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Preface

Frontier models and efficiency measurement are closely related fields, which are cur-

rently a wide research area with plenty of applications. The first thoughts on efficiency

were documented through some management theories at the beginning of the 20th cen-

tury and from economics by authors such as John Hicks in the 1930s. In general, the

main concern was the failure to achieve the theoretical production and profits maxima.

However, it was not until the 50s when a formal definition of technical efficiency was in-

troduced in Koopmans (1951), followed by some applications of this concepts developed

in Debreu (1951) and Farrell (1957). These initial attempts provided the theoretical

basis for the introduction of robust methods of efficiency measurement through frontier

models in the late 70s. Since then, two different methodological approaches have been

widely developed and applied: nonparametric and parametric methods (see Coelli et al.,

2005; Fried et al., 2008; Kumbhakar and Lovell, 2000, for some excellent books on these

techniques).

Nonparametric approaches are flexible but they have the disadvantage of provid-

ing, in general, deterministic inefficiency measures. The most common nonparametric

method is Data Envelopment Analysis (DEA) introduced in Charnes et al. (1978). On

the other hand, parametric approaches have the advantage of introducing an error term,

which may account for measurement errors, omitted variables and functional form er-

rors. The most important parametric method is Stochastic Frontier Analysis (SFA)

initially introduced in Aigner et al. (1977) and Meeusen and van den Broeck (1977) (see

O’Donnell, 2014, for an interesting explanation of the assumptions underpinning DEA

and SFA models).

Recently, SFA has been studied from a Bayesian point of view due to some of the

attractive features of this approach such as exact inference and individual distributions

of inefficiencies, formal specification of uncertainty, easy incorporation of prior ideas

and restrictions, and computation of predictive distributions of inefficiency. Since the

introduction of the Bayesian approach to SFA in van den Broeck et al. (1994) there

have been an increasing number of theoretical studies and applications of SFA from this

perspective and it is currently a very influential approach.
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Regarding methodological issues, one of the most interesting topics in SFA literature

is the treatment of heterogeneity and its effects on efficiency estimations. The omission of

heterogeneity in stochastic frontier models has been well documented to produce biased

efficiency estimations (see Greene, 2008; Kumbhakar and Lovell, 2000, for complete

reviews). Empirical studies have also shown relevant implications of heterogeneity in

the estimation of both efficiency levels and rankings (see Bos et al., 2009; Greene, 2004,

for examples in the health and banking sectors, respectively). Also, the location of firm

heterogeneity variables has been found to drive the estimations (see Coelli et al., 1999).

In fact, the question of “where to put the z’s (covariates)?”, as remarked by Greene

(2008), is still an open issue. This issue has been widely studied before. However,

unobserved inefficiency heterogeneity has been little explored.

Another topic that has received little attention within the frontier literature is the

persistence of inefficiency over time. Traditionally, time dependency of inefficiency has

been studied through deterministic specifications of time. In the Bayesian context, to

the best of our knowledge, only the study by Tsionas (2006) considers dynamic effects

in a frontier model, which also includes some exogenous variables representing hetero-

geneity. However, the implications of including observed covariates in these models and

accounting for unobserved sources of heterogeneity have been less explored.

In this thesis, we put forward the modeling of heterogeneity in a Bayesian context by

capturing both observed and unobserved heterogeneity in the inefficiency distribution

under static and dynamic formulations. We propose several novel specifications which

permit the identification of heterogeneity in these contexts. The first of our proposed

methods captures unobserved heterogeneity in the inefficiency by modeling a random

parameter in the inefficiency distribution. Results suggest that this method is successful

in identifying unobserved heterogeneity and that it also can be used as a way to test

the relevancy of observed covariates. Also, the location of heterogeneity is found to have

important effects on efficiency estimations which are more evident when unobserved

heterogeneity is accounted for. The second proposal captures unobserved heterogeneity

sources related to firm-specific effects of observed covariates in the inefficiency. This

is performed by modeling random coefficients in the inefficiency. It is found that al-

lowing random coefficients for the inefficiency covariates captures firm-specific effects

which remain unidentified under the regular fixed coefficients models. This specification

distinguishes properly firms in term of the effects of inefficiency drivers and separates
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unobserved heterogeneity related to these effects from efficiency. Our third proposal

relies on the framework of dynamic SFA and specifies a model that is able to capture

unobserved heterogeneity in the inefficiency persistence and unobserved technological

heterogeneity. Both unobserved effects are found to be very relevant in explaining in-

efficiency and its evolution over time. Finally, the implications of including observed

covariates in dynamic models were studied by mean of an inefficiency specification that

allows separating observed inefficiency heterogeneity from the dynamic process. The

model allows identifying those firm characteristics that may have persistence effect in

the inefficiency from those that can be rapidly adjusted. In general, location of observed

covariates is found to have important implications in the identification of inefficiency

drivers and posterior efficiency estimations.

The proposed models are implemented in very different applications such as health

performance, airlines, banking and electricity distribution and our results have important

implications for companies, regulators and policy makers in these sectors.

The inference of all the models is carried out using Bayesian methods and the Win-

BUGS software package is used for the implementation throughout. We provide the

codes used in each chapter of the thesis at the end of the corresponding chapters.

This thesis has the following structure. Chapter 1 presents an introduction to the

most important concepts on frontier efficiency, the measuring methods, SFA and its

Bayesian approach, and a literature review on the treatment of observed and unobserved

heterogeneity in SFA models. Chapter 2 presents the problem of observed heterogeneity

in SFA by analyzing the effects of including observed covariates in the frontier, and in

different parameters and distributions of the inefficiency. Chapter 3 presents the models

proposed to identify unobserved heterogeneity in the inefficiency. Firstly, by modeling a

random parameter in the inefficiency; and secondly, by allowing coefficients of inefficiency

drivers to vary randomly across firms. Chapter 4 extends the analysis of heterogeneity in

the dynamic framework by proposing two specifications: one that identifies unobserved

heterogeneity in the inefficiency persistence and in the technology and another one that

is able to separate observed heterogeneity from the dynamic behaviour of inefficiency.

Finally, Chapter 5 discusses the main conclusions, contributions and further lines of

research.
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Chapter 1

Introduction

In this Introduction we define the basic concepts and techniques involved in efficiency

modeling, describe the methodology of SFA, the Bayesian approach to this method, and

present a literature review on the treatment of heterogeneity in SFA.

1.1 The concept of efficiency

Efficiency is a relative concept related to the way resources are used in order to obtain

a final result. Therefore, it is closely linked with the performance of private or public

organizations in the sense that improving efficiency can lead to higher profits, more com-

petitive performance and better service provision. Consequently, efficiency measurement

is very important for making managerial and policy decisions and for the identification

of areas that can be improved.

Efficiency should be measured with respect to some objective such as maximizing

produced output, revenues or earned profits, or minimizing inputs or costs. In general,

three main types of efficiency can be measured. These are technical, allocative, and

economic efficiency. Technical efficiency is related to the quantities of inputs and outputs

employed in a production process. In this case, we can obtain either an input-oriented

or an output-oriented measure. The former assesses the quantities of inputs used to

produce a given output; while the latter measures the output levels produced with some

given inputs. These measures are then linked to the economic concept of a production

function.
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1. INTRODUCTION

To illustrate the concept of technical efficiency, Figure 1.1 plots a single-input single-

output case, where the output (y) is represented in the vertical axis and the input (x)

in the horizontal axis. The curve is the optimal technology representing a production

frontier where every output level is produced with the minimum possible amount of

input and vice versa. Therefore, point P represents a technically inefficient firm, which

could either produce the same output level A using less input quantity, or produce more

output with the amount of input. In the first case, the distance BP is a measure of

input-oriented technical inefficiency for this firm. In the second case, output-oriented

technical inefficiency is represente by the distance DP .

Figure 1.1: Technical efficiency

Source: Coelli et al. (2005)

Allocative efficiency measures the way a firm chooses optimum input or output levels

given their prices in the market. This is associated with the ability to fulfill the marginal

conditions for a cost minimization function or a revenue or profit maximization. Finally,

economic efficiency is a concept involving both types of efficiency. To illustrate these

three concepts, Figure 1.2 shows the possible combinations of two inputs (x1 and x2) for

producing one output (y). Line AA′ is the isocost representing all the input combinations

which generate the minimum cost for the firm given the market prices of those inputs.

The curve SS′ is the isoquant representing the minimum feasible combination of inputs

generating a given output amount. Thus, a firm located at point P is both technical

and allocative inefficient, while a firm at point Q is technical efficient because it is on

the isoquant. Then, the distance PQ is a measure of the input reduction the firm should

2



1.2 Efficiency measurement

perform to be technical efficient. However, at Q the firm is still allocative inefficient

because given the input prices the firm may use a different combination of inputs which

allows it to produce the same output amount but incurring in lower costs.Then, the

distance QR is a measure of the allocative inefficiency. Therefore, only Q′ is the overall

economic efficient point, where the isoquant is tangent to the isocost.

Figure 1.2: Technical, allocative and economic efficiency

Source: Coelli et al. (2005)

It is important to distinguish the concepts of efficiency and productivity. Although

highly related, the concept of productivity is more general and, as well as technical

and allocative efficiency, it takes into account technical change, scale economies and

output mix.1 Here, we focus on technical and economic efficiency measurement, although

measures of technical change and scale efficiency are derived in the applications.

1.2 Efficiency measurement

In general, measurement techniques for efficiency are separated into two main approaches:

nonparametric and parametric.

The nonparametric approach has flexibility as its main advantage, but the main

drawback is that, in general, it provides deterministic measures of inefficiency. Under

1Technical change is related to changes in the technology that may shift the frontier. Regarding
scale economies, a firm operates at constant returns to scale if an increase of input amounts leads to a
proportional increase of the output; at increasing returns if the output increases more than proportional;
and at decreasing returns if the output increases less than proportional. As to output mix, a firm is
defined as scope efficient if it produces jointly multiple products at proportional less cost than producing
them separately.
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1. INTRODUCTION

this approach the main methodology used is DEA. It was introduced by Charnes et al.

(1978) and the purpose is to determine which observations or decision making units

(DMU’s) are efficient in the performance of some activity. These DMU’s have common

inputs and outputs. It is important to notice that this method allows easily evaluating

multiple outputs, introducing inputs different to production factors, and using ratios or

other indicators.

In particular, in this method, the efficient DMUs compose a frontier enveloping all

inefficient observations, and technical inefficiency is measured by their distance to the

frontier. That distance is a measure of the proportion of inputs the firm might reduce or

of the proportion of output the firm might increase in order to be efficient. It is important

to remark that efficiency under DEA is considered as relative to the other units evaluated

and then it is highly sensitive to outliers. There exist two types of envelopment surfaces,

one for constant returns to scale and other for variable returns to scale. This choice

is determined a priori based on the knowledge of the sector analyzed. The application

of this method implies solving a linear programming problem and is underpinned by

the assumption that the frontier is locally linear. Its main drawback is that if outputs,

inputs and/or environmental variables are measured with error or are unobserved, as

it is usually the case, then the estimators are inconsistent (see O’Donnell, 2014, for a

discussion). Moreover, modeling environmental or heterogeneity variables affecting the

inefficiency is troublesome under this approach.2

The parametric approach uses econometric methods for the estimations. Although,

within this approach there are some deterministic methods, the most interesting char-

acteristic is that it easily allows the inclusion of an stochastic error term. The most

common parametric and stochastic method is SFA, introduced by Aigner et al. (1977)

and Meeusen and van den Broeck (1977). As it will be described below, its main advan-

tage is introducing an error term, which may account for measurement errors, omitted

variables and functional form errors. It also allows to model, in an easy and consis-

tent way, heterogeneity variables in a single stage (see Wang, 2002, for a discussion and

experiments).

