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Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
rfuentet@inf.uc3m.es, trosa@inf.uc3m.es

Abstract. In classical planning, all objects should be represented
as constants explicitly, even though their names could be irrelevant,
which produces severe instantiation problems. This is specially prob-
lematic in tasks with actions for creating new objects, as it involves to
estimate how many potential new objects will be necessary to solve
the task. We propose a new automatic compilation from the classi-
cal to a numeric planning model to represent objects with irrelevant
names using numerical functions. The compilation reduces the size
of the instantiation and avoids the need of estimating the number of
future objects in advance. The compiled planning task can be solved
several orders of magnitude faster than its equivalent classical model.

1 INTRODUCTION
In the last years, most of the research in Automated Planning has fo-
cused on building efficient planning engines. The main tendency has
been to develop techniques for improving planning algorithms. How-
ever, the study of techniques to generate efficient representations has
received much less attention. In this paper, we propose an automatic
translation to represent planning domains efficiently for a particular
type of planning tasks. This translation modifies the representation of
objects with irrelevant names. The detection of irrelevances as well
as the design of techniques to deal with them efficiently are crucial
points to build scalable planners [9, 5].

Current models for Automated Planning assume all objects exist
at the beginning of the planning task. In fact, in PDDL, the stan-
dard Planning Domain Definition Language, all objects should be
defined as constants. This is not so natural for domains containing
actions for creating new objects (creation planning tasks) as they do
not exist initially. Consider a domain with actions to divide objects.
For instance, an action splitting a single piece into several smaller
pieces. Then, all possible future pieces in the environment have to
be defined in advance, even though its number is not known initially.
Estimating this number is not necessarily an easy task. Moreover, its
computation can be considered as part of solving the problem.

Creation planning tasks present two main problems: (1) the repre-
sentation with constants is inefficient when the names of non-existing
objects are irrelevant for the planning task; and (2) the number of
these objects should be estimated a-priori. There are two options
to solve automatically (2): to build a domain-dependent external rea-
soner able of computing in advance the number of constants required
to solve the task, or to include an arbitrary large number of symbols

to represent them. The latter has the bad consequence of degrading
the planner performance since the instantiation grows exponentially
with the number of constants.

In this paper we study the problem of creation planning from dif-
ferent perspectives. Then, we propose a new automatic compilation
of the planning task into a different representation in which the prop-
erties of some objects are represented as numerical functions. The
compilation mitigates the problem of defining a-priori all constants
in creation domains. However, it can only be applied when these ob-
jects have irrelevant names. This paper contributes with the identifi-
cation and treatment of this type of irrelevance.

2 MODELLING OBJECT CREATION

When new created objects are resources that their object states re-
main the same overall the planning process, they can be just counted
(i.e., its quantity is represented by a numerical state variable) rather
than modelled as individual objects. Nevertheless, when the domain
actions perform changes over them, it is more natural to represent
these objects with symbols, in order to recognize each object and the
features of its particular state.

Regarding the symbolic modelling, there are two basic options
to represent a simulated scenario where objects are created: a pool
model and a control model. In the pool model, all symbols for repre-
senting potential new objects are considered equal. Actions creating
objects select them arbitrarily from a pool of free symbols. The do-
main contains a predicate to indicate a symbol has not been used yet,
e.g., (notexist ?obj - type). Each action creating new objects includes
this predicate as a precondition. Then, its effects delete the notexist
predicate, and add some predicates to characterize the new object.
The problem file should contain a sufficient number of defined sym-
bols of the corresponding type. Also, the initial state should include
as many (notexist object i) as the number of defined free symbols.

In the control model, symbols for new objects are selected in a
strict order which is controlled in action preconditions. Only the next
symbol in a stack of free symbols can be selected.1 The number of
instantiated actions is the same as in the pool model. However only
one instance of each creating action is applicable in a state. This can
be modelled using a predicate to represent the order e.g., (next ?ob-

1 For the sake of simplicity we consider all objects being created are of the
same type, though a generalization for several types is straightforward.
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ject1 - type ?object2 - type), and a pointer predicate, e.g., (current
?object - type) representing the last generated object.

