

1cφ and sφ are the shorthand notation for cos(φ) and sin(φ), respectively.
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& Shimano, 1978; Elgazzar, 1985; Kucuk & Bingul, 2004). Further, quaternion the-
ory has been successfully used to obtain the analytical inverse kinematics of robot
manipulators, however, its use has been limited to simple non-redundant robots
(Aydin & Kucuk, 2006). More recently, an analytical general solution has been pro-
posed for solving the inverse kinematics problem of 6DOF robot manipulator with
rotational joints (Vasilyev & Lyashin, 2010).

The lack of analytical procedures to solve the inverse kinematics of general kine-
matics structures has motivated the use of numerical methods. These are conven-
tionally classified into: symbolic elimination, continuation, and iterative methods.

Symbolic elimination methods transforms the inverse kinematics problem into
univariate polynomials by analytical manipulation of the system of non-linear equa-
tions (Raghaven & Roth, 1990; Manocha & Canny, 1994). The main advantage of
this method is that by solving the resulting polynomial equation one is able to find
all possible solutions to the inverse kinematics problem. Continuation methods cast
the solution to the inverse kinematics as tracking paths in the complex space from
a start system with a known solution (Wampler & Morgan, 1991). Although these
methods are efficient in finding all the possible solutions to the inverse kinematics
problem they are limited to certain kinematics structures of serial robot manipula-
tors. Moreover, the heavy mathematical manipulation of these methods does not
allow to easily adapt them when the kinematics layout of the robot manipulator
changes, e.g., reconfigurable robot manipulators.

Iterative methods comprise many different approaches and their main advan-
tage is that they admit the solution of the inverse kinematics problem of com-
plex kinematics structures. Among the many iterative methods for kinematics in-
version here we will focus on the two most common approaches: Jacobian and
optimization-based methods.

2.4.1 Jacobian-based Methods

Most of numerical methods for kinematics inversion are based on the differential
kinematics equation

ξ̇ = J (q) q̇, (2.6)

that establishes a linear mapping between joint velocities q̇ and end-effector veloc-
ities ξ̇, given by the robot Jacobian matrix J ∈ Rm×N .
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Thus, if J−1 is defined, the joint velocity vector is obtained from (2.6) as:

q̇ = J (q)−1 ξ̇, (2.7)

which is commonly known as the resolved-motion rate-control method (Whitney,
1969b).

One can obtain the joint configuration vector by formulating (2.7) as a numer-
ical integration problem and using the Newton-Raphson method to find a solu-
tion (Goldenberg et al., 1985). However, its convergence strongly depends on a
good initial estimation of the solution and a suitable integration step-size value
(Whitney, 1969a). Moreover, the expression (2.7) only holds when the number
of joint variables and the number of independent end-effector task variables are
equal (N = m), i.e., the Jacobian matrix is a full-ranked square matrix. Instead, if
N < m, no solution exist for the inverse kinematics problem since the number of
joints is not sufficient to generate an arbitrary pose at the end-effector; whereas, if
N > m, the robot manipulator is said to be kinematically redundant and the inverse
kinematics problem has infinite solutions.

In case of redundancy, the kinematics inversion is solved as an optimization
problem by defining a secondary vector in the null space of J and then comput-
ing the pseudo-inverse Jacobian matrix J†2 (Goldenberg et al., 1985). A modified
approach consist in setting these secondary constraints as additional rows in the Ja-
cobian matrix in order to build an invertible square matrix, known as the extended
Jacobian (Baillieul, 1985).

Singularities

Jacobian-based methods are particularly sensitive to joint configurations at which
the Jacobian matrix becomes rank-deficient, and therefore, not invertible. These
configurations are called kinematic singularities and occur when one or more joints
no longer represent independent variables, which consequently leads to the reduc-
tion of the structure mobility. Furthermore, in the neighbourhood of such configu-
rations the Jacobian matrix is ill-conditioned and all Jacobian-based inverse kine-
matics methods become unstable, that is, the solution demands large joint velocities

2The pseudo-inverse or Moore-Penrose generalized inverse matrix J† of matrix J(q), is defined
as: J† = J>(JJ>), which minimizes the Euclidean norm of q.
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even for small end-effector displacements.
Based on the virtual work or generalized forces principle3, singularities issues

can be tackled by replacing the inverse Jacobian matrix with the transpose Jaco-
bian J> (Wolovich & Elliott, 1984). The obtained solution is interpreted as an
approximation of the robot manipulator tendency of motion instead of the actual
inverse kinematics solution. Additional drawbacks are the slow convergence rate,
scaling issues, and instability in the vicinity of singularities.

An alternative and more effective approach to address singularities is to formu-
late the inverse kinematics as a damped least-squares problem. Such that, when
close to a singular configuration the norm of the velocity vector is penalized by a
damping factor as the residual end-effector error is minimized (Wampler, 1986). In
this case, the damping factor value has to be carefully chosen in order to achieve a
fare trade-off between precision and speed of motion. In (Nakamura & Hanafusa,
1986; Bensalah et al., 2014), this value is adjusted based on the manipulability mea-
sure, which gives a measure of how close a joint configuration is from a singularity
(Yoshikawa, 1991). Other selection criteria include, minimum singular value of J
(Maciejewski & Klein, 1988) and tracking deviation minimization (Deo & Walker,
1995; Phuoc et al., 2008). A comprehensive overview on damped least-squares-
based methods for kinematic inversion can be found in (Chiaverini et al., 1994;
Deo & Walker, 1995).

2.4.2 Optimization-based Methods

Although damped least-squares methods circumvent the numerical instability
in the vicinity of singularities, Jacobian-based algorithms still fail to converge at
singular joint configurations. An alternative approach is to formulate the inverse
kinematics as a constrained optimization problem, i.e., to find a joint configuration
vector that minimizes a cost function subjected to the restrictions imposed by the
mechanical structure or by the task.

Several optimization schemes have been used to solve this non-linear program-
ming problem, such as: gradient-based methods (Lenarcic, 1985), heuristic direct-
search methods (Wang & Chen, 1991), artificial neural networks (Guez & Ahmad,

3F>.4ξ = τ>4q, where F and τ are the end-effector and joints generalized force vector, respec-
tively.
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1988; Kuroe et al., 1993; Morris & Mansor, 1997; Karlik & Aydin, 2000; Bingul
et al., 2005; Hasan et al., 2006; Morris & Mansor, 1998; Driscoll, 2000; Zhang
et al., 2005; Chiddarwar & Babu, 2010), and evolutionary algorithms (Parker et al.,
1989; Kim & Kim, 1996; Tabandeh et al., 2006), among others. The main advan-
tages of these approaches over the Jacobian-based algorithms, are their robustness
and numerical stability around singularities.

The conjugate gradient method was used to solve the inverse kinematics opti-
mization problem by iteratively minimizing the position and orientation error until
some maximum error threshold (Lenarcic, 1985). Since this method is driven by
the calculation of the gradient value, only continuous and differentiable objective
functions can be considered. Moreover, an approximation of the inverse Jacobian
matrix is used as a weighting factor and neither redundancy nor kinematic singu-
larities are solved.

On the other hand, cyclic coordinate descent method (CCD) implements a dif-
ferent approach to solve the inverse kinematics of an NDOF robot manipulators
(Wang & Chen, 1991). This is, instead of solving an N DOF optimization problem
altogether, the inverse kinematics problem is formulated as N optimization prob-
lems of 1 DOF, i.e., one per each joint in the kinematic chain. The algorithm is
divided into cycles, and each cycle is further divided into N steps. In each step the
inverse kinematics equation for one joint (1DOF) is solved analytically by minimiz-
ing its individual contribution to the end-effector’s total pose error. Moreover, since
it does not require the Jacobian matrix calculation, the method is not ill-conditioned
by singularities. In order to improve accuracy and convergence speed, CCD has
been used in combination with the Broyden-Fletcher-Shanno method (BFS) (Wang
& Chen, 1991).

Besides conventional optimization methods, the inverse kinematics problem has
also been addressed by artificial intelligence techniques. In this regard, artificial
neural networks (ANNs) have been widely used to represent the inverse kinematics
equation of robot manipulators due to their accurate representation of highly non-
linear functional relationships.

An artificial neural network is first trained using forward or inverse kinematics
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information as training data. This data comprises input-output information ob-
tained either from a model or experimentally. Further, a training mechanism ad-
justs the neurons connections weights that minimize the prediction error. Thus,
once trained, the network is able to predict the robot joint configuration when a
given end-effector pose is presented as input. Since the training phase involves an
optimization process, the computational complexity and accuracy of the network
lie on the minimization method, commonly based on the Levenberg-Marquardt al-
gorithm. Moreover, good accuracy requires large data sets which might lead to
slow convergence speed. Among the several ANN architectures for kinematic inver-
sion found in the literature, multi-layer backpropagation neural networks (Guez &
Ahmad, 1988; Kuroe et al., 1993; Morris & Mansor, 1997; Karlik & Aydin, 2000;
Bingul et al., 2005; Hasan et al., 2006) and radial basis function networks (RBF)
(Morris & Mansor, 1998; Driscoll, 2000; Zhang et al., 2005; Chiddarwar & Babu,
2010) are the most commonly used. Reported experimental results have shown
a better performance when different networks are trained for each joint variable,
e.g., N networks for NDOF, which in turn carries out a heavy computational cost
for training and validation.

Most traditional optimization methods explore the search space using a point-to-
point approach, i.e., in each iteration the algorithm uses local information about the
search space landscape to decide which direction is best to explore next. In particu-
lar, in multimodal problems, such as the inverse kinematics of robot manipulators,
a point-to-point approach might lead to premature convergence towards subopti-
mal solutions. In this scenario, population-based optimization algorithms are more
likely to find a global optimal solution due to their parallel search scheme.

Based on the above analysis, J. Parker proposed a population-based binary ge-
netic algorithm to solve the inverse kinematics as the minimization of the end-
effector position error and the joint maximum displacement (Parker et al., 1989).
Similarly, in (Buckley et al., 1997; Nearchou, 1998) binary genetic algorithms were
proposed to solve the inverse kinematics of highly redundant robot manipulators
with obstacle avoidance. Under this approach, singularities are avoided because
the search is performed within the robot configuration space and the Jacobian ma-
trix is no longer used for mapping. However, binary coding of real parameters
introduces accuracy errors. Real-coded evolutionary algorithms are more suitable
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to solve the inverse kinematics problem as shown in (Yang et al., 2007). In addi-
tion, the global search scheme of real-coded evolutionary algorithms combined with
niching and clustering methods have proved to be an effective mechanism to obtain
the multiple solutions of the inverse kinematics problem of standard and modular
robot manipulators (Kalra et al., 2004; Tabandeh et al., 2010).

Evolutionary algorithms global search approach and flexibility have motivated
us to explore new approaches to the inverse kinematics using population-based al-
gorithms. In the following chapters, Differential Evolution (DE) (Price et al., 2005)
is used to solve the inverse kinematics of robot manipulators under a multi-objective
optimization model, to minimize the end-effector position and orientation given a
desired pose. DE is a population-based search algorithm driven by an arithmetic
mutation operator combined with crossover and selection mechanisms.

2.5 Summary

The foregoing overview did not aim to be an exhaustive record on the kinematic
inversion mechanisms found in the literature, but a brief summary of the most im-
portant methods used to tackle the inverse kinematics problem as the cornerstone
of the kinematics control of robot manipulators. Since obtaining a closed-form so-
lution is not possible for most kinematic structures, several numerical approaches
have been proposed for redundant and non-redundant robots. Therefore, two key
aspects should be considered when evaluating the algorithm performance: (i) con-
vergence speed, and (ii) computational cost.

Jacobian inversion methods linearise the inverse kinematics problem and solve
it recursively using the robot’s inverse Jacobian matrix. Nonetheless, these methods
are local and thus its convergence greatly depends on a good initial condition es-
timation. More importantly, at singular configurations convergence is not attained
since the Jacobian matrix becomes rank-deficient, whereas that at the vicinity of
such configurations the solution demands unfeasible joint velocities.

Artificial Neural Networks (ANNs) are also a popular approach for kinematic
inversion. Their structure allow representing complex non-linear functional rela-
tionships from partial input-output data. This data is used to train the network by
modifying the neurons weights such that the output prediction error is minimized.
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However, the optimization mechanism used for training requires large data sets and
usually leads to estimation errors, especially around singular joint configurations.

To avoid singularities issues, the inverse kinematics is formulated as a con-
strained optimization problem in the configuration space, such that, the Jacobian
matrix is no longer needed for mapping. Given a desired end-effector pose, the
solution is obtained as the joint configuration that extremizes an objective function
defined according to the task. Traditional methods such as gradient descent algo-
rithms provide an efficient and stable solution to the inverse kinematics, however,
gradient-based methods tend to converge prematurely and impose constraints on
the objective function. Hence, these methods are only suitable for simple tasks.

Nevertheless, for complex tasks in which the robot must meet multiple goals in
addition to follow a desired end-effector path, the optimization scheme must be
flexible enough to cope with discrete, non-linear, and multimodal search spaces. In
this regard, population-based optimization approaches, in particular Evolutionary
Algorithms (EAs), outperform those based on local point-to-point search mecha-
nisms. Hitherto, an important number of biological-inspired optimization methods
as well as major improvements on well-known standard EAs have been proposed to
efficiently solve the inverse kinematics problem of robot manipulators.
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Chapter 3

Overview on Evolutionary
Optimization

3.1 Optimization Problem

Optimization can be regarded as the process of seeking for the best solution to a
problem among a set of available alternatives. Such broad definition encompasses
any mechanism found in nature, science, or in our daily life in which some features
of a system are minimized (energy, time, costs, effort,...), maximized (profits, effi-
ciency, wellness, happiness,...) or both, by setting internal and external factors that
interplay with its performance. For instance, computing a minimal time trajectory is
a common path planning problem for a mobile robot moving safely amid obstacles,
but also to anyone driving somewhere while avoiding traffic and not breaking the
speed limit.

From the above definition one can intuitively identify the three main compo-
nents of an optimization problem. First, the objective that is usually expressed as
a quantitative measure of the system’s feature to be optimized. Second, a set of
variables or unknown parameters that have to be adjusted to get the optimal value.
And third, a set of constraints that defines the domain of admissible values that the
unknowns variables can take. These three elements set the optimization model.

Let us formalize these concepts by considering the following constrained opti-
mization problem

23



24 Chapter 3. Overview on Evolutionary Optimization

min
s∈S

f (s) subject to: ci(s) = 0, i ∈ E ,

cj(s) ≥ 0, j ∈ I,
S = {s | ci(s) = 0 ∧ cj(s) ≥ 0}.

(3.1)

In the above formulation, the design vector s symbolizes the unknown parame-
ters or variables, f is usually a function that represents the optimization objective,
and S denotes the feasible solution space defined by the constraints on the design
vector. Here E and I are sets of indices, such that, if E = I = ∅ the optimization
problem is said to be unconstrained.

Therefore, a vector s∗ is said to be an optimal solution of (3.1) , if s∗ ∈ S and
f (s∗) attains the objective minimum value. Such optimal solution can be either
local or global depending on the domain region over which the solution is defined.
This is, a solution vector s∗ is a local minimizer of f , if f (s∗) ≤ f (s) for all s ∈ S,
such that, ‖s− s∗‖ < ε for some ε > 0. Instead, s∗ is said to be a global minimizer
if f (s∗) ≤ f (s) for all s ∈ S. Furthermore, real-world applications with limited
hardware resources also admit near-optimal solutions (feasible solutions with a
superior objective function value) since they provide a good compromise between
accuracy and computational cost.

An analogous formulation can be drawn for maximization problems since any
maximization problem can be formulated as a minimization problem by simply in-
verting the sign of the objective function. Therefore, hereafter we will assume
minimization as optimization goal unless otherwise is explicitly said.

3.2 Optimization Methods

The underlying goal of most optimization problems is to find global optimal,
or near-optimal, solutions. The approach used to obtain these solutions basically
would depend on the objective function attributes (linearity, differentiability, modal-
ity, noise,..). Other important criteria to consider are the constraints conditions
(equalities, inequalities or unconstrained), the search space (continuous, discrete,
mixed), and, for real-world applications, the computational cost.
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Optimization methods comprise a broad-spectrum of techniques, each of them
has been designed to tackle a particular class of optimization problem. However,
given the constrained and non-linear nature of the optimization problems consid-
ered in this dissertation, we will limit the further discussion to numerical optimiza-
tion.

3.2.1 Numerical Optimization

A numerical optimization algorithm is an iterative method that starts with an
initial guess of the solution, and then, by subsequently modifying the current so-
lution, it generates improved trial points (iterates) until the optimal solution is
obtained. The criteria followed to generate these iterates are manifold, but they
mainly depend on the objective function attributes.

Conventionally, the landscape information provided by the gradient of the objec-
tive function is used as search criteria. This means that, if f(s) is differentiable and
the gradient ∇f(s) can be computed or estimated, then the optimal solution can be
found by taking subsequent steps along the descent direction pointed by the gradi-
ent in each iteration. This strategy is known as the line search method and includes
approaches based on the steepest-descent, Newton, quasi-Newton, and non-linear
conjugate methods (Nocedal & Wright, 1999).

The main advantage of the line search approach is its local (almost) quadratic
convergence speed in solving unconstrained optimization problems for which ac-
curate information about the gradient of the objective function is available. How-
ever, the objective function must be unimodal and at least two times differentiable.
Nonetheless, if the objective function cannot be expressed in algebraic or analytical
form, it is non-smooth, or the gradient calculation is affected by noise, then line
search methods might lead to erroneous solutions or do not work whatsoever. In
these cases, the alternative is to use zeroth-order methods in which the gradient
or higher derivatives of the objective function are no longer required to search for
the optimal solutions, e.g., direct search, evolutionary algorithms, particle swarm
optimization, among others.

Direct search methods are heuristic-based algorithms that rely on a generate-
and-test strategy. This is, each new trial point is compared with the best solution so
far, if any improvement is observed, i.e., a lower objective function value, then the
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trial point is admitted as the current best solution; otherwise, the iterate is rejected
and the process is repeated until some improvement is obtained.

The sampling strategy used to generate new iterates can be either deterministic
or stochastic. In the stochastic search, new solutions are obtained by adding a ran-
dom deviation in each coordinate of the current best solution, e.g., random walk;
whereas that in the deterministic approach, the search is performed along prede-
fined coordinate axes or towards the direction of the current best solution, e.g.,
pattern search and simplex method. Nonetheless, in comparison to the derivative-
based approaches, direct search methods show a slow convergence speed, and their
performance deteriorates as the number of variables increases. Yet, the lack of
gradient calculations and its easy implementation give some advantages to direct
search over other methods in solving complex optimization problems.

Notwithstanding many advantages of line search and direct search methods,
their true strength lies in local optimization. This is, both mechanisms perform the
search around the basin of attraction located at the vicinity of the starting point.
For multimodal objective functions, i.e., functions that exhibit more than one local
minimum, poor initialization combined with a greedy search strategy could lead
convergence towards sub-optimal solutions. Consequently, regardless of the start-
ing point, an effective sampling of the search space becomes essential.

In this regard, population-based approaches provide a solution to the initial-
ization problem by sampling the objective function landscape with a population of
starting points that act as independent local optimizers. This might rise the question
of how many initial points are necessary to successfully detect the global minimum.
In this scenario, evolutionary-based optimization algorithms go a step further by
not only setting a population of candidate solutions as parallel local optimizers;
but instead, gathering the information contained within the entire population to
globally explore the search space.

The first half of this chapter will be devoted to give a brief introduction on the
evolutionary optimization approach by using the three main algorithms as guiding
threads to explain its basic components. These general concepts are later used in
the second half of the chapter as basis to present an overview on Differential Evolu-
tion, a population-based direct search mechanism for real-valued and multimodal
optimization problems.
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3.3 Evolutionary Computation

Evolution in nature can be thought of as the selection process of those organisms
in a population that are best adapted to their surrounding environment. Therefore,
a powerful optimization mechanism. As the neo-Darwinian theory argues, evolu-
tion is the result of the interacting physical mechanisms of reproduction, mutation,
competition, and selection over the organisms of a species. The theory states that
in a hostile environment with scarce resources, individuals are forced to compete
for survival; and only those whose genetic traits are better suited for the environ-
mental conditions, survive (selection) to breed offspring (reproduction). Evolution
also benefits from the sudden increase of diversity in the genetic traits pool brought
by sporadic random perturbations during reproduction (mutation).

Evidently, evolution in dynamic environments is a much more complex mech-
anism than the one previously described. Yet, this simplified model has inspired
a powerful optimization paradigm known as Evolutionary Computation (EC) that
encompasses a set of optimization techniques called Evolutionary Algorithms (EAs).

EAs are meta-heuristic algorithms based on populations of candidate solutions
that evolve by means of reproduction, mutation, and selection of the fittest individ-
uals in the population. The main advantage of this search approach over traditional
optimization schemes is that, instead of relying on the local information provided
by one point in each iteration, these methods use a parallel search mechanism to
both explore different promising regions in the search space, and exploit the infor-
mation encoded within its current elements. These algorithms have been widely
used in different research and industrial applications, especially in those wherein
standard optimization techniques fail, e.g., optimal control, cognitive modelling,
signal processing, robotics, pattern recognition, and recently in drugs design.

To understand the EAs’ operating procedure outlined in Algorithm 3.1, consider
the constrained minimization problem stated in (3.1). First, the feasible search
space is randomly sampled to build an initial population of µ design vectors or can-
didate solutions. Once initialized, the population undergoes an iterative process
of variation and selection until a suitable convergence criterion is met, e.g., cost
value threshold, maximum number of functions evaluations, among others. Varia-
tion includes all mechanism that modify the information encoded within the current
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Algorithm 3.1 Evolutionary Algorithm

1: INITIALIZE population.
2: EVALUATE each candidate.
3: while TERMINATION CONDITION 6= true do
4: SELECT parents.
5: RECOMBINE parents.
6: MUTATE obtained offspring.
7: EVALUATE new candidates.
8: SELECT individuals for next generation.
9: end while

population to generate a new trial population, e.g., recombination and mutation.
And selection determines which solutions in the trial population replace those of
the current population into the next generation. Throughout the evolutionary pro-
cess each candidate solution in the current and trial population is assigned with a
fitness (or cost) value that represents how close the solution is from the minimum.
In each step this value helps the search process to determine which candidates are
more likely to reproduce and survive for more generations.

Ultimately, convergence would depend on a critical balance between exploration
and exploitation of certain regions of the search space. In this scheme, variation
operators are responsible of exploring new regions of the search space, whereas
the selection mechanism is responsible of exploiting the genetic traits of the fittest
individuals to ensure that the information contained therein is transmitted to future
generations.

Conventionally, EAs have been grouped into three main branches, namely: Ge-
netic Algorithms (GAs), Evolution Strategies (ESs), and Evolutionary Programming
(EP). These three basic evolutionary approaches emerged from different research
fields during the 1960s and early 1970s, and can be summarized as:

• Genetic Algorithms (GAs), were first proposed by J. Holland as an artificial
system based on the behaviour of natural systems. Holland seminal work laid
the basis for GAs as a set of discrete logical operations acting upon populations
of candidate solutions, in a process that emulates the adaptation process of
natural systems over successive generations during evolution (Holland, 1962).
In this scheme, solutions are encoded as binary strings of 0’s and 1’s with fixed
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length. Nowadays, GAs are consider a powerful optimization tool.

• Evolution Strategies (ESs), emerged from the research on parametric opti-
mization of aero- and hydro-dynamic components using parameter discrete
random variation. Later, this idea was extended into a stochastic mutation
scheme framed as an evolutionary algorithm mainly used in complex real-
valued parameter optimization problems (Rechenberg, 1973; Schwefel, 1975).

• Evolutionary Programming (EP), was originally pioneered by L.J. Fogel as
an attempt to simulate intelligent behaviour with finite-state-machines (Fogel,
1962, 1964). However, it was not until the 1990’s that D.B Fogel proposed
an optimization mechanism based on the original evolutionary programming
algorithm but with a closer approach to the one of evolution strategies (Fogel,
1994).

In the following sections, the key elements of EAs are briefly summarized and
the differences among GAs, ESs, and EP are further highlighted. For a more com-
prehensive survey on EAs the reader is referred to (Bäck & Schwefel, 1993; Fogel,
1994; Bäck, 1996).

3.3.1 Representation

In nature the genetic code or genotype in interaction with the environment de-
termines the physical and behavioural traits of an organism. Similarly, in the con-
text of evolutionary algorithms one can define two different search spaces in which
any design vector can be represented. This is, the physical parameters that deter-
mine the behaviour of the system are represented in the solution space S (pheno-
type), whereas their coding as abstract mathematical objects belongs to the repre-
sentation space X (genotype). Since genetic operators manipulate candidate solu-
tions in the representation space and the evaluation is performed in the solution
space, it is then necessary to define encoding and decoding functions to map vec-
tors from solution to representation space, and vice-versa (Bäck & Schwefel, 1993;
Rothlauf, 2006).