2Traditionally, two-stage procedures have been used, where the obtained inefficiency measures are
regressed over a set of heterogeneity variables. However, this usually leads to inconsistent estimators
(see Simar and Wilson, 2007, for a discussion on this issue and a possible solution using bootstrapping).
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1.3 Stochastic Frontier Analysis

Recently, some methods that try to incorporate the advantages of both approaches

have been proposed. Robust and stochastic DEA-type models as introduced in Cazals

et al. (2002); Daraio and Simar ( 2005), and Kuosmanen and Kortelainen (2012), respec-

tively, are able to deal with outliers, noise and include environmental variables. However,

the robust versions do not allow for a rigorous analysis of an stochastic error term and,

as the stochastic versions, the modeling of heterogeneity factors that affect directly the

inefficiency rather than the production activity itself, is still troublesome. Other meth-

ods mixing both worlds are the Bayesian and frequentist approaches to semiparametric

SFA models (see Griffin and Steel, 2004; Park et al., 2007, respectively). These methods

allow more flexible structures for either the inefficiency or the frontier. However, at least

in the first case, modeling heterogeneity variables in a nonparametric specification for

the inefficiency component is not easy and is still an open issue.

In this thesis, we focus only on SFA given the advantages it provides for modeling an

idiosyncratic error and heterogeneity variables affecting the inefficiency. The inference of

all the models is carried out via Bayesian methods, which provides interesting advantages

for the incorporation of uncertainty and the analysis of the results that are discussed

further.

1.3 Stochastic Frontier Analysis

The SFA method is motivated by the idea that deviations from the frontier may not be

entirely under the control of the firm. This approach supposes an error term which can be

decomposed as the sum of two components. One component is the idiosyncratic random

error assumed to be normally distributed and the second component is nonnegative

and considered as inefficiency. The way the error component is divided depends on the

distribution assumption of the error component capturing the inefficiency.

As mentioned before, parametric models are based on a functional form; in particular,

the stochastic frontier models are usually derived from a production or a cost function.

As described in Section 1.1, in the first case, technical efficiency is measured while in

the second case, economic efficiency is evaluated. The former is simpler; thus, it is used

to explain below the basics of SFA (see Kumbhakar and Lovell, 2000). Both, production

and cost function models can be evaluated for cross sectional or panel data. The latter

provide more efficient estimations, and allows introducing time varying inefficiencies.
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Consider a cross section production frontier model such that:

yi = f(x1i, x2i, · · · , xki;β) · TEi, (1.1)

where yi is the total output produced by firm x1i, x2i, · · · , xki are the k inputs used by

firm i, β is the vector of technology parameters to be estimated, and TEi is the technical

efficiency of firm i. Thus, rearranging the previous equation we have that:

TEi =
yi

f(x1i, x2i, · · · , xki;β)
. (1.2)

Then, technical efficiency is defined as the ratio of the observed output to the maxi-

mum feasible output. This means that if the firm is producing at the maximum, technical

efficiency is also maximum and equal to 1, otherwise it is less than 1 and some degree

of inefficiency is presented. However, in this case the frontier is deterministic because it

is not considering possible random shocks out of the control of the firm. To introduce

this, the specification of the stochastic frontier and the technical efficiency is as follows:

yi =f(x1i, x2i, · · · , xki;β) · exp(vi) · TEi (1.3)

TEi =
yi

f(x1i, x2i, · · · , xki;β) · exp(vi)
, (1.4)

where, exp(vi) captures the effect of measurement errors or random shocks not controlled

by the firm.

The theoretical specification of an economic production function is y = f(L,K),

where y is the output produced, L is the amount of labor input used to produce y,

and K is the amount of capital input used to produce y. It is possible to derive this

function from a Cobb-Douglas or a Translog function. Taking logarithms to any of these

functions, the econometric model for the stochastic frontier would be:

ln yi = xiβ + εi; εi = vi − ui, (1.5)

where the matrix xi contains the logarithm terms of the inputs associated to labor and

capital and εi is the error term which is split into two components: vi is an unrestricted

random variable and ui is the inefficiency component. Given that the technical efficiency

cant be greater than 1, ui is defined to be always nonnegative. Also, recalling the

6
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technical efficiency definition we have that TEi = exp(−ui). It is worth observing that

in the case of deriving the frontier from a cost function, the sign of the inefficiency

component ui is reversed given that in that case we have a minimum frontier such as

that illustrated in Figure 1.2.

Figure 1.3 shows the SFA representation of a production function where it can be

observed that for firms i and j not all the distance from their observed outputs to the

frontier is attributed to inefficiency but only part of it. In the first case, the idiosyncratic

error term is negative while in the second case it is positive. This random part vi is

assumed to be normally distributed N(0, σ2
v) and fulfill the classical assumptions as

the usual error under OLS. However, for the inefficiency part ui some assumption is

required given that it must be non negative. The most common alternatives proposed

in the literature for the inefficiency distribution are: half normal (Aigner et al., 1977),

exponential (Meeusen and van den Broeck, 1977), truncated normal (Stevenson, 1980),

and gamma (Greene, 1990) distributions. In all the cases, vi and ui are assumed to be

independently distributed from each other and from the regressors.

Figure 1.3: SFA approach for the derivation of technical efficiency

7
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1.4 The Bayesian approach to SFA

The Bayesian approach to SFA was introduced in van den Broeck et al. (1994). The main

advantages in this context are the exact inference on inefficiencies especially with small

samples, the straightforward incorporation of prior ideas and restrictions, the formal

specification of uncertainty on the parameters and the model, getting a distribution of

the inefficiency for every firm, and the direct computation of the average inefficiencies

through the predictive posterior distribution of ui. Dealing with stochastic frontier

models in this context requires using numerical integration methods such as Markov

Chain Monte Carlo (MCMC). In particular, the Gibbs sampling algorithm with data

augmentation as introduced in Koop et al. (1995) is used very often on the literature

of Bayesian stochastic frontiers. The implementation of these models in this framework

can be easily carried out through free software packages such as WinBUGS (Lunn et al.,

2000). The implementation of the most common SFA models in the Bayesian context

using this package is introduced in Griffin and Steel (2007).

The Bayesian formulations for the gamma, exponential and truncated normal distri-

butions are presented by van den Broeck et al. (1994). It is important to remark that the

exponential is just a particular case of the gamma distribution when the shape parameter

is equal to 1, and that the half normal is a particular case of the truncated normal when

the truncation is set at 0. The Bayesian approach assuming the exponential distribution

for inefficiencies is presented below.

Let us represent the stochastic frontier model presented in (1.5) as:

yi = f(xi,β) + vi − ui, (1.6)

where yi is the log of the output variable for the firm i, xi contains the explanatory

variables and vi, ui are the error terms as considered in (1.5).

Thus the joint distribution of yi and ui conditional on xi and the parameters is:

p(yi, ui|xi,θ) = fN (yi|f(xi,β)− ui, σ2)fG(ui|λ−1), (1.7)

where θ = (β, σ2, λ) are the parameters to be estimated, σ2 is the variance of the

composed error εi and λ is the unknown scale parameter of the exponential distribution.

8



1.4 The Bayesian approach to SFA

From here,we deduce the following conditional density for ui:

p(ui|yi,xi,θ) = Φ−1
(mi

σ

)
fN (ui|mi, σ

2)I(ui > 0), (1.8)

where mi = f(xi,β) − yi − σ2/λ. From the two previous conditional distributions the

sampling density of yi is obtained:

p(yi|xi,θ) =
λ−1

Γ(1)
exp

(
−mi

λ
− σ2

2λ2

)
Φ
(mi

σ

)
. (1.9)

Now, the likelihood function can be represented as the product of the previous den-

sities:

L(θ|y,x) =

N∏
1

p(yi|xi,θ). (1.10)

Given this likelihood function and some prior density p(θ), the posterior distribution

is:

p(θ|y,x) ∝ L(θ|y,x)p(θ). (1.11)

This distribution includes all the information about the parameters contained in the

prior and the data. However, under a frontier analysis the most important are not

the parameters but the individual efficiencies, which are measured by TEi = exp(−ui).

Therefore, the conditional posterior distributions of ui and ri are the following:

p(ui|y,x) =

∫
p(ui|y,xi,θ)p(θ|y,x)dθ (1.12)

p(ri|y,x) =TE−1
i

∫
p(ui|y,x). (1.13)

The main difference from the frequentist method is that instead of conditioning over

an estimate of θ, the Bayesian approach averages out the uncertainty about θ in a

natural way by marginalizing with respect to the posterior density of the parameters.

Finally, in frontier analysis the average inefficiency is usually examined. An advantage of

the Bayesian context is that it can be obtained directly through the predictive posterior

9
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distribution of ui, which has the following formulation:

p(uf |y,x) =

∫
fG(uf |λ−1)p(λ|y,x)dλ. (1.14)

1.5 Heterogeneity in Stochastic Frontier Models

In stochastic frontier models, the estimated inefficiency component often includes some

firm characteristics other than outputs, inputs, or prices defined from the production

or cost function, which should not be attributed to inefficiency. These are exogenous

variables (e.g. type of ownership, GDP level in the country of operation) that have an

effect on the technology used by firms or directly on their inefficiency. If these variables

are not taken into account in the model specification, this may affect the estimation of

the inefficiencies or of the frontier significantly.

Firm characteristics can be modeled in the frontier if they imply heterogenous tech-

nologies or in the one-sided error component if they affect the inefficiency. In the former

case, covariates are directly included in the functional form and the main interest is

to model unobserved heterogeneity (see Greene, 2005). In the case of heterogeneity in

the inefficiency, covariates are usually included in the parameters of the one-sided error

distribution (see Huang and Liu, 1994).

Heterogeneity in stochastic frontier models has also been studied in the Bayesian

context. The Bayesian approach to stochastic frontiers introduced by van den Broeck

et al. (1994) presents advantages in terms of formally deriving posterior densities for

individual efficiencies, incorporating economic restrictions, and in the easy modeling

of random parameters through hierarchical structures. Hierarchical models have been

used to capture heterogeneous technologies (see Tsionas, 2002) and heterogeneity in the

inefficiency has been considered through covariates in the distribution of the non-negative

error component (see Koop et al., 1997). Modeling observed heterogeneity using non

parametric and flexible mixtures of inefficiency distributions are other interesting recent

contributions (see Griffin and Steel, 2004, 2008).

On the other hand, unobserved heterogeneity in the non-negative error component

has been very little explored in the literature from a frequentist or a Bayesian approach.

However, ignoring its existence means that heterogeneity which is not captured by ob-
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served covariates is wrongly attributed to inefficiency and consequently leads to bad

efficiency estimates.

1.5.1 Literature on Observed Heterogeneity

The original stochastic frontier model introduced by Aigner et al. (1977) and Meeusen

and van den Broeck (1977) has the following form:

yit = xitβ + vit − uit (1.15)

where yit represents the output of firm i at time t, xit is a vector that contains the input

quantities used in the production process, vit is an idiosyncratic error that is typically

assumed to follow a normal distribution and uit is the one-sided component representing

the inefficiency and follows some non-negative distribution.