For both representations the number of future objects should be
decided in advance, which is a problem: defining an arbitrary large
number of symbols leads to an overwhelming combinatorial explo-
sion of grounding, but defining the right number of symbols could be
a difficult task that needs to be done outside of the planning process.

An alternative would be the modification of the classical planning
model to handle additional objects not enumerated in the problem
definition. However, from the first-order logic perspective this means
that the universe of discourse is not fixed, or at least it is not specified
explicitly at the beginning of the reasoning. From the point of view
of the representation language it would be straightforward to include
a new directive for declaring new objects in action effects. Neverthe-
less, with this new model the planning task would be undecidable in
the general case, since the state space can be infinite. With an infinite
state space, no algorithm can prove a problem is unsolvable. Instead
of creating a new planning model we explore a different representa-
tion for alleviating the problems of the classical model.

2.1 CREATION DOMAIN EXAMPLE
To illustrate our compilation we will use the pizza domain. In this
domain a robot waiter can cut a whole pizza or any slice into two new
slices of equal size. The robot arm can also serve any slice to a guest.
Initial states have one or several slices placed on one or several trays.
Goals consist of having all guest served with slices of equal size.

A pizza slice has a size, (pizzasize ?x - slice ?z - size) and is either
on a tray, (ontray ?x - slice ?y - tray) or holding from a tray, (holding
?x - slice ?y - tray). There are actions to hold a slice from a tray,
to leave a slice on a tray, to cut a slice in two equal-size slices, to
first-serve a slice to a person while deciding the size for all guests
and to serve the rest of slices. Served slices are neither in a tray nor
holding. Figure 1 depicts the pool model action for cutting a pizza
in two parts. Semantically, the objects represented by the constants
instantiating ?s1 and ?s2 are new, since these constants are unused
symbols before the action application.2

(:action cut
:parameters (?slice ?s1 ?s2 - slice ?t - tray ?z ?zhalf - size)
:precondition (and (not (= ?s1 ?s2))

(holding ?slice ?t) (pizzasize ?slice ?z)
(nextsize ?z ?zhalf)
(notexist ?s1) (notexist ?s2))

:effect (and
(freearms) (not (holding ?slice ?t))
(not (notexist ?s1)) (not (notexist ?s2))
(ontray ?s1 ?t) (pizzasize ?s1 ?zhalf)
(ontray ?s2 ?t) (pizzasize ?s2 ?zhalf)))

Figure 1. Pool model action for cutting a pizza in two parts.

2.2 Numerical Model for Object Creation
At the moment a new object is created, the name itself is not rele-
vant. In fact, the symbol assigned to it is interchangeable between the
rest of available free symbols. Then, it makes no sense for a search

2 This action can be also modelled by re-using the symbol ?slice, but we want
to show the general case in which an action can create several objects.

algorithm to branch on different names, given that permutations of
available symbols leads to automorphisms of the search tree. De-
pending on the relations between a new object with other objects,
the name irrelevancy may be true throughout the planning process.
In such cases, there exists a possible numerical representation that
a domain modeller may not visualize as a first choice. Our compila-
tion automatically generates this numerical model from a pool model
provided by the domain modeller.

In the generated numerical representation, the properties/relations
relevant to created objects are represented using numerical func-
tions instead of logic facts. These numerical functions are un-
bounded counters of the number of objects with one or more prop-
erties/relations. This representation has important advantages: (1) it
avoids the need of deciding the right number of future objects in
advance; (2) it avoids the search algorithm to branch on different ir-
relevant object names; and (3) it can reduce the grounding size.