Conventionally, design parameters are represented as l-dimensional arrays, where
each parameter is either binary or real-valued encoded, that is, x ∈ {0, 1}l or x ∈ Rl,
respectively.
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Figure 3.1: Binary representation in genetics algorithms. A chromosome is an array of
genes, where each gene is the encoded as a binary string of alleles.

Real-valued representations are more often used by mutation-based EAs, such as
evolution strategies and evolutionary programming. In both algorithms the design
and control parameters are encoded in a single array to let the algorithm structure
evolve with the solution. In ESs, each candidate solution is represented by a vector

x = (s, σ, α) ,

here s ∈ R
n is the design vector, and σ and α represent endogenous strategy pa-

rameters. In the most general ESs scheme, σ ∈ R
nσ
+ (nσ ∈ {1, . . . , n}) is a vector

of standard deviations that modifies the variation amplitude during mutation of s,
and α is a set of nα (nα ∈ {0, . . . , (2n− nσ) (nσ − 1) /2}) rotation angles that mod-
ify axes orientation to adapt mutation to the search space topology (Bäck, 1996).
Analogously, in evolutionary programming each individual is represented as a vec-
tor that comprises the parameter design vector and a vector of variances ν, this
is:

x = (s, ν) = (x1, . . . , xn, ν1, . . . , νn)

where s ∈ R
n is a vector of real parameters and ν ∈ R

n
+ is a vector of real positive

variances.

On the other hand, binary representation is mostly used by genetics algorithms
or crossover-based EAs. According to the building block hypothesis of the schema
theory, the sampling search strategy of genetic algorithms is almost optimal due
to their binary representation of solutions (Holland, 1975). In this representation
each candidate solution is encoded as an array of genes, or chromosome. Each
gene represents a parameter in the design vector encoded as a binary string of fixed
length of alleles. Figure 3.1 depicts a chromosome with n genes each encoded as
eight-bit words.



3.3. Evolutionary Computation 31

3.3.2 Initialization

Initialization consist in building a population of candidate solutions by sampling
the feasible search space (representation space). In most cases, a convenient pro-
cedure is to randomly sample the entire search space and thereby guarantee high
diversity in the initial genetic pool. Instead, if prior knowledge about the optimum
location is available, then this information could be used as seed in the initialization
process.

In GAs, the initialization process is performed by randomly sampling l · µ times
the binary alphabet {0, 1}. As for ESs, the initial population is built by means of
mutation upon a single starting point randomly selected or defined by the user,
where small initial values for the standard deviation are suggested, e.g., σi = 3.0

(Bäck & Schwefel, 1993). Finally, EP follows a uniform random distribution for the
initialization of object vectors and variances.

3.3.3 Recombination

Genetic variation operators can be asexual, sexual, or panmictic depending on
whether the mechanism involves one, two, or more parents to generate new off-
spring. Recombination, denoted by R : Xρ → Xq, is a sexual or panmictic operator
(2 ≤ ρ ≤ µ). This mechanism emulates the biological process of reproduction by
exchanging genetic information encoded in the individuals of the population (par-
ents) to create new candidate solutions (offspring).

In genetic algorithms, recombination is generally sexual between randomly se-
lected chromosomes (ρ = 2), and it is triggered by a crossover probability value
pc ∈ (0, 1). In the simplest case, a uniform random number χ ∈ (0, 1) is generated
and measured against pc. If χ ≤ pc, then an integer random crossover point is se-
lected along the bit-string. Once the crossover point is selected, all data beyond that
point is swapped between both parents to create two children chromosomes, one
of which is discarded at random and the other is kept as a trial candidate solution
(q = 1). In case that χ ≥ pc, the parent chromosomes are duplicated unaltered
(see Figure 3.2). Other discrete recombination mechanisms include multipoint and
uniform crossover.
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Figure 3.2: One-point crossover in genetic algorithms. Two chromosomes are randomly
selected from the current population as parents. First, a random number χ is generated,
(a) if χ ≤ pc a random crossover point position is selected, then two new chromosomes are
created swapping the information encoded in the parent binary strings. (b) if χ > pc the
offspring is an unaltered duplicate of the parent chromosomes.

Recombination in evolution strategies could be sexual or panmictic among ran-
domly selected parents to generate new offspring (q = 1). Accordingly, sexual
recombination acts on a pair of vectors (ρ = 2) selected anew for each new off-
spring. Whereas in panmictic recombination one parent is held fixed throughout
the process while the second is randomly selected anew from the parent population
(ρ = μ) for each component of the offspring. Regardless the number of parents,
recombination can be discrete or intermediate. In discrete recombination, each
component of the offspring vector is randomly sampled between the parents vec-
tors; whereas in intermediate recombination, offspring’s components are calculated
as the arithmetic mean value of the corresponding parent’s components.

Contrary to the GAs and ESs, in evolutionary programming recombination is
omitted in favour to a major emphasis on mutation as the main variation operator
driving the evolutionary process. In (Fogel, 1992), Fogel argues that crossover, as
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Figure 3.3: Mutation in genetic algorithms. A random value χ is sampled anew for each
allele in the binary string, if χ ≤ pm, the allele value is inverted, otherwise, the bit value
does not change.

the combination of pieces of genetic code, is negligible during evolution if one con-
siders each individual to represent a phenotype trait. Thus, any tangible variation
on the individual is not obtained as a result of specific modification of a gene in the
genetic code.

3.3.4 Mutation

Conventionally, mutation is an asexual operator, M : X → X, that introduces
random small variations into the genetic code of an individual. The mutation op-
erator aims to maintain the population diversity by adding small perturbations on
the individuals and thereby driving the search towards unexplored regions in the
search space. Mutation also prevents stagnation, which occurs when the population
becomes homogeneous.

GAs mutation is a random mechanism that inverts the value of arbitrary bits
(alleles) of a chromosome. Similarly to one-point crossover, this mechanism is trig-
gered by a mutation probability value pm ∈ (0, 1), such that, a uniform random
number χ ∈ (0, 1) is sampled anew for each bit in the binary string and measured
against pm, if χ ≤ pm the bit value is inverted, otherwise is left unaltered (see
Figure 3.3).

In evolution strategies, mutation is a stochastic perturbation mechanism that
acts separately upon the design vector s and the strategy parameters σ and α.
Mutation on σ uses either an adaptive deterministic criterion, as the 1/5-success
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rule (Rechenberg, 1994), or incorporates a stochastic log-normal distributed per-
turbation criterion; as for α, mutation adds a normally distributed random value.
Formally, mutation of the strategy parameters can be expressed as:

σ′j = σj · e(τ ·N(0,1)+τ1·Nj(0,1))

α′k = αk + β ·Nk (0, 1)

∀j ∈ {1, . . . , n} and ∀k ∈ {1, . . . , n · (n− 1) /2}. Here τ , τ1, and β are constant
parameters, and N (0, 1) denotes a standard normally distributed random variable.
Finally, mutation of s is obtained as:

s′ = s +N (0,Cv (σ′, α′))

where Cv is a covariance matrix that controls the mutation step size (Schwefel,
1981). Including strategy parameters into the object vector representation, and by
further letting them to undergo variation, endows the algorithm with a self-adaptive
component.

On the other hand, EP mutation scheme consists in perturbing the object vector
s with a standard normal distribution having zero mean and

√
ν standard deviation,

ν being the variance value, this is:

s′j = sj +
√
νj ·Nj (0, 1)

ν ′j = νj +
√
ζνj ·Nj (0, 1)

∀j ∈ {1, . . . , n}, where Nj (0, 1) is a standard normal distributed random variable,
and ζ is an algorithm control parameter.

3.3.5 Selection

Whereas recombination and mutation supply with mechanisms to explore the
search space, selection is responsible of exploiting the fittest solutions by promoting
them into next generations. Since selection exploits the most promising regions in
the search space, the performance of each individual in the population must be
adequately measured. To do so, one must define a fitness or cost function that
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Figure 3.4: Roulette wheel selection method. A population of four chromosomes (μ = 4)
and fitness function f (x) = x2. In descending order, the selection probability of each
chromosome is 0.11, 0.2, 0.3, and 0.39 respectively.

quantifies how close the solution is from the optimal value. For consistency, let us
assume that such fitness or cost function is defined by the objective function f .

In genetic algorithms, for each chromosome xi, i = 1, . . . , μ, in the population,
a selection probability value is calculated as:

pi =
f (xi)∑μ
k=1 f (xk)

where μ is the population size and f is the fitness function. Schematically, selection
can be pictured as a roulette wheel partitioned into μ slots whose sizes are propor-
tional to the selection probability of each individual. A new population is built by
spinning the wheel μ times, and each time randomly selecting a chromosome from
the current population as member of the next generation (see Figure 3.4). Hence,
the higher the selection probability the greater the expected numbers of copies of
an individual in the new population.

Contrary to the above mechanism, selection in evolution strategies is completely
deterministic and based on a fitness ranking of the population members. Basically,
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two distinctive selection mechanisms can be identified, namely: comma-selection
(µ, λ) and plus-selection (µ+ λ), where µ denotes the parent population size and λ
the size of the offspring population. The difference between both selection mecha-
nisms lies in the number of individuals from the parent and offspring populations
involved therein.

Strategy (µ, λ), with λ > µ and µ > 1, builds a new population using the µ best
individuals in the offspring population, which means that the parent generation is
completely replaced by its offspring in each generation. Obviously, by completely
replacing the parent population in each generation one might be discarding good
solutions in favour of worse fitted ones. However, in multimodal optimization prob-
lems this could be an advantageous strategy to avoid premature convergence to
local minima. On the other hand, the selection strategy (µ+ λ), λ ≥ µ, selects the
best µ individuals from the union of the parent and offspring populations, which
means that well-fitted solutions can spread over more than one generation.

In contrast to ESs, selection in evolutionary programming is stochastic and is
always performed over the union of the parents and offspring populations (µ+ µ).
In EP selection, each vector xi (∀i ∈ [1, 2µ]) competes against r ≥ 1 vectors ran-
domly chosen and ranked based on the score obtained. In this context, competition
is held by comparing the fitness value of xi against its competitor’s, thereby, the
score would be a proportional measure of the number of competitors with worse
fitness value. Once all vectors in the population have undergone this process, the µ
vectors with the highest score are selected as the new population. This mechanism
is called selection by tournament where r is the tournament size.

3.4 Differential Evolution (DE)

Differential Evolution (DE) is a population-based direct search mechanism for
real-valued and multimodal optimization problems developed by R. Storn and K.
Price (Storn & Price, 1997). DE search scheme accommodates the evolutionary it-
erative process of mutation, crossover, and selection to steer the population towards
convergence.

Similarly to evolution strategies and evolutionary programming, mutation plays
a primarily role in the DE search strategy. However, differs on the non-probabilistic
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Table 3.1: DE vs. EAs paramater notation.

Parameter EAs DE

Problem Dimension n D

Population Size
Parent µ

NP
Offspring λ

Crossover rate pc CR

Mutation scale factor σ,ν F

approach used to explore the search space. By contrast, DE mutation is an algebraic
operation in which weighted vector differences are added to a base vector to obtain
new solutions, thus yielding in an adaptive mutation step-size scheme controlled by
a constant factor. In this case, crossover acts as a complementary variation mech-
anism used to increase the population diversity. Further, DE selection implements
a deterministic binary tournament known as one-to-one selection. In the following
sections, mutation, crossover, selection, and other components of the DE algorithm
will be further explained in detail.

3.4.1 Notation

Before going any further, let us give a brief note on DE notation. In their original
work, Storn and Price followed a particular notation to denote DE parameters that
differs from the one that has been used to describe EAs in the previous sections.
With the aim to be consistent with the DE research community, throughout this
document the DE standard notation is adopted. However, to avoid any confusion
the equivalence between both notations is listed in Table 3.1.

3.4.2 Representation

Differential Evolution was originally designed to solve real-valued optimization
problems. Thus, candidate solutions are encoded as arrays of floating-points vari-
ables, such that, given a population of NP candidate solutions

P g = {x1, . . . ,xi, . . . ,xNP }, (3.2)
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each design vector in the problem search space is represented by a D-dimensional
array of the form:

xi = (x1, . . . , xj, . . . , xD)> . (3.3)

where xj ∈ R represents a variable in the design vector. Indices i = 1, . . . , NP

and g = 0, 1, 2, . . . denote the candidate solution index within the population and
the running generation number, respectively. Note that contrary to ESs and EP, DE
control parameters are not encoded within the candidate solution representation,
therefore, their value remain constant during the optimization process.

3.4.3 Initial Population

DE grants mutation with the task of exploring different regions of the search
space. This is achieved by perturbing existing solutions with differentials of ran-
domly chosen vectors from the current population, i.e., mutation uses information
of already explored regions to create new trial points. Therefore, preserving popula-
tion diversity is key to avoid stagnation and premature convergence in multimodal
problems, especially in early generations of the optimization process.

Therefore, initialization must promote diversity in the initial population by con-
veniently spreading the candidate solutions over the search space. Unless a priori
knowledge about the optimum location is available, a uniform probability distribu-
tion is used to randomly initialize P g=0, such that, each initial candidate solution is
generated as follows:

xi = x(lo) + rand1×D (0, 1)
(
x(hi) − x(lo)

)
, (3.4)

for i = 1, . . . , NP . Here, rand1×D(0, 1) is an array of uniformly distributed random
numbers [0, 1], and x(hi) and x(lo) are the parameters’ upper and lower bounds,
respectively.

The population size NP influences both, the convergence speed and the compu-
tational cost of the algorithm. This is directly linked with the number of functions
evaluations per iteration and also with the exploration of the search space. Empir-
ical studies have revealed the effect of the population size in avoiding stagnation
and premature convergence (Mallipeddi & Suganthan, 2008). Small values of NP

favour convergence speed but might lead to premature convergence or stagnation.
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On the other hand, higher values of NP might help to avoid premature convergence
but increases the computational cost of the algorithm. In general, the size of the
population depends on the search space complexity and the dimension D. Based
on the value of D, the population size can vary between 2D and 100D, although,
a value of NP = 20D is suitable for most optimization problems (Price, 1999). Re-
cently, Rönkkönen et al. (Ronkkonen et al., 2005) also suggested that typical values
of NP range from 2D to 40D.

3.4.4 Mutation

According to the theory of natural evolution, only the best adapted individuals
in a population are prone to reproduce and propagate their genetic traits into future
generations. In the EAs context this usually translates into variation mechanisms
that favour fitter solutions in the population over poor performing ones. Contrary
to this notion, DE variation mechanisms are not biased by the fitness value of indi-
viduals in the mating pool; but instead, all candidate solutions are equally likely to
undergo mutation and crossover regardless to their fitness value.

DE mutation can thus be defined as an arithmetic panmictic variation operator,
M : Xρ → X, with ρ ≥ 3. In its most basic implementation, a donor vector
is obtained by adding the weighted difference of two vectors to a third (ρ = 3).
Thus, for each candidate solution xi, i = 1, 2, . . . , NP , a mutant vector is generated
according to:

vi = xr1 + F (xr2 − xr3) , (3.5)

where F ∈ (0, 1+) is a real constant scale factor which controls the amplification
of the differential variation. The difference vectors, xr2 and xr3, and the base vector,
xr1, are randomly chosen from the current population P g, such that, i, r1, r2, r3 ∈
{1, . . . , NP} are mutually exclusive indices, i.e., i 6= r1 6= r2 6= r3. DE mutation is
illustrated in Figure 3.5 for a three dimensional optimization problem.

DE simple mutation scheme yields a powerful self-adaptive search mechanism,
however, a wrong setting of the scale factor value rapidly degrades its performance.
Moreover, tuning F is neither intuitive nor a straightforward task, but instead,
a highly problem dependant issue as it was reported in (Gämperle et al., 2002;
Mallipeddi & Suganthan, 2008). Several studies have thus been carried out to draw
some guidelines on how to set this value efficiently. Storn and Price (Storn & Price,
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Figure 3.5: Mutation scheme DE/rand/1. The weighted difference vector of two arbitrarily
chosen vectors is added to a third vector to obtain the vector v.

1997) suggested that reasonable values of F range between 0.4 and 1, with 0.5

being a good initial choice. Moreover, further research has shown that values less
than 0.3 lead to premature convergence whereas F = 1 degenerates mutation (Za-
harie, 2002; Price et al., 2005). More recently, Rönkkönen et al. set typical values
of F within the interval 0.4 < F < 0.95, with F = 0.9 yielding a good compromise
between velocity and probability of convergence (Ronkkonen et al., 2005).

One of the most interesting feature of DE mutation is its flexible arithmetic
structure. In their seminal work (Storn & Price, 1997), Storn and Price already
exploited this attribute by introducing a number of different mutation variants in
which vector differentials are used as building blocks. Accordingly, in addition
to the basic mutation scheme defined in(3.5), six additional alternative mutation
strategies were introduced as listed in Table 3.2. These mutation strategies have
the same the arithmetic structure, but can be differentiated by two key aspects:
(1) base vector and (2) number of vector differentials. Further, in order to make a
clear distinction among them the shorthand notation rule DE/X/Y was introduced;
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Table 3.2: Mutation Strategies of Differential Evolution.

Mutation Strategy Formula1

DE/rand/1 vi = xr1 + F (xr2 − xr3)

DE/best/12 vi = xbest + F (xr1 − xr2)

DE/rand-to-best/1 vi = xi + F (xbest − xi) + F (xr1 − xr2)

DE/rand/2 vi = xr1 + F (xr1 − xr2) + F (xr3 − xr4)

DE/rand-to-best/2 vi = xr1 + F (xbest − xi) + F (xr2 − xr3) + F (xr4 − xr5)

DE/current-to-rand/1 vi = xi +K (xr1 − xi) + F
′
(xr2 − xr3)

DE/rand/1/either-or vi =

{
xr1 + F (xr2 − xr3) , if rand(0,1) < pf

xr1 +K (xr2 + xr3 − 2xr1) , otherwise

1 xr1 , xr2 ,xr3 ,xr4 , and xr5 are randomly chosen vectors with i 6= r1 6= r2 6= r3 6= r4 6= r5.
2 xbest is the best fitted vector in the current population.

where X is replaced by the base vector selection scheme and Y by the number of
differentials. For example, the standard DE mutation strategy defined in (3.5) is
simply denoted as DE/rand/1, since the base vector is randomly chosen from the
mating pool (rand) and one differential is added to the base vector (1).

Each mutation scheme in Table 3.2 enhances a different feature of the search
strategy. For instance, incorporating the current best vector xbest into the search
helps to speed-up convergence by enhancing the greediness of the algorithm, how-
ever, it often leads to premature convergence. Furthermore, using more than one
differential to perturb the base vector also increases convergence speed but de-
teriorates correlation. Alternatively, mutation schemes DE/current-to-rand/1 and
DE/rand/1/either-or provide a rather generalized variation mechanism since both
implement mutation and recombination into a single operator. In the case of DE/cu-
rrent-to-rand/1, mutation and arithmetic recombination are merged together to
generate rotationally invariant trial vectors as the linear combination of a target
vector and a randomly chosen donor. In this scheme, parameter K represents the
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combination coefficient which has been shown to be effective when its value is ran-
domly chosen from [0, 1], whereas F ′ = K · F is a new constant parameter. On the
other hand, scheme DE/rand/1/either-or alternates between mutation-only and
arithmetic recombination under a stochastic framework controlled by a mutation
probability pf ∈ [0, 1], where K is set equal to K = 0.5 (F + 1) for a given value of
F . Evidently, the relative importance of each variation scheme during search (i.e.,
exploration vs. exploitation) comes determined by the pf value (Price, 1999).

3.4.5 Recombination

In DE, recombination acts as a complementary variation mechanism to mutation
that increases population diversity by incorporating information from the current
generation into the intermediary donor population. In standard DE, recombination
is a binary discrete recombination mechanism with two variants, namely: binomial
and exponential crossover. To differentiate between the two crossover mechanisms
a third parameter is introduced into the general notation DE/X/Y/Z. Here Z is re-
placed by “bin” or “exp” if the crossover mechanism is binomial or exponential,
respectively.

Both crossover mechanisms are sexual recombination operators, R : X2 → X,
controlled by a constant crossover rate value CR ∈ [0, 1]. This is, a trial candidate
solution is built as the parameter-wise combination of two parent vectors, such that,
each parameter is stochastically inherited from either one of the parents.

Lets consider two parent candidate solutions, one from the current population
P g and the other from the intermediary population P g

v , known as target vector
(xi) and donor vector (vi), respectively. By binomial crossover both parents are
combined into one candidate solution, ui, as follows:

ui = {uj} =

vj, if (randj (0, 1) ≤ CR)

xj, otherwise
, i = 1, . . . , NP . (3.6)

Each parameter uj (j = 1, . . . , D) in ui is a copy of the corresponding parameter of
either vi or xi. To decide from which parent the child inherits each parameter, a
random number χ ∈ (0, 1) is generated anew and measured against the crossover
rate value CR, if χ ≤ CR then the parameter is inherited from the mutant vector vi,
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X1 X2 X3 XD

V1 V2 V3 VD

Xi:

Vi:

Ui: V1 V2 X3 VD

 ≤ Cr  ≤ Cr  ≤ Cr

 > Cr

Figure 3.6: Binomial crossover. A trial vector is created as the combination of two candidate
solutions. A uniform random number χ ∈ (0, 1) is generated for each parameter in the trial
vector. If χ ≤ CR then the parameter is copy from the vector vi, otherwise, is inherited
from the target vector xi.

otherwise the parameter is copied from the target vector xi (see Figure 3.6).

The second discrete recombination mechanisms used in DE is exponential cross-
over. Likewise binomial crossover, this mechanism combines two parent vectors
into one child. This is, starting from a random position on the parameter vector,
exponential crossover copies consecutive elements from the vector vi to the trial
vector ui while the crossover probability condition is met (rand(0, 1) ≤ CR ). Once
this condition fails the remaining of the parameters are inherited from the target
vector xi. Hence, the probability of replacing an element in the sequence decreases
exponentially with the increasing index j. Exponential crossover is illustrated in
Figure 3.7.

The role of mutation in the DE algorithm is to explore the search space using the
information encoded in the current population; whereas the role of the binomial or
exponential crossover is to exploit the regions of the search space already explored.
Hence, the crossover probability CR ∈ [0, 1] determines the population diversity
in successive generations by controlling the number of parameters inherited from
the intermediary mutated population P g

v . This means that small values of CR will
proportionally reduce the number of parameters inherited by the trial population P g

u
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X1 X2 X5 XD

V1 V2 V3 VD

Xi:

Vi:

Ui: V2 XD

 ≤ Cr

X3 X4

V4 V5

X1 V3 V4 X5

 ≤ Cr  ≤ Cr

  > Crjs = rand(1,D)

Figure 3.7: Exponential crossover. A trial vector ui is built by combining consecutive ele-
ments of two candidate solutions. First, a starting crossover position js = 2 is randomly
chosen from the interval [1, D]. Therefore, starting from js consecutive elements of ui are
copied from vi while condition χ ≤ CR is met. Here, χ ∈ (0, 1) is a random number
generated anew for each consecutive element (j = js, js + 1, . . .).

and values close to one will transform the algorithm into a mutation-only scheme.
Moreover, a good tuning of CR depends on the objective function to be optimized,
e.g., separable objective functions admit values within 0.0 ≤ CR ≤ 0.2, whereas for
non separable and multimodal objective functions values around 0.9 ≤ CR ≤ 1 are
more suitable.

3.4.6 Selection

DE selection is a deterministic mechanism based on the direct comparison be-
tween the fitness values of candidate solutions, where fitness (or cost) is a quan-
titative measure of how close the solution is from the objective’s optimum. It dif-
fers from other deterministic approaches, such as ES (μ, λ)- and (μ+ λ)-selection
schemes, in that, it neither completely replaces the current population with the
trial population nor ranks their elements to select the μ best candidate solutions.
Instead, DE implements a binary tournament (r = 2), known as one-to-one selec-
tion, since each vector in the current and trial population competes only once for
survival.

In DE, current (parent) and trial (offspring) populations are always of the same
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Figure 3.8: DE selection mechanism.

size, i.e., μ = λ = NP . Furthermore, being both indexed populations, each candi-
date solution xi in P g and the corresponding vector ui in the trial population P g

u

are related by crossover, thus, act as natural opponents. The fact that opponents
are not randomly chosen from the trial population is what mainly differentiates DE
selection scheme from EP tournament.

Thus, selection is held by pairing one candidate solution from P g with one from
P g
u and comparing their fitness values. Finally, the fittest one survives while the

other is discarded. More formally, selection can be expressed as:

xg+1
i =

⎧⎨
⎩ug

i , if f(ug
i ) ≤ f(xg

i )

xg
i , otherwise

, ∀i = 1, . . . , NP , (3.7)

where f is the fitness function, usually represented by the objective function or a
normalized version of the same (see Figure 3.8).