Firm specific heterogeneity not specified in (1.15) can be mistaken for inefficiency

if it is not identified. Heterogeneity can either shift the efficiency frontier or change

the location and scale of the inefficiency estimations (see Greene, 2008; Kumbhakar and

Lovell, 2000, for complete reviews). In general, when external factors are supposed to

capture technological differences and these are out of the firms’ control, heterogeneity

should be specified in the frontier. In this case, the main interest is capturing unobserved

effects. In the classical context, this has been modeled through fixed and random effects

or models with random parameters (see Greene, 2005). Bayesian approaches have been

based on frontier models with hierarchical structures (see Huang, 2004; Tsionas, 2002).

When heterogeneity is more related to efficiency and thus more likely to be under

firms’ control, then this should affect directly the one-sided error term. In the parametric

context, inefficiency heterogeneity is often included in the location or scale parameters

of the inefficiency distribution. For example, covariates shift the underlying mean of

inefficiency in Kumbhakar et al. (1991), Huang and Liu (1994) and Battese and Coelli

(1995). A reduced form of these models assumes that the location parameter of the

distribution of uit depends on vectors of covariates zit and parameters δ as follows:

uit ∼ N+(µit, σ
2
u)

µit = zitδ.
(1.16)

The scale parameter of the one-sided error component has also been modeled as a

function of firm characteristics. Reifschnieder and Stevenson (1991) provided one of the
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first linear specifications where this parameter varies across firms. A similar model was

proposed by Caudill et al. (1995) with the aim of treating heteroscedasticity in frontier

models. These authors found biased inefficiency estimations when heteroscedasticity

was not accounted for.3 The proposed model specifies the variance of a half-normal

distributed inefficiency as an exponential function of time invariant covariates:

ui ∼ N+(0, σ2
ui)

σui = σu · exp(ziγ).
(1.17)

Although the original proposal in (1.17) was presented in a cross sectional framework,

it can be easily extended to include time-varying covariates and inefficiencies (see Hadri

et al., 2003a,b, for an extension to panel data). It is also possible to define uit = ui · g(t)

where g(t) is a function of time (e.g. the parametric function introduced by Battese and

Coelli, 1992). The specification in (1.17) has the characteristic of changing the scale of

the inefficiency distribution while preserving its shape and is referred in the literature

as the scaling property (see Alvarez et al., 2006; Wang and Schmidt, 2002). In general,

this property allows us to think about inefficiency as being composed of two parts:

uit = u∗it·f(zit, δ). The first component is a base inefficiency, which is not affected by firm

characteristics and captures random managerial skills, while the second component is a

function of heterogeneity variables determining how well management is performed under

these conditions. Another important feature of this property is that the interpretation of

the effects of covariates on the inefficiency is direct and independent of the inefficiency

distribution. The scaling property also holds when the inefficiency is exponentially

distributed (see Simar et al., 1994), or in a particular case of truncated normal inefficiency

where both parameters are an exponential function of firm characteristics as follows (see

Alvarez et al., 2006; Wang and Schmidt, 2002):

uit ∼ N+(µit, σ
2
uit)

µit = µ · exp(zitδ)
σuit = σu · exp(zitδ).

(1.18)

Specification (1.18) for the inefficiency is a variation of a previous proposal by Wang

(2002) where both the mean and the variance of truncated normal inefficiencies are

simultaneously affected by the same covariates but with different coefficients. Other

authors have also proposed heterogeneity specifications that include firm characteristics

3In a previous study, Caudill and Ford (1993) also found biased estimates of the frontier parameters.
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in the variance of the idiosyncratic error with the aim of treating heteroscedasticity in

frontier models (see Hadri, 1999).

In the Bayesian context, Koop et al. (1997) presented different structures for the mean

of the inefficiency component as Bayesian counterparts to the classical fixed and random

effects models. One of these specifications is the varying efficiency distribution model,

which includes firm specific covariates in the parameter of an exponential distribution.

These covariates link the firm effects and only the inefficiencies of firms sharing common

characteristics are drawn from the same distribution. The distribution below presents a

time invariant inefficiency that depends on vectors of binary covariates zi and parameters

γ:

ui ∼ Ex(λ−1
i )

λi = exp(ziγ).
(1.19)

Since this model is intended to be a counterpart of a frequentist random effects

model, it is specified to obtain time invariant inefficiencies. However, as in the case of

(1.17), it is possible to define uit = ui · g(t) or to include time-varying covariates. Also,

it would be possible to draw inefficiencies for every firm and period of time from the

distribution with a firm specific parameter.

1.5.2 Literature on Unobserved Heterogeneity

Unobserved heterogeneity in SFA has been mainly modeled in the frontier, recognizing

the existence of unobserved sources related to heterogeneous technologies among firms.

From the frequentist approach, the most common way to include these effects is through

panel data models with fixed and random effects. In particular, Greene (2005) proposes

two models able to capture these effects and distinguish them from inefficiency: the

True Fixed Effects (TFE) and the True Random Effects (TRE) models. This author

also proposes a Random Parameters (RP) model where all the coefficients are allowed

to be firm specific. The specifications for these models are the following:

yit =αi + β′xit + vit ± uit (1.20)

yit =(α+ wi) + β′xit + vit ± uit (1.21)

yit =αi + β′ixit + vit ± uit. (1.22)
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Equation (1.20) is the TFE specification, which can be solved by creating the dummy

variables for every firm. As Greene (2005) states the problem of the possible presence of

many parameters to be estimated could be solved through the use of Newton’s method.

On the other hand, (1.21) is the TRE specification, which is a regular random effects

model where the composed error εit = vit ± uit follows an asymmetric distribution.

Finally, (1.22) presents the RP specification where (αi,βi) = (α,β)+∆α,βqi+Γα,βwα,βi
.

Here, ∆j is a matrix of parameters to be estimated, qi include related variables, Γj is

the covariance matrix and wj,i is a random vector parameterizing random variation.

In the Bayesian context, random effects models have also been proposed to model

unobserved technological heterogeneity. Tsionas (2002) proposed a model with the same

form in (1.22), where hierarchical structures can be easily defined in the frontier pa-

rameters. Therefore, in this case we would define the following structure of prior and

hyperprior distributions:

p(β) = fN (β̄,σ2
β)

p(β̄) = fN (0,Σβ̄)

p(σ−2
β ) = fG(aσ−2

β
, bσ−2

β
),

(1.23)

where, β̄ is the common mean from where the firm specific variables vary randomly with

variance equal to σ2
β. Similarly it is defined for α.

As previously mentioned, the case of unobserved heterogeneity in the inefficiency has

been less explored. The RP model introduced by Greene (2005) allows us to account

for random parameters in the inefficiency component. This model defines a truncated

normal distribution for the one-sided error such that:

uit ∼ N+(µi, σ
2
ui)

µi = µ′izi;σui = σu exp(θ′ihi)
µi = µ+ ∆µqi + Γµwµi

θi = θ + ∆θqi + Γθwθi

(1.24)

In the Bayesian framework, although not presented as a model to capture unobserved

heterogeneity, Koop et al. (1997) propose a marginal independent effects (MIED) model

that may capture in some extent unobserved sources in the inefficiency. In this case,

the inefficiency is assumed to be exponentially distributed with firm specific mean and
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independent priors as follows:

uit ∼ Exp(λi)
p(λi) = fG(1,− ln(r∗))

(1.25)
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Chapter 2

Observed Inefficiency

Heterogeneity in Stochastic

Frontier Models∗

This chapter focuses on the treatment of observed heterogeneity related to inefficiency.

Several models have been proposed to deal with this problem using different distribu-

tions for the inefficiency component. In general, accounting for observed heterogeneity in

the inefficiency has been found to have important consequences in efficiency estimations.

Most of these studies have described how these estimations may present biases when

relevant information about firm characteristics is omitted. However, the consequences

that using a particular heterogeneity SFA model has on the efficiency estimations and

rankings provided is still an interesting topic of study. Its understanding is key in this

area given that the final aim in most empirical applications is precisely obtaining effi-

ciency scores and comparing firms through efficiency rankings. This chapter analyzes

these effects under a Bayesian framework when observed covariates are included in dif-

ferent parameters of the inefficiency distribution and also when different distributions

are used for the one-sided error term.

This chapter is divided into five sections. Section 2.1 presents a brief literature review

on the treatment of observed heterogeneity in stochastic frontier models from both the

frequentist and the Bayesian approach. Section 2.2 presents a general SFA model which

∗Much of the work in this chapter has been published in the Journal of Productivity Analysis (see
Galán et al., 2014b).
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allows to include observed covariates in different parameters of the inefficiency distribu-

tion. Bayesian inference for this model and three different model selection criteria are

presented. Section 2.3 presents a detailed analysis of the effects of including observed

covariates in different parameters of the inefficiency distribution on efficiency estima-

tions and rankings. This is illustrated using two real samples previously studied under

the frequentist approach. In Section 2.4, the effects on the estimations when different

distributions are used for modeling observed inefficiency heterogeneity are presented.

Finally, Section 2.5 concludes the chapter.

2.1 Analysis of observed inefficiency heterogeneity

In this section, a general stochastic frontier model for panel data that allows the inclusion

of observed inefficiency heterogeneity is presented. The aim is to study the effects on the

estimations of including observed covariates in the different parameters of the inefficiency

distribution.

For the evaluation of the effects on different parameters of the inefficiency distri-

bution, we focus on a truncated normal distribution, which is one of the most used

distributions in studies involving observed heterogeneity in the inefficiency. In particu-

lar, covariates are often included in the location parameter of this distribution following

the Battese and Coelli (1995) model. However, it is not clear in which parameter of the

inefficiency distribution heterogeneity should be included. Wang (2002) proposed mod-

eling the covariates simultaneously in the location and scale parameters of the truncated

distribution. Alvarez et al. (2006) analyze a particular specification of truncated normal

distributed inefficiencies that has the property of preserving the shape while changing

the scale of the inefficiency, and also estimate a model where heterogeneity is captured

only by the scale parameter of this distribution. We think that at an individual level,

the moments of the distributions affected have different effects on the posterior efficiency

distributions of each firm. Since this is possible to be studied from a Bayesian context,

our aim here is to analyze the effects on the posterior efficiency distributions of including

observed heterogeneity in the location, scale or both parameters of the truncated normal

distribution. For the latter case, we extend to the Bayesian framework the scaling prop-

erty model proposed by Alvarez et al. (2006). This allows us to think of the inefficiency
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as being composed of two parts, one component capturing natural managerial skills and

other component which depends on observed firm characteristics.

For the one-sided error we use an exponential specification of a truncated normal

distribution where the location, scale, or both parameters can model firm heterogeneity.

The general model in the case of a production function is:

yit = xitβ + z∗itδ + vit − uit; vit ∼ N(0, σ2
v)

uit ∼ N+(µ · exp(zitγI1), σ2
u · (exp(zitγI2))2), (2.1)

where yit is the output of firm i at time t, xit is the row vector of input quantities, z∗it

is a row vector of the observed heterogeneity variables that affect the technology; zit is

a row vector of observed covariates with effects in the inefficiency; and, β, δ, and γ are

the corresponding parameter column vectors. I1 and I2 are indicator variables taking

the value of 1 when either observed covariates are accounted for in the location or scale

parameters, respectively, and 0 otherwise.