Defining the right number of future objects may be more compli-
cated than it seems, as it should include the creation of intermediate
objects. Consider a problem in the pizza domain with two pizzas,
each one on a tray, and eight guests to serve. How many slice sym-
bols should be declared?3

The main drawback of the representation through unbounded
counters is that it may lead to an infinite state space. However, when
the properties/relations are finite, the state space remains also finite.
Specifically, in the pizza domain, sizes of slices are finite which
makes impossible to generate an infinite number of slices.

3 RELATED WORK

Created objects can be interpreted as resources produced during plan-
ning. The notion of resources here is very general. We consider as
resource any object not involved in goals that can be used to achieve
them. Previous work has proposed to represent resources with irrele-
vant identities using numeric functions [4]. The direct benefit of this
functional representation is a reduction in the number of instantiated
actions. However, this decision about representation is left to the do-
main designer and therefore it relies on his/her expertise. In contrast,
we propose an automatic translation able of recognizing object types
with irrelevant names and defining the corresponding functions to
encode all their properties.

Our compilation solves the problem of deciding the number of
symbols for created objects. It also handles the instantiation explo-
sion due to object symmetries, previously studied in a more general
scope [3, 10], but exploited at search time. In the numeric model,
symmetries w.r.t. created objects do not exist, which means we are
solving the problem before searching.

The numeric representation is related to general Petri Nets. For
STRIPS planning problems there is a direct translation to 1-bounded
Petri Nets [7, 1], where places can have at most one token and arcs
have a cardinality of one. However, in general Petri Nets places repre-
sent unbounded counters. Given a 1-bounded Petri Net, under several
conditions, an equivalent general Petri Net can be generated just by
joining the output places representing the same properties/relations
for several objects and increasing the cardinality of the correspond-
ing arc. In the same way, a pool model, under several conditions, can
be automatically compiled into a numeric representation. We identify
these conditions and provide a method for the automatic compilation.

3 At least 14 slices, to serve all guests with pizza quarters. Surprisingly, this
is the largest pizza problem that state-of-the-art planners can solve.



4 TRANSLATION TO THE NUMERIC MODEL

We consider typed STRIPS planning tasks Π = (T , C,P,A, I,G),
with negated equality.4 In Π, T is a set of types, C a set of typed
constants for representing objects and P a set of predicates. A is the
set of actions which pre(a), add(a) and del(a) are the action pre-
conditions, positive and negative effects respectively. I is the initial
state and G the goals. A plan π is an action sequence 〈a1, . . . , an〉
that when applied to I reaches a state where facts in G are true.

We denote the subset of objects of a particular type t ∈ T as Ct,
and the subset of predicates involving objects of type t ∈ T as Pt.
For the sake of simplicity, we define the compilation for domains
where predicates p ∈ Pt have a maximum arity of two. Besides, we
assume a plain type hierarchy. 5

The compilation is designed for planning tasks in which objects
of certain type have irrelevant names. Intuitively, given task Π, the
objects of type t ∈ T have irrelevant names when: (1) they do not
appear in the problem goals; and (2) all predicates defined for them
are just to characterize them. For instance, the color of a block or the
location of a truck are predicates to characterize blocks and trucks.
Formally:

Definition 1 (Irrelevant name condition). The objects c ∈ Ct have
irrelevant names for task Π if the following property is a state invari-
ant: every predicate p ∈ Pt is either unary or it represents a partial
function, ∀x1, x2 ∈ Ct′ if cRpx1 and cRpx2 then x1 = x2.

A planning task holding the irrelevant name condition for type t
is denoted by Πt̂. Partial functions w.r.t type t restrict predicates to
represent properties for characterizing objects of type t. Given that
object identities of type t are not necessary in Πt̂, for each state is
sufficient to identify the number of objects with a particular com-
bination of properties. Therefore, it is possible an alternative repre-
sentation comprising a set of counters, one for each combination of
properties.

Definition 2 (λ-fluent or counter fluent). A λ-fluent f of t is a nu-
merical fluent that counts the number of objects in Ct affected by the
same combination of predicates in a state s. λ-fluents are named with
the concatenation of all predicates names in the combination plus t.
The set of facts associated to a λ-fluent is denoted as atoms(f).