As stated in(3.7), DE selection is an elitist and greedy mechanism since it pre-
serves the best-so-far solution in the current and trial populations and rejects any
trial vector that does not improve the fitness value of its opponent in the current
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population. These two features increase the selective pressure on the trial popula-
tion, which consequently decreases the overall convergence speed. Once the popu-
lation P g+1 is generated, the iterative mutation-crossover-selection process contin-
ues until a suitable stop criterion is met.

3.4.7 Constraint Handling

Constraints are restrictions on the domain of values a parameter can take. In
real-world systems these restrictions account for the internal and external factors
that affect the feasibility of a system performance. Therefore, the solution not only
has to be optimal but also must satisfy all constraints imposed on the design vec-
tor. In the optimization model, these restrictions can be expressed by equalities,
inequalities, and boundary constraints.

For instance, in the inverse kinematics problem of a robot manipulator, internal
constraints are imposed by the mechanical and proprioceptive systems of the robot
(e.g., joint limits, maximum payload, etc.), whereas external constraints are due to
those elements in the environment that modify the task execution (e.g., static or
dynamic obstacles). Therefore, in a cluttered workspace an optimal solution to the
inverse kinematics problem would be a joint configuration that provides the min-
imum end-effector pose error without exceeding the joint physical limits and not
colliding with an obstacle. Assuming a free-of-obstacles environment, the search
space of the inverse kinematics is only bounded by the lower and upper joint limits
values. Joint limits define the robot manipulator workspace but also represent con-
figurations of reduced dexterity and hence they should be avoided in the execution
of the task. Consequently, we restrict our study to boundary constraints handling
mechanisms.

In DE scheme, bounds constraints are only explicitly handled during initializa-
tion in which parameters are set with values randomly distributed within the fea-
sible search space. DE mutation and crossover are unbounded mechanisms, how-
ever, mutation is the only mechanism in which out-of-bounds solutions are likely
to appear. Therefore, additional mechanisms have to be considered to guarantee
feasibility on the trial candidate solutions.

A popular approach to boundary constraints handling is to penalize the fitness
value of offending candidate solutions and thus avoiding to promote them into the
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following generations. However, penalty methods may disrupt convergence when
the optimum point lies near a boundary. An alternative to penalty methods is to
reset with feasible values any parameter that exceeds a bound, by either setting the
out-of-bound parameter with the value of the violated boundary (lower or upper) or
by generating new values within the search space. Despite its simplicity the reset to
bounds approach has shown to be detrimental for population diversity, eventually
leading to stagnation and premature convergence. Therefore, in (Price et al., 2005)
two more convenient resetting mechanisms are suggested, namely: bounce back
and random reset.

In general terms, bounce back can be regarded as a complementary mechanism
to mutation since it replaces offending parameters with random values that lie be-
tween the violated boundary and the mutation base vector (xr1 in (3.5)). On the
other hand, random reset is a much simpler mechanism since it re-samples the pa-
rameter over the entire feasible search space, as in (3.4). Intuitively, one can argue
that randomly reinitializing out-of-bound parameters might actually decrease con-
vergence speed, however, a preliminary study carried out by the authors of this
work revealed that, for the inverse kinematics problem, random reset outperforms
bounce back mechanisms in both robustness and convergence speed. DE algorithm
is outlined in the pseudo-code listed in Algorithm 3.2.

3.5 Summary

The notion of optimality arises in a wide range of problems in economy, en-
gineering, chemistry, design, and other scientific disciplines. Mathematically, this
means finding a maximum or minimum value of a function of several variables un-
der a set of constraints. The approach used to obtain the optimal solution would
depend on the optimization model attributes and the application requirements, e.g.,
number of variables, search space domain, optimization criteria, number of optimal
points, among others.

Linear search methods are largely used in unconstrained optimization problems
thanks to their high convergence speed and sound theoretical background. These
methods are based on the information about the topology of the search space re-
trieved from the first and second derivatives of the objective function. However,
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Algorithm 3.2 Differential Evolution Algorithm

Input: D, NP , F , CR, x(lo) and x(hi).
1: g ← 0
2: INITIALIZE a population with NP random parameter vector xg ∈

[
x(lo),x(hi)

]
.

3: EVALUATE fitness of each individual in population.
4: while Termination condition 6= true do
5: for i = 1 to NP do
6: SELECT random indices r1 6= r2 6= r3 6= i ∈ {1, . . . , NP}
7: for j = 1 to D do . MUTATION and CROSSOVER.
8: if rand(0, 1) < CR then
9: ui,j ← xr1,j + F (xr2,j − xr3,j)

10: else
11: ui,j ← xi,j
12: end if
13: if ui,j violates bound constraints then . CONSTRAINTS HANDLING
14: ui,j ← x(lo) + rand (0, 1)

(
x(hi) − x(lo)

)
15: end if
16: end for
17: EVALUATE offspring fitness.
18: if ui is better than xgi then . ONE-TO-ONE TOURNAMENT
19: xg+1

i ← ui
20: else
21: xg+1

i ← xgi
22: end if
23: end for
24: g ← g + 1
25: end while
Output: Best candidate solution in final population

since their search strategy rely on the gradient of the objective function they usu-
ally fail when the objective is non-smooth, noisy, or when it cannot be expressed in
analytical form. In contrast, direct search methods do not require the gradient of
the objective function to find the optimum. Instead, they are meta-heuristic algo-
rithms based on a generate-and-test strategy to successive detect promising regions
of the search space. Nonetheless, the consequence of a derivative-free approach is
a noticeable decrease in the convergence speed rate.

A common feature of most of gradient-based and direct search methods is their



3.5. Summary 49

tendency to converge towards local minima when the initial guess of the solution is
not correctly chosen. To help to overcome this initialization problem, population-
based or multi-start search methods have been proposed to explore the search space
with a set of parallel local optimizers. A further improvement on the population-
based approach is represented by the evolutionary computation paradigm, in which,
the population of candidate solutions is not treated as a set of independent local
optimizers but as a shared pool of information used to obtain better solutions in
each iteration.

Evolutionary algorithms adopt the population-based approach and combines it
with a biologically inspired search strategy. This strategy mimics the evolution of
natural species to steer the population towards convergence relying on three ba-
sic mechanisms, namely recombination, mutation, and selection. Recombination
and mutation reinforce exploration of the search space by generating new solutions
from the information contained therein the population or by allowing random per-
turbation of its individuals; whereas selection promotes exploitation by building
new populations out of the best solution found during the evolutionary process.

Differential evolution accommodates the evolutionary computation paradigm in
a simple yet powerful meta-heuristic direct search algorithm. In this scheme, muta-
tion explores the search space by adding weighted vector differences to a base vec-
tor. This non-probabilistic mutation mechanism admits different variants within a
flexible arithmetic structure, such that, it can be modified to enhance exploration or
exploitation aspects of the search strategy. Further, discrete recombination (cross-
over) increases population diversity by combining the current and new information
contained therein the population members. Finally, mutation and crossover are
synthesized with a greedy deterministic selection mechanism based on the direct
comparison between the fitness values of the candidate solutions to steer the popu-
lation towards the best regions of the search space.

A further study on DE search scheme shows that control parameters play an im-
portant role in the overall algorithm performance. Population size (NP ), mutation
scale factor (F ), and crossover rate (CR) are directly related to the computational
cost, convergence speed rate, and robustness of DE search strategy. Moreover, con-
trary to other real-valued evolutionary algorithms these parameters do not evolve
with the population to adapt their values to the fitness landscape; but instead, NP ,
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F , and CR remain constants throughout the optimization process. Nonetheless, effi-
ciently setting DE control parameters depends on the objective function and should
aim at achieving the right balance between exploration and exploitation while re-
ducing computational cost. A detailed study by Rönkkönen et al. (Ronkkonen
et al., 2005) suggested that typical values for the population size range from 2D

to 40D, a good compromise between accuracy and speed is obtained with values
of F ∈ (0.4, 0.95), and CR admits values within (0, 0.2) for separable functions and
around CR = 0.9 when the objective function is multimodal and non-separable.



Chapter 4

Memetic Differential Evolution:
Improving Convergence Speed

4.1 Background

The term memetic algorithms (MAs), also known as cultural algorithms, encom-
passes any evolutionary or population-based meta-heuristic search approach that
embeds an individual learning or local refinement procedure. The name was in-
spired by Richard Dawkins’ meme theory, which establishes an analogy between the
genetic evolution of animals and the cultural evolution of humankind (Dawkins,
1976). The term meme was coined by Dawkins in his book “The Selfish Gene” to
denote a unit of cultural information (trend, idea, or belief) that evolves from gen-
eration to generation by individual imitation and behavioural replication. The idea
itself implies a local search performed by each individual to modify and improve a
meme to be later transmitted to other individuals.

In a direct search algorithm this idea is equivalent to synthesize global search
with local refinement of good solutions to speed up convergence and improve so-
lution accuracy. Since an efficient search requires an effective trade-off between
exploration and exploitation of the search space, many authors have echoed the
idea of hybridizing the global search scheme of evolutionary algorithms (EAs) with
independent local search techniques (LS) to help overcome the exploitation defi-
ciencies observed in most EAs. Moreover, if one considers that most real-world
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optimization problems demand high convergence rates to satisfy real-time require-
ments and limited computing resources, then memetic algorithms could represent
a suitable approach to reduce the number of functions evaluations required to con-
verge to a global optimum.

In this chapter, we propose a memetic differential evolution scheme that com-
bines the exploratory abilities of the standard DE with a simple LS heuristic for local
refinement. First, we present a brief overview on the state-of-the-art of acceleration
mechanisms for differential evolution.

4.2 Acceleration Mechanisms

Differential evolution (DE) simple search scheme has proved to be an effec-
tive optimization tool for several benchmark and real-world optimization problems.
Likewise most evolutionary-based algorithms, DE’s weakest feature is its low con-
vergence speed. This has prompted the DE research community to investigate ef-
fective methods to reduce the overall number of functions evaluations without dis-
rupting the global search performance.

DE acceleration mechanisms agree in promoting a well-balanced trade-off be-
tween exploration and exploitation to further assertive detection of promising re-
gions of the search space, either by adaptively varying the control parameter values
(Liu & Lampinen, 2005; Das et al., 2005; Brest et al., 2006; Zhang & Sanderson,
2007; Qin et al., 2009; Epitropakis et al., 2009; Neri & Tirronen, 2009), introducing
new variation operators (Fan & Lampinen, 2003; Thangaraj et al., 2010; Epitropakis
et al., 2011), or by hybrid memetic algorithms (MAs) (Rahnamayan et al., 2007,
2008; Noman & Iba, 2008; Neri & Mininno, 2010; Neri et al., 2011; Jia et al., 2011;
Iacca et al., 2011).

4.2.1 Parameter Control

Among the most attractive features of DE as optimization method are its sim-
ple structure and few control parameters, namely: population size NP , mutation
scale factor F , and crossover rate CR. Empirical results have shown that control
parameter setting has a noticeable impact on the convergence performance of DE
(Gämperle et al., 2002; Ronkkonen et al., 2005). For instance, large values of
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the mutation scale factor (F ) and crossover rate (CR), as suggested for multimodal
problems, put a major emphasis on the exploration of different regions in the search
space rather than the exploitation of the good detected ones. For such parameter
setting, DE rapidly clusters the population around the basin of attraction of the
global optimum, but from then on, the convergence speed rate to the exact opti-
mal solution is low. Furthermore, given DE endogenous variation approach, setting
large control parameters values increases the probability of stagnation (Lampinen
& Zelinka, 2000).

Originally, these parameters were conceived as constant values set by the user,
thus, several studies have been conducted to draw general guidelines on how to
effectively tune NP , F , and CR. Yet, tuning DE parameters is not a straightforward
task since it highly depends on the fitness function attributes (see Chapter 3 for
further discussion). For this reason, recent efforts have been mainly devoted to find
automatic mechanisms for parameter control, i.e., heuristic rules to adapt the pa-
rameters’ values during the evolutionary process (Liu & Lampinen, 2005; Das et al.,
2005; Zhang & Sanderson, 2007; Brest et al., 2006; Qin et al., 2009; Epitropakis
et al., 2009; Neri & Tirronen, 2009).

One of the earliest adaptive strategy for parameter control was the Fuzzy Adap-
tive Differential Evolution (FADE) (Liu & Lampinen, 2005). In FADE, fuzzy logic
controllers are used to adapt the values of the mutation scale factor (F ) and the
crossover rate (CR) based on human knowledge and the feedback information ex-
tracted from the current and previous populations. Alternatively, Zaharie proposed
a parameter control scheme guided by the evolution of the population diversity
(Zaharie, 2003). In this approach, F and CR were adjusted proportionally to the
diversity change rate (measured as the population variance) to control the explo-
ration/exploitation behaviour of the algorithm. In a different approach, F was lin-
early reduced with time to promote exploration of promising regions during early
generations and thus progressively enhancing exploitation for fine tuning at later
stages (Das et al., 2005).

A further step in parameter control is the so called “evolution of the evolution”,
which means that, the algorithm itself undergoes the evolutionary process through
self-adaptation of its parameters (Brest et al., 2006; Zhang & Sanderson, 2007;
Epitropakis et al., 2009; Neri & Tirronen, 2009). This approach is based on the idea
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that better parameter values lead to better solutions, which in turn, are more likely
to propagate their genotype to future generations through selection. A simple self-
adaptive parameter control scheme was proposed in (Brest et al., 2006), later de-
noted jDE. Here, self-adaptation was implemented by encoding the mutation scale
factor and crossover rate value into each candidate solution, and thereby, allowing
them to evolve with the solution by adjusting their values at random in each iter-
ation. A similar self-adaptive approach, called JADE, was proposed to improve the
robustness of the novel greedy DE search scheme, DE/current-to-p-best (Zhang
& Sanderson, 2007). In this work, authors discussed that by introducing a self-
adaptive parameter control, premature convergence of greedy search mechanisms
can be overcome while still achieving high convergence rates.

More recently, Qin et al. (Qin et al., 2009) proposed a self-adaptation scheme
for a set of mutation strategies and their parameter settings, called SaDE. The ra-
tionale behind this approach advocated that at different stages of the evolutionary
process the search requirements may change, and therefore, some mutation strate-
gies and parameter settings might be more effective than others. Accordingly, each
of the mutation strategies in the set had a selection probability proportional to their
success in generating promising solutions in previous generations. Consequently,
the algorithm configuration was adapted in accordance to the knowledge accumu-
lated from previous experiences. Other self-adaptive approaches include (Neri &
Tirronen, 2009; Epitropakis et al., 2009). Experimental results have shown that
self-adaptation significantly improves the efficiency and convergence speed rate of
DE algorithms particularly on high-dimensional complex search spaces.

In the aforementioned parameter control schemes only the mutation scale factor
F and the crossover rate CR are considered liable to adaptive mechanisms, whereas
the population sizeNP is held as a constant value. However, this parameter is intrin-
sically related to DE convergence speed rate, and also to stagnation and premature
convergence phenomena (Mallipeddi & Suganthan, 2008). Moreover, if one con-
siders the evolutionary process as mainly exploratory during early generations and
essentially exploitative at a later stage, in theory, the population size can be grad-
ually decreased to reduce the number of function evaluations per iteration without
drastically dropping diversity. In this regard, a population size reduction scheme
was proposed in (Brest & Sepesy Mauc̆ec, 2008) to complement the self-adaptive
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jDE algorithm (Brest et al., 2006). Here, population size is dynamically halved af-
ter every number of iterations have elapsed to a total of pmax times until a budget
condition is met, e.g., maximum number of functions evaluations.

4.2.2 Variation Mechanisms

The arithmetic structure of DE mutation admits using vector differentials and
base vectors as building blocks to design different variation operators according to
the needs of the search. Hence, the performance of differential evolution can be
further improved not only by automatically adapting DE parameters, but also by
modifying the search strategy itself. This flexibility grants DE with mechanisms that
permit to enhance exploration or exploitation depending on the number of parents
involved in mutation and how these are chosen from the mating pool.

In their seminal work, Storn and Price already proposed a number of different
mutation variants with up to two vector differentials terms for further exploration,
or alternatively, locally guiding the search towards promising regions by replac-
ing the base vector with the best solution in the current population. Similarly,
Fan and Lampinen proposed a trigonometric mutation operator (TMO) to improve
exploitation by locally biasing the perturbation towards the fittest out of three mu-
tually different vectors (Fan & Lampinen, 2003). To avoid premature convergence
by excessive local refinement, TMO is combined with standard mutation within a
stochastic mutation framework, called TDE, controlled by an additional parameter,
denoted by Mt. In (Thangaraj et al., 2010), based on the same basic structure of
the original DE, five different mutation strategies were introduced using absolute
differences and replacing the mutation scale factor by a random variable following
a Laplace probability distribution.

In (Epitropakis et al., 2011), a proximity-based selection scheme was proposed
to choose vectors involved in mutation by accounting the structure of the popula-
tion as it evolves. Based on the clustering features shown by DE mutation strategies,
a random selection was replaced by an affinity matrix that assigns a selection prob-
ability to each individual inversely proportional to its distance from the base vector.
Experimental results on benchmark and real-world optimization problems showed
that significant improvement on the function value and convergence speed can be
obtained when compared to the original DE and other state-of-the-art algorithms.
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4.2.3 Memetic Algorithms and Hybrid Approaches

Memetic algorithms (MAs) are EAs embedded with local search (LS) mecha-
nisms. MAs hybrid approach aims at compensating for local exploitation deficien-
cies of EAs without compromising the overall global exploration performance. This
is achieved by incorporating heuristics for local refinement of the most promising
candidate solutions in the population, i.e., neighbourhood search around those so-
lutions more likely to be close to an optimum. In classic DE, these exploitation
deficiencies are due to a mainly exploratory framework driven by the mutation
mechanism and high values of the crossover rate.

Several LS mechanisms have been explored to improve exploitation properties
and whereby accelerate DE convergence. In (Noman & Iba, 2008), Noman and
Iba proposed a memetic DE algorithm, called DEahcSPX, that implements an adap-
tive simplex crossover operator to improve the convergence speed of the standard
DE/rand/1/bin algorithm. Experimental results show that by deterministically ap-
plying adaptive local search (AHCXLS) around the best candidate solution in the
current population the overall convergence speed can be significantly improved.
Other successful DE memetic approaches include DECLS for high-dimensional prob-
lems using chaotic local search and adaptive control parameters (Jia et al., 2011).

In addition to reducing the number of function evaluations needed to attain
global convergence, further improvements on the DE economy have been proposed
to deal with hardware limitations. In this regard, compact memetic algorithms arise
as a class of estimation of distribution algorithms (EDAs) within a memetic search
framework, in which, memory (hardware) restrictions are complied by storing and
processing the statistical model of the population instead of the entire population
and all the individuals therein. This, combined with a memetic search approach
yields a light optimization algorithm with fast convergence speed in accordance to
the requirements demanded by real-world applications.

With this two key aspects in mind, Neri and Minnino proposed a memetic com-
pact DE algorithm (McDE) for the trajectory control of an industrial Cartesian robot
using a single on-board micro-controller chip (Neri & Mininno, 2010). The pro-
posed control system scheme was based on a sliding mode controller and a re-
current neural network (RNN) disturbance observer used to compensate for the
steady-state errors introduced by the control law. Considering uncertainties on the
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payload mass, the neuron weights were adaptively updated so as to minimize the
estimation error in each period of the trajectory. Therefore, a twofold DE optimiza-
tion approach was suggested to cope with the hardware deficiencies, measurements
noise, and real-time requirements of the control loop. First, the population was rep-
resented as a Probability Vector (PV) consisting of a matrix with mean and standard
deviation values describing a Gaussian Probability Distribution Function for each
design variable (neuron weight), thus, circumventing memory limitations. Second,
a memetic search approach based on the integration of the exploratory framework
DE/rand/1/bin and a stochastic local search mechanism was used to update the
population distribution. Simulation results showed that McDE outperforms other
state-of-the-art compact algorithms for this particular application. More recently,
an alternative DE memetic approach for limited memory problems was proposed
by Neri et al., and denoted by DEcDE (Neri et al., 2011). In contrast to McDE, this
approach did not combine DE exploratory framework with additional LS mecha-
nisms to improve the convergence speed. Instead, it used a multiple exploitative
framework with a randomized perturbation scheme to promote global exploration.

An intuitive yet almost unexplored acceleration approach is to enhance the ini-
tialization mechanisms used to sample the search space, provided that, the fitter
the initial population, the more likely would it be to find the global optimum after
fewer iterations. If a priori information about the optimal location is available, this
can be used as seed to guide the initialization process; however, this is seldom the
case for most optimization problems. Consequently, a uniform random sampling of
the feasible search space is commonly suggested. However, although random ini-
tialization provides with the necessary population diversity to start the search, the
chance of getting closer to the solution can be further enhance by introducing some
heuristics during the initialization process. In (Rahnamayan et al., 2007), a novel
opposition-based learning initialization method was embedded into the canonical
DE with the aim of obtaining fitter individuals in the initial population even when
a priori information about the optimal was not available. The authors used two
population sets, one containing the randomly generated points and the other con-
taining the points opposite to that of the initial points. Finally the two populations
were merged and the best points were taken to form the initial population. Nu-
merical experiments revealed that for low-dimensional problems opposition-based
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learning initialization outperforms standard random initialization in convergence
speed. Opposition-based learning has also been used to enhance exploitative pres-
sure of the standard and compact DE algorithms (Rahnamayan et al., 2008; Iacca
et al., 2011).

4.3 A Migration-based Memetic Differential Evolution
(δDE)

The evolution of a population of a species halts when the genetic variation mech-
anisms no longer introduce significant changes among the parents and the succes-
sive offspring generations. At low genetic diversity, variation and selection reach
a balance that leads to stagnation. Nevertheless, if the population is not isolated
from other populations of the same species, a third mechanism might take place to
stimulate evolution: migration.

Migration not only implies the movement of individuals from one region to an-
other, but refers to gene flow, i.e., the introduction of genetic material by interbreed-
ing. Thus, migration (or gene flow) tends to increase diversity in the population by
adding new traits into the genetic pool.

Based on the same principle, migration has been widely used in genetic algo-
rithms to avoid stagnation, premature convergence, and to improve convergence
speed. In GAs, migration is either used as a random re-sampling mechanism to
replace poor solutions in each generation (Moed et al., 1990), or as a restarting
procedure of small populations after convergence (Goldberg, 1989). Both migra-
tion strategies are diversification mechanisms used to introduce new information
into the population.

Migration has also been used in DE to improve convergence. Recently, in (Gong
et al., 2010), the authors proposed a DE/BBO hybrid algorithm that combines
canonical DE with biogeography-based optimization (BBO). BBO is a population-
based stochastic optimizer based on the models of biological migration among habi-
tats (Simon, 2008). In this scheme, each candidate solution represents a habitat
with an associated habitat suitability index (HSI), immigration (λ) and emigration
rate (µ). BBO adopts a migration operator to share information between solutions
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based on their migration rates (λ and µ), and a mutation operator for random per-
turbation of the population. Therefore, poor solutions (low HSI, low λ, and high µ)
tend to admit useful information from good solutions (high HSI, high λ, and low
µ). In this case, migration operates at parameter level within a single population of
habitats, in contrast to the individual-level migration between sub-populations of
GAs.

In summary, migration in EAs acts as a replacement mechanism aimed at im-
proving poor solutions in a population. This replacement strategy can be tailored
to promote either exploration or exploitation according to the deficiencies in the
search algorithm. For instance, in crossover-based EAs exploration is usually pro-
moted by randomly sampling the search space; whereas in mutation-based EAs
migration often enhances exploitation by using the fittest individuals within the
replacement strategy. Based on these notions, we propose a migration mecha-
nism to improve the convergence speed of standard DE. We adopt the standard
DE/rand/1/bin scheme because of its simple mutation structure yet powerful ex-
ploration performance.

Thus, let us consider a population of NP D-dimensional candidate solutions that
evolves by means of DE iterative process of mutation, crossover, and selection. The
variation mechanisms of mutation and crossover explore the search space and lead
the population towards its most promising regions, whereas the selection mecha-
nism gradually clusters the candidate solutions around the global minimizers of the
objective function. To speed up this process with a migration policy, a first strategy
would be to directly replace a small percentage of the worst candidate solutions
(low fitness) with copies of better solutions (high fitness) in each iteration. This eli-
tist approach increases the velocity in which the candidate solutions group around
promising regions, but also decreases the diversity of the population which might
lead to stagnation or premature convergence. A more general approach would
be to assume that each candidate solution in the population represents the mean
vector of a D-variate normal distributed sub-population with covariance matrix Σ.
Therefore, poor solutions could be replaced by randomly sampling different sub-
population models to produce solutions in the vicinity of better existing ones; such
that, the length of the local search is controlled by Σ. The latter is the operating
principle of the so called discarding mechanism.
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In other words, discarding combines migration and a local search strategy into
a single operator. According to the rationale that supports memetic algorithms,
embedding an independent local search mechanism like discarding within the evo-
lutionary search approach of standard DE yields a memetic differential evolution
hereafter denoted by δDE. In this sense, δDE strategy is closer to the memetic ap-
proach of the DEahcSPX algorithm (Noman & Iba, 2008). The proposed memetic
differential evolution scheme is outlined in the pseudo code listed in Algorithm 4.1.