This model nests other specifications in the literature that capture only observed

heterogeneity. When I2 is equal to 0, the model reduces to an exponential specification of

the Battese and Coelli (1995) model in (1.16). If I1 is equal to 0, the model allows only the

scale parameter to include heterogeneity. This specification has only been studied before

by Alvarez et al. (2006) in the framework of testing the scaling property. If additionally

the location parameter µ is set to zero, our model becomes an extension of the half-

normal model proposed by Caudill et al. (1995) in (1.17). Finally, if both parameters are

allowed to include simultaneously the same type of heterogeneity (I1, I2 = 1) our proposal

becomes an extension of the scaled Stevenson model in (1.18). In case heterogeneity is

considered time invariant, the vector of observed covariates zit can be set to vary only

across firms.

It is easy to extend this specification to a hierarchical model which also allows for

additional, unobserved, firm effects in the technology. However, in practical applications,

mean posterior efficiencies are found to be very close to 1 for almost all firms (see Huang,

2004; Tsionas, 2002, for similar results). From our point of view, these results are

inconclusive as they do not allow us to get reliable efficiency rankings.
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2.1.1 Bayesian inference

All the models derived from the general specification in (3.1) are fitted by Bayesian

methods. In order to do this, we first need to introduce prior distributions for the model

parameters. We assume proper but relatively disperse prior distributions throughout.

In particular, the distributions assumed for the parameters in the frontier function are

as follows: β ∼ N(0,Σβ), δ ∼ N(0,Σδ) with diffuse, inverse gamma priors for the

variances. Finally, the variance of the idiosyncratic error term is inverse gamma, that is

equivalent to σ−2
v ∼ G(aσ−2

v
, bσ−2

v
) with low values for the shape and scale parameters.

Regarding observed inefficiency heterogeneity, the distribution of the one-sided er-

ror component for the truncated normal model is: uit|γ, zit ∼ N+(µ · exp(zitγ), σ2
u ·

(exp(zitγ))2), where µ = ψ/
√
σ−2
u with ψ ∼ N(0, 1) and σ−2

u ∼ G(5, 5 · ln2 r∗) which

centres efficiency at r∗ (see Griffin and Steel, 2007, for this implementation). When

models include heterogeneity in the inefficiency γ is N(0,Σγ) distributed with a diffuse

prior for the covariance matrix.1

The complexity of these models makes it necessary to use numerical integration

methods such as Markov Chain Monte Carlo (MCMC), and in particular the Gibbs

sampling algorithm with data augmentation as introduced by Koop et al. (1995). For

our models, implementation was carried out using the WinBUGS package following the

general procedure outlined in Griffin and Steel (2007). The MCMC algorithm involved

50,000 iterations where the first 10,000 were discarded in a burn-in phase. We present

in the Appendix of this chapter an example of the code used for the implementation of

this model. Sensitivity analysis of our results to changes in prior parameters and values

for r∗ was also carried out. Results showed that the posterior inference was relatively

insensitive to small changes in these parameters.

2.1.2 Model selection

The different models are evaluated in terms of three criteria, the DIC3, which is a variant

of the Deviance Information Criterion (DIC), the Log Predictive Score (LPS) and the

Mean Square Error (MSE) of predictions.

The standard choice for comparing competing models in Bayesian statistics is to use

the Bayes factor, that is the ratio of the posterior odds to the prior odds in favour of

1Griffin and Steel (2007) use priors for γ similar to that used for µ here. In our exercises we found
that using either alternative lead to roughly the same posterior results.
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the first model. However, the accurate calculation of the Bayes factor is very difficult in

complex models which need MCMC techniques for parameter estimation such as those we

examine here. Therefore, we prefer to use an alternative Bayesian model choice criterion

based on the DIC3. This is a variant of the DIC which is a within sample measure of

fit introduced by Spiegelhalter et al. (2002) commonly used in Bayesian analysis.

Defining the deviance of a model with parameters θ as D(θ) = −2 log f(y|θ), where

y are the data, then DIC = 2D(θ) − D(θ̄) where θ̄ represent some mean posterior

parameter estimates. However, the DIC is well known to possess a number of stability

problems in certain cases such as random effects models and mixture models (see Celeux

et al., 2006). In particular, we can note here that the representation we use for the

parameters of the inefficiency term is a type of random effects model in the cases where

we include an unobserved heterogeneity term. Furthermore and more recently, Li et al.

(2012) also remark on the lack of robustness of the original DIC in models with data

augmentation such as those we examine here. For such cases, Celeux et al. (2006)

recommend the use of the DIC3 criterion as one of the best choices among various

alternatives to the DIC. The formulation for this criterion is:

DIC3 = −4Eθ[log f(y|θ)|y] + 2 log f̂ (y).

This criterion is based on the expected deviance and an estimate of the predictive density

f̂(·) which are both easy and stable to calculate from the MCMC output provided by

WinBugs.

We also compare the models in terms of their predictive performance. In order to

do this, we calculate the LPS and the MSE of predictions. The LPS is a proper scoring

rule developed in Good (1952) that assesses the post-sample behaviour of the models

associated with the Kullback-Leibler divergence between the actual sampling density

and the predictive density (see Ferreira and Steel, 2007; Griffin and Steel, 2004, for

previous applications of LPS in stochastic frontier models).2 In general, LPS examines

how well a model performs when its implied predictive distribution is compared with

observations not used in the inference sample. The procedure consists of partitioning

the sample into two sets. The first, is a training data set used to fit the model and

the second is a prediction set used to evaluate the predictive performance of the first

2More details on this criterion and an approximate lower bound for the LPS are described in Fer-
nandez et al. (2001).
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set. In our implementation for the panel data models, the training data set contains

the observations up to the penultimate time period at which data are observed for each

firm. Then, if ti represents the index of the last time point when data are observed for

firm i, the predictive set contains the set of observations y1,t1 to yk,tk for the k firms in

the sample. The average of the log predictive density functions evaluated at observed

out-of-sample values are calculated and the formulation is the following:

LPS =
−1

k

k∑
i=1

log f(yi,ti |previous data).

Finally, the calculation of the predictive MSE involves again the partition of the

sample into two parts as earlier. The models are fitted using the training sample and

their estimated parameters are used to predict the data for the last observation of every

firm. The MSE is calculated as follows:

MSE =
1

k

k∑
i=1

(
yi,ti − E

[
(β′xi,ti − ui,ti)|previous data

])2
,

where k is the number of firms as earlier and ui,ti is the mean of the inefficiency com-

ponent, which is different depending on the distribution and varies with the firm for

models with heterogeneity in the inefficiency.

2.2 Empirical applications

In this section, we analyze two data sets, estimate the model presented in (3.1) and

interpret the results.

2.2.1 Application to WHO data set

Evans et al. (2000) estimated the technical efficiency of 191 countries in the provision of

health by using a classical fixed effects stochastic frontier model for an unbalanced panel.

The original data set covers 5 years from 1993 to 1997 and the production function model

proposed was the following:

ln(DALEit) = αi + β1 ln(HExpit) + β2 ln(Educit) + β3
1

2
ln2(Educit) + vit,
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where DALE is the disability adjusted life expectancy, a measure that considers mortal-

ity and illness and represents health output. Input amounts are measured by HExp and

Educ, which are health expenditure and the average years of education, respectively.

Their results were reported by the WHO and suffered from several criticisms since

the authors did not consider the effects of heterogeneity in their study, even though the

sample included countries with very different characteristics such as Switzerland, China,

or Zimbabwe. This led to unexpected country health system performance rankings.

Greene (2004) proposed to capture differences among countries in this sample by in-

cluding eight exogenous variables: Tropics, PopDen,GEff, V oice,Gini,GDP,PubF in,

and OECD. Tropics is a binary variable that takes the value 1 if the country is located

in the tropic and 0 otherwise. This is out of the control of the countries and distinguishes

them by the type of diseases found in this region. PopDen is the country population

density, which may capture effects of dispersion but also congestion in the provision of

health. These two variables are characteristics of the health provision in each country

and then they are included as covariates in the production function following Greene

(2004). Regarding the other variables, GEff is an indicator of government efficiency;

V oice is a measure of political democratization and freedom; Gini is the income inequal-

ity coefficient; GDP is the per capita country gross domestic product; PubF in is the

proportion of health care financed with public resources, and OECD is a binary vari-

able that takes the value 1 if the country belongs to the organization and 0 otherwise.

These variables are policy related and more likely to be drivers of the efficiency in the

sense that income, inequality and government characteristics may affect the way health

services are managed. However, in this field there is no theory on where these variables

should be placed at (see Greene, 2004).3

For this application the general model is:

ln(DALEit) = α+ β1 ln(HExpit) + β2 ln(Educit) + β3
1
2 ln2(Educit) + β4Tropicsi

+β5 ln(PopDeni) + ziδ + vit − uit; vit ∼ N(0, σ2
v)

uit ∼ N+(µ · exp(ziγI1), σ2
u · (exp(ziγI2))2).

(2.2)

We estimate five different models. Model I is the heterogeneity free base model

where I1, I2, and δ are also equal to zero. Model II includes the covariates in the frontier

3After performing some tests Greene (2004) chose a model that includes Gini and GDP in the
inefficiency and the rest of covariates in the production function.

23



2. OBSERVED INEFFICIENCY HETEROGENEITY IN STOCHASTIC
FRONTIER MODELS

as technology heterogeneity variables but not in the inefficiency (I1, I2 = 0). Models

III to V consider observed heterogeneity in the inefficiency distribution and not in the

production function (δ = 0). In particular, Model III does it only through the location

parameter, that is I1 = 1 and I2 = 0. Model IV includes the observed covariates through

the scale parameter (I1 = 0,I2 = 1). Finally, Model V preserves the scaling property

since both parameters of the inefficiency distribution includes the same covariates and

coefficients (I1, I2 = 1).

Table 2.1 reports the estimation results. They show that models considering observed

heterogeneity improve from the base model in terms of fit and predictive performance.

In particular, models including heterogeneity in the inefficiency distribution exhibit the

lowest values for the three model comparison criteria. This suggests that covariates in zi

are inefficiency related. Regarding the estimated frontier coefficients, we observe decreas-

ing returns to scale in health provision for all models and countries. This implies that

efforts of countries in terms of increasing health expenditure or education are reflected

in less than proportional life expectancy improvements. Results for the inefficiency co-

variates suggest that higher equality, income, government efficiency or pertaining to the

OECD increase the efficiency of health provision. However, higher levels of democracy

and public finance of health services lead to lower efficiency.

Focusing on models III to V which are those including inefficiency heterogeneity, we

observe that the best fit and predictive performance is obtained by the scaling property

model (Model V). Results for the predictive efficiency distribution suggest that includ-

ing covariates in the location parameter of the inefficiency increases its mean, while

including them in the scale parameter decreases its dispersion. In particular, the scaling

property model which includes covariates in both parameters of the one-sided error dis-

tribution presents the highest mean and the lowest dispersion of the predictive efficiency

distribution among all models.