The lifted representation of a λ-fluent is a PDDL function. The ar-
guments are the set of variables in the corresponding predicate com-
bination, but omitting the variables of the type t. For instance, (on-
tray pizzasize slice ?y - tray ?z - size) counts the number of slices
of a specific size on a certain tray.

The number of possible λ-fluents is exponential in Pt, but in prac-
tice not all properties are stated at the same time. We exploit mu-
tex information to generate a reasonable small number of λ-fluents.
In mutex groups, only one atom can characterize an object at the
same time. Specifically, we use the SAS+ translation of the plan-
ning task [6], but only considering variables obtained from mutex
groups with parameters of type t and reachable facts involving pred-
icates with arguments of type t not included in these mutex groups.
Reachable facts not belonging to a mutex group are considered as
independent groups of just one element. Thus, the space of com-
binations of properties is the Cartesian product of these groups.

4 ’=’ built-in predicate and its negation. Negated equality is of especial im-
portance in creation domains that split objects.

5 This can be assumed without loss of generality since type hierarchies can
be flattened easily, generating an equivalent domain.

For instance, given the mutex groups of type slice in the pizza do-
main, G1(slice) : [holding(s, t), ontray(s, t), none-of-those] and
G2(slice) : [pizzasize(s, z), notexist(s)], the resulting Cartesian
product is:6

G1 ×G2(slice) = { (holding(s, t), pizzasize(s, z)),
(ontray(s, t), pizzasize(s, z)),
(pizzasize(s, z)),
(notexist(s))}

Every possible sub-state of an object of slice type can be repre-
sented by instantiating an element of this product. Thus, the Carte-
sian product contains all the relevant predicate combinations for gen-
erating λ-fluents. The λ-fluents obtained for the pizza domain are:

Fslice = { (holding pizzasize slice ?t − tray ?z − size),
(ontray pizzasize slice ?t − tray ?z − size),
(pizzasize slice ?z − size),
(notexist slice)}

The first one represents the number of slices of certain size be-
ing held from a particular tray; the second one the number of slices
of a size on a tray; the third one the number of objects with a size
and without any other property; and the last one the number of non-
existing objects.

Definition 3. The compilation Λ(Πt̂) translates task Πt̂ into
Πλ(t) = (T ′, C′,P ′, Ft,A′, I′,G) where T ′ = T \{t}, C′ = C\ Ct,
P ′ = P\Pt and Ft is the set of relevant λ-fluents of t.A′ and I′ are
the new set of actions and initial state respectively, both re-written to
replace literals affecting t with the corresponding λ-fluent.

Now, we describe how to rewrite A as A′ and I as I′ in terms of
λ-fluents. Let L be a set of positive literals, then, we denote as Lv
the subset of literals in L over a variable or constant v. Specifically,
Lv can be the subset of the preconditions, add, and delete effects of
an action involving a variable v, or the subset of literals in the initial
state I involving a specific constant.

Given an action variable (parameter) or constant, its preconditions
and effects define partial sub-states for the objects instantiating this
variable. We assume that all predicates in the delete effects appear
in the preconditions. This is a reasonable restriction when dealing
with state invariants [2]. In our case it allows us to recognize all tran-
sitions between object sub-states even though they are partial sub-
states. On the other hand, the initial-state and λ-fluents will always
refer to complete sub-states, so we have to define the unification of
λ-fluents considering the different cases.

Definition 4 (Unification of λ-fluents f ∈ Ft). Let Lv be a set of
literals referred to the variable or constant v. Let φ = {vi/vj} be
a substitution for some variables vi in the atoms of a subset S of
λ-fluents (i.e. in

⋃
f∈S

atoms(f)), by variables or constants vj in Lv .