Algorithm 4.1 Memetic Differential Evolution (δDE)

Input: D, NP , F , CR, δ, β, Σ, x(lo) and x(hi).
1: g ← 0
2: INITIALIZE a population withNP random candidate solutions xg ∈

[
x(lo),x(hi)

]
.

3: EVALUATE fitness of each candidate solution in population.
4: while Termination condition 6= true do
5: for each candidate solution in current population do
6: MUTATION DE/rand/1.
7: BINOMIAL CROSSOVER.
8: CONSTRAINT HANDLING of out-of-bounds parameters.
9: EVALUATE offspring fitness.

10: ONE-TO-ONE TOURNAMENT selection.
11: end for
12: DISCARDING of worst candidate solutions in current population.
13: g ← g + 1
14: end while
Output: Best candidate solution in final population

4.3.1 Discarding Mechanism

Discarding combines migration and local search in a unified mechanism. This
is, on one part discarding acts as a migration operator since in each generation a
number of the worst fitted candidate solutions are replaced by new ones. And on
the other hand, it uses a simple local search heuristic to perturb the best performing
elements in the population to generate new ones. By combining these two mecha-
nisms we overcome exploitation deficiencies without deteriorating the exploration
performance of mutation, and thus, increasing convergence speed.
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Figure 4.1: Scheme of the discarding mechanism. The δ worst elements are replaced by
adding a random noise to δ candidate solutions randomly selected from the β best in the
current population.

Algorithm 4.2 Discarding Mechanism

Input: SORT P g = {x1, . . . ,xı, . . . ,qNP
}, such that, f (xı) ≤ f (xı+1)

1: for ı = NP − δ + 1 to NP do
2: SELECT randomly an index b from {1, . . . , β}
3: xı ← N (xb, σ

2)
4: end for

Consider a population P g of NP D-dimensional candidate solutions, where g is
the current generation. Let us also assume that each of them represents the mean
vector of a D-variate normal distribution with covariance matrix Σ. Now, consider
two sub-populations from P g, one containing the β best performing solutions (Bg),
and another with the δ worst candidate solutions (W g), such that δ + β ≤ NP .

According to discarding, in each generation every candidate solution in W g is
replaced with candidate solutions randomly sampled from Bg. However, instead of
simply duplicating good solutions from Bg, discarding performs local refinement of
the best fitted individuals in the current population. Therefore, for each candidate
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solution in W g one is randomly (uniformly) selected from Bg, here denoted by
xb (b = 1, . . . , β). Then, a new candidate solution is produced by sampling a D-
variate normal distribution with mean xb and covariance matrix Σ. This local search
approach is based on a well-known local improvement process technique (LIP),
called Solis-Wets method or random optimization (Solis & Wets, 1981). To get a
rotationally invariant operator the variance is set to a scalar constant value σ2 equal
for all parameters and all candidate solutions in P g. Discarding is schematically
illustrated in Figure 4.1, and the pseudo-code is presented in Algorithm 4.2.

Discarding Parameters

Discarding replacement strategy aims at reinforcing exploitation by in each gen-
eration steering the population towards the current best solutions. However ex-
cessive exploitation also needs to be avoided specially for small-sized populations,
otherwise, the search could prematurely converge to a local optimum. Further, the
role of δ and σ is to regulate the amount and length of local search performed
by discarding, and consequently, both are directly related to the good convergence
behaviour of the acceleration mechanism.

Parameter σ determines the local distribution of the offspring around their par-
ents, and thus controls the local search length. A small value of σ produces candi-
date solutions densely distributed around their parents which might fail at signifi-
cantly improving the search quality. But, on the other hand, large values of σ yield
sparsely distributed offspring which might consume unnecessary additional fitness
evaluations.

The discarding size δ controls the migration rate in each generation, this is, it
represents the number of individuals that are discarded in each generation to be
replaced with better solutions. For convenience, this value is usually defined as a
percentage of the total population size, thus,

δ =
ND

NP

× 100 (4.1)

with ND is the size of a sub-population containing the worst candidate solutions
in P g. If Lamarckian learning is assumed, one can easily deduced that only after
NP/ND generations discarding replaces an entire population by local search alone.
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Therefore, it is clear that population diversity would rapidly decrease with large
values of δ which might lead to stagnation and premature convergence. Addition-
ally, the population size (NP ) has to be large enough to ensure diversity but not too
large to increase the computational cost.

Empirical results also suggest that the size of the elite pool (β) should be suffi-
ciently large to guarantee diversity, i.e., β≫ δ, with β = NP/2 being a good initial
value. Additionally, the population size (NP ) has to be sufficiently large to assure
diversity but not too large to increase the computational cost.

Similarities and Differences with BBO

Since discarding introduces a migration mechanism to enhance DE intensifi-
cation features, we can draw an analogy between our approach and the one of
DE/BBO (Gong et al., 2010). In this analogy, the HSI value would be represented
by the fitness f of each candidate solution, such that, in each generation the likeli-
hood of being replaced increases as the cost value does. However, in contrast to λ
and µ, the discarding migration rate δ is a constant value that does not depend on
the fitness value. In addition, the replacement strategy of discarding implements a
local refinement process of the best performing candidate solutions to completely
replace poor ones, instead of inheriting parameters from the elite solutions as in
DE/BBO. In these aspects, the discarding approach is closer to the approach of me-
metic algorithms earlier described.

4.3.2 Example I: Goldstein-Price’s function

Before further analysing δDE convergence performance, let us first illustrate
its operating mechanism with some examples. First, consider the Goldstein-Price’s
function, shown in Figure 4.2, as the objective function in our minimization prob-
lem, defined as

f1(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 32

2

)]
·[

30 + (2x1 − 3x2)
2 (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
, (4.2)

where x ∈ R2 is bounded by −2 ≤ x ≤ 2. The optimization model thus defined
has one global optimal solution located at x∗ = (0,−1), that yields a minimum
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Figure 4.2: Goldstein-Price’s function.

Table 4.1: δDE control parameters values for the Goldstein-Price’s, six-hump camel back,
and Rastrigin’s functions.

NP F CR σ δ β

f1

50 0.5 0.8
0.01 2 % 2 %

f2 0.1 10 % 20 %

f3 0.01 10 % 20 %

value of f(x∗) = 3. For illustration purposes only, δDE control parameters were set
to the values in Table 4.1. This means that in each generation the worst candidate
solution will be replaced by a solution normally distributed around the best solution
with variance of 1 × 10−4. Figure 4.3 shows the first iteration of δDE algorithm.
After initialization, the population undergoes mutation, crossover, and selection to
obtain a trial population Pu. Then, replaces the worst candidate solution with one
sampled from the neighbourhood of the best solution in the trial population. Finally,
the modified trial population is promoted to the next generation P g=2.

4.3.3 Example II: Six-hump camel back function

As second example, consider the multimodal benchmark function shown in Fig-
ure 4.4, also known as six-hump camel back function. This is a two-dimensional
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(d) After discarding P g=2.

Figure 4.3: Phase portraits of the first iteration of δDE for the Goldstein-Price’s function.
(a) Contour plot and optimal solution. (b) Initial population. (c) Trial population before
discarding, best (•) and discarded (�) candidate solutions. (d) Current population after
discarding, best (•) and migrant (�) candidate solutions.
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Figure 4.4: Six-hump camel back function.

objective function defined as

f2(x) =

(
4− 2.1x21 +

1

3
x41

)
x21 + x1x2 +

(
−4 + 4x22

)
x22, (4.3)

where x ∈ R2 is usually defined within the rectangle −3 ≤ x1 ≤ 3 and −2 ≤ x2 ≤ 2.
Within this area (4.3) has six local minima, two of them are global ones located at
x∗ = (−0.0898, 0.7126) and x∗ = (0.0898,−0.7126) that yield a minimum value of
f (x∗) = −1.0316.

In this case, the problem’s landscape demands a more efficient search strategy
to avoid local minima while rapidly converging to one of the global optimal solu-
tions. Therefore, for the same values of NP , F and CR we intuitively increased the
discarding parameters to further enhanced local search around good candidate so-
lutions. Thus, in each generation 10 % of the poorer solution in the population are
replaced by sampling the vicinity of random solutions selected from the 20 % fittest
candidate solutions. Figure 4.5 portraits the population before and after discard-
ing during the first generation of δDE. Further, a comparison between the conver-
gence behaviour of standard DE and δDE shows that the discarding simple strategy
can significantly improve the convergence speed without failing convergence to the
global minima (see Figure 4.6).
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(b) Initial Population P g=0.
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(d) After discarding P g=2.

Figure 4.5: Phase portraits of the first iteration of δDE for the six-hump camel back function.
(a) Contour plot and optimal solutions location. (b) Initial population. (c) Trial population
before discarding, best (•) and discarded (�) candidate solutions. (d) Current population
after discarding, best (•) and migrant (�) candidate solutions.
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(a) DE initial population.
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(b) δDE initial population.
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(c) DE after ten generations.
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(d) δDE after ten generations.
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(e) DE after twenty generations.
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(f) δDE after twenty generations.

Figure 4.6: Comparison of the evolutionary behaviour of DE (left) and δDE (right) for the
six-hump camel back function.
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Figure 4.7: Two-dimensional Rastrigin’s function.

4.3.4 Example III: Rastrigin’s function

Finally, let us consider a third benchmark function called the Rastrigin’s func-
tion. As shown in Figure 4.7 for the two-dimensional case, this function is highly
multimodal with several local minima regularly distributed within the search space.
For x ∈ R2 this function is defined as

f3(x) = 20 +
(
x21 − 10 cos (2πx1)

)
+
(
x22 − 10 cos (2πx2)

)
(4.4)

with the search space usually constrained to −5.12 ≤ x ≤ 5.12. This function yields
its minimum global value of zero at x∗ = (0, 0).

Once again, we kept the same values of NP , F , and CR to show how discarding
influences DE search performance. The high multimodality of this function requires
a careful balance between exploring the search space and reinforcing good solutions
by local search. Thus, σ, δ, and β were set to relatively small values to avoid
deteriorating diversification while promoting intensification on the most elitist sub-
population. Control parameter values are summarized in Table 4.1. δDE resulting
convergence behaviour is shown in Figure 4.8.
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(f) δDE after twenty generations.

Figure 4.8: Comparison of the evolutionary behaviour of DE (left) and δDE (right) for the
Rastrigin’s function.
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4.4 Summary

In this chapter we have introduced a memetic differential evolution scheme de-
noted by δDE. A memetic algorithm is an evolutionary algorithm embedded with
a local search mechanism. Similarly to any other acceleration mechanisms, such
as, parameter control and variation mechanisms, MAs strategy seeks to balance the
exploration and exploitation features of the search to speed up convergence.

Therefore, our memetic approach aims at balancing the outstanding exploratory
behaviour of the standard DE scheme with an intensification operator called dis-
carding. Discarding combines migration with a local search strategy to enhance
intensification of good solutions without decreasing robustness and accuracy of the
standard DE. This is, on the one hand migration introduces new information into
the population by replacing poor performing solutions in each iteration; and on the
other, local search provides with a replacement strategy to enhance exploitation
in the neighbourhood of the fittest solutions in the population. Synthesizing both
mechanisms yields in a balanced exploration/exploitation behaviour.

Moreover, discarding introduces three new parameters, namely: discarding rate
(δ), elite pool size (β), and local search length (σ). Adding these parameters to
the standard DE increases its complexity, and their interaction with the population
size (NP ), mutation scale factor (F ), and crossover rate (CR) has yet to be formally
studied. However, using three benchmark optimization functions we have shown
how much potential discarding has to significantly improve the convergence speed
of standard DE.
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Chapter 5

δDE-based Inverse Kinematics:
Problem Formulation

The inverse kinematics represents one the fundamental problems in the kinematics
control of robot manipulators. It formulates the question of how to determine the
joint configuration that places the end-effector at a desired pose within the robot
workspace. Although closed-form analytical solutions might be available for some
open kinematics chains, numerical methods are often used to iteratively solve the
inverse kinematics problem of more complex kinematics structures. These methods
can be classified into (i) Jacobian-based methods and (ii) optimization-based meth-
ods. Their advantages and disadvantages were already discussed in Chapter 2. In
this chapter, we further investigate alternative optimization-based solutions to the
inverse kinematics problem, with the aim to overcome the performance deficiencies
of Jacobian and other optimization-based kinematics inversion approaches.

5.1 Optimization Model: Inverse Kinematics

Consider a serial robot manipulator with N degrees of freedom. At any arbi-
trary joint configuration (q) the end-effector’s position and orientation can be fully
described by the pose coordinates ξ = (p,R), where the position p ∈ Rn and ori-
entation R ∈ SO(n) are defined relative to an inertial reference frame fixed at the
base of the robot.

Given a target pose ξd, consider the problem of finding at least one feasible joint
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configuration vector that locates the end-effector at the desired pose coordinates.
Without loss of generality, it is also assumed that it is not possible to find an an-
alytical closed-form solution to the inverse kinematics problem, and therefore, a
numerical approach is required.

Under these premises let us propose a numerical optimization-based approach
to solve the inverse kinematics problem of robot manipulators. To this end we first
define a metric E to express the error between ξd and any arbitrary pose ξ within
the robot workspace. This function is defined such that it vanishes when ξd and ξ

are equal. Thereby, any joint vector q∗ whose corresponding pose coordinates ξ∗

minimize E could be considered the solution to the inverse kinematics problem.

The above formulation defines two different search spaces for the optimization
problem (i) the error space defined in terms of the pose coordinates in the task
space, and (ii) the configuration space defined as the set of feasible joint configura-
tion vectors of the robot. In this context, and evoking the terminology introduced
for evolutionary algorithms, the latter defines the representation space whereas the
former defines the solution space. Thus that, the search mechanisms are activated
on the representation space, but the proximity to the optimum is evaluated on the
solution space where the error is defined. Therefore, it becomes necessary to de-
fine a mapping function to link both spaces, such that, any feasible joint vector
can be transform onto its corresponding pose coordinates. For robot manipulators
that would be the forward kinematics equation (fk), that in contrast to the original
inverse kinematics problem can be analytically obtained in closed form for most
robot manipulators (Denavit & Hartenberg, 1955). As a result, the inverse kine-
matics problem is transformed into an alternative mapping problem via the forward
kinematics of the robot.

Further, the error metric should measure the discrepancies of the end-effector
pose relative to a target in the robot’s task space, but also should be defined to meet
different requirements of the task. For instance, for a certain task it could only be
necessary to satisfy a target position, whereas another could exclusively demand a
desired orientation of the end-effector. Therefore, let us define a pose error function
as the weighted sum of the position error (EP ∈ R) and orientation error (EO ∈ R),
written as

E = wpEP + woEO, (5.1)
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where the weighting factors wp and wo are constant normalization values defined
as

wp = 1

wo =

√
λKC · ‖pd‖

π

with λKC a coefficient that depends on the dimensions of the robot (Tabandeh
et al., 2010). Furthermore, by setting to zero any of the weighting factors the error
function can be simplified to comply with particular task’s requirements.

Finally, the optimization model for the inverse kinematics problem is obtained
as

min
q∈Q

E subject to: ξ = fk(q)

Q = {q | G(q) ≥ 0 ∧H(q) ≥ 0}
(5.2)

where G and H represent the physical constraints imposed by the mechanical struc-
ture of the robot or the environment. Assuming a free-of-obstacle environment, the
joint upper and lower bounds are set as constraints. Given that, the joint limits
define the robot manipulator workspace and more importantly represent configu-
ration values of reduced dexterity that should be avoided during the execution of a
task, thus

G (q) = q− q(lo) (5.3)

H (q) = q(hi) − q (5.4)

with q(lo) and q(hi) the lower and upper joint limits, respectively.

In comparison to the Jacobian-based methods, the advantages of formulating
the inverse kinematics problem as an optimization model (5.2) are the following:

• The solution is directly obtained in terms of joint configuration variables and
not velocities.

• The singularities issues associated to the Jacobian matrix are avoided.
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• The objective function an be easily modified to meet different task require-
ments.

5.1.1 Position Error

Robot accuracy measures the ability of the robot to position its wrist end at
a desired target point within the workspace, and it is usually defined in terms of
the spatial resolution of the control system. Therefore, the lower is the distance
between the final position of the end-effector and the target position, the higher is
the accuracy of the robot.

Similarly, in the inverse kinematics problem the position error can be defined as
the distance from the desired location of the end-effector (pd) to any point within
the robot’s workspace (p), as depicted in Figure 5.1. This distance can be computed
as the length of the residual error vector pe, as

EP = ‖pe‖ = ‖pd − p‖, (5.5)

where ‖·‖ denotes a norm function on Rn.
The norm function specifies a scalar metric over the elements of a vector space,

and thus, admits different definitions. The most common norm on Rn is the Eu-
clidean or `2-norm, defined for the residual error vector as

‖pe‖2 =

√√√√ n∑
i=1

|pei|2. (5.6)

Another useful norm on Rn is the Manhattan or `1-norm, defined as

‖pe‖1 =
n∑
i=1

|pei|. (5.7)

The `1-norm and `2-norm have been widely used as loss functions in the mini-
mization of the residual error between measured and estimated data in parameter
estimation problems. In a recent study by Moreno et al., the `1-norm and `2-norm
were tested and compared as loss functions in an optimization-based filter for global
localization of mobile robots (Moreno et al., 2011). Experimental results revealed
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Figure 5.1: Position error (EP ).

that the `1-norm showed a superior performance in robustness and accuracy on
the estimation of the robot’s pose under different levels of noise contamination in
the sensor data. Nonetheless, the `2-norm exhibited better convergence speed and
success ratio for relatively high values of input noise variance.

In a real robot manipulator the uncertainties on the inverse kinematics optimi-
zation problem (5.2) are derived from the forward kinematics model due to me-
chanical inaccuracies induced by the physical properties of the structure. Assuming
small uncertainties on the kinematics model, in this work the `2-norm is adopted as
metric for the position error since it provides faster convergence than the `1-norm.

Definition 1 (Position Error). Let pd and p be the desired end-effector position and
an arbitrary point in the Cartesian space, respectively. The position error is defined
using the `2-norm as

EP = ‖pd − p‖2 (5.8)

5.1.2 Orientation Error

The spatial orientation of a rigid body admits multiple analogous representa-
tions being the Euler angles the most commonly used. Nonetheless, Euler angles
provide an ambiguous metric for the orientation error since they suffer from repre-
sentation singularities. Therefore, following a similar approach to that proposed in
(Tabandeh et al., 2010) we adopt the unit quaternions representation to define the
orientation error given their compact and numerically stable representation.
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Figure 5.2: Orientation error between two frames with coicident origin (Re).

Hence, let OXYZ and OUVW denote two different frame axes with coincident
origin, but with OUVW rotated respect to OXYZ. The rotation necessary to align
frame OUVW can be regarded as a measure of the orientation error between both
frames, as illustrated in Figure 5.2.

Definition 2 (Error Rotation Matrix). Consider a rotation matrix R that describes
an arbitrary orientation of the end-effector in the robot’s workspace. Given a target
orientation Rd, the orientation error of R relative to Rd can be computed as

Re = RdR
−1 = RdR

>. (5.9)

Matrix Re describes the rotation necessary to attain the desired end-effector ori-
entation from an arbitrary orientation in the robot’s workspace. In order to comply
with the definition of E in (5.1) we should find a scalar function to express the
end-effector’s orientation error described by Re.

According to the Euler’s angle theorem, any orientation R ∈ SO(n) is equivalent
to a rotation about a fixed axis k ∈ Rn through an angle φ ∈ [0, 2π). To find the
equivalent axis representation of Re, let us use the unit quaternion expression

Qe = Rot (φe,ke) =

(
cos

(
φe
2

)
, sin

(
φe
2

)
ke

)
, (5.10)

where q0 = cos
(
φe
2

)
is the scalar component, and qe = sin

(
φe
2

)
ke is the vector

component of the unit quaternion. In (5.10), the angle φe represents the error
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angle and ke the axis of rotation (see Figure 5.3).

Further, φe amounts for the absolute error angle of R relative to Rd represented
in Re. Thus, it can be taken as a measure of the orientation error. To extract φe
from Re, the expression for the scalar part of a unit quaternion gives

q0 =
1

2

√
nex + oey + aez + 1, (5.11)

where nex, oey , and aez are components of the square matrix Re. It follows that the
error angle can be derived from (5.10) and (5.11) as

φe = 2 cos−1
(

1

2

√
nex + oey + aez + 1

)
. (5.12)

Definition 3 (Orientation Error). Let us consider the equivalent axis representation
of the orientation error matrix Re, such that, the orientation is represented as the
rotation about an axis ke by an angle φe. The orientation error EO can thus be defined
as the error angle φe, obtained from Re as

EO = 2 cos−1
(

1

2

√
nex + oey + aez + 1

)
. (5.13)

where nex, oey , and aez are the diagonal components of matrix Re.
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5.2 Optimization Model: Path Generation Problem

Robot tasks are commonly described as end-effector trajectories that specify the
position, velocity, and acceleration required to follow a desired motion. Similarly,
trajectories can also be defined in the configuration space in terms of joint vari-
ables. A trajectory becomes a path when the velocity and acceleration are ignored,
therefore, a path gives a purely geometrical description of the task in terms of pose
or joint coordinates (see Figure 5.4).

Let us consider a desired Cartesian path defined as a discrete sequence of Nk

end-effector pose coordinates (nodes). The path generation problem thus consists
in mapping the desired motion in the Cartesian space into its corresponding joint
path in the configuration space. Therefore, solving the path generation problem is
equivalent to solving the inverse kinematics for each target node in the end-effector
path. Consequently, the intuition introduced above for the kinematics inversion
problem can be consistently tweaked to extend the optimization model from one to
a set of target pose coordinates.

Two optimization frameworks can be proposed to solve the path generation
problem. A first approach is to define a path joint configuration space — of di-
mension N ∗ Nk — to find a solution that minimizes the pose error of all nodes
altogether (González et al., 2009). In the second approach the path generation
problem is divided into Nk cycles —one for each node in the path —and in each cy-
cle, the inverse kinematics problem is solved for a single node (González & Blanco,
2013).

The main advantage of the first approach is that a solution is obtained for all
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nodes at once by performing the search over an extended configuration space; how-
ever, the complexity of the problem also increases with the dimension of the search
space. Further, this strategy yields a rigid framework that does not allow on the fly
adjustments of the task due to sudden changes on the environment. In contrast, in
the second strategy a global solution is obtained after Nk runs of the optimization
process. Nonetheless, after each cycle the constraints on the task —and the task
itself —can be updated to set new targets to the onwards nodes. This affords flex-
ibility to the optimization framework, and for this reason, it will be considered for
the path generation problem.

A path defines an ordered sequence of intermediaries locations of the end-
effector within the workspace. By minimizing the pose error, we are able to find the
joint configuration that yields the target end-effector pose in each node. This im-
plies finding one of the multiple possible solutions of the inverse kinematics prob-
lem. Without imposing additional constraints over the solution space this might
lead to abrupt joint displacement from one node to the next. Thus, to guarantee
smooth joint transitions, a regularization term is included in the objective function
to minimize the joint displacement between adjacent nodes. This is expressed in
the configuration space as

Γk =
1

2π
‖qk − qk−1‖2, k = 1, 2, . . . , Nk. (5.14)

Therefore, for the kth node the objective function is expressed as the weighted
sum of the pose error Ek (5.1) and the total joint displacement Γk (5.14) as

Fk = wEk + (1− w)Γk, (5.15)

with w ∈ (0, 1]. For high-accuracy solutions the value of the weighting factor w
should be set close to one, to emphasize the error minimization on the end-effector
pose.

Thus, given a target path in the Cartesian space defined as a set ofNk pose nodes

Ωd =
(
ξd1 , . . . , ξdk , . . . , ξdNk

)
,
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for the kth node, a constrained optimization model can be written as:

min
qk∈Q

Fk subject to: ξk = fk(qk)

Q = {qk | G(qk) ≥ 0 ∧H(qk) ≥ 0}
, k = 1, . . . , Nk.

(5.16)

where G and H are constraints defined as in (5.3) and (5.4).