The most clarifying insights come from the efficiency rankings since they allow coun-

try comparisons. Figure 2.1 shows efficiency rankings’ scatter plots comparing the base

model against the other four models. For Model II, which includes the covariates in

the frontier, most countries preserve a similar position except for small changes in the

middle rankings. Spearman’s rank correlation with the base model is 0.92. In contrast,

models III to V differ widely from the base model in the top and middle positions and
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Table 2.1: Posterior mean and S.D. of the parameter distributions

Parameter Model I Model II Model III Model IV Model V
Mean SD Mean SD Mean SD Mean SD Mean SD

Frontier
α 3.574 0.585 3.479 0.512 3.844 0.627 3.711 0.608 3.769 0.596
β1 0.061 0.021 0.026 0.013 0.024 0.011 0.064 0.029 0.041 0.018
β2 0.226 0.085 0.236 0.090 0.249 0.795 0.248 0.081 0.160 0.077
β3 -0.039 0.012 -0.049 0.017 -0.061 0.019 -0.046 0.014 -0.033 0.011
β4 -0.017 0.008 -0.014 0.007 -0.005 0.002 -0.043 0.002 -0.009 0.004
β5 0.001 0.001 -0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
δ1(Gini) -0.147 0.007
δ2(lnGDP ) 0.062 0.029
δ3(GEff) -0.014 0.010
δ4(V oice) 0.018 0.011
δ5(OECD) -0.026 0.018
δ6(lnPubF in) -0.036 0.021

Inefficiency
γ1(Gini) 3.779 0.527 8.212 1.025 5.054 0.960
γ2(lnGDP ) -0.266 0.074 -0.279 0.061 -0.662 0.119
γ3(GEff) -0.043 0.014 -0.132 0.046 -0.054 0.017
γ4(V oice) 0.077 0.032 0.159 0.070 0.030 0.017
γ5(OECD) -0.092 0.046 -3.389 1.603 -1.049 0.518
γ6(lnPubF in) 0.062 0.030 0.376 0.192 0.076 0.037
µ -1.584 0.348 -1.411 0.253 -0.620 0.214 -1.423 0.288 -0.372 0.146
σ2
u 0.238 0.054 0.214 0.059 0.406 0.098 0.054 0.017 0.058 0.019

Pred. eff. 0.878 0.104 0.877 0.103 0.908 0.138 0.785 0.081 0.914 0.072
DIC3 -2517.282 -2809.581 -3015.727 -2989.307 -3094.403
LPS -122.890 -130.452 -180.507 -169.215 -185.983
MSE 0.139 0.105 0.103 0.093 0.087

the Spearman’s rank correlations with the base model are 0.76, 0.77 and 0.75, respec-

tively.4 However, badly performing countries are always roughly the same regardless of

the model used. This latter group is composed mainly of central African countries (e.g.

Zambia, Botswana, Zimbabwe), which share some characteristics related to low income,

tropical diseases, etc.

In order to observe in detail the changes that occur in the top ranked countries under

the different models, Table 2.2 shows the top 20 most efficient countries under all five

models. Although there are differences, the ranking is quite stable when we consider the

first two models. They include countries such as Oman, Yemen and Cape Verde and other

developing countries from Middle East, Asia, North of Africa and Latin America in the

top positions. However, this changes completely when observed heterogeneity affects the

inefficiency. In models III to V, developed countries rank in the first positions, as might

4Among models with inefficiency heterogeneity, rank correlation is very high (0.99).
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Figure 2.1: Efficiency rankings - Base model vs. heterogeneity models
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be intuitively expected, and for the scaling property model all top 20 countries are from

this group. Differences are important compared to the base model. For example, Japan,

Norway and Sweden which are the top 3 countries under Model V, rank in positions 45,

70 and 72, respectively, under the base model.

Using a scaling property model with heterogeneity in both parameters of the in-

efficiency distribution has an important effect over the ranking. Figure 2.2 shows that

while most of the African countries continue to exhibit low efficiency; there is a significant

change in the positions of the top and middle ranked observations. The best performing

countries (developed countries) are very sensitive to the inclusion of relevant covariates

such as income and inequality that distinguish them from developing countries.

The main evidence is that models including inefficiency heterogeneity lead to impor-

tant moves and shrinkages of the individual posterior efficiency distributions changing

the estimated mean efficiency scores and rankings. Figure 2.3 shows 90% probability

intervals of efficiencies for some selected countries. It can be seen that when covari-

ates affect the location parameter (Model III), the gap between the worst and the best

performing countries increases, which leads to a separating effect on the posterior distri-

butions. On the other hand, the intervals are narrower when the observed heterogeneity

affects the scale parameter of the inefficiency (Model IV), which implies that estimation

uncertainty diminishes. For the scaling property model (Model V) both effects are ob-

served. This leads to less dispersion and overlapping of posterior efficiency distributions,

which allow for more reliable conclusions about efficiency scores and rankings.5

5Similar results were obtained from other scaling-type models following half-normal and exponential
distributions but they performed a bit worse in terms of fit and predictive performance.
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Table 2.2: Top 20 most efficient countries

Model I Model II Model III Model IV Model V

1. Oman 1. Yemen 1. Japan 1. Luxembourg 1. Japan

2. Solomon Islands 2. Jamaica 2. Sweden 2. Spain 2. Norway

3. Yemen 3. Morocco 3. Italy 3. Greece 3. Sweden

4. Jamaica 4. Armenia 4. France 4. Malta 4. Austria

5. Morocco 5. Turkey 5. Spain 5. Armenia 5. Luxembourg

6. Cape Verde 6. Oman 6. Iceland 6. Cyprus 6. Italy

7. Georgia 7. Cape Verde 7. Greece 7. Jamaica 7. Belgium

8. Indonesia 8. Honduras 8. Germany 8. Georgia 8. Finland

9. Armenia 9. Cuba 9. Norway 9. Japan 9. Spain

10.Sri Lanka 10.China 10.United Kingdom 10.Slovakia 10.France

11.Venezuela 11.Nicaragua 11.Ireland 11.Italy 11.Denmark

12.China 12.El Salvador 12.Singapore 12.France 12.Switzerland

13.Saudi Arabia 13.Sri Lanka 13.Jamaica 13.New Zealand 13.Iceland

14.El Salvador 14.Moldova 14.Malta 14.Ireland 14.Greece

15.Honduras 15.Mexico 15.Portugal 15.Norway 15.Canada

16.Azerbaijan 16.Costa Rica 16.Czech Republic 16.Sweden 16.Netherlands

17.Turkey 17.Azerbaijan 17.Georgia 17.Oman 17.United Kingdom

18.Costa Rica 18.Colombia 18.Slovakia 18.Singapore 18.Australia

19.Dominican Rep. 19.Spain 19.Oman 19.Portugal 19.Germany

20.Egypt 20.Greece 20.Armenia 20.Czech Republic 20.New Zealand

As mentioned previously, one of the advantages of preserving the scaling property is

the decomposition of the one-sided error term into a base and a heterogeneity component.

In particular, for Model V, uit = u∗it · exp(ziγ) where u∗it ∼ N+(µ, σ2
u). Table 2.3

presents this decomposition in terms of efficiency for countries in Figure 2.3. We observe

that countries such as Yemen and Brazil present higher base efficiency but lower total

efficiency than developed countries. This may indicate that these countries present good

managerial skills in health provision but under their specific characteristics, they exploit

their management abilities to a lesser extent than the developed countries. One of the

countries taking great advantage of environmental characteristics is the USA, where

efficiency in health provision is highly dependent in their particular attributes. These

results are in line with those obtained by contrasting the base model and Model V.

Other group of countries, mainly from Africa exhibit low base and low total efficiency.

This may indicate both, poor natural managerial abilities, and inability to perform well

under their relative bad conditions. Consequently, these countries present very bad

performance under all models whether heterogeneity is considered or not.

Overall, we observe that observed heterogeneity variables are inefficiency related and

their inclusion in the parameters of the one sided error component distribution has a large
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Figure 2.2: Heat map of efficiency rankings - Base model vs. Model V

Table 2.3: Posterior mean of base and total efficiency for selected countries

Country Base efficiency Total efficiency

Brazil 0.6716 0.9149
Cameroon 0.2543 0.6313
Japan 0.6371 0.9970
Sierra Leone 0.2808 0.4260
Spain 0.6579 0.9953
United States 0.3702 0.9867
Yemen 0.7312 0.8950
Zimbabwe 0.2491 0.4750

impact on the countries’ efficiency ranking. Moreover, allowing observed heterogeneity

to affect simultaneously both the location and scale parameters of the one-sided error

distribution in a way such that the scaling property is preserved has relevant effects on
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Figure 2.3: 90% probability intervals of the posterior efficiency distributions for selected
countries
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shrinking and separating the distributions of posterior individual efficiencies.

2.2.2 Application to Airlines

The airline industry is an interesting sector where performance and efficiency have been

studied in the literature using parametric and non-parametric methods. Usually, produc-

tion functions are employed to evaluate technical efficiency and environmental covariates

are often included in the frontier as exogenous variables (see Coelli et al., 1999).

In this application we use a Cobb-Douglas cost function with an output quadratic

term to evaluate economic efficiency of the airline industry. The model in (3.1) can

be easily extended to a cost function and as in the previous application we consider

individual characteristics to capture firms heterogeneity. We use a data set of 24 US

domestic airlines over 15 years, from 1970 to 1984, with a total of 246 observations. This

is a revised sample obtained from a data set used by Greene (2008).6

6The original data set includes 256 observations, ten years of observations for an extra airline com-
pany. We excluded this firm since we do not have data for the exogenous variables of this airline.
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The general model for this application is the following:

lnCit = α+ β1 lnPmit + β2 lnPfit + β3 lnPlit + β4 lnPeit +
β5 ln(yit) + β6

1
2 ln2(yit) + β7t+ β8t

2 + zitδ + vit + uit
vit ∼ N(0, σ2

v)
uit ∼ N+(µ · exp(zitγI1), σ2

u · (exp(zitγI2))2),

(2.3)

where Cit is the total cost supported by airline i at time t in the output production,

and Pmit, Pfit, Plit, Peit are the input prices of material, fuel, labor and equipment,

respectively. Cost and prices are normalized by the property price. yit is the output of

airline i at time t and it is an index that aggregates regular passenger, mail, charter,

and other freight services. In order to capture possible technological changes over the

15 years covered by the sample we include a trend and its square into the model.

Regarding heterogeneity, zit is a vector containing information of three observed

covariates (load factor, average stage length and points served). Load factor is the

effective performed tonne-passenger per kilometer by the airline as a proportion of the

total available tonne-passenger per kilometer. Stage length is the ratio of total performed

kilometers to the total number of departures. And, points served is the number of

destinations.

Variables in zit, as well as other variables of size, are commonly used in productivity

and efficiency analysis of the airlines sector but their behavior as drivers of either the

frontier or the inefficiency is an open issue. Coelli et al. (1999) present a review on studies

using environmental variables in both cases and note that variables in zit may be argued

to have effects on costs and inefficiency.7 In particular, airlines face high fix but low

variable costs, thus we would expect airlines with high load factor to incur in lower costs

to transport the same outputs than airlines with a low value for this variable. Its effect

on inefficiency would also be negative since a higher load factor implies a higher capital

utilization ratio. Airlines operating with high stage length would incur in lower takeoff,

landing, parking and other airport costs. Also, they are expected to be more efficient

since their aircrafts are being productive for longer time periods. Finally, points served

are expected to have a positive effect on total costs since a larger network requires more

resources but also more managerial skills which may result on higher or lower inefficiency

depending on the routes optimization carried out.