The unification of a λ-fluent f ∈ F (t) is defined for the following
cases:

1. Unification with action parts for action a ∈ A: when Lv =
prev(a) ∪ addv(a) ∪ delv(a), we say that f unifies by substi-
tution φ with

(a) the preconditions of a over v, prev(a) if S = {f} and

prev(a) ⊆ φ(atoms(f))

(b) the positive effects of a over v, addv(a), if S = {f ′, f}, f ′
unifies with prev(a) by the same substitution φ, and:

φ(atoms(f ′)) ∪ addv(a) \ delv(a) = φ(atoms(f))

6 The none-of-those value introduced by the algorithm to generate SAS+ vari-
ables [6] is omitted in the Cartesian product.



(c) the negative effects of a over v, delv(a), if S = {f}, f unifies
with prev(a) by the same substitution φ, and:

delv(a) ⊆ φ(atoms(f))

2. Unification with the initial state: when Lv = Iv , we say that f
unifies by substitution φ with Iv if S = {f} and

Iv = φ(atoms(f))

Regarding preconditions, φ(atoms(f)) should be a superset of
prev(a) since atoms(f) defines a complete sub-state while prev(a)
defines a partial sub-state. In particular, empty preconditions unify
with all λ-fluents. Thus, several variables of f can remain free after
applying substitution φ to f (i.e. they do not appear as parameters of
a). We denote as fφ the application of substitution φ to a λ-fluent
f ∈ Ft. If prev(a) is rewritten using fφ, free variables will consti-
tute new parameters of the resulting action.

The unification of λ-fluents with action effects depends on λ-
fluents unifying with preconditions, since λ-fluents describe com-
plete sub-states and linked variables in preconditions and effects
should remain linked in λ-fluents. In other words, a λ-fluent uni-
fying with the prev(a) determines unique λ-fluents that unify with
addv(a) and delv(a) respectively.

Regarding the initial state, we recall it defines complete sub-states
for any constant, so when applying the substitution to atoms(f) we
exactly obtain the atoms Iv .

Note that λ-fluents f ∈ Ft do not contain variables of type t.
Thus, fφ is not affected by the substitutions of variables of type t.

Definition 5 (Cardinality of a λ-fluent substitution fφ). Let LV
be a set of literals over a set of variables/constants V . Let V LVfφ be
the subset of variables v ∈ V such that λ-fluent f unifies with Lv
by substitution φ, producing fφ. Then, the cardinality of fφ in LV
is the number of elements in that set, denoted by |V LVfφ |.

Intuitively, the cardinality of a λ-fluent substitution fφ is the num-
ber of variables/constants of type t whose literals unify with f by the
same substitution φ.

Translation of A to A′ consists of substituting literals with the
corresponding λ-fluents. An action part can be replaced by any sub-
stituted λ-fluent, fφ, unifying with it, even when this part is empty.
Thus, each action in A which preconditions are relative to partial
sub-states will generate as many new actions in A′ as different
λ-fluents (complete sub-states) unify with its preconditions. There-
fore, |A′| is always equal or higher than |A|. However, the λ-fluents
to rewrite effects are determined univocally by the λ-fluent selected
to replace preconditions. Besides, it is necessary to consider that sev-
eral variables of the same type can be replaced by the same fφwhich
increase its cardinality.

Assuming fφ is selected to replace the corresponding part of ac-
tion a for a set of variables/constants V of type t, we apply the fol-
lowing syntactical rules to rewrite this action part.

• Preconditions involving the variables in V , preV (a) are con-
verted in greater-than preconditions using the rule:

preV (a) are replaced by (>= ( fφ ) |V preV (a)
fφ |)

which reads: the value of the λ-fluent fφ should be greater-than
the cardinality of fφ in preV (a).