5.3 Solution to the Inverse Kinematics Problem

In this section, a numerical optimization framework based on the δDE scheme is
proposed to solve the inverse kinematics problems formulated in the optimization
models (5.2) and (5.16). The main advantage of using an optimization framework
for kinematics inversion, instead of the damped least-squares methods, is the lack
of use of the Jacobian matrix as mapping function. Thereby, numerical instability
in the vicinity of singular joint configurations is completely overcome.

δDE is a hybrid population-based direct search approach. δDE combines the
powerful exploratory behaviour of the standard DE scheme (DE/rand/1/bin) with
a migration operator, called discarding, to enhance the local search features of the
algorithm. The aim is to improve the convergence speed and solution accuracy of
standard DE by balancing its exploratory and exploitative search behaviour.

δDE performs an iterative process of mutation, recombination, selection, and
discarding over a population to produce a solution with the minimum fitness value.
To counteract the mainly exploratory features of the variation mechanisms of muta-
tion and recombination, discarding implements a twofold strategy: migration and
local search. Thereby, in each generation a small percentage of the worst solutions
in the population are replaced (migration) by solutions sampled from the vicinity
of good ones (local search).

Discarding combines migration and local search into a single operator controlled
by three parameters, namely the discarding size (δ), elite pool size (β), and stan-
dard deviation (σ). The first controls the size of migration and the last two regulate
the elitism and length of the local search. The discarding size and the elite pool
size are usually set as a percentage of the population size, whereas the standard
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Figure 5.5: Fitness evaluation scheme.

deviation is defined in the units of the search variables. Further, by setting σ to
zero, discarding can be simplified into a migration-only algorithm.

In this scheme, each candidate solution in the population represents a joint con-
figuration vector coded as a floating-point array. The pose error function (5.1) de-
fines a fitness value that measure the proximity to the optimal solution. Such that,
as a candidate solution approaches the optimum, its fitness decreases towards zero.
For the path generation problem this function is replaced with the objective func-
tion in (5.15). Note that the fitness function is defined on the task space, whereas
the population is defined as a subset of the configuration space of the robot. There-
fore, the fitness evaluation would comprise two steps: (i) each candidate solution
is mapped into end-effector coordinates in the task space via forward kinematics,
and (ii) the corresponding pose error is computed relative to the target position and
orientation coordinates. This is schematically illustrated in Figure 5.5, where the
arrows heads indicate the direction of the evaluation process. Finally, the solution
is obtained as the joint configuration with the lowest fitness in the population after
convergence.

5.4 Summary

The inverse kinematics refers to the problem of determining the joint configura-
tion vector that yields a desired end-effector position and orientation in the robot’s
workspace. Although, analytical solutions to the inverse kinematics problem might
be available for a class of open kinematics chains, more complex kinematics struc-
tures often require numerical methods to iteratively solve their inverse kinematics.
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In this chapter, we have tackled this fundamental kinematics problem from a nu-
merical optimization approach. In this formulation, the optimization model defines
a direct search over the configuration space to minimize the end-effector pose error
in the robot’s task space. However, instead of relying on the Jacobian matrix as
mapping function between the task and configuration space, the mapping is done
via the forward kinematics equations. Thereby, the numerical instability of the Jaco-
bian matrix around singular joint configurations is overcome. This formulation was
further extended to address the path generation problem of robot manipulators.



Chapter 6

δDE-based Inverse Kinematics:
Simulation Results

In this chapter, the δDE algorithm is tested against the standard DE as kinematics in-
version methods. We have considered the kinematics of three benchmark robot ma-
nipulators moving in a free-of-obstacles workspace, thus that, the only constraints
on the solutions space are the lower and upper joint displacement limits. Further, to
examine the influence of discarding on the convergence behaviour of δDE, different
parameter settings have been tested in a simulation environment.

6.1 Simulation Setup

The convergence behaviour has been examined under three different simulation
setups programmed in MATLAB®:

• Workspace. This simulation experiment examined the performance of the
algorithm over the reachable workspace of the robot. The test consisted of
solving the inverse kinematics problem of Nξ target poses randomly generated
from the robot workspace.

• Pose Testbed. In a second simulation scenario, a testbed with four known
target pose coordinates was considered. The aim was to set different search
landscapes for the optimization problem to examine the algorithm repeatabil-
ity. For each experimental point ξi (i = 1, . . . , 4), Nt independent trials were

85
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Table 6.1: Simulation configuration for the IK problem.

Test Nt Nξ Nk εP εO

Workspace 1 1000 –
0.1mm 0.1◦

Pose Testbed 100 4 –

Path Generation 100 – 21 1mm –

conducted on the simulation environment.

• Path Generation. A third simulation setup consisted of solving the path gen-
eration problem of a task. The path was defined as a set of Nk consecutive
nodes that geometrically described the target end-effector pose. In this case,
only the end-effector position has been considered, thus neglecting the orien-
tation. The inverse kinematics was thus solved sequentially for each node, by
minimizing the end-effector position error (EP ), for positioning accuracy of
the robot, and the joint displacement from the previous node (Γ), for smooth-
ness in the joint transitions between adjoining nodes. The termination criteria
for each cycle was set to a maximum position error tolerance, equal to 1mm.
Further, to emphasize accuracy along the path, the weighting factor w in equa-
tion (5.15) was set to a value of 0.8. The parameter configuration for each
simulation setup is listed in Table 6.1.

The evaluation criteria followed to assess the performance of the proposed kine-
matic inversion methods, for all simulation setups, have been the following:

• Errors: At each run of the algorithm the minimum total error E, position error
EP , and orientation error EO, obtained after gmax generations were recorded.
Once the simulation experiment was completed, the overall average errors
(AVG) and standard deviations (STD) were computed.

• Success rate (SR): Number of success trials obtained after a number of runs
of the algorithm, expressed as a percentage value. Any trial is considered a
success, if after a predefined number of generations (gmax), the best joint con-
figuration vector yields a position and orientation errors below a predefined
accuracy tolerance values, denoted by εP and εO, respectively. Results are
reported following the notation AVG ± STD (SR).
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• No. generations (GEN): Average number of generations required to reach
the position and orientation error thresholds, εP and εO.

• Acceleration rate (AR): Ratio of improvement on the number of generations
(GEN) expressed as a percentage value.

• Population Diversity. Measures the genetic variation among the candidates
solutions of the same population. It is defined as the sum of the distance from
the average point (q̄) to each individual of the population, that is

Diversity =
1

|NP | · ‖q(hi) − q(lo)‖2
·
NP∑
i=1

√√√√ D∑
j=1

(qij − q̄j)2.

6.2 Control Parameters

For fair comparison, the population size (NP ), crossover rate (CR), and mutation
scale factor (F ) of both DE schemes were set to the same values. Accordingly, the
mutation scale factor (F = 0.5) and crossover rate (CR = 0.8) were set based
following the guidelines suggested in (Ronkkonen et al., 2005). Note that a large
value of CR yields a mainly exploratory search dynamic controlled by the value of
F . In addition, the population size was adjusted, from its nominal value according
to the problem dimension (D = N), to meet a trade-off between the population
diversity and the computational cost. Table 6.2 summarizes the parameter setup
values used for each robot manipulator.

Furthermore, since we lack of a theoretical analysis on the dynamic of δ, σ, and
β, these parameters have been tuned based on empirical data. Preliminary results
suggested that large values of δ noticeable increase the convergence speed at the
expense of increasing computational cost; whereas parameters σ and β control the
intensification pressure around the best solutions. Thus, δ, σ, and β have been set
to balance speed rate, accuracy, and efficiency of the memetic search scheme. For
readability, the parameter setting of δDE will be denoted by the triple (δ, β, σ).
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Table 6.2: Control parameter setting of δDE.

DOF F CR NP gmax

3
0.5 0.8

50 100

6 150 300

7 250 500

6.3 Planar Robot Manipulator

Consider the planar robot manipulator schematically illustrated in Fig. 6.1. Each
angle θj represents a joint variable in the configuration space, such that, q =

(θ1, θ2, θ3)
> denotes the configuration vector of the robot (N = 3). The end-effector

motion is constrained to the two-dimensional Cartesian space, thus, the position
vector p = (px, py) and the angle ϕ respect to the horizontal axis completely de-
scribe the end-effector pose (m = 3). Table 6.3 summarizes the D-H kinematic
parameters and joint limits.

x

y

θ1

θ2

θ3

Figure 6.1: Planar robot manipulator with revolute joints (3 DOF).

Table 6.3: Kinematic parameters and joint limits of the planar robot manipulator.

Joint aj αj dj θj q
(lo)
j q

(hi)
j

1 0.20m 0◦ 0m θ1 -90◦ 90◦

2 0.15m 0◦ 0m θ2 -90◦ 90◦

3 0.10m 0◦ 0m θ3 -90◦ 90◦
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6.3.1 Workspace

For this simulation setup the inverse kinematics was solved for Nξ different tar-
get coordinates, previously sampled from the workspace of the robot. The goal was
to examine the overall performance of δDE over the reachable workspace of the
robot manipulator under different parameter settings.

The discarding mechanism of δDE, combines a migration strategy with local
search. To test both features, a migration-only scheme was first considered by set-
ting to zero the standard deviation of the local search (σ). To further stress an elitist
replacement strategy, the discarding size (δ) and the elite pool size (β) were set to
6 % and 10 % of the population size, respectively. Thereby, in each new generation
the worst three candidates were replaced by copies of candidate solutions randomly
sampled from the five best fitted elements in the population. Simulation results are
reported in Table 6.4.

According to these results, the migration-only strategy significantly improves
the convergence speed by duplicating good solutions in each generation; however, it
also promotes a lower diversity among the candidate solutions. The loss of diversity
negatively impacts the exploration features of the search, and consequently, the
efficiency of the algorithm. This is observed as a slight decrease in the success ratio
of δDE. However, these values are still competitive in comparison to the standard
DE performance.

With the aim to examine the influence of the local search in the overall im-
provement of the search performance of δDE, the standard deviation (σ) was in-
creased to 0.2◦while keeping the values of δ and β unaltered. Thus this time, a
relatively small number of individuals were replaced in each generation by densely

Table 6.4: Simulation results of standard DE and δDE as kinematics inversion methods over
the workspace of the planar robot manipulator.

DE
δDE (δ,β,σ)

(6 %, 10 %, 0◦ )(1) (6 %, 10 %, 0.2◦ )(2) (2 %, 10 %, 0◦ )(3)

E 2.32E-05± 2.46E-04(98.9) 1.58E-05± 2.59E-04(98.7) 1.47E-05± 2.61E-04(99.7) 2.19E-06± 7.06E-06(99.9)

EP(mm) 1.05E-02± 2.52E-02(98.9) 1.54E-02± 2.58E-01(98.7) 1.45E-02± 2.61E-01(99.7) 1.47E-03± 6.33E-03(99.9)

EO(deg.) 5.62E-03± 1.10E-01(99.9) 1.48E-04± 2.83E-03(100) 8.05E-05± 2.72E-04(100) 3.04E-04± 8.28E-04(100)

GEN 62.03± 13.05 31.43± 5.82 33.56± 5.96 46.85± 8.03

AR (%) 49.33 45.90 24.47
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Figure 6.2: Convergence curves of DE (dashed line) and δDE as inverse kinematics methods
for a planar robot manipulator. Curves correspond to the average error obtained from one
thousand trials over the reacheable workspace of the robot. The discarding mechanism was
set to different values of the (a) standard deviation (σ), and (b) discarding size (δ) to test
different features of the search.

distributed candidate solutions around a small set of the top best solutions in the
current population.

According to the results in Table 6.4, a better overall accuracy performance is
obtained when combining migration with local search, without considerably deteri-
orating the convergence speed improvement provided by migration. Figure 6.2(a)
illustrates the marginal impact that the increase of the local search length distri-
bution has on the convergence speed during the early stages of the optimization
process.

Although large values of the discarding size (δ) can significantly improve the
convergence speed (up to 50 % respect to the standard DE), it also increases the
computational cost by proportionally increasing the number of function evaluations
in each generation. Therefore, we ran a third simulation experiment in which the
value of δ was reduced to 2 % of the population size, while the other parameters
were kept unaltered (β = 10 % and σ = 0◦ ). Results in Table 6.4 show that by
decreasing half of the total number of discarded solutions in each generation, the
convergence speed decreased from 50 % (δ = 6 %) down to 27.47 % (δ = 2 %)
of average acceleration rate (see Figure 6.2(b)). These preliminary results would
suggest that in a migration-only scheme the impact of the discarding size value is
almost inversely proportional to the number of generations required to converge.
Noteworthy, in this case a lower value of the discarding size improved the solution
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Figure 6.3: Probability of success of standard DE (dashed line) and δDE (solid line) over
successive generations.

accuracy and success ratio performance.
These simulation results showed that δDE outperforms standard DE in conver-

gence speed. It exhibits an improvement of almost 50 % in the average number
of iterations required to reach a position and orientation error below the prede-
fined threshold values. Moreover, δDE also provides competitive accuracy values
in comparison to the standard DE while improving its convergence success ratio.
Figure 6.3 compares the probability of success of DE and δDE (6 %, 10 %, 0.2◦ )
during the evolutionary process. It can be observed that δDE substantially improves
the efficiency of the search, such that, by the fiftieth generation the probability of
convergence is almost of 100 %, compared to the approximately 20 % probability
of the standard DE.

6.3.2 Pose Testbed

The inverse kinematics of the planar robot manipulator admits two solutions for
any end-effector pose in the workspace, commonly knowns as elbow-up and elbow-
down configurations. The exception occurs when the robot is at a singular joint
configuration, and thus, the inverse kinematics only has one solution. This feature
is examined by solving the inverse kinematics problem of four different end-effector
pose coordinates, three of which correspond to non-singular joint configurations
(ξ2, ξ3, ξ4), and a one to a singularity (ξ1). The target end-effector coordinates and
one of the two possible joint configuration solution are shown in the Figure 6.4. The
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Figure 6.4: Simulation testbed for the inverse kinematics of the three DOF robot manipula-
tor.

performance of δDE was again tested for the same parameter settings considered
in the previous simulation experiment.

The simulation results reported in Table 6.5 are consistent with the convergence
performance observed in the previous simulation experiment. As in that case, the
migration-only strategy provided a noticeable 46 % improvement on the conver-
gence speed, in comparison to standard DE and the other two δDE configurations;
but it also deteriorated the efficiency of the search by decreasing its success ratio.
Again, the best overall performance was obtained combining migration and local
search.

These results allow us to highlight two important advantages of δDE as kinemat-
ics inversion method. Firstly, the performance of population-based optimization
methods does not degrade around singularities. And secondly, in comparison to
standard DE, δDE provides better accuracy (lower errors) and competitive success
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Figure 6.5: Convergence curves of δDE (solid line) and standard DE (dashed line) on the
kinematics inversion of four different target pose vector of a planar robot manipulator.
Curves correspond to the average fitness over one hundred trials for each target point in
the testbed, and discarding parameters (6 %, 10 %, 0.2◦ ).

rates values. Furthermore, experimental results also revealed a remarkable 46.40 %
acceleration improvement on the convergence speed (see Figure 6.5). This shows
that our memetic approach is able to enhance the local search capabilities of DE
without deteriorating its global search performance.

6.3.3 Path Generation

A third simulation experiment was set to test the flexibility of the δDE scheme
as kinematic inversion method. A joint path was solved from a sequence of target
nodes that defined a circular path, with origin at (0.2, 0.2)m from the robot base
and a radius of 0.05m. For each node of the path, the inverse kinematics was solved
with a tolerance of 1mm. Also, it was assumed that the robot manipulator was
initially at its zero configuration, i.e., qk=0 = (0◦ , 0◦ , 0◦ )�. Based on the previous
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Figure 6.6: Comparison of the accuracy and convergence speed of standard DE (dashed
line) and δDE (solid line) at each node of a circular target path by a planar robot manipu-
lator. (a) Position accuracy. (b) Number of generations for convergence.

simulation experiments, δDE was set to (6 %, 10 %, 0.2◦ ) as discarding parameters.
Results correspond to one hundred independent trials.

Simulation results shows competitive values between both algorithms on the
overall position accuracy and joint total displacement along the path. In this case,
δDE produced an average position error of 1.53E+01mm, which gives an average
accuracy of approximately 0.73mm for each node. The largest errors occurred be-
tween the tenth and fifteenth nodes (third quadrant of the circumference) due to
the proximity of the second and third joints to the upper joint limit (+90◦ ). How-
ever, this could be circumvented by increasing the value of the weighting factor
w in (5.16), and thus, allowing a greater displacement of the first joint, yet still
generating smooth joint transitions. Further, the most significant improvement was
observed in the convergence speed, outperforming DE with a 43.13 % of accelera-
tion rate. A comparison on the distribution of the position error and the number of
generations in each node of the path of standard DE and δDE is illustrated in Fig-
ure 6.6. Moreover, in Figure 6.7 the target circular path and the solution joint path
obtained for a single run of δDE are illustrated. In this figure it can be observed that
the obtained joint path solution imposes a smooth transition between nodes while
following the target path with high-accuracy. These results verify the flexibility of
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Figure 6.7: δDE solution to the path generation problem for a planar robot manipulator.

optimization-based inverse kinematics approach.

6.4 Anthropomorphic robot manipulator

In this section, we consider the kinematics inversion problem of an anthropo-
morphic robot manipulator. The PUMA robot manipulator is a benchmark robotic
platform widely used in industrial and research applications. The anthropomorphic
kinematics of the arm features six links and six rotational joints (6 DOF), arranged
such that the first three joints (waist - shoulder - elbow) position the end-effector
and the last three (wrist) orient it (see Figure 6.8). Kinematic D-H parameters and
joint limits of the PUMA robot manipulator are listed in Table 6.6.

Figure 6.8: Antropomorphic robot manipulator with revolute joints (6 DOF).
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Table 6.6: Kinematic parameters and joint limits of the six DOF robot manipulator (Elgaz-
zar, 1985).

Joint aj αj dj θj q
(lo)
j q

(hi)
j

1 0m 90◦ 0m θ1 -160◦ 160◦

2 0.4318m 0◦ 0m θ2 -225◦ 45◦

3 0.0191m -90◦ 0.1254m θ3 -45◦ 225◦

4 0m 90◦ 0.4318m θ4 -110◦ 170◦

5 0m -90◦ 0m θ5 -100◦ 100◦

6 0m 0◦ 0m θ6 -266◦ 266◦

6.4.1 Workspace

We tested the convergence behaviour of δDE for different parameter settings. A
preliminary study on the configuration of the discarding parameters revealed that
a fair trade-off between accuracy, speed, and convergence efficiency was obtained
with parameters (10 %, 75 %, 0.5◦ ). Note that, a large value of β implies that the
objective function demands a higher diversity in the elite parent pool. To further
investigate the influence of the discarding size on the search dynamic, this value
was decreased from 10 % to 5 %. Finally, a third parameter setting was considered
by decreasing the value of the standard deviation from 0.5◦ to 0.3 ◦ . Lower stan-
dard deviation values produce more densely distributed candidates around good
solutions, and thus, it is related to the local search length. Simulation results are
reported in Table 6.7.

Simulation results verify that δDE outperforms DE in convergence speed, solu-
tion accuracy, and success ratio. Furthermore, δDE was, in average, around 36 %

Table 6.7: Simulation results of standard DE and δDE as kinematics inversion methods over
the workspace of the anthropomorphic robot manipulator.

DE
δDE (δ,β,σ)

(10 %, 75 %, 0.5◦ )(1) (5 %, 75 %, 0.5◦ )(2) (10 %, 75 %, 0.3◦ )(3)

E 1.55E-04± 9.74E-04(90.6) 2.20E-04± 2.25E-03(98.1) 1.58E-04± 1.35E-03(97.4) 1.29E-04± 1.37E-03(98.1)

EP(mm) 8.71E-02± 6.41E-01(92.7) 7.10E-02± 1.37E+00(99.0) 8.08E-02± 9.13E-01(98.4) 2.18E-02 ± 4.22E-01(99.1)

EO(deg.) 5.21E-02± 3.75E-01(93.9) 1.04E-01± 1.22E+00(99.1) 6.19E-02± 7.86E-01(98.9) 7.83E-02± 9.50E-01(99.0)

GEN 205.28± 43.56(90.6) 127.51± 25.04(98.1) 147.27± 28.93(97.4) 117.55± 21.83(98.1)

AR (%) 37.88 28.26 42.74
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Figure 6.9: Convergence curves of DE (dashed line) and δDE as inverse kinematcis methods
for a anthropomorphic robot manipulator. Curves correspond to the average error obtained
from one thousand trials over the reacheable workspace of the robot. The discarding mech-
anism was set to different values of the (a) standard deviation (σ), and (b) discarding size
(δ) to test its robustness.

faster that standard DE in all discarding configurations. Although outstanding,
these acceleration rates are considerably lower than the almost 50 % reached by
δDE on the inverse kinematics of the planar robot manipulator. This is related to
the parameter setting of δDE, as candidate solutions were replaced with sparsely
distributed solutions in a more complex multimodal search landscape.

In general, the discarding size has a major impact on the performance of the
algorithm, particularly, on its convergence speed. However, these results suggest
a more complex dynamic with the other parameters. In fact, it was necessary to
finely tune the local search length (σ = 0.3◦ ) to obtain a substantial improvement
on the speed rate (42.74 %). In contrast, a lower value of the discarding size (δ
= 5 %) not only decreased convergence speed, but also deteriorated the overall
δDE performance. This contrasts with the behaviour observed for the much simpler
kinematics structure of the planar robot manipulator. Figure 6.9 illustrates the
effect of discarding parameters on the convergence behaviour of δDE as kinematics
inversion method.

The intuition behind the discarding mechanisms is based on the idea that by
continuously replacing poor solutions with fitted elements, the population can be
steered more rapidly towards the optimal solution. Thus far, simulation results have
supported this intuition and they also have suggested that the amount in which
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Figure 6.10: Comparison of the population diversity of standard DE (dashed line) and
different parameter configutarions of δDE (solid line). (a) Local search standar deviation,
and (b) discarding size.

this process enhances the convergence speed is directly proportional to the value
of the discarding size δ. However, seeding the population with a large number of
similar copies of good solutions in each generation might deteriorate the population
diversity.

In (Zaharie, 2003), the author argued that the exploration power of DE intrin-
sically depends on the diversity of the population. This is, the algorithm can ex-
plore more efficiently the search space as more diverse is the information contained
therein the population. In a mainly exploratory scheme as the standard DE, the
population diversity gradually decreases as the population converges. Conversely,
a sharp decrease during early generations might indicate excessive local search and
poor exploration. Therefore, the population diversity represents a good indicator of
the equilibrium between intensification and diversification mechanisms.

Since discarding implements a local search-based migration strategy to over-
come the exploitation deficiencies of standard DE, it would normally decrease the
population diversity after each generation. Indeed, as observed in Figure 6.10,
the population diversity dropped more steeply as the exploitation pressure on the
population increases (large δ and a small σ). A further study on the convergence
failures of δDE and standard DE provided insight on the effect that low population
diversity has on the convergence performance of the algorithm. In this context,
a solution was considered a convergence failure if after a number of generations
(gmax), its position error and/or orientation error was greater than the predefined
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Figure 6.11: Comparison of the average convergance failure curves of standard DE (dashed
line) and δDE (solid line) with parameters (10 %, 75 %, 0.3 ◦ ).

minimum error thresholds. Figure 6.11 compares the average error convergence
curves and population diversity of standard DE and δDE failed solutions. As it can
be observed, the steep descent in population diversity leads δDE to stagnates after
few generations, whereas DE slowly approaches the minimum error value by grad-
ually decreasing the population diversity. In both cases, the convergence behaviour
is undesirable since exploitation and exploration are not balanced.

6.4.2 Pose Testbed

For this simulation experiment, a tesbed with four target points have been con-
sidered. Each point represents a desired position and orientation of the end-effector
within the reachable workspace of the robot manipulator. Accordingly, the target
pose will be represented by the position coordinates p = (px, py, pz) and the mini-
mal set of Euler angles Φ = {φ, γ, ψ}. The inverse kinematics of any feasible pose
admits at least eight joint postures solutions. The target end-effector coordinates
and one possible joint configuration solution are shown in Figure 6.12.

The higher multimodality of the search landscape — compared to the planar
robot arm — compelled to modify the discarding parameter setting to adapt the
mechanism to the search space characteristics. In this case, the problem demanded
to increase exploitation, but within a broader elite pool to maintain diversity. Thus,
as in the previous simulation experiment three parameter settings were considered
for this simulation setup, namely (10 %, 75 %, 0.5◦ ), (10 %, 75 %, 0.3◦ ), and (5 %,
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(a) ξ1 (b) ξ2

(c) ξ3 (d) ξ4

Figure 6.12: Simulation testbed for the 6 DOF PUMA robot manipulator.

75 %, 0.5◦ ). For each experimental point in the testbed and parameter setting, one
hundred independent runs of the algorithm were carried out on the simulation
environment. And in every run the algorithm iterated until a maximum number of
generations (gmax = 300). Simulation results are summarized in the Table 6.8.