7Coelli et al. (1999) evaluate both alternatives for a technical efficiency analysis and conclude sta-
tistically in favor of a model including them in the inefficiency term.
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Similarly to the WHO application, we estimate five different models. The base model

(Model I) does not consider any type of heterogeneity; therefore, δ = 0 and I1, I3 = 0.

Model II considers only frontier heterogeneity by including the observed covariates in

the cost function. Models III to V consider covariates in zit as determinants of the

inefficiency and include them in the location, scale or both parameters of the one-sided

error distribution, respectively.8

Table 2.4: Posterior mean and S.D. of the parameter distributions

Parameter Model I Model II Model III Model IV Model V
Mean SD Mean SD Mean SD Mean SD Mean SD

Frontier
α 1.777 0.328 2.463 0.495 1.341 0.289 0.757 0.214 1.623 0.202
β1(lnPm) 0.359 0.176 0.148 0.070 0.270 0.135 0.112 0.048 0.289 0.162
β2(lnPf) 0.176 0.055 0.195 0.048 0.197 0.062 0.195 0.064 0.224 0.070
β3(lnPl) 0.236 0.043 0.484 0.051 0.299 0.048 0.449 0.085 0.217 0.053
β4(lnPe) 0.052 0.027 0.189 0.064 0.116 0.049 0.136 0.052 0.137 0.058
β5(ln y) 0.942 0.240 0.959 0.218 0.894 0.293 0.861 0.299 0.965 0.305
β6( 1

2
ln2 y) 0.088 0.036 0.039 0.012 0.042 0.018 0.038 0.012 0.044 0.017

β7(t) -0.029 0.012 -0.038 0.011 -0.020 0.010 -0.023 0.010 -0.037 0.016
β8(t2) 0.001 0.001 0.001 0.001 -0.001 0.001 -0.001 0.001 0.000 0.000
δ1(Load) -0.914 0.253
δ2(lnStage) -0.217 0.056
δ3(lnPoints) 0.149 0.050

Inefficiency
γ1(Load) -0.625 0.296 -0.872 0.408 -0.805 0.395
γ2(lnStage) -0.206 0.152 -0.366 0.210 -0.492 0.283
γ3(lnPoints) 0.252 0.199 0.250 0.184 0.306 0.204
µ 0.021 0.005 0.209 0.004 0.351 0.008 0.284 0.007 0.351 0.009
σ2
u 0.184 0.004 0.125 0.003 0.152 0.004 0.123 0.003 0.127 0.004

Pred.eff. 0.869 0.101 0.786 0.128 0.681 0.177 0.754 0.099 0.710 0.087
DIC3 -605.287 -815.394 -697.857 -674.067 -704.846
LPS -13.734 -33.652 -19.792 -18.647 -21.669
MSE 0.026 0.009 0.013 0.019 0.018

Table 2.4 reports the estimation results. We observe that Model II which includes

the observed heterogeneity variables in the cost function present the best fit and predic-

tive performance, suggesting variables in zit to be drivers of the frontier.9 Nevertheless,

models with inefficiency covariates also improve results from the base model. Among

8For all models, monotonicity conditions were found to be not satisfied because of negative signs
obtained for prices coefficients. This result was also obtained by Greene (2008). Therefore, we impose
regularity conditions by requiring the cost function to have positive elasticities on prices (∂cit/∂pit > 0).
We follow the procedure described in Griffin and Steel (2007) by restricting coefficients β1 to β4 to be
positive through truncated normal prior distributions for these parameters.

9In fact, most of the efficiency studies applied to airlines have treated size and network environment
variables as frontier drivers (see Coelli et al., 1999).
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these models, the one that includes covariates in both parameters of the inefficiency dis-

tribution and preserves the scaling property (Model V) presents the best values in terms

of DIC3 and LPS. However, differences are narrower than in the previous application,

in particular compared to Model III, which exhibits the lowest value of MSE. As in the

WHO application, models including observed heterogeneity in the scale parameter of the

inefficiency exhibit lower dispersion of the predictive efficiency distribution. Regarding

the estimated coefficients, we identify increasing returns to scale and expected effects

of covariates on costs and inefficiency as discussed above. From the estimation results

obtained for Model II we conclude that load factor and stage length affect negatively

costs, while the network size has the opposite effect. Overall, considering heterogeneity

has effects on the estimations of posterior mean efficiencies with respect to the base

model, as we observe in Figure 2.4.

Figure 2.4: Posterior mean efficiencies - Base model vs. heterogeneity models
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2.3 Effects of different inefficiency distributions

Besides including these covariates in the different parameters of the same distribution,

we also evaluate the effects of assuming different distributions for the one-sided error

component. Inefficiencies are assumed to follow: a) a half normal distribution, following

the specification for the scale parameter in (1.17), b) a truncated normal distribution,

using the scaled Stevenson model in (1.18), and c) an exponential distribution following

the model in (1.19).
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The general model for panel data in this case is the following:

yit = xitβ + z∗itδ + vit − uit
vit ∼ N(0, σ2)

a) uit ∼ N+(0, σ2
u · (exp(zitγ))2)

b) uit ∼ N+(µ · exp(zitγ), σ2
u · (exp(zitγ))2)

c) uit ∼ Exp(λ · exp(zitγ)),

(2.4)

z∗it is a row vector of the observed heterogeneity variables that affect the technology;

zit is a row vector of observed covariates with effects in the inefficiency; and, β, δ, and

γ are vectors of the estimated parameters.

In this case, the distributions of the one-sided error component are: uit|γ, zit ∼
N+(0, σ2

u · (exp(zitγ))2) for the half-normal model; uit|γ, zit ∼ N+(µ · exp(zitγ), σ2
u ·

(exp(zitγ))2) for the truncated normal model; and, uit|γ, zit ∼ Exp(λ · exp(zitγ)) for

the exponential case. µ, σ2
u and λ are defined as in Griffin and Steel (2007). The MCMC

is performed as in the previous case, running 50,000 iterations and discarding the first

10,000 in a burn-in phase.

2.3.1 Application to WHO data set

The model in (3.2) is adjusted in order to allow the inefficiency component to follow: a)

half-normal, b) truncated normal, or c) exponential distributions:

ln(DALEit) = α+ β1 ln(HExpit) + β2 ln(Educit) + β3
1
2 ln2(Educit) + β4Tropicsi

+β5 ln(PopDeni) + ziδ + vit − uit
vit ∼ N(0, σ2

v)
a) uit ∼ N+(0, σ2

u · (exp(ziγ))2)
b) uit ∼ N+(µ · exp(ziγ), σ2

u · (exp(ziγ))2)
c) uit ∼ exp(λ · exp(ziγ)).

(2.5)

Model comparison criteria for the four models and the three distributions are pre-

sented in Table 2.5. In general, similar conclusions are obtained from the three cri-

teria. Results show that models including either observed or unobserved heterogeneity

improve from the base model. In particular, the model that exhibits the best fit and pre-

dictive performance includes observed heterogeneity in the inefficiency, which suggests

that covariates in zi are inefficiency related. Regarding the inefficiency distributions,

the half-normal and truncated normal models present better indicators and seem to be

33



2. OBSERVED INEFFICIENCY HETEROGENEITY IN STOCHASTIC
FRONTIER MODELS

Table 2.5: Model comparison criteria assuming different inefficiency distributions

Distribution Model I Model II Model III Model IV

Half normal DIC -2251.7150 -2598.3080 -2423.3160 -2914.7370
LPS -97.1690 -132.7610 -154.8950 -196.4420
MSE 0.1382 0.0864 0.0906 0.0736

Truncated normal DIC -2292.7710 -2593.1280 -2495.1400 -2884.9030
LPS -122.8900 -130.4520 -146.7710 -185.9830
MSE 0.1387 0.1051 0.1084 0.0869

Exponential DIC -2223.7420 -2568.4380 -2231.4950 -2580.1720
LPS -95.9810 -121.5150 -123.3560 -132.2700
MSE 0.1392 0.1153 0.1281 0.1085

better alternatives, specially for those models considering observed heterogeneity in uit.

However, efficiency rankings are almost perfectly correlated across distributions as we

can observe for Model IV in Figure 2.5.

Figure 2.5: Efficiency rankings in Model IV across distributions

2.4 Conclusions

In stochastic frontier analysis the inefficiency component may be erroneously estimated

when firm characteristics are not taken into account. These firm characteristics induce

heterogeneity that might result in different firm frontiers, or may have an impact directly

on the inefficiencies.

In this chapter, the effects of including observed heterogeneity in different parameters

of a truncated normal distributed inefficiency were studied. The models were fitted to

two data sets previously studied only in the frequentist context and the results were
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compared to those obtained with models that ignore heterogeneity or include it in the

frontier.

Differences in efficiency rankings and mean scores were observed when inefficiency

heterogeneity was included in different parameters of the one-sided error distribution.

This was found to be related to effects in the posterior efficiency distributions. In partic-

ular, considering firms’ heterogeneity in the location parameter of the inefficiency has an

effect on separating the firm specific posterior efficiency distributions from each other,

which leads to more reliable rankings. On the other hand, when heterogeneity affects

only the scale parameter of the inefficiency, an important shrinking effect is observed on

the individual posterior efficiency distributions. This results in less uncertainty around

mean individual efficiency scores. Finally, including the heterogeneity in both param-

eters of the inefficiency distribution in models that preserve the scaling property leads

to both separating and shrinking effects. This allows less overlapping of the posterior

efficiency distributions and provide both more reliable efficiency scores and rankings.

Models with this property were extended to the Bayesian context and preserving the

scaling property was found to lead to better fit and predictive performance indicators.
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2. OBSERVED INEFFICIENCY HETEROGENEITY IN STOCHASTIC
FRONTIER MODELS

2.5 Appendix

A. WinBUGS code for a truncated normal model with observed het-

erogeneity - Airlines application

model{

for (i in 1:N) {

m[i] <- mu*exp(gamma[1]*z1[i]+gamma[2]*z2[i]+gamma[3]*z3[i])

sigmau[i]<- (1/sqrt(lambda))*exp(gamma[1]*z1[i]+gamma[2]*z2[i]+gamma[3]*z3[i])

nu[i]<-1/(sigmau[i]*sigmau[i])

u[i] ~ djl.dnorm.trunc(m[i],nu[i],0,1000)

eff[i] <- exp(- u[i]) }

for ( i in 1:N ) {

mc[i] <- alpha + u[i]+ beta[1]*x1[i]+beta[2]*x2[i]+beta[3]*x3[i]+beta[4]*x4[i]

+beta[5]*y[i]+0.5*beta[6]*y[i]*y[i]+beta[7]*(t[i])+beta[8]*(t[i]*t[i])

+beta[9]*z1[i]+beta[10]*z2[i]+beta[11]*z3[i]

lnc[i] ~ dnorm(mc[i], prec) }

mu <- psi/sqrt(lambda)

psi ~ dnorm(0.0,1)

lambda~dgamma(5,lambda0)

lambda0 <- 5*log(rstar)*log(rstar)

for (i in 1:3) {

gamma[i] ~ dnorm(0.0, 0.1)}

#Alternative prior for gamma:

#for (i in 1:3) {

#gammastar[i] ~ dnorm(0.0, 0.1)

#gamma[i] <- gammastar[i] / sqrt(lambda) }

alpha ~ dnorm(0.0, 1.0E-06)

for (i in 1:5) {

beta[i] ~ djl.dnorm.trunc(0.0, 1.0E-06,0,1000) }

for (i in 6:11) {

beta[i] ~ dnorm(0.0, 1.0E-06) }

prec ~ dgamma(0.001, 0.001)

sigmasq <- 1 / prec }
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Chapter 3

Modeling Unobserved Inefficiency

Heterogeneity

Unobserved heterogeneity in the non-negative error component has been very little ex-

plored in the literature from a frequentist or a Bayesian approach. However, ignoring

its existence means that heterogeneity which is not captured by observed covariates is

wrongly attributed to inefficiency and consequently leads to bad efficiency estimates.