• Add effects involving the variables in V , addV (a), are converted
in increase effects:

addV (a) are replaced by (increase ( fφ ) |V addV (a)
fφ |)

• Delete effects involving the variables in V , delV (a) are converted
in decrease effects:

delV (a) are replaced by (decrease ( fφ ) |V delV (a)
fφ |)

(:action hold
:parameters (?x - slice ?y - tray)
:precondition (and (ontray ?x ?y) (freearms))
:effect (and (not (ontray ?x ?y))

(holding ?x ?y) (not (freearms))))
(:action hold

:parameters (?y - tray ?z - size)
:precondition (and (freearms)

(>= (ontray pizzasize slice ?y ?z) 1))
:effect (and (not (freearms))

(decrease (ontray pizzasize slice ?y ?z) 1)
(increase (holding pizzasize slice ?y ?z) 1)))

Figure 2. Example of original and compiled actions.

Figure 2 shows an example action of the pizza domain to illustrate
Definitions 4 and 5, and the rewriting rules. The original action is at
the top and the compiled action at the bottom.

Additionally, we remove from Ft those λ-fluents not unifying with
the preconditions of any action, since they are not useful. An addi-
tional reachability analysis could be performed to also remove λ-
fluents not reachable from the initial state: those having a value of
zero at the initial state for which any action increases their value.

The translation of I into I′ consists of including in the initial state
the value of relevant λ-fluents while removing literals regarding Pt.
λ-fluents unifying with I have a value equal to their cardinality. The
syntactic rule replaces matching literals with an equal-to assignment:

∪
v∈V I

fφ

Iv is replaced by (= (fφ) |V Ifφ|)

The rest of λ-fluents (those not unifying with the initial state) have
an initial value of zero.

After the translation, the task Πλ(t) can be solved with a plan-
ner supporting numeric state variables. The resulting plan for Πλ(t)

encompasses the equivalence class of any permutation of symbols
having the same object sub-state in I.

Proposition 1. If a plan π′ = 〈a′1, . . . , a′n〉 solves the task Πλ(t),
there exists a plan π = 〈a1, . . . , an〉 that solves Πt̂.

Proof Sketch: Let 〈s′0, . . . , s′n〉 be the state sequence induced by the
application of π′. State s′0 = I ′ is well formed by the definition
of the compilation. Actions a′i without λ-fluents in pre(a′) are not
modified in the compilation. If an action a′i with some λ-fluents f in
pre(a′) is applicable, there are sufficient objects in the state si of Πt̂

matching atoms(f ), therefore an action ai is applicable in si. In fact,
all matching atoms enable a set of actions which are permutations
over the regarding objects. For reconstructing π from π′ is enough to
select one of these permutations for each a′i.

4.1 Object Creation Tasks

The compilation Λ is applicable to any task fulfilling the condition
of irrelevancy of object names. Now, we distinguish tasks related to
the creation of objects.



Definition 6. Task Πt̂ is an object creation task if an unary non-
static predicate ε(t) ∈ Pt holds the following for all a ∈ A:

• ε(t) /∈ add(a).
• if ε(t) ∈ del(a), then ∃p′(t) ∈ Pt such that p′(t) ∈ add(a) (i.e.

predicates p′ define the initial properties of the created object)
• if ε(t) ∈ pre(a), then 6 ∃p′(t) ∈ Pt such that p′(t) ∈ pre(a).
• and, if p(o) ∈ I, o ∈ Ct, then there is no other fact over o in I

(i.e. they are free in the pool of objects of type t).

ε(t) is the special predicate encoding that a symbol has not been
used in the pool model7. In addition, ε(t) belongs to the mutex group
formed by the predicates stated as initial properties of the new ob-
jects. In Λ(Πt̂), ε(t) will become a special λ-fluent ε t that counts
the number of free symbols in the initial state. When Ct is defined
just to have enough symbols to solve Πt̂ rather than to limit the set
of objects that can be created, the compilation Λ(Πt̂) can ignore
λ-fluent ε t to simulate an arbitrarily large Ct.