Simulation results verify the superior performance of δDE in comparison of stan-
dard DE in terms of accuracy, convergence speed, and success rate. An analysis on
the effect of the discarding parameters over the convergence behaviour of δDE sug-
gested the influential role of the local search length on the solution accuracy, but
more importantly on the improvement of the convergence speed. Further, by de-
creasing the standard deviation value from 0.5◦ to 0.3◦ , while discarding 10 % of
the population in each generation, the acceleration rate was increased by more than
a third to an average of 44 %. This is crucial in terms of the computational cost,
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Figure 6.13: Convergence curves of δDE (solid line) and standard DE on the kinematics
inversion of four different target pose vector of an anthropomorphic robot manipulator.
Curves correspond to the average pose error (E) over one hundred trials for each target
point in the testbed, and δDE (10 %, 75 %, 0.3◦ ).

since contrary to the discarding size, modifying σ does not involve additional func-
tion evaluations in each generation. Figure 6.13 shows the average convergence
curves of the position and orientation error obtained for each point.

Excessive exploitation also has a negative impact on the efficiency of the algo-
rithm, as observed for test points ξ3 and ξ4. Further study showed that convergence
failures occurred due to premature convergence to local minima. This could be
partly explained by the fact that there exist out-of-bounds solutions to the inverse
kinematics close to frontier of the feasible solution space delimited by the joint
limits (constraints). The population is driven towards these suboptimal regions by
the exploration mechanisms, but it gets stuck in the local minima due to the rapid
decrease of population diversity caused by the intensive exploitation of discarding.
These empirical results imply that exists a critical dependency on the tuning of dis-
carding parameters as the dimensionality and complexity of the landscape increase.
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6.4.3 Path Generation

A virtual target path was defined within the robot workspace by sampling Nk

consecutive points from the following sinusoidal parametric equation

pz = A sin
(
B
√
p2x + p2y

)
with with A = 0.1m and B = 1350◦ /m. The path generation problem consisted
of finding the joint configuration of each target node with a tolerance of 1mm in
position error. In addition, the robot was assumed to be initially at rest position
with all of its joints set to zero, i.e., q = (0◦ , 0◦ , 0◦ , 0◦ , 0◦ , 0◦ )>. For this simulation
environment the parameter configuration of δDE was set to (10 %, 75 %, 0.3◦ ).
Figure 6.14 shows the results obtained for the path generation problem after a
single run of δDE.
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Figure 6.14: δDE solution to the path generation problem of an antropomorphic robot
manipulator.

AfterNt independent runs the average of the total position error obtained for the
path was of 0.145mm, which gives an average of 6.90E-03mm of error in each node.
These values are similar to the errors obtained with standard DE. However, δDE was
able to find an overall solution for the path after a total of 702.87 generations in
comparison to the 1148.40 generations required by DE. This represents an average
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Figure 6.15: Comparison of the accuracy and convergence speed of standard DE (dashed
line) and δDE (solid line) at each node of a sinusoidal target path by an anthropomorphic
robot manipulator. (a) Position accuracy. (b) Number of generations for convergence.

acceleration rate of 38.8 % (see Figure 6.15). This shows that δDE provides a
balanced trade-off between convergence speed and accuracy.

6.5 Redundant Robot Manipulator

In this section, we consider the inverse kinematics problem of a redundant robot
manipulator with seven degrees of freedom. The Mitsubishi PA10-7C is a general-
purpose robot manipulator widely used in demanding tasks, such as surgical tool
placement or teleoperated soft tissue manipulation, thanks to its backdrivability, ac-
curate positioning and zero backlash. The arm’s serial kinematics structure features
seven degrees of freedom (7 DOF) provided by seven revolute joints, arranged as
shown in the Figure 6.16. The redundancy entailed by the seventh joint affords
the robot with additional dexterity to meet secondary tasks, such as obstacle and
singularities avoidance.

The joint configuration vector is defined as q = (θ1, θ2, θ3, θ4, θ5, θ6, θ7)
> where

θj represents the angular displacement of joint j. Accordingly, the end-effector
position is described by the rectangular Cartesian coordinates p = (px, py, pz) and
the orientation by the minimal set of Euler angles Φ = {φ, γ, ψ}. Kinematic D-H
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ル

Figure 6.16: PA10 redundant robot manipulator with revolute joints (7 DOF).

Table 6.9: Kinematic parameters and joint limits of the PA10 redundant robot manipulator.

Joint aj αj dj θj q
(lo)
j q

(hi)
j

1 0m -90◦ 0.3170m θ1 -180.00◦ 180.00◦

2 0m 90◦ 0m θ2 -101.05◦ 101.05◦

3 0m -90◦ 0.4500m θ3 -180.00◦ 180.00◦

4 0m 90◦ 0m θ4 -153.73◦ 153.73◦

5 0m -90◦ 0.4800m θ5 -270.00◦ 270.00◦

6 0m 90◦ 0m θ6 -180.00◦ 180.00◦

7 0m 0◦ 0.0700m θ7 -360.00◦ 360.00◦

parameters and joint limits of the PA10 robot arm are listed in Table 6.9.

The inverse kinematics of redundant robot manipulators has infinite solutions,
since the number of independent joints (N = 7) exceeds the number of task vari-
ables in the Cartesian space (m = 6). Conventionally, the strategy followed to
solve the redundant inverse kinematics problem involves formulating an optimiza-
tion problem by defining additional constraints in the configuration or task space
of the robot. To take full advantage of the redundancy these constraints are usually
defined to enhance the dexterity of the robot during the execution of task, e.g., col-
lision avoidance with static or dynamic obstacles. Yet multiple solutions would still
exist to any target end-effector pose. Since our aim here is to examine the perfor-
mance of the proposed memetic approach in comparison to the standard DE scheme
on a highly multimodal search landscape, only the joint limits were considered as
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constraints on the configuration space.

6.5.1 Workspace

In this section, we test the versatility of the proposed optimization-based formu-
lation of the inverse kinematics, and the performance of two differential evolution
schemes in finding a feasible solution. The convergence features of both search
schemes are examined as kinematics inversion methods by solving the inverse kine-
matics of one thousand target pose coordinates randomly sampled from the robot’s
workspace.

Multimodal optimization problems demand robust diversification mechanisms
to explore the search space efficiently and to avoid local minima; however, a mainly
exploratory behaviour also slows the convergence of the algorithm. To speed up the
convergence it becomes necessary to meet a trade-off between exploring different
regions of the optimization landscape and exploiting promising ones. Successfully
meeting this balance is particularly challenging in highly multimodal optimization
problems as the inverse kinematics of redundant robot manipulators.

We compare the performance of the standard DE and different parameter set-
tings of δDE to highlight the aforementioned features of the search. On the one
hand, the slow but robust exploratory behaviour of standard DE; and on the other
hand, the faster but less reliable intensification effect provided by discarding to δDE.
The latter is further investigated by considering different values of the discarding
size, with the aim to increase the intensification pressure over the population, and
therefore, to accelerate the convergence speed. Two different values of the discard-
ing size were considered in a highly elitist δDE configuration, .i.e., small elite pool
size (β = 12 %). To further enhance intensification, the local search length was
also set to a small value (σ = 0.1◦ ). This means that discarding produced densely
distributed solutions around the top best elements in the current population. In
the first setup a relatively small value of the discarding size (δ = 5 %) was consid-
ered to examine the effect of this parameter on the search dynamic. In a second
parameter setup this parameter was increased (δ = 12 %) to further enhance the
intensification on the search.

Figure 6.17 compares the evolution of the pose error of the best candidate solu-
tion and the population diversity during the first two hundred and fifty generations
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Figure 6.17: Comparison of the convergence behaviour of standard DE (dashed line) and
δDE (solid lines) as inverse kinematics methods of an redundant robot manipulator. Curves
correspond to the average values obtained from one thousand trials over the reachable
workspace of the robot. The discarding mechanism was set to different values of the dis-
carding size (δ) to show its impact over successive generations. (a) Pose error. (b) Popula-
tion diversity.

of the search process. The strong exploratory tendency of standard DE becomes
evident on the high diversity exhibited by the population over the successive gener-
ations, that translates into a slow convergence speed. In contrast, both configura-
tions of δDE considerably increase the convergence speed at expense of drastically
decreasing the population diversity.

The average accuracy, convergence speed and success ratio of each algorithm are
summarized in Table 6.10. Noteworthy, standard DE completely failed to solve the
inverse kinematics of the redundant robot manipulator. By increasing the number
of generations to three thousand, standard DE yielded better results in terms of
accuracy and success rate, but at the expense of prohibitive slow convergence speed.
In contrast, δDE was able to find high-accuracy solutions in position and orientation
considerably faster than standard DE, reaching acceleration rates of 88.8 % (δ =

4 %) and 91.60 % (δ = 12 %), respectively.These preliminary results suggest a
significant improvement on the overall performance of the search by the discarding
strategy in highly multimodal optimization problems.
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Table 6.10: Simulation results of standard DE and δDE as kinematics inversion methods
over the workspace of the redundant robot manipulator.

DE1 DE2 δDE (δ,β,σ)1

(4 %, 12 %, 0.1◦ )(1) (12 %, 12 %, 0.1◦ )(2)

E 4.00E-02± 2.29E-02(0.0) 1.30E-05± 2.62E-04(99.1) 1.08E-05 ± 1.66E-04(99.7) 9.84E-05± 1.42E-03(99.0)

EP(mm) 2.05E+01± 1.43E+01(0.0) 1.12E-02± 2.57E-01(99.1) 8.60E-03 ± 1.66E-01(99.7) 8.06E-02± 1.33E+00(99.1)

EO(deg.) 6.71E+00± 4.85E+00(0.2) 5.07E-04± 9.56E-03(99.8) 7.20E-04 ± 8.49E-04(100) 5.32E-03± 1.41E-01(99.8)

GEN – 1446.85± 428.08 162.00± 40.43 121.59± 54.21

AR (%) – – 88.8 91.60

1 gmax = 500.
2 gmax = 3000.

(a) ξ1 (b) ξ2

(c) ξ3 (d) ξ4

Figure 6.18: Pose testbed for the 7 DOF PA10 robot manipulator.

6.5.2 Pose Testbed

A simulation testbed with four target pose coordinates has been considered for
this simulation experiment. Figure 6.18 shows one of the multiple solutions to the
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Figure 6.19: Convergence curves of δDE (solid line) and standard DE (dasehed line) on the
kinematics inversion of four different target pose vector of a redundant robot manipulator.
Curves correspond to the average pose error (E) over one hundred trials for each target
point in the testbed, and δDE (12 %, 12 %, 0.1◦ ).

inverse kinematics of each target pose of the end-effector proposed in the testbed.
The aim is to asses the repeatability of each algorithm given a highly multimodal
optimization problem. Simulation results reported in Table 6.11 correspond to the
average value obtained after one hundred independent runs of the DE and different
parameter configurations of δDE.

These results are consistent with the convergence behaviour observed in the pre-
vious experiment. Once again, after five hundred generations, standard DE failed to
converge in almost all runs of the algorithm. The exception occurred in the first test
point (ξ1), that corresponds to the fully extended arm configuration (singularity).
In this case, DE was able to find a solution with errors below the predefined thresh-
olds. In contrast, by introducing a simple migration/local search mechanism, δDE
was able to provide high-accuracy solutions to the redundant inverse kinematics
problem of all target pose coordinates in the test suit.
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Moreover, δDE was significantly faster than standard DE while still achieving
high-accuracy solutions. More importantly, these simulation results verify the al-
most proportional relationship between the discarding size and the convergence
speed, but also its impact on the robustness of the algorithm. Thus, comparing the
average number of generations required to reach the error thresholds respect to
standard DE, δDE provided an average of 80.06 % of acceleration with a 4 % of
discarding size, while a 90.09 % was obtained increasing the number of discarded
solutions up to 12 % of the population size in each generation. Figure 6.19 illus-
trates the acceleration effect of discarding (δ = 12 %).

6.5.3 Path Generation

In this section, the performance of the proposed δDE kinematics inversion scheme
was examined for the path generation problem of a redundant robot manipula-
tor. The commanded task consisted of following a straight line segment, defined
in the robot’s reachable workspace as a set of consecutive desired position co-
ordinates (Nk = 21), with initial and final position at p0 = (0.1, 0.1, 0.1)m and
pNk = (0.3, 0.4, 0.7)m, respectively. It was also assumed that the robot was initially
at rest position with all of its joints at zero degrees.

This path generation problem was solved sequentially for each node by mini-
mizing the end-effector position error and the joint displacement from the previous
node. The results obtained after one hundred independent runs of δDE (12 %,
12 %, 0.1◦ ) provided an average total position error of 14.29mm, which repre-
sents an average error of 0.6803mm per node on the path. Moreover, for the same
task δDE was able to find a solution 68.60 % faster than standard DE, with an av-
erage total of 651.42 generations in comparison to the 2074.43 required by DE.
Figure 6.20 shows the solution joint path for the 7 DOF redundant robot manipula-
tor, and Figure 6.21 illustrates the distribution of the position error and the number
of generations along the target path.
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(a) Joint path. (b) 7 DOF robot manipulator.

Figure 6.20: δDE solution to the path generation problem of a 7 DOF robot manipulator.

δ

(a) Average position error.
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(b) Average number of generations.

Figure 6.21: Comparison of the average error and number of generations of standard DE
(dashed line) and δDE (solid line) along a straight line path.
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6.6 Computational Cost

The previous simulation results showed the positive impact of discarding on
the convergence speed of standard DE. Thus far, these improvements have been
expressed in terms of the number of generations required to reach a predefined ob-
jective function value. Nonetheless, a reduction in the number of generations might
not necessarily yield a lower computational cost, if it does not entail a reduction on
the number of function evaluations.

In general, the evaluation of the objective function demands most of the com-
putational effort in each generation of the evolutionary process. This holds par-
ticularly true for the inverse kinematics problem, since the evaluation of the pose
error for each candidate solution involves a two-step procedure, namely mapping
via forward kinematics and computing the pose error. Considering that the discard-
ing mechanism increases the number of function evaluations in proportion to the
discarding size (δ), we can directly deduce that a single iteration of δDE is actually
computationally more expensive than one of the standard DE.

With the aim of estimating the computational cost of δDE for the inverse kine-
matics problem, the execution time was measured in all the simulation experiments.
These measurements are based on simulations run on a MacBook Pro 2.5 GHz Intel
Core I5. The additional computational cost introduced by discarding was computed
considering the worst case scenario, in this case, the largest value of discarding size
(δ) for each robot.

Taking as reference the execution time of standard DE for a fixed number of
generations and neglecting the initialization time, it was estimated that the cost
in seconds associated to the discarding in each generation was of 0.230ms (δ =

6 %), 0.863ms (δ = 10 %), and 0.996ms (δ = 12 %) for the three, six, and seven
DOF robot manipulators, respectively. This represents a total increase in time of
approximated 35 %, 52 %, and 29 % respect to the standard DE for the same
number of generations.

The improvement in time carried by a decrease in the number of iteration was
also computed. For this, the best result obtained in convergence speed for each
robot manipulator was compared to the time of convergence of standard DE. Results
show that, although the acceleration rates obtained with δDE were outstanding
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Figure 6.22: Time of convergence of standard DE and δDE for the inverse kinematics prob-
lem.

in terms of number of generations, the gains in time are rather modest. Thus,
an acceleration rate of 49.33 % only represents an improvement of 1.6 % for the
planar robot, and a 42.74 % translate into a 16 % for the PUMA arm. The exception
occurred with the 7 DOF robot manipulator since that a 91.60 % of acceleration
rate, provided a gain in time of approximately 88 %.

Figure 6.22 shows the computational time required for convergence (error thresh-
old) by standard DE and δDE for the inverse kinematics of robot manipulators. In
this figure δDE (1), δDE (2), and δDE (3) correspond to parameter settings used in
the previous sections to test the performance of δDE in the order that they appear
(from left to right) on the Tables 6.4, 6.7, and 6.10.

6.7 Summary

In this chapter we have presented a simulation-based study on the performance
of the memetic differential evolution scheme (δDE) as kinematics inversion method.
δDE combines the powerful exploration features of standard DE search scheme
with a local search operator to enhance its convergence speed rate. Based on the
simulation experiments performed on three benchmark robot manipulators it can
be summarized that:

• The optimization-based approach provides a flexible framework for the in-
verse kinematics problem. It readily admits redefining the optimization crite-
ria according to the commanded task.
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• The memetic approach exhibits an overall satisfactory performance for the in-
verse kinematics problem of robot manipulators. Results revealed a consistent
convergence behaviour on different robotic platforms and degrees of freedom.

• Discarding provides an efficient local refinement strategy without disrupting
the overall global performance of standard DE.

• In general, δDE generates inverse kinematics solutions with lower average
error values in position and orientation than those obtained with DE.

• δDE yields a substantial improvement on the convergence speed rate in terms
of the average number of iterations required to reach a desired end-effector
accuracy. The replacement strategy of discarding leads the population to
rapidly group around the global minimizers.

• A trade-off among accuracy, success, computational cost and convergence
speed hinge on a fine tuning of control parameters δ, β, and σ.

• Although increasing the value of δ significantly upgrades convergence speed,
this might also be disadvantageous since excessive exploitation might lead to
premature convergence.

• Large values of δ proportionally increases the number of function evaluations
in each iterations and consequently the actual computational cost.



Chapter 7

δDE Control Parameters

The convergence performance of δDE hinges on the well-balanced behaviour be-
tween exploration and exploitation of the search space. As it can be easily deduced
from the simulation results obtained in the previous chapter, control parameters
play a key role at modifying the diversification and intensification features of the
search, according to the requirements of the objective function landscape.

Nonetheless, parameter setting is not a straightforward task and by itself rep-
resents a multiobjective optimization problem. Moreover, as the number of pa-
rameters grows, it becomes more difficult to keep track on the individual influence
of each parameter over the search dynamic. In practice, the parameter setting is
usually approached as a trial and error process based on either reference values
suggested by benchmark studies, or ad-hoc empirical data. In the best scenario,
this process would provide a sufficiently good trade-off in accuracy, efficiency, and
convergence speed; but more often, further tuning would be necessary to adapt the
parameters to the requirements of the optimization problem in hand.

δDE has six different control parameters, namely population size (NP ), muta-
tion scale factor (F ), crossover rate (CR), discarding size (δ), elite pool size (β), and
local search length (σ). The first three represent diversification parameters since
they control the exploratory search scheme; whereas the last three are intensifica-
tion parameters that regulate the discarding mechanism. All control parameters are
constant values set by the user.

117
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In this chapter, we address the parameter setting of δDE for the inverse kine-
matics problem of robot manipulators, based on empirical data obtained from sim-
ulation experiments. The aim is to gain further insight on the influence of control
parameters on the convergence behaviour of δDE, rather than to provide a set of
rules for their tuning. Otherwise, it would be necessary a thorough testing on a
wider range of functions, which is out of the scope of this dissertation.

The study is divided in two parts. In the first part we have focused on the dis-
carding parameters, by independently varying their values while the diversification
parameters are set constant. The idea is to examine how much improvement (or
not) can be obtained on the performance of the algorithm on the basis of a rough
tuning of DE parameters. In the second part, the setting of all parameters are
treated as a direct search problem, such as to obtain an (almost) optimum conver-
gence performance for the inverse kinematics of a redundant robot manipulator.

7.1 Discarding Parameters

In this section, we seek to investigate the role that each of the discarding param-
eters plays in the convergence behaviour of δDE as kinematics inversion method.
The study has a dual purpose: (i) getting a snapshot of the expected convergence
behaviour of δDE when the intensification pressure varies, and (ii) quantifying the
amount of improvement that can be obtained on the performance of the algorithm
when the diversification parameters are roughly tuned. The discarding parameters
and their operating values are briefly summarized as follows:

• Discarding Size (δ). The discarding size or discarding rate represents the
number of candidate solutions that are discarded in each generation, and
therefore, it controls the migration rate of δDE. For uniformity on the analysis
across different applications, this parameter is usually defined as a percent-
age value of the population size rather than as an exact number of discarded
solutions in each generation. For its analysis, we have considered values that
range between zero and fifty percent of the total population size. Note that
a zero percent of discarding rate implies that none of the candidate solutions
are discarded whatsoever, i.e., the standard DE scheme.
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• Elite Pool Size (β). The replacement strategy of the discarding mechanism
is based on the local refinement of candidate solutions sampled from a pool
with the best fitted individuals. The elite pool size (β) represents the number
of candidate solutions contained therein this elite sub-population. Thereby,
small values of β promote an elitist local search, whereas large values increase
the diversity of the seed pool. Further, to avoid excessive exploitation, this
parameter is usually set greater than the discarding size (δ); however, for
the purposes of this study this condition has been relaxed to allow different
sampling scenarios. To assess the influence of the elite pool size on the search,
its value has been conveniently varied from (1/NP ) ∗ 100 to (100− δ) percent
of the population size. That is, we have considered highly elitist scenarios, in
which only the best candidate solution is used as seed for replacement, as well
as highly diverse scenarios, in which almost all individuals in the population
belong to the replacement parent pool.

• Local Search Length (σ). Discarding implements a local search mechanism
based on the Solis-Wets local improvement process. For it, we assume that
every candidate solution in the population represents the mean vector of a
D-variate normal random distribution with a common standard deviation σ.
Therefore, the local search mechanism of discarding is just a sampling process
modelled by a normal random function, whereby new solutions are generated
in the vicinity of existing ones. In this scheme, the parameter σ determines
the local distribution of the new candidate solution around the mean vector,
and therefore, it controls the local search length. To study its influence on the
search dynamic of δDE, we have considered values of σ that range from zero
to twenty degrees. Note that when the value of σ is set to zero, the discarding
mechanism transforms into a migration-only operator.

The role of each of the discarding parameters was examined in independent
simulation tests with the aim of keeping track of the individual impact of their val-
ues on the convergence behaviour of δDE. The simulation test was designed so that
only one discarding parameter was iteratively varied while the other two and the
diversification parameters, namely the population size, mutation scale factor, and
crossover rate, were kept constant at their reference values (see Table 7.1). To
provide a broad assessment on the performance of the memetic algorithm under
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Table 7.1: Reference values of the δDE control parameters.

DOF F CR NP δ β σ gmax

3
0.5 0.8

50
5 % 50 % 2◦

100

6 150 300

7 250 500

different parameter settings, each iteration consisted of one hundred independent
trials. At each trial, the inverse kinematics was solved for a target pose randomly
sampled from the robot reachable workspace. The (near-) optimal solution was
then obtained as the joint configuration vector that yielded the minimum pose er-
ror after that a maximum number of generations had elapsed. For each parameter
setting (iteration), the overall performance of the algorithm was evaluated based
on the average values of the accuracy, success rate, and convergence speed obtained
from these trials. To further examine the scalability of this analysis on the dimen-
sion of the search space, the tests on the discarding parameters were repeated for
three different robot manipulators with three, six, and seven degrees of freedom,
respectively.

7.1.1 Success Rate

The success rate of δDE was estimated as the ratio of trials that converge to
the true optimal solution. Inasmuch as the resolution of sensors and the control
system of robot manipulators impose a maximum end-effector positioning accuracy,
the optimality convergence condition was relaxed to accept near-optimal solutions
for the inverse kinematics problem. In this regard, the convergence of any trial
was considered a success if the inverse kinematics solution afforded a position and
orientation error below a predefined tolerance error value; otherwise, the trial was
considered a failure. Although in practice the positioning accuracy varies among
robot manipulators, for the sake of the comparison, the error tolerance was set to
0.1mm in position and 0.1◦ in orientation for all robots.

Figure 7.1 illustrates the effect of the discarding parameters on the search effi-
ciency of δDE as kinematics inversion method. Simulation results are represented
for each control parameter by the scatter plot of the estimated criteria and a fitted
trend curve (solid line) that describes the overall tendency of the average. Results
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(a) 3 DOF planar robot manipulator.
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(b) 6 DOF PUMA robot manipulator.
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(c) 7 DOF PA-10 robot manipulator.

Figure 7.1: Success rate of δDE as a function of the discarding parameters: discarding size
(top), elite pool size (middle), and local search length (bottom).

can be summarized as follows:

δ The response to the discarding rate can be divided into three well differenti-
ated regions. The first encompasses values of the discarding rate lower than
10 %, the second spans between approximately 10 % and 30 %, and the third
corresponds to values greater than 30 %. In the first region, the efficiency of
the search steadily improves as the migration rate increases from zero (i.e.,
δDE without discarding). Around 10 %, the curve reaches its maximum value
and then it flattens, that is, any further increase below 30 % neither signif-
icantly enhances nor worsen the success rate of δDE. Finally, a noticeable
decline on the success rate is observed for values greater than 30 % of the
discarding rate.
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β Simulation results show that the response to the elite pool size is more de-
pendent to the problem landscape than the other discarding parameters. With
the exception of the inverse kinematics of the planar robot manipulator, in-
creasing the value of the replacement pool size has contrasting effects on the
performance of the algorithm. On the one hand, for the non-redundant PUMA
robot arm the convergence performance noticeable improves as the diversity
of the replacement pool increases. On the other hand, the inverse kinematics
problem of the redundant PA-10 robot demands a more elitist replacement
strategy with lower values of β.