The literature on modeling unobserved firm characteristics in the inefficiency is still

scarce. In the frequentist context, Greene (2005) proposed a model where the coefficients

of the observed covariates are allowed to be firm specific and vary randomly. In the

Bayesian framework, Koop et al. (1997) propose a model that may capture unobserved

inefficiency heterogeneity. In this case, the inefficiency is assumed to be exponentially

distributed with firm specific mean and independent priors.

In this chapter, we introduce two different ways to account for unobserved inefficiency

heterogeneity. The first is the inclusion of a random parameter in the distribution of the

inefficiency, which can be included alone or along with observed covariates. The second

proposal is modeling random coefficients of the observed inefficiency covariates. This is

performed through hierarchical structures in the parameters associated to the observed

covariates. Both models are then analyzed using Bayesian inference techniques.

This chapter is divided into three sections. In Section 3.1, we present the model in-

cluding a random parameter in the inefficiency intended to capture latent heterogeneity.

This specification is studied in the two samples presented in Chapter 2 and the effects

of its inclusion in the location or scale parameter of a truncated-normal distributed
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

inefficiency are also analyzed. Section 3.2 presents the random coefficients model and

its application to the relationship between risk-taking and efficiency in the Colombian

banking sector. Finally, Section 3.3 presents some conclusions.

3.1 A stochastic frontier model with a random parameter

in the inefficiency∗

In this section, a proposal to model unobserved heterogeneity in the inefficiency through

the inclusion of a random parameter is presented. This parameter has three main char-

acteristics. It can be allowed to be time-varying, it can be included simultaneously with

observed covariates in the inefficiency distribution in order to distinguish observed from

unobserved heterogeneity and it can indicate whether or not observed covariates do a

good job in capturing the existing heterogeneity.

Following the formulation in Chapter 2, we present a general stochastic frontier model

for panel data that allows the modeling of both observed and unobserved inefficiency

heterogeneity. For the one-sided error we use an exponential specification of a trun-

cated normal distribution where the location, scale, or both parameters can model firm

heterogeneity. The general model in the case of a production function is:

yit = xitβ + z∗itδ + vit − uit; vit ∼ N(0, σ2
v)

uit ∼ N+(µ · exp(zitγI1 + τitI2), σ2
u · (exp(zitγI3 + τitI4))2), (3.1)

where yit is the output of firm i at time t, xit is the row vector of input quantities, z∗it

is a row vector of the observed heterogeneity variables that affect the technology; zit

is a row vector of observed covariates with effects in the inefficiency; τit is a random

parameter that captures time-varying unobserved firm effects in the inefficiency; and, β,

δ, and γ are the corresponding parameter column vectors. I1 to I4 are indicator variables

taking the value of 1 when either observed covariates or unobserved heterogeneity are

accounted for in the location or scale parameters, respectively, and 0 otherwise.

∗Much of the work in this section has been published in the Journal of Productivity Analysis (see
Galán et al., 2014b).
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3.1 A stochastic frontier model with a random parameter in the
inefficiency

3.1.1 Bayesian inference

All the models derived from the general specification in (3.1) are fitted by Bayesian

methods. Proper but relatively disperse prior distributions throughout. The distribu-

tions assumed for the parameters in the frontier (β, δ), the variance of the idiosyncratic

error term (σ−2
v ), and the inefficiency covariates (γ) are the same described in Chapter

2.

In the case of unobserved heterogeneity in the inefficiency, the unknown parameter

is specified to have a hierarchical structure: τit ∼ N(τ , σ2
τ ), where τ ∼ N(0, 10) and

σ−2
τ ∼ G(0.5, 0.5). The random parameter τit can be defined to be either time-varying

or not.

As in Chapter 2, the MCMC for these models is carried out using the WinBUGS

package following the general procedure outlined in Griffin and Steel (2007). However,

the hyperparameters τ and σ−2
τ present slow convergence and high autocorrelation. In

particular, if initial values are set far from the posterior mean, convergence is observed

only after 50,000 iterations and autocorrelations of order around 20 are identified. There-

fore, for these models 550,000 iterations were used for the MCMC, thinning every 25

iterations and discarding the first 50,000. We computed the MCMC convergence diag-

nostic in Geweke (1992) for the hyperparameteres and the obtained numerical standard

errors show very low values that suggest reasonably precise estimates.1 In Appendix A

we show the MCMC iterations for different initial values of τ in both empirical applica-

tions. Finally, sensitivity analysis of our results to changes in other prior parameters was

also carried out. Results showed that the posterior inference was relatively insensitive

to small changes in these parameters.

Finally, the model selection criteria used for these models are DIC3, LPS and MSE

as described in Chapter 2.

3.1.2 Empirical applications

For illustration, we use the same, WHO and airlines, data sets described in Chapter

2. In particular, in the WHO application, since the observed covariates are inefficiency

related and time invariant, we include them in different parameters of the inefficiency

distribution together with a time invariant random parameter. On the other hand, in

1We computed the numerical standard errors employing a 4% autocovariance tapered estimate.
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

the second application observed heterogeneity variables are time-varying and frontier

drivers, so the unobserved heterogeneity component is allowed to change over time and

its effects in the posterior efficiency distributions are evaluated when it is included in

the location, scale or both parameters of the one-sided error distribution.

3.1.2.1 The WHO data set

The results obtained in Chapter 2 allow us to test our proposal to capture latent hetero-

geneity through a random parameter. Since previous results favor the scaling property

model, we analyze unobserved heterogeneity in models that satisfy this property.

For this application the general model is:

ln(DALEit) = α+ β1 ln(HExpit) + β2 ln(Educit) + β3
1
2 ln2(Educit) + β4Tropicsi

+β5 ln(PopDeni) + ziδ + vit − uit; vit ∼ N(0, σ2
v)

uit ∼ N+(µ · exp(ziγI1 + τiI2), σ2
u · (exp(ziγI3 + τiI4))2).

(3.2)

First, we estimate Model A where we assume no information about observed het-

erogeneity variables in zi. That is, we impose I2, I4 = 1 and I1, I3 = 0 in Equation

(3.2). Notice that these covariates are time invariant, so for this application the random

parameter capturing unobserved effects is defined to be firm specific and constant over

time, as well.

We propose to estimate two additional models, where observed covariates are also

considered to affect inefficiency. In these cases all indicator variables in Equation (3.2)

are equal to 1. This allows us to analyze the efficacy of the parameter τi to capture

information from omitted covariates and to identify those which are relevant. Model

B considers the variables Gini and GDP in addition to the random parameter. These

two variables capture the most relevant aspects of inequality and income distinguishing

countries and were also found to be the most inefficiency related by Greene (2004) after

performing a frequentist based test. Finally, we estimate Model C where τi is estimated

along with all the covariates in zi.

Results are presented in Table 3.1. In general, we observe that all model comparison

criteria improve compared to models I and II when the unobserved component is included

in the inefficiency distribution. This implies that the random component captures part

of the heterogeneity identified by covariates in zi and therefore, it is a good alternative

when no observed heterogeneity variables are available.
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Table 3.1: Posterior mean and S.D. of the parameter distributions for unobserved hetero-
geneity models

Parameter Model A Model B Model C

Mean SD Mean SD Mean SD

Frontier

α 3.846 0.517 3.753 0.504 3.732 0.498

β1 0.026 0.012 0.024 0.010 0.025 0.010

β2 0.212 0.085 0.372 0.137 0.413 0.132

β3 -0.036 0.013 -0.085 0.020 -0.099 0.026

β4 -0.005 0.003 -0.003 0.002 -0.008 0.003

β5 -0.002 0.001 -0.005 0.002 -0.006 0.003

Inefficiency

γ1(Gini) 1.950 0.542 1.261 0.469

γ2(lnGDP ) -0.542 0.106 -0.363 0.093

γ3(GEff) -0.070 0.021

γ4(V oice) 0.024 0.011

γ5(OECD) -0.746 0.321

γ6(lnPubfin) 0.083 0.022

τ -4.617 0.953 -0.803 0.197 -0.745 0.175

σ−2
τ 1.039 0.428 2.192 0.806 1.976 0.760

µ -1.655 0.294 -1.486 0.351 -0.392 0.147

σ2
u 0.079 0.020 0.099 0.021 0.057 0.013

Pred.eff. 0.833 0.090 0.877 0.099 0.915 0.071

DIC3 -2957.820 -3017.610 -3085.190

LPS -146.717 -152.950 -180.427

MSE 0.104 0.101 0.088

A second finding is that when τi is included simultaneously with observed variables in

the inefficiency distribution, this parameter can be used as an indicator of the suitability

of the observed covariates to capture inefficiency heterogeneity. In fact, it is observed

that Model B, which includes only two covariates in zi besides the random parameter,

improves in terms of fit and predictive performance in comparison to Model A but it is

not as good as Model V that include six covariates. This would mean thatGini andGDP

are relevant heterogeneity variables but they are not able to capture all the inefficiency

heterogeneity. On the other hand, Model C that includes all observed covariates plus

the parameter τi performs a little worse than Model V (see model comparison criteria in

tables I and IV). This would imply that the six covariates in zi capture all the relevant

inefficiency heterogeneity.

These conclusions are the same when we compare the posterior predictive efficiencies

of models including the unobserved component to those of models I and V (see Figure

3.1). It can be seen that the predictive efficiency distribution becomes less disperse
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Figure 3.1: Kernel densities of posterior efficiency distributions
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to the extent inefficiency heterogeneity is better identified by the random parameter,

observed covariates or a combination of both. Also, it is observed that the predictive

efficiency distribution of Model C is very close to that of Model V, which suggests that

the parameter τi is irrelevant when the observed covariates are able to capture most of

the inefficiency heterogeneity.

3.1.2.2 The airlines data set

Since in Chapter 2, the observed covariates were found to be related to frontier het-

erogeneity, our benchmark here is Model II. However, we assume that it may still exist

inefficiency heterogeneity in the sector related to other factors not considered by vari-

ables in zit. Therefore, we evaluate the inclusion of a time-varying random parameter

in the distribution of the inefficiency when it is specified in the location, scale, or both

parameters of the one-sided error distribution. The general model for this application

considering unobserved inefficiency heterogeneity is:

lnCit = α+ β1 lnPmit + β2 lnPfit + β3 lnPlit + β4 lnPeit +
β5 ln(yit) + β6

1
2 ln2(yit) + β7t+ β8t

2 + zitδ + vit + uit
vit ∼ N(0, σ2

v)
uit ∼ N+(µ · exp(τitI1), σ2

u · (exp(τitI2))2).