Definition 7. Given an object creation task Πt̂, the compilation
Λ∼ε(Πt̂) generates Π∼ελ(t), an approximate translation of Πt̂. Π∼ελ(t)
is Πλ(t) with all appearances of ε t removed. That is, Π∼ελ(t) =
(T ′, C′,P ′, Ft\{ε t},A′′, I′,G), where every a′′ ∈ A′′ is the result
of removing all preconditions and effects involving ε t from a′ ∈ A′.

Proposition 2. If a plan π that solves the object creation task Πt̂,
exists after making |Ct| > M , there exists a plan π′′ that solves
Π∼ελ(t) for an arbitrary M .

Proof Sketch: If we apply Λ instead of Λ∼ε, the plan π′′ will exists
iff ε t > M holds in I′, given that ε(t) is not added, and therefore
ε t is not increased. Thus, if a plan π′′ exists when ε t > M , it
is because some action a′ with {ε t > k} ∈ pre(a′) has become
applicable for generating π′′. Consider now the case for Λ∼ε. For
each state s′, an action a′ from which ε t has been removed (i.e., a
is a creating action) is applicable if the remaining pre(a′) holds in
s′. In these cases a′ is applicable regardless the value of M .

Plans π′′ will also solve tasks with a number of objects in Ct
smaller than M . Strictly speaking, these are invalid plans for Πt̂.
However Λ∼ε might be intentionally used when |Ct| is not a con-
straint of the problem, such as a fixed availability of resources. The
approximate translation is useful when the number of symbols of
type t is irrelevant for modelling the task but needed to solve it.

5 IMPLEMENTING PLAN TRANSLATION
The key issue for the translation of a plan from the numerical to the
pool model is to give names to the objects counted in the numeric
model that should appear as action parameters in the plan for the
pool model. This is handled by associating a stack of symbols to
each λ-fluent, including ε t. Initially, each of these stacks contains
the constants in the initial state of the pool model whose atoms unify
with the corresponding λ-fluent of the numerical model. Since λ-
fluents define complete sub-states, effects of actions in the numerical
model serve to move symbols from a stack to another. Thus, the exe-
cution of the numeric plan is simulated as a state machine. Decrease
effects indicate the stack where symbols are removed from, while in-
crease effects indicate the stack in which those symbols are included.
Moved symbols are the parameters of the corresponding action in the
plan for the pool model. If there are only decrease effects in an action,
moved objects are not placed in any stack (i.e. the objects disappear).

7 An alternative, but more elaborated definition of object creation tasks is also
feasible for the control model.

The ε stack has a specific behavior. When it becomes empty and
some symbols need to be extracted from it, a procedure automatically
generates new symbols not declared in the pool model. Thus, the
number of needed symbols is decided after planning and not before.

6 EXPERIMENTS
In this section, we evaluate the performance of the Numeric Resource
Creator Planner (NUMRECREP). This planner receives as inputs the
domain and problem in the pool model, performs the compilation
Λ∼ε(Πt̂), solve the problem in the numeric model and finally com-
piles the solution plan back to the pool model.

Traditional planning benchmarks do not contain creation actions,
not even created resources with changing properties. Therefore, we
have developed four new domains with these characteristics for ob-
jects of one type. We first describe them and then we report some
results of the compilation effectiveness.

Carpenter: a modified version of the Woodworking domain of
previous International Planning Competitions (IPCs). Now wood
“parts” do not exist initially, so they have to be created sawing a
board. From a board, one can create small parts, and large parts. As
the original domain, color may be added (glaze) or removed (plane)
from a part. Goals consist of building stools and benches, which are
composed by different parts with a particular color and size.

Pizza: a robot waiter splits pizzas and serve slices of the same size.
The domain for the running examples during the paper.

Child-Snack: to make and serve sandwiches for a group of chil-
dren in which some of them are allergic to gluten. There are two
actions creating objects. The first one makes a sandwich and the sec-
ond one makes a sandwich taking into account that all ingredients are
gluten-free. This domain is useful to show that we are able to handle
created objects with different number of properties.