σ A steady improvement on the success rate is obtained with small values of
standard deviation; however, this is followed by a marked decline as its value
increases. According to the simulation data the best results are obtained with
values below 5◦ .

Having regard the characteristics of the inverse kinematics problem, these re-
sults suggest that as the dimension of the search space grows, a good performance
of δDE is obtained increasing the intensification pressure but with a lower number
of migrant candidate solutions.

7.1.2 Accuracy

The accuracy of the algorithm was defined as the position and orientation error
yielded by the solution in each trial. Aside from analysing the overall performance
in accuracy of each parameter setting, we were interested in studying the conver-
gence behaviour of the algorithm related to its success ratio. Therefore, for the
purpose of the analysis, solutions were classified as “success” or “failure” depend-
ing on whether or not their position and orientation errors fell below the predefined
tolerance accuracy values (0.1mm and 0.1◦ ).

Figure 7.2 illustrates the distribution and orientation error of the “success” op-
timal solutions found for different settings of the control parameters. Based on the
simulation data it can be highlighted that:
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δ β σ

δ β σ

(a) 3 DOF planar robot manipulator.

δ β σ

δ β σ

(b) 6 DOF PUMA robot manipulator.

δ β σ

δ β σ

(c) 7 DOF PA-10 robot manipulator.

Figure 7.2: Average position and orientation errors of “success” trials as a function of the
discarding parameters: discarding size (left), elite pool size (center), and local search length
(right).
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δ The error smoothly decreases, in average and standard deviation, until it
reaches a minimum value around 15 % – 20 % of discarding rate. For val-
ues above this range, migration disrupts the exploration of the search space
and the error starts increasing. The U-shaped curve described by the accuracy
and success rate responses, suggest that the amount of improvement that can
be obtained with migration strategies is limited.

β, σ The error grows linearly and become more sparsely distributed as their values
increase. In the case of the 7 DOF redundant robot manipulator the linear
tendency shows a steep slope, since the high-multimodality of the inverse
kinematics problem demands small values of both parameters. Note that for
values of σ greater than 15◦ no data is available since the success rate of δDE
drops to zero (see Figure 7.1(c)).

With the aim to understand how the algorithm fails, and therefore, to gain use-
ful insight on the convergence behaviour of δDE under different parameter settings,
the average errors of the “failure” solutions were also examined. Figure 7.3 illus-
trates the average position and orientation errors of the solutions that failed to
converge according to the considered accuracy tolerance value. In this figure we
have omitted the results obtained for the kinematics inversion of the 3 DOF pla-
nar robot manipulator, since in this case, it did not provide significant data for the
analysis. Therefore, for each control parameter the results were the following:

δ As the value of the discarding rate increases, the algorithm fails more often
and with larger errors, particularly in position. In fact, for values greater
than 20 % the behaviour of δDE is considerable poorer in comparison to the
standard DE (δ = 0 %). The exception occurs with the orientation error of the
redundant robot manipulator, but not with its position error.

β The overall effect of increasing this value exhibits a decreasing trend; however,
the average error remains considerably above the tolerance threshold.
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δ β σ

δ β σ

(a) 6 DOF PUMA robot manipulator.

δ β σ

δ β σ

(b) 7 DOF PA-10 robot manipulator.

Figure 7.3: Average position and orientation errors of “failure” trials as a function of the
discarding parameters: discarding size (left), elite pool size (center), and local search length
(right).

σ A distinct behaviour can be observed in the non-redundant and redundant in-
verse kinematics. Although, in the non-redundant case the average error curve
shows a decreasing tendency for small values of σ, the error is almost constant
for values greater than 10◦ . Conversely, in the redundant case the average
error decreases until it reaches a minimum value and then increases almost
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linearly. In both, for relatively small values of σ, the local search replacement
strategy yields a better performance than the migration-only scheme set by a
standard deviation of zero degrees.

In terms of accuracy, large values of the three discarding parameters have a
negative impact on the overall performance of δDE. For instance, by increasing
the number of discarded solutions, the algorithm would not only be discarding
poor solutions (low fitness), but also promising elements with intermediate fitness
values. The derived loss of population diversity leads to convergence failure due to
the disruption of the exploration mechanisms. Moreover, large values of β promote
diversity in detriment to a more focused local search. Similarly, large values of σ
also distort the base of the local search.

7.1.3 Convergence Speed

The convergence speed is regarded in terms of the average number of genera-
tions required to reach a (near-)optimal solution. Figure 7.4 shows the behaviour
of the convergence speed for different parameter settings of the memetic algorithm:

δ Simulation results have supported the hypothesis of the inverse proportional
relationship between the discarding rate and the number of generations re-
quired to reach a predefined accuracy tolerance value. However, according
to these results, this would only hold for values lower than approximately
20 % of discarding rate. For greater values, the number of generations in-
creases almost quadratically. In the case of the redundant robot manipulator,
the maximum improvement occurs around five percent of discarding rate, but
the performance deteriorates slower than in the non-redundant robot manip-
ulators.

β, σ The diversification role of these parameters has the effect to slow down the
search process as their values increase, and consequently, does the number of
generations required for convergence (see Figure 7.4(a)).
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(c) 7 DOF PA-10 robot manipulator.

Figure 7.4: Convergence speed of δDE as a function of the discarding parameters: discard-
ing size (top), elite pool size (middle), and local search length (bottom).

Simulation results verify the main role of the discarding rate in the improvement
of the convergence speed of δDE, although its effect on the algorithm is limited to
relatively small rate values.

7.2 δDE parameters

Thus far we have advocated for the superior performance of δDE over the stan-
dard DE. This claim have been based on the belief that the DE lacks of efficient
exploitation mechanisms, and instead, it excessively promotes an exploratory be-
haviour of the search. This deficiency is further enhanced by the large values of
the mutation scale factor and crossover rate usually demanded by multimodal ob-
jective functions. The δDE memetic approach attempts to overcome this deficiency
by transferring the exploitation task onto an additional local search mechanism
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(discarding). This approach increases the complexity of the search dynamic of dif-
ferential evolution, but also provides flexibility in the configuration setting of the
search.

Considering that the memetic algorithm is the result of combining the exploratory
strategy of standard DE with the intensification mechanism of discarding, two forthright
questions arise: (i) Would discarding have a significant impact on the search be-
haviour when standard DE parameters are well-tuned?, and if so, (ii) is it its imple-
mentation computationally worth it?.

The study in the previous sections shed some light on the convergence features
of δDE when the intensification pressure on the search varies. In addition, it pro-
vided useful intuition on how much improvement can be obtained on the accuracy
and convergence speed on the basis of roughly tuned diversification parameters.

Nonetheless, to be able to understand the true potential of discarding as acceler-
ation mechanism, it is necessary to address the parameter setting of δDE by consid-
ering all of its control parameters. That is, finding a parameter setting that provides
an almost optimal convergence performance for the inverse kinematics problem.
The parameter setting is thus conceived as a multiobjective optimization problem,
that is, the optimal solution must simultaneously satisfy multiple conflicting crite-
ria, for example: high accuracy, good convergence speed, and robustness. That
means finding Pareto optimal solutions that set a trade-off among these conflicting
criteria according to which aspect of the performance one needs to emphasize.

Although there exists an extensive literature devoted to multiobjective optimi-
zation, in this section the parameter setting problem is tackled with a simpler ap-
proach. Basically, it is supported on the direct testing of δDE over all possible com-
binations of a discrete set of control parameters values. The parameters can then
be chosen according to different performance criteria in an a posteriori analysis of
the results.

The study on control parameters of δDE has been divided in two parts. The
first focuses on the diversification parameters, namely population size, mutation
scale factor, and crossover rate. The second part is devoted to the intensification
parameters: discarding rate, elite pool size, and local search length, supported by
the results obtained in the first part for the diversification parameters. Since in
terms of the simulation time performance the major disparities between standard
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DE and δDE have been observed in the solution of the inverse kinematics of the PA-
10 robot manipulator, the following study on the control parameters will be solely
restricted to the case of the redundant seven degrees of freedom robot manipulator.

7.2.1 Diversification Parameters

Let us first consider the diversification parameters of δDE, that is, the population
size (NP ), mutation scale factor (F ), and crossover rate (CR). These are regarded
as diversification parameters since their values regulate the variation mechanisms
of δDE, and therefore, are related to the exploratory behaviour of the search. These
are also the original control parameters of the DE/rand/1/bin search scheme, upon
which the δDE memetic algorithm is based on.

The control parameters of δDE, including the ones that regulate discarding, are
constant positive values set by the user. The population size (NP ) is usually de-
fined based on the dimension of the search space (D), such that, depending on the
attributes of the objective function its value would typically vary between 2D and
100D. By definition, the mutation scale factor (F ) can take any value greater than
zero; however, in practice, values greater than one are rarely used. In contrast, the
crossover rate (CR) should be set less than or equal to one.

Here we seek a feasible set of diversification parameters for the inverse kine-
matics problem that yield the best performance of δDE without discarding, i.e., the
discarding rate set to zero. In this context, by best performance we understand the
lowest pose error and highest success rate for a given error threshold and a max-
imum number of generations. Alongside with these requirements, the parameters
should be finally set to the lowest possible value, particularly the population size.

The process of finding the best set of diversification parameters for the inverse
kinematics problem consisted in a two-step procedure. First, the parameters were
varied within a feasible range of values in a nested loop, such that, every possible
combination among a discrete set was tested. In this step, the performance of the
algorithm was evaluated based on the results of the average pose error and overall
success rate, obtained from one hundred independent simulation trials run on the
inverse inverse kinematics problem. The preliminary parameter set obtained from
the first step underwent a second round of testing to further asses their robustness.
Thereby, one parameter was varied around its preliminary best value while keeping
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(c) Crossover rate (CR)

Figure 7.5: Accuracy and success rate behaviour of δDE without discarding as a function
of the diversification parameters: population size (left), mutation scale factor (center), and
crossover rate (right).

the other two parameters unaltered. Contrary to the first step, this process was re-
peated independently for each individual parameter. This two-step process yielded
values of NP = 1000, F = 0.2, and CR = 1. Figure 7.5 shows the behaviour of the
accuracy and success rate of δDE (without discarding) for different values of the
diversification parameters.

These results provide useful information about the search dynamic required by
the inverse kinematics problem of a redundant robot manipulator. Further, these
results also reveal the critical dependence of differential evolution on the setting
of its control parameters. This being particularly noticeable for the mutation scale
factor (F ) and the crossover rate (CR) when a relatively large population size is
considered (see Figure 7.5). According to the observed behaviour of the memetic
algorithm one might verify that a highly multimodal inverse kinematics problem
demands intensive exploitation of different regions of the search space; which is
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effectively yielded by a small mutation scale factor, high crossover rate (mutation-
only scheme), and a relatively large population size.

7.2.2 Intensification Parameters

The intensification parameters of δDE are those that regulate the discarding
mechanism, namely the discarding rate (δ), elite pool size (β), and local search
length (σ). The first two parameters are constrained by the population size, while
the third can take any value greater than or equal to zero.

Our aim was to determine how much further improvement can be obtained
using discarding on the basis of optimally-tuned diversification parameters. There-
fore, we sought to find a set of discarding parameters that yielded a balanced trade-
off between convergence speed and accuracy, without drastically deteriorating the
efficiency of δDE. Moreover, since the discarding size is directly related to the in-
crease of the computational cost of δDE, its value shall be set such that the conver-
gence time is considerably less than the time needed by standard DE (or δDE with
the discarding size set to zero).

Based on this criteria, we have followed a similar simulation process to the
one described for the diversification parameters. First, the parameters’ range were
narrowed down based on the accuracy and efficiency performance of δDE. Then,
based on this reduced set of values, a second iteration of the simulation process
was carried out focusing on the discarding size (δ) and the local search length (σ),
given their significant impact on the convergence speed of δDE.

An initial good trade-off among accuracy, convergence speed, and computa-
tional cost was found values of δ = 0.5 %, β = 1 %, and σ = 2◦ . However, this
discarding setting in combination with a small mutation factor (F = 0.2) would ex-
cessively promote intensification over exploration, which might eventually lead to
premature convergence towards non-optimal solutions. Evidence of this behaviour
is observed in the fast decline of the population diversity in early stages of the
search.

To avoid the abrupt loss of population diversity during the search, the user can
either increase the population (NP ) or use a larger elite pool size (β) in the local
search mechanism. Nonetheless, increasing the value of any of these two parame-
ters negatively penalizes the computational cost of the search. This is illustrated in
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(a) Population size (NP )

β

β

(b) Elite pool size (β)

Figure 7.6: Computational cost of δDE as a function of the (a) population size (NP ) and
(b) elite pool size (β).

Figure 7.6 by the average number of generations and time in seconds required for
a single run of δDE to find the solution of the inverse kinematics problem.

The comparison of the two time curves shows an almost quadratic growth when
the population size is increased, whereas the time curve corresponding to the elite
pool size reveals a linear growth tendency. Based on these findings the elite pool
size was finally set to a 3.5% of the population size (NP = 1000). Figure 7.7 shows
the accuracy and success rate of δDE when the intensification pressure varies.

7.2.3 Simulation Results

In this section, we evaluate the performance of δDE, with and without discard-
ing, with the values found for the diversification and intensification parameters in
sections 7.2.1 and 7.2.2. The reported results are based on one hundred indepen-
dent trials on the kinematics inversion of a redundant robot manipulator (7 DOF),
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Figure 7.7: Acurracy, success rate, and convergence speed of δDE as a function of the
intensification parameters: discarding rate (left), elite pool size (center), and local search
length (right).
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Table 7.2: Comparison between standard DE and δDE as kinematics inversion methods of
a redundant robot manipulator.

DE
δDE (δ,β,σ)

(0.5 %, 1 %, 2◦ )(1) (0.5 %, 3.5 %, 2◦ )(2)

E 4.04E-08± 4.04E-07 (100) 3.23E-05± 1.92E-04 (97) 3.36E-07± 3.36E-06 (100)

EP(mm) 3.65E-05± 3.65E-04(100) 2.81E-02± 1.73E-01(97) 3.21E-04± 3.21E-03(100)

EO(deg.) 1.11E-06± 1.11E-05(100) 1.26E-03± 9.90E-03(100) 4.13E-06± 4.13E-05(100)

GEN 202.19± 39.87 91.80± 12.50 124.05± 18.29

AR (%) 54.60 38.65

where each trial consisted of a total five hundred generations. Table 7.2 summa-
rizes the average accuracy, efficiency, and convergence speed of standard DE and
two different parameter configurations of δDE.

Although a small mutation scale factor (F = 0.2) produces offspring densely dis-
tributed around their parents, the additional intensification promoted by discarding
during early stages of the search helps to steer the population much faster towards
the optimum. Further, if the intensification pressure over the search is increased (β
= 1 %) then the loss of diversity leads to premature convergence, and therefore,
deteriorates the overall efficiency of the search (see Figure 7.8(c) and 7.8(d)). Fig-
ure 7.8 compares the convergence behaviour exhibited by standard DE and δDE in
terms of accuracy, population diversity, and success rate.

Simulation results reveal that the discarding mechanism is able to significantly
improve the convergence speed of the standard DE scheme, even when the search
has been almost optimally tuned. Depending on the parameter setting of discarding,
δDE reached acceleration rates of 54.60 % (β = 1 %) and 38.65 % (β = 3.5 %)
in the average number of generations required by δDE to find the solution. More
importantly, discarding accelerates the convergence without severely penalizing the
accuracy and efficiency of the search, particularly when a relatively large elite pool
size is considered (β = 3.5 %). In fact, although lower than standard DE, the
position and orientation accuracies of δDE are still competitive for this particular
application when contrasted to the maximum accuracies of real robot manipulators.

In practical terms, a single iteration of δDE is more computationally expensive
than an iteration of standard DE. This is because, in each generation discarding
increases the number of functions evaluations in the same proportion to the dis-
carding rate. Thus, in addition to the number of iterations, the convergence speed
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δ δ

(a) Position error (EP ).

δ δ

(b) Orientation error (EO).

δ δ

(c) Pupulation diversity.

δ δ

(d) Success rate.

Figure 7.8: Comparison between the performance of standard DE (dashed line) and δDE
(solid lines) as kinematics inversion methods. The intensification pressure of discarding is
modified with two different values of the elite pool size (1 % and 3.5 %).

of each algorithm was measured as the average computation time required to find
the (near-) optimal solution. Results are illustrated in Figure 7.9.

According to these results, an improvement of 54.60 % in number of genera-
tions corresponds to a 40.52 % improvement in computational time (β = 1 %);
whereas, the most efficient search configuration provides a 32.54 % of improve-
ment in time with a 38.65 % of acceleration rate in number of generations (β =
3.5 %). These values represent an important upgrade on the computational cost
of standard DE; however, they are far from the approximately 88 % obtained with
δDE in the previous chapter for the redundant inverse kinematics problem (see
Chapter 6, Section 6.6). Obviously, by optimally adapting the parameter setting
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Figure 7.9: Time of convergence of standard DE and δDE.

of standard DE to the objective landscape one might expect a noticeable improve-
ment in its performance. But it also suggests that when δDE combines into a single
search strategy distinctly set diversification and intensification mechanisms, it yields
a lower computational cost than optimally tuning the standard DE. Basically, since
it only required a quarter of the population size needed by the standard DE optimal
performance.

Throughout this study, we have demanded high-accuracy standards to evaluate
the performance of δDE as kinematics inversion method. However, most benchmark
robot manipulators are built to provide considerable lower positioning accuracies
that are suitable for most tasks. Figure 7.10 illustrates how the convergence speed
(no. of iterations) of δDE varies when considering different position and orientation
thresholds as convergence conditions. These figures show that just by increasing
the accuracy tolerance values to 1mm and 1◦ , the algorithm can obtain a further
increase of 21 % and 27 % in convergence speed, respectively.

7.3 Summary

In this chapter, we have discussed the role of the control parameters on the
memetic δDE algorithm. These have been classified into diversification and inten-
sification parameters, on the one hand, to differentiate those of the DE/rand/1/bin
scheme from those of the discarding mechanisms; and on the other hand, to charac-
terize their main task during the search. Therefore, the diversification parameters
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Figure 7.10: Error threshold vs. convergence speed. Curves are represented in a logarithmic
scale in both axes.

are those that control the mechanisms of mutation and crossover, namely the pop-
ulation size, mutation scale factor, and crossover rate; whereas the intensification
parameters are directly related to the local search implemented by the discarding
mechanism, i.e., the discarding size, elite pool size, and local search length (or
standard deviation).

Based on simulation data, we have investigated how much further improvement
(or not) can be obtained on the δDE performance given different diversification
scenarios, in terms of success rate, accuracy, and convergence speed. The first half
of the chapter was devoted to study the influence of the intensification parameters,
with the premise that the diversification parameters provided a sufficiently good ex-
ploratory behaviour. The test on three different robot manipulators revealed a poor
robustness of δDE to the intensification parameters, in particular to the discarding
rate and the local search length. More importantly, it showed the limitations of the
migration strategies as acceleration mechanisms.

In a second scenario the constraints on the mutation and crossover mechanisms
as mainly diversification actors were dropped. Thus, the control parameters (di-
versification parameters) were allowed to optimally adapt to the landscape of the
inverse kinematics problem by ignoring the discarding mechanism. That let us com-
pared the ability of standard DE and δDE to balance the exploration and exploita-
tion features of the search, and quantifying how much additional intensification
an optimally configured standard DE accepts before deteriorating its performance.
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Simulation results showed that a better trade-off between accuracy, success rate,
convergence speed, and computational cost is obtained when diversification and
intensification are implemented in different mechanisms (δDE).

Since the analysis on this chapter was only focused on the performance of δDE
as kinematics inversion method, results should not be interpreted as a general
guideline for the parameter setting of the algorithm, whatsoever; but merely as
an analysis on the expected behaviour of δDE under different configurations of its
parameters.



Chapter 8

Robot Hands: A higher-dimensional
search space

Previous chapters have shown the performance attributes of the memetic δDE algo-
rithm as kinematics inversion method on benchmark robot manipulators. In terms
of convergence speed these findings suggest that better results are obtained on
higher dimensional search spaces.

On this basis, we further investigate this feature by considering robot applica-
tions that involve a greater number of degrees of freedom. Anthropomorphic robot
hands not only satisfy this requirement, but also represent a growing field of re-
search in robotics. In the following sections we describe and test different tasks on
two anthropomorphic robot hands to assess the performance of δDE on these robot
applications.

8.1 Anthropomorphic Robot Hands

Human hands are extraordinary multifaceted functional mechanisms. They are
endowed with prehension and apprehension abilities that allow them to grasp and
dexterously manipulate different kind of objects; and also permit them to explore
the environment with a fine sensory system.

Anatomically, the human hand is a multifingered extremity located at the end of
the arm that includes a wrist, palm, an opposable thumb, and four fingers, called

139
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Figure 8.1: Parts of the human hand.

index, middle, ring, and little. Each finger has three phalanges known as proxi-
mal, medial, and distal. The exception is the thumb that only has a proximal and
a distal phalanx. The proximal phalanx is connected to the palm by the metacar-
pophalangeal joint, that is approximately located at the base of the finger. The
palm spans from the proximal phalanges to the wrist, which connects the hand to
the forearm. Figure 8.1 identifies the anatomical parts of the human hand that will
be used as reference throughout this chapter.

The human hand represents a standard paradigm for dexterous manipulation of
artificial mechanisms, such as robot end-effectors and prosthetic devices. In robo-
tics, the anthropomorphism is highly advantageous in tasks where the end-effector
has to operate in human-oriented environments. The limitations of the current
technology do not allow to fully mimic all the anatomical components of the human
hand. Accordingly, researchers have focused on replicating the outstanding func-
tional capabilities of the human hand in complex manipulation tasks by simplifying
the kinematics structure while preserving certain degree of anthropomorphism. In
the next sections, two of the most recent developments in anthropomorphic robot
hand are presented.
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Figure 8.2: Gifu Hand III.

8.1.1 Gifu Hand III

The Gifu Hand III is a five-fingered robot hand designed to replicate the human
hand in size and functionality (Mouri et al., 2002). This robot hand features 20
joints and 16 DOF distributed among four fingers and one thumb that are inde-
pendently driven by built-in servomotors. The thumb has four joints with 4 DOF,
and each finger has four joints with 3 DOF. The third and fourth joints of each
finger are coupled as a planar four-bar linkage mechanisms, which can be approx-
imately expressed as qi4 ≈ qi3 , ∀i = 2, 3, 4, 5. The joints are arranged to allow
adduction/abduction and flexion/extension motions of the thumb and each finger.
Figure 8.2, shows the Gifu Hand III at the RoboticsLab of the Carlos III University
(UC3M).

The kinematics of the thumb and fingers is individually defined respect to their
base and transformed into the reference coordinate system of the hand located at
the center of the wrist. The kinematic parameters, joint limits, and transformation
matrices between the base of each finger and the wrist can be found in (Dainichi,
2004).
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Figure 8.3: Shadow Dexterous Hand C6M. [Courtesy of Prof. Mohamed Abderrahim]

8.1.2 Shadow Dexterous Hand

The Shadow Dexterous Hand C6M is an anthropomorphic robot system with 20
actuated degrees of freedom. The model C6M is equipped with force and position
control electronics, motor drive electronics, motor, gearbox, force sensing and com-
munications, all integrated into a compact unit. Figure 8.3 shows the system unit
of the Shadow hand at the UC3M-RoboticsLab.

The hand is provided with 24 joints distributed among an opposable thumb,
four fingers of the same length, and a wrist. For convenience, the joints of the
hand have been sequentially numbered starting from the wrist and ending at the
distal joint of the little finger. Similarly to the Gifu Hand III, the proximal and
distal interphalangeal joints of all fingers are coupled (not the thumb). This means
that the distal joint is governed by the value of the proximal joint. For a detailed
summary of the kinematic description of the hand and the fingers’ joint limits, the
reader is referred to (Shadow, 2009).
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8.2 A Simple Path Generation Problem

In this section we assess the kinematics inversion performance of the δDE me-
metic algorithm on articulated mechanisms with a larger number of degrees of
freedom. For that, we have considered a simple hand path generation problem that
consisted in making the robot hand into a fist. This target path was represented as
a sequence of position coordinates (nodes), defined for each fingertip respect to the
wrist reference frame. The orientation of the fingers has been ignored.