Spanner-prime: a slight variation of the domain of the IPC-2011
Learning Track. In the original version a man has to pick up a set of
spanners placed along a path to tighten a set of nuts. In the spanner’
domain, spanners do not exists initially, but the man can obtain a new
created spanner dispensed in any location of the path.

Setup For each domain we developed a random problem generator
able to pre-compute the number of needed symbols for non-existing
objects. It generates a number of symbols according to a ratio given
as input parameter. A ratio of 100% guarantees solvability for classi-
cal models (i.e., pool and control). This ratio is irrelevant for NUM-
RECREP, since it creates symbols on demand.

For the evaluation of the classical models we used the LAMA
planner [11], winner of the Satisficing Track of IPC-11. LAMA does
not support numeric preconditions, so we selected Metric-FF [8] as
the base solver for NUMRECREP. We will report also the results of
Metric-FF with the classical model, to establish a fair comparison of
different models with the same planner. The time bound for solving a
problem was set to 1800 seconds, as in last IPCs. Experiments were
run in a 2.4Ghz CPU with 6GB of memory bound.

Object Increase In this experiment we analyze the effect of
declaring a different number of initial symbols for the object type
being created. For each domain, we have generated a set of 20 ran-
dom problems with the same distribution of objects and a fixed set
of goals. The number of declared symbols in these problems varies
from 110% up to 300% of the needed symbols to solve the problems.
Then, we sorted these problems by their size. It is expected that clas-
sical planners with larger problems will suffer from scalability prob-
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Figure 3. Performance for fixed goals and increasing number of constants in
the same problem.
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Figure 4. Performance for problems with increasing number of goals.

lems due to the increase in the instantiation and state space. However,
in the numeric model no symbols are declared for the type being cre-
ated. Thus, in this model the translated problems are all of a similar
size and the differences on performance will be due only to CPU la-
tency. Figure 3 shows the results in terms of CPU time. As expected,
planners perform better with control models than with pool mod-
els. NUMRECREP obtains an impressive improvement compared to
other planners. Even the control model degrades the performance of
planners when more symbols than needed are defined.

Scalability The objective of this experiment is to analyze how
planners with different models scale when we increase the size of
the planning instances. For each domain, we have generated a set of
20 random problems with increasing number of goals. The sets of
objects were increased proportionally, and the number of symbols
for the object type being created was set to 120% of the needed ob-
jects. Figure 4 shows the results in terms of CPU time. NUMRECREP
scales better than the others in three out of four domains. In all cases
NUMRECREP correctly solves the issue of the hard instantiation.
The difference among domains is due to the ability of the Metric-
FF heuristic to guide the search. Problems in Carpenter are hard to
instantiate, but the relaxed plan heuristic performs reasonably well
regardless of the model. The Child-snack domain is also hard to in-
stantiate but landmarks heuristic is more informative than Metric-FF
heuristic. Regarding the pizza domain, the largest problem solved
by LAMA in the control model has 2 pizzas and 8 guests. NUM-
RECREP was able to solve problems with 3 pizzas and 12 guests. To
some extend it is surprising that such an easy task can not be solved
by state-of-the-art planners.

7 CONCLUSIONS

The creation of objects is a common situation in planning scenarios
where agents need to assembly products, split objects, or even as-
sign names to objects being perceived from the environment. In this
work we have identified under which conditions these objects can
be compiled as numeric state variables. Then, we have proposed a
new method to compile them automatically. This approach reliefs the
problem of explicitly declaring a sufficient number of non-existing
object names in the problem definition. The translation into numeric
models has also the advantage of reducing the instantiation and re-
moving symmetries due to irrelevant object names.

As future work we want to incorporate a reachability analysis for
pruning non-reachable λ-fluents and to study other mechanisms to
reduce its number. Also, we want to empirically explore the benefits
of the translation when dealing with resources that already exist in
the problem definition but their names are irrelevant as well.
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