Thus, each node has been mapped into a corresponding joint hand posture by
minimizing the weighted sum of the position error (EP ) and the joint angular dis-
placement (Γ), that is:

Fk = w

nf∑
i=1

EPki + (1− w)

nf∑
i=1

Γki, k = 1, . . . , Nk (8.1)

where k is the current node, Nk the total number of nodes, w ∈ (0, 1] is a positive
weighting factor, and nf is the number of fingers. The first term in the right hand
of the equation leads the search towards the solution, whereas the second term
introduces a smoothing factor of the joint configuration solution between adjoining
nodes of the path.

8.2.1 Simulation Setup

The same target path has been defined on the two anthropomorphic robot hands
described in the previous sections. The task involves finding for each node the joint
configuration of every finger of the hand, that minimizes the objective function
(8.1). This poses a search problem with sixteen joint variables for the Gifu Hand III
and twenty variables for the Shadow Dexterous Hand, for the latter the two wrist
joints are also included. Figures 8.4 and 8.5 depict the task on the Gifu Hand III
and the Shadow Dexterous Hand, respectively.

Two optimization scenarios have been examined for the path generation prob-
lem based on (8.1). First, the minimization criteria was simplified to a position
error only by setting the weighting factor to one, w = 1. In the second scenario, the
feasible solution space has been constrained to those that also provide a minimum
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(a) Initial hand posture. (b) k = 1. (c) k = 2.

(d) k = 3. (e) k = 4. (f) k = 5.

(g) k = 6. (h) k = 7. (i) k = 8.

(j) k = 9.

Figure 8.4: Gifu Hand III “fist” path (Nk = 9).
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(a) Initial hand posture. (b) k = 1. (c) k = 2.

(d) k = 3. (e) k = 4. (f) k = 5.

(g) k = 6. (h) k = 7. (i) k = 8.

(j) k = 9.

Figure 8.5: Shadow Dexterous Hand “fist” path (Nk = 9).
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Table 8.1: δDE control parameters for the path generation problem.

D NP F CR δ β σ gmax εP Nk w

Gifu Hand III 16 500 0.3 1 6 % 10 % 0.2◦ 100
1mm 9 0.8

Shadow Dexterous Hand 20 900 0.5 0.9 10 % 20 % 0◦ 200

joint angular displacement between adjoining nodes, that is 0 < w < 1.
The performance of δDE has been tested on this kinematics inversion problem.

Control and task parameters are listed in Table 8.1.

8.2.2 Simulation Results

The convergence behaviour of the δDE algorithm and the accuracy of the solu-
tion have been tested on both of the proposed optimization criteria; and its analysis
is based on simulation data obtained from one thousand independent trials. Fig-
ure 8.6 shows the average position error, convergence speed, and computational
time obtained for the Gifu Hand III; and Figure 8.7 shows the corresponding results
for the Shadow Dexterous Hand. In addition, Figure 8.8 and 8.9 compares the joint
path of the thumb generated with and without joint displacement minimization.

These results reveal a good overall performance of δDE in robot applications that
involve a large number of degrees of mobility. In fact, after just few generations the
algorithm was able to provide high-accuracy solutions to each node of the path.
For instance, it only required an average of forty five generations to find a feasible
joint configuration of the Gifu Hand III that yielded less than 1mm of error in each
finger. In the case of the Shadow Dexterous Hand the average increases to sixty
four generations for the same error tolerance. Figure 8.6(a) and 8.7(a) illustrate
the total position error obtained per node of the path. In Figure 8.6(b) and 8.7(b)
the accumulated position error across the path is shown individually for each finger
of the hand.

A noteworthy feature of the proposed optimization framework for kinematics
inversion is its flexibility. It allows to easily define additional constraints tailored
to the needs of an specific task. In this case we have considered two optimization
scenarios by modifying the value of the weighting factor w in (8.1). Figures 8.8 and
8.9 compare the joint path of the thumb obtained as solution for w = 0, and w = 0.8.
This figures evidence the smoothing effect introduced by the second term of (8.1).
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Figure 8.6: Performance of the δDE algorithm on the path generation problem for the Gifu
Hand III.

1 2 3 4 5 6 7 8 9
−10

0

10

20

30

40

Node [k]

Σ
 E

P [m
m

]

 

 
x 1E−02

E
P

wE
P
 + (1−w)J

(a) Hand position error.

−10

−5

0

5

10

15

20

25

E P [m
m

]

 

 

 Thu
mb 

 In
de

x 

 M
idd

le 
 R

ing
 

 Li
ttle

 

E
P

wE
P
 + (1−w)J

(b) Fingers position error.

1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

110

Node [k]

N
o.

 G
en

er
at

io
ns

 

 
E

P
wE

P
 + (1−w)J

(c) Convergence speed.

1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

Node [k]

Ti
m

e 
[s

]

 

 
E

P
wE

P
 + (1−w)J

(d) Computational time.

Figure 8.7: Performance of the δDE algorithm on the path generation problem for the
Shadow Dexterous Hand.

Yet, as observed in Figures 8.6 and 8.7, the convergence speed and computational
time are penalized, but not the accuracy of the algorithm.
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Figure 8.8: Comparison between the Gifu Hand III joint path solution for the thumb consid-
ering different minimization criteria. (a) Position error. (b) Position error and joint angular
displacement..
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Figure 8.9: Comparison between the Shadow Dexterous Hand joint path solution for the
thumb considering different minimization criteria. (a) Position error. (b) Position error and
joint angular dispalcement.

8.3 Hand Mobility: The Kapandji Test

The Kapandji method is a set of medical tests that evaluate the hand mobil-
ity of patients recovering from injuries or surgery. In contrast to other evaluation
methods these tests do not require any measurement instrument (e.g.: goniometer)
since the hand itself is taken as reference system. The test provides an overall as-
sessment of the opposition of the thumb, flexion and extension of fingers, and grip
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Figure 8.10: Kapandji’s clinical evaluation of the thumb’s opposition.

capabilities of the hand, by following testing routines that use anatomic landmarks
to set combinations of fingers positions. These tests result in an index that scores
the evolution of the hand as it recovers its functional mobility (Kapandji, 1987).

Since the opposition of the thumb is a critical component of skilled and precise
manipulation, its global functional evaluation is one the most important routines of
the Kapandji method (Kapandji, 1992). This exercise describes with the tip of the
thumb a wide range-of-motion path that is defined in ten different stages, depicted
in Figure 8.10. These stages are grouped in order to describe two grip patterns,
namely terminolateral pinch or key grip (0-2) and tip-to-tip pinch (3-6); and lastly
the extreme thumb’s opposition (7-10).

As it provides a fast and reliable assessment of the functional capabilities of
the hand, and particularly of the thumb, the Kapandji test has been recently used
in the development process of the anthropomorphic robot hand DLR-Hand Arm
System (Grebenstein et al., 2010; Chalon et al., 2010). By iteratively evaluating the
prototypes with the Kapandji test and other common grasping tasks, the researchers
were able to improve the kinematics of the hand until it fulfilled the aesthetics and
functional requirements without any mathematical optimization of the parameters.

Motivated by the aforementioned findings, we propose an evaluation test to
compare the Gifu Hand III and the Shadow Dexterous Hand, based on anthropo-
morphic functional features of the thumb. We have followed a similar approach as
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0 11 2 3 4

(a) Test I: Thumb to metacarpophalangeal joint.

0 1 2 3 4

(b) Test II: Thumb to fingertip.

Figure 8.11: Clinical evaluation test of the thumb’s mobility.

in (Grebenstein et al., 2010), by using a limited Kapandji test (Figure 8.11). The
goal is to evaluate the location of the base joint of the thumb on the palm and the
thumb’s opposability, as important components of good grasping and manipulation
skills. The evaluation is derived from the ability of the robot hand to go through
target landmark locations set on the same hand. The proposed tests are the follow-
ing:

Test I Contact the base of all fingers with the thumb’s tip. Figure 8.11(a),
stages 1 to 4.

Test II Contact the fingertip of all fingers with the tip of the thumb. Fig-
ure 8.11(b), stages 1 to 4.

These tests do not aim to be a benchmark measure of the robot hand anthropo-
morphism or dexterity. For this, it would be necessary a more thorough and broad
set of routines that also include the most common grip patterns of the human hand.
Instead, this tests merely provides insight on some of the task that can be performed
with a certain robot hand.
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8.3.1 Simulation Setup

Although these tests can be performed directly on the robot hand, they were
implemented on a simulation environment to avoid the cumbersome task of manu-
ally controlling each joint for every target position; but more importantly, because
it allows to easily adapt them to different robot hand platforms when the hardware
device is not available. Furthermore, it would provide a simulation-supported tool
to analyse the functionality of a robot hand during its design phase, numerically
compare different designs based on the error measure obtained for each test, and
finally adapt the kinematic parameters to improve its dexterity.

For the first test (I), the target positions of the thumb’s tip were defined at the
base of each finger approximately where the metacarpophalangeal joint is located
in the human hand. The Cartesian rectangular coordinates of these landmark po-
sitions were computed through direct kinematics respect to a reference frame at-
tached to the wrist. Accordingly, determining if any landmark in the test is within
the reachable workspace of the hand inherently poses an inverse kinematics prob-
lem. To find the solution, this problem was formulated as the minimization of the
position error between the known target point and the thumb’s tip.

The second test (II) demands that the tip of the thumb to successfully meet the
fingertip of the fingers. Contrary to the previous one, this test lacks of predefined
target landmark positions for each stage of the path. Instead, it requires to find
the intersection, if it exists, between the reachable workspace of the thumb and
the corresponding workspace of each finger. That is, for each stage of the test, one
must find one point in the task space of the hand that is reachable by both fingers.
Since it basically involves solving a kinematics problem, a feasible solution would
be to find (at least) one joint configuration that minimizes the distance between
both fingertips at each stage. Noteworthy, the orientation and joint displacement
constraints on the fingers have been ignored.

For comparison purposes, we have considered an alternative solution to the
second test. In this case, the palm of the robot is used as reference to define an
horizontal line equidistant from the frontal plane of the hand. The target point for
each stage was thus defined at the intersection of the line and the sagital plane of
each finger, with the exception of the fifth finger. Again, the kinematics problem
was formulated as a minimization problem between the fingertips and the target
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Table 8.2: δDE control parameters for the Kapandji test of hand mobility.

NP F CR δ β σ gmax εP

Gifu Hand III 100
0.5

1 6 %
10 %

0.2◦
100 1mm

Shadow Dexterous Hand 900 0.9 10 % 0◦

position.
These minimization problems were solved using the δDE algorithm with the

parameter setting listed in Table 8.2. The tests were run one thousand times on
each robot hand, and the success threshold for all stages was set to one millimetre.
Simulation results and data analysis are presented in the next section.

8.3.2 Simulation Results

The simulation results obtained for the two robot hands are reported in the Ta-
ble 8.3. Results comprise the outcome of the tests and the performance of the me-
metic algorithm. The status refers to the state of completion of the stage according
to the considered criteria (3: success, 7: failure). The position error (EP ) corre-
sponds to the value obtained after a predefined maximum number of generations,
whereas the convergence speed (No. Gen and Time) is related to the tolerance error
(εP ).

Test I evaluates the location of the base of the thumb on the palm for good
grasping and manipulation performance. According to the kinematics analysis sug-
gested in (Grebenstein et al., 2010), the thumb would fail to reach the base of all
fingers, or any other position on the palm, if the intersection of the first axis of the
thumb and the palm is located at the basis of one of the fingers. Although this is not
the case for neither of the robot hands under study, none was able to successfully
complete all the stages of the test (see Figure 8.12(a)).

The Gifu Hand III failed to reach all the finger bases. The best results was ob-
tained at the fourth stage of test (5th finger base) with an error of approximately
8.8mm. However, all the other stages demanded unfeasible (out-of-range) configu-
rations of the first joint of the thumb (abduction/adduction motion). These results
are partly due to the lack of longitudinal rotation of the thumb’s base joint. This
would allow the thumb to frontally oppose the fingers, and therefore, effectively
reach their bases. Conversely, the Shadow Hand successfully reached the first three
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(a) Test I. Thumb’s tip to the base joint of fingers.

(b) Test II. Thumb’s tip meets the fingertip of fingers.

(c) Test II. Thumb tip and fingertip of fingers meet at a predefined target position.

Figure 8.12: Kapandji test of thumb’s opposability anthropomorphic robot hands. The
stages of each test are shown from left to right in (a),(b), and (c). Two anthropomorphic
robot hands have been tested: Gifu Hand III (first, third, and fifth rows) and Shadow Hand
(second, fourth, and sixth rows).
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(a) Gifu Hand III.

(b) Shadow Dexterous Hand.

Figure 8.13: Multiple feasible solutions of the second test of the Kapandji method.

stages of the test while it failed the last one with an error of 8.6mm.

Test II is oriented to evaluate the opposability and fine manipulation capabilities
of the robot hand (see Figure 8.12(b) and 8.12(c)). Every stage of the test was
reproduced based on two different optimization criteria: (i) minimal distance
between the tip of the thumb and the corresponding fingertip (Figure 8.12(b)), and
(ii) minimal position error to a predefined target position within the workspace of
both fingers (Figure 8.12(c)) . The latter aims at evaluating the positioning for
fine manipulation, whereas the former takes advantage of the redundancy of the
solution (see Figure 8.13).

Although the Gifu Hand III lacks of longitudinal rotation of the thumb for proper
thumb’s opposition, the long links of the thumb and fingers (phalanges) enlarge
the reachable workspace of the hand. The resulting workspace is large enough to
ensure that the Gifu Hand III is able to efficiently complete all the stages of the
second test of the Kapandji method under the two considered criteria.

Similar good results were obtained for the Shadow Dexterous Hand. In contrast
to the Gifu Hand III, the fingers of the Shadow hand preserve the dimension size
ratios of an average adult human male hand. The shorter thumb provides grasping
stability, but also a smaller reachable workspace. This is largely circumvented by
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(a) Test I of the Kapandji method.
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(b) Test II of the Kapandji method. Criteria: minimal distance between thumb’s and fingers’ tip.
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(c) Test II of the Kapandji method. Criteria: minimal distace to predefined target position.

Figure 8.14: Simulation results of the Kapandji method on two anthropomorphic robot
hands.
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Table 8.4: Mobility index of the Kapandji method.

Gifu Hand III Shadow Dexterous Hand

Test
Stage/Score

Subtotal
Stage/Score

Subtotal

1 2 3 4 1 2 3 4

Test I 0 0 0 0 0 1 2 3 0 6

Test II(1) 1 2 3 4 10 1 2 3 4 10

Test II(2) 1 2 3 4 10 1 2 0 4 7

Total 20/30 23/30

(1) Minimization of the distance between the thumb’s tip and corresponding fingertip.
(2) Minimization of the position error of the thumb’s tip and corresponding fingertip respect to a predefined target position.

the additional degree of mobility at the base of the thumb and little finger, that
allows the thumb to position its tip closer to the palm and the fingertips of the
other fingers. However, the simulation data show some disparities in the results
obtained for the third stage of the test. A further examination of the results reveals
that the minimal feasible distance between the thumb’s tip and the ring’s fingertip
is of 0.8mm, which occurs when the first and second joints of the thumb reach their
upper limit. Moreover, since this distance is lower than the maximum tolerance
error the hand passes the test, but fails when a predefined position is set as target
of both fingers. Figure 8.14 graphically compares the results of the Kapandji tests
and the performance of the δDE algorithm on the two robot hands.

8.3.3 Evaluation

In order to monitor the patient’s progress during the recovery process, each
stage of the Kapandji tests is attributed with a score and evaluated accordingly.
An index of hand mobility is thus derived by summing the scores of all the stages
that are correctly performed by the patient (Kapandji, 1992; De Soras et al., 1994).
Similarly, we have assessed the robot performance with a mobility index. To keep
it simple, each stage has been scored with its own number in the routine, i.e., stage
one scores one point. This is consistent with the fact that stages are presented in
ascending order of difficulty. Table 8.4 summarizes the evaluation results obtained
for the Gifu Hand III and Shadow Dexterous Hand.
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8.3 Summary

The aim of this chapter was to provide further evidence of the performance of
δDE algorithm as kinematics inversion method, this time considering a much larger
feasible search space.

For this we have considered two robot hand applications. First, a simple path
generation was formulated to examine the accuracy and convergence speed of δDE
over a search space with sixteen and twenty independent joint variables, respec-
tively. The second was focused on asserting the versatility of δDE on the evaluation
of anthropomorphic robot hands mobility, based on standard clinical tests used on
human hands. In both applications, δDE demonstrated its high flexibility in solving
kinematics problems.

More importantly, the results show that the algorithm is a simple and fast method
that allows to perform different manipulability tests during the design phase of an-
thropomorphic robot hand systems, as well as to evaluate and compare existing
ones. The method provides a tool to improve or adapt the design to the functional
specifications of the robot hand based on quantitative measures. This allows to
compare the functionality of different designs and choose the one that meets the
desired requirements.



Chapter 9

Conclusions

The inverse kinematics problem of robot manipulators states the functional map-
ping of a known end-effector pose into the joint configuration coordinates of the
robot. This represents one of the fundamental problems of the kinematics analysis
of robot manipulators, and except for a subset of kinematics geometries it cannot
be analytically solved in closed-form. Therefore, a generic solution necessarily de-
mands a numerical formulation of this problem.

In this thesis we have proposed a numerical solution for the kinematics inversion
of generic robot manipulators, based on the memetic differential evolution scheme
δDE. This approach transforms the functional mapping problem into a constrained
non-linear optimization model in the configuration space of the robot. That is, it
defines a direct search over the feasible configuration space of the robot to find
the joint configuration vector that minimizes the position and orientation error of
the end-effector (Chapter 5). The optimization approach for kinematics inversion
has the following advantages: (i) generic, it admits robot manipulators with any
kinematics geometry; (ii) simple, it only requires to define the forward kinematics
equation of the robot to compute the end-effector pose error; (iii) flexible, it allows
to combine different optimization criteria into a single objective function; (iv) di-
rect, the solution is obtained in joint coordinates; (v) numerically stable, since it
does not require the inverse Jacobian matrix for mapping between the Cartesian
and the configuration spaces; (vi) and it directly handles the constraints on the
search space.

159
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Despite the many advantages of the optimization approach to kinematics inver-
sion, a mayor concern that usually rises about numerical solutions, and in particular
about population-based direct search methods, is the high computational cost asso-
ciated to their low convergence speed. The proposed approach addresses this issue
by combining a global search mechanism (DE/rand/1/bin) that efficiently explores
the configuration space of the robot to find the solution, and an independent local
improvement method (discarding) that exploits the most promising regions of the
search space to increase the convergence speed. The balanced synthesis of both
mechanisms within an evolutionary search scheme yields the memetic algorithm
δDE.

Although previous works had already suggested a discarding mechanism to ac-
celerate the convergence speed of the standard differential evolution, thus far its
operating principle had been vaguely described. The main theoretical contribu-
tions of this thesis are related to the identification, formulation, and analysis of the
components and control parameters of the memetic differential evolution algorithm
δDE (Chapter 4).

On a further analysis about the operating principles of discarding we have identi-
fied two mechanisms: migration and local search. Migration provides a replacement
policy to refresh the population with new information, whereas the local search im-
plements the replacement strategy. The policy and the strategy of the discarding
mechanism are controlled by three parameters: the discarding rate (δ), the elite
pool size (β), and the local search length (σ). Their roles within the memetic
search scheme framework have been identified, and their influence on the conver-
gence behaviour of the search have been further investigated based on the empirical
analysis of simulation experiments (Chapter 7). Although the analysis is only lim-
ited to the inverse kinematics problem, this is the first study that have been devoted
to examine the parameter setting of the discarding mechanism.

Moreover, considerable testing have been presented to assess the performance of
δDE as kinematics inversion method for redundant and non-redundant benchmark
robot manipulators, as well as for anthropomorphic robot hands (Chapters 6, 7 and
8). The most important findings reported in this thesis can be summarized as:

• The discarding mechanism significantly improves the convergence speed of
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the standard DE direct search scheme. Its simple local improvement strat-
egy effectively compensates the exploitation deficiencies of the standard DE
search scheme, leading the population towards global minimizers in fewer
generations. Nonetheless, as argued in Section 6.6 (Chapter 6), a remarkable
reduction in the number of generations does not necessarily entail a lower
computational cost, since a single iteration of δDE is actually more computa-
tionally expensive than one of the standard DE. An estimation of the average
computational time of δDE showed that, although the margin of improvement
is notably lower than the obtained in terms of number of generations, δDE
still outperforms the standard DE, particularly on higher-dimensional config-
uration spaces.

• δDE provides high-accuracy solutions to the inverse kinematics problem of
articulated robot systems. The local refinement strategy of discarding yield
lower average error values in position and orientation without disrupting the
overall global search of the DE/rand/1/bin scheme. This is highly advan-
tageous for tasks that demands precise location of the end-effector with a
competitive computational time.

• The proposed framework easily accommodates different requirements for the
inverse kinematics problem with minor modifications of the objective func-
tion. Moreover, the design vector or candidate solutions can be defined to
represent the joint configuration vector of a single robot manipulator, the
joint configuration path for a finite set of nodes, or the joint configuration
of all the fingers of a robot hand. It only requires to define, analytically or
numerically, the forward kinematics model of the robot and the values of the
control parameters. Such flexibility allows to perform kinematics analysis, de-
sign, calibration, and synthesis on a wide range of kinematics structures and
tasks.

• The δDE algorithm increases to six the number of control parameters, clas-
sified according to their role in the search as diversification (NP , F and CR)
and intensification (δ, β, and σ) parameters. Although this increases the com-
plexity of the algorithm and its parameter setting, simulation results showed
that a good trade-off between accuracy, efficiency, convergence speed, and
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computational cost is obtained by independently promoting exploration and
exploitation through their corresponding parameters.

• The performance of δDE is particularly sensitive to the value of the discard-
ing rate (δ). That is, a large migration rate increases the number of similar
solutions in each generation, which leads to premature convergence. This has
been observed as a decline in the success rate of the the algorithm as the value
of the discarding rate (δ) increases.

In general, the proposed memetic approach provides a generic solution to the
inverse kinematics problem of robot manipulators. By enhancing the exploitation
features of the search with the discarding mechanism, we have been able to sig-
nificantly improve the convergence speed while obtaining high-accuracy solutions.
However, this approach also has some important limitations:

• Although δDE has been able to find the solution to the inverse kinematics of
a 16 DOF anthropomorphic robot hand in less than a second, still it is not
suitable to control real-time applications.

• In contrast to other numerical kinematics inversion methods, including direct
search solutions (Tabandeh et al., 2006, 2010), this approach only converge to
a single solution from the multiple possible solutions of the inverse kinematics
problem.

• Moreover, the algorithm does not provide any information about the number
of solutions of the inverse kinematics problem for any kinematic structure.

• According to the “No free lunch theorem” (Wolpert & Macready, 1997) the
obtained simulation results supporting the superior performance of δDE over
the standard DE scheme cannot be generalized to other optimization prob-
lems, and without further proof these are only constrained to this particular
robot application.

9.1 Future Research

Being one of the fundamental problems in the field of robotics, the inverse kine-
matics problem of robot manipulators has drawn much attention from researcher
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over the decades. The result has been a sizeable group of numerical tools that aim
to find a generic and efficient solution to this problem. We believe that by revisit-
ing the inverse kinematics problem not only we have been able to explore a new
approach to kinematics inversion, but also have laid the bases that hopefully might
inspire others to find new applications of δDE in robotics or in other fields.

A promising niche of application is in the kinematics evaluation of complex robot
systems with many degrees of freedom during their design phase. Preliminary re-
sults on the evaluation of anthropomorphic robot hands mobility showed that the
method provides a useful tool to improve or adapt the design to the functional spec-
ifications of the robot hand based on quantitative measures. This is also useful in
the kinematics calibration of robot manipulators.

A related but more challenging application is the kinematics synthesis of articu-
lated robot systems (Tabandeh, 2009). Whether to determine the number and type
of joints required to perform a specific task (type synthesis), or to compute the size
of the articulated bodies of a predefined kinematics layout (dimensional synthesis),
for instance, from biometric measures of the human hand.

Further research can also be focused on improving the understanding of the
dynamic of the mechanisms that interplay in the direct search scheme of δDE. Par-
ticularly on the parameter setting that provides a suitable balance between global
convergence, accuracy, and acceleration rates. In this regard, it would be interesting
to investigate adaptation mechanisms of their values according to the needs of the
search during different stages of the evolutionary process. For instance, reducing
the discarding rate as the population gets closer to convergence would decrease the
overall computational cost of the algorithm, and it would prevent premature con-
vergence due to excessive exploitation. Alternatively, the local search length can be
adaptively modified during the evolutionary process according to the distribution
of the population over the search space.

Finally, alternative representations of the position and orientation error, as well
as other optimization criteria, could be tested to examine their influence on the
performance of the kinematics inversion method.
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