(3.3)

In contrast to the WHO application, here the random parameter τit is allowed to
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vary over time and is modeled without any observed covariates in the inefficiency. We

estimate there different models derived from (3.3). Model A includes τit only in the

location parameter of the inefficiency distribution and then the indicator I2 = 0; Model

B includes it only in the scale parameter (I1 = 0); and Model C includes it in both the

location and the scale parameters of the inefficiency distribution (I1 = I2 = 1).

Results for the three estimated models are presented in Table 3.2. It can be ob-

served that all three models improve their fit and predictive performance in comparison

to Model II. In particular, models A and C exhibit the best values for the three cri-

teria. However, when the random parameter is included in the scale parameter of the

inefficiency distribution (models B and C), a decrease in the dispersion of the predictive

efficiency distribution is observed.

Table 3.2: Posterior mean and S.D. of the parameter distributions for unobserved hetero-
geneity models

Parameter Model A Model B Model C

Mean SD Mean SD Mean SD

Frontier

α 1.666 0.201 0.470 0.125 2.914 0.345

β1(lnPm) 0.436 0.227 0.303 0.162 0.153 0.080

β2(lnPf) 0.194 0.063 0.197 0.061 0.237 0.069

β3(lnPl) 0.155 0.048 0.236 0.076 0.330 0.081

β4(lnPe) 0.147 0.054 0.154 0.059 0.204 0.062

β5(ln y) 0.871 0.301 0.878 0.283 0.976 0.265

β6( 1
2 ln2 y) 0.045 0.019 0.026 0.013 0.043 0.019

β7(t) -0.032 0.010 -0.013 0.004 -0.027 0.012

β8(t2) 0.001 0.001 -0.001 0.001 -0.001 0.000

δ1(Load) -1.096 0.262 -1.142 0.254 -0.856 0.197

δ2(lnStage) -0.247 0.054 -0.235 0.049 -0.205 0.049

δ3(lnPoints) 0.106 0.048 0.071 0.030 0.135 0.057

Inefficiency

τ -3.491 0.924 -4.221 0.931 -3.514 0.806

σ−2
τ 1.729 0.562 0.895 0.391 1.255 0.389

µ 0.611 0.167 0.343 0.095 0.321 0.082

σ2
u 0.105 0.031 0.052 0.016 0.076 0.017

Pred.eff. 0.774 0.089 0.835 0.019 0.797 0.047

DIC3 -971.711 -938.855 -984.369

LPS -40.528 -36.780 -39.647

MSE 0.009 0.009 0.009

The effects on the individual posterior efficiencies using the random parameter are

similar to those found in the previous application using observed covariates. That is,

when τit is considered in the location parameter of the one-sided error distribution, the
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posterior efficiencies of different airlines are more separated from each other, and when

it is included in the scale parameter, we observe a shrinking effect and consequently

a decrease in the dispersion of the posterior efficiency distributions. Figure 3.2 shows

these effects for some selected airlines. We can observe that Model C, which includes the

random parameter in both parameters of the inefficiency distribution and satisfies the

scaling property, separates and shrinks the individual posterior efficiency distributions

providing both more reliable efficiency scores and rankings.

Figure 3.2: 90% credible intervals of the posterior efficiency distributions for selected
airlines
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Preserving the scaling property makes it possible to decompose inefficiency for Model

C. In this case, uit = u∗it · exp(τit) where u∗it ∼ N+(µ, σ2
u). Table 3.3 exhibits the

decomposition in terms of efficiency for the airlines plotted above. The difference between

the base and total efficiency allows us to distinguish the way unobserved firm effects are

handled by airlines managers. For instance, airline 12 presents lower base efficiency but

higher total efficiency than airline 17, suggesting that the former handles their specific

characteristics better.

Finally, using the results of Model C, in Figure 3.3 we plot the probabilities of being

the most efficient airline in the sample period for some selected firms. This can be

easy calculated in the Bayesian context from the posterior individual distributions of

efficiencies and might be very useful in empirical studies. We observe that for the last
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Table 3.3: Posterior mean of base and total efficiency for selected airlines

Airline ID Base efficiency Total efficiency

1 0.4837 0.8245
2 0.3052 0.7669
5 0.4017 0.7614
8 0.6238 0.8092
12 0.3571 0.8970
17 0.5466 0.7194
18 0.5824 0.8352
19 0.3920 0.7317

10 years of the sample period, airline 8 is the most likely to be the benchmark firm.

Also, it is possible to see improvements and declines in the airlines’ performance along

time. For instance, airline 11 presents a high relative improvement of its performance

especially in the last 3 years, while airline 16 starts being the most likely benchmark

firm and decreases very fast its probability up to being zero in year 9.

Figure 3.3: Probability of being the most efficient firm in the sample period
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Summing up, the performance indicators suggest that firm characteristics such as

the distance between destinations, the capacity offered, and the size of the network

differentiate the airlines in terms of the cost frontier they face. However, there is still

latent inefficiency heterogeneity related to unobserved factors. This is captured through

a time varying random parameter that improves fit and predictive performance. The way
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this parameter is included in the inefficiency has different effects in terms of separating

and shrinking the individual posterior efficiency distributions. The most desirable effects

are obtained when the unobserved heterogeneity component is included both in the

location and scale parameters of the inefficiency distribution in models that satisfy the

scaling property.

3.2 A stochastic frontier model with random inefficiency

coefficients∗

Unobserved heterogeneity sources in the inefficiency may also be associated to differences

in the way observed covariates affect the inefficiency. That is, covariates modeled in the

inefficiency distribution may produce different effects on the inefficiency depending on

some unobserved firm-specific characteristics.

This has been previously studied for unobserved firm-specific heterogeneity in the

technology. Tsionas (2002) proposed, in the Bayesian context, a model with random co-

efficients in the frontier, which captures different effects of technology factors for every

firm. That model is the one in (1.23) described in Chapter 1. In this Section, this speci-

fication is extended by including random coefficients in the covariates of the inefficiency

distribution rather than in the frontier.

The proposed stochastic frontier model assuming an exponential distribution for the

one-sided error term is the following:

yit = xitβ − uit + vit
vit ∼ N(0, σ2

v)

uit ∼ Exp(λit)

λit = exp

((
γ
γ∗i

)′(
zit 0
0 z∗it

))
,

(3.4)

where yit represents the output for firm i at time t, xit is a row vector that contains

the input quantities, β is a vector of parameters, vit is an idiosyncratic error assumed

to follow a normal distribution, and uit is the inefficiency component. The inefficiency

is assumed to follow an exponential distribution with a firm specific and time-varying

parameter λit, which depends on a vector including two sets of parameters and a matrix

∗Much of the work in this section is joint with Miguel Sarmiento from the Colombian central bank
(see Sarmiento and Galán, 2014)

46
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that includes two types of heterogeneity variables. γ is a vector of parameters which

are common to all firms, including the constant; and, γ∗i is a vector of firm-specific

parameters intended to capture differences in the effects of covariates across firms on

the inefficiency. Therefore, zit is a vector of heterogeneity variables whose effects are

assumed to be constant across firms, and z∗it contains a set of heterogeneity variables

with firm-specific effects. In the case of assessing cost efficiency, yit would represent costs

and the sign of the inefficiency component is reversed.

The novel specification with random coefficients in the parameter of the inefficiency

distribution is flexible in the sense that some covariates can be associated to firm specific

coefficients while other heterogeneity variables may be modeled with fixed coefficients.

In particular, the random specification for the inefficiency coefficients is intended to

capture differences in the way some specific characteristics affect efficiency of different

types of firms. Therefore, the model is able to identify, not only the effects of observed

covariates in the inefficiency, but also the type of firms that are more affected by each

of these characteristics.

3.2.1 Bayesian inference

We assume proper but relatively disperse prior distributions throughout. In particular,

the distributions assumed for the parameters in the frontier are: β ∼ N(0,Σβ) where

Σ−1
β is a precision diagonal matrix with priors set to 0.001 for all coefficients. Finally,

the variance of the idiosyncratic error term is inverse gamma, that is equivalent to σ−2
v ∼

G(aσ−2
v
, bσ−2

v
) with priors set to 0.01 for the shape and rate parameters, respectively.

Regarding the inefficiency component, its distribution is assumed to be exponential:

uit|γ,γ∗, zit, z∗it ∼ Exp(exp(zitγ + z∗itγ
∗
i )). The prior distribution of the vector of

common parameters γ is chosen to be centered in a given prior mean efficiency value

r∗ following the procedure in Griffin and Steel (2007) i.e. exp(γ) ∼ Exp(− ln r∗). For

the firm-specific inefficiency heterogeneity coefficients, a hierarchical structure is defined,

where: exp(γ∗i ) ∼ Exp(γ∗), and γ∗ ∼ Exp(− ln r∗). Therefore, the firm-specific param-

eters are centered a priori in a common parameter, which at its turn, is centered in a

given prior mean efficiency value. In this particular application, r∗ is set at 0.65, follow-

ing other Bayesian SFA studies in banking (see Marzec and Osiewalski, 2001; Tabak and

Tecles, 2010). Sensitivity analysis is performed to the use of a normal prior distribution

for the inefficiency parameters such that: γ is N(0,Σγ) with priors for the diagonal
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precision matrix Σ−1
γ equal to 0.1 for all the coefficients. In this case, the hierarchical

structure used for the firm-specific parameters is γ∗i ∼ N(γ∗,Σγ∗) where γ∗ is defined

in the same way that γ.

The implementation is carried out using the WinBUGS package. The MCMC al-

gorithm involves 50,000 iterations where the first 10,000 are discarded and a thinning

equal to 4 is used to remove autocorrelations. Therefore, 10,000 iterations are used for

the posterior inference. We assess the fit and predictive performance of the different

models using a version of the DIC3 and the LPS as earlier.

3.2.2 Application to bank risk-taking in the Colombian banking sector

After the global financial crisis, understanding bank risk taking has gained more atten-

tion among researchers and practitioners because of the regulatory framework proposed

in Basel III, which limit and monitor bank risk taking by imposing higher capital re-

quirements and more liquid assets holdings in their portfolios (BIS, 2010).2 These higher

requirements would reduce bank risk exposure but also their profitability in the short

run. In the case of emerging economies, there is a growing interest on the effects of

the increasing risk appetite exhibited recently by financial institutions, which is mainly

associated to higher capital inflows from advanced economies, where financial fragility

coexists with prolonged lower interest rates, especially in the Euro area (Ahmed and

Zlate, 2013; Bruno and Song, 2013). As a result, the analysis of bank efficiency incorpo-

rating bank risk exposure constitute a key element to identify bank performance under

risk taking environment which may contribute to the proper design of macroprudential

policies to enhance financial stability.

Modern banking theory highlights that risk taking is an inherent element of banking

production which should be properly modeled into the efficiency measurement (Hughes

et al., 2001). Recent studies have shown that failing to account for risk taking leads to

biased estimations of bank efficiency as well as mislead estimates of scale economies and

2The Basel III framework promotes higher and better-quality capital, risk coverage and leverage
ratios to increase resilience in periods of stress. Likewise, states the introduction of a Liquidity Coverage
Ratio for short term (30 days) and a Net Stable Funding Ratio (NSFR) for long-term (one year), which
will be implemented gradually during the 2015-2018 period according with the evolution of the economic
activity in each member country. The recent initiatives by the European Systemic Risk Board (ESRB),
the International Organization of Securities Commissions (IOSCO) and the Financial Stability Board
(FSB) are also aligned to limit the risk-taking behavior and contagion in financial market through micro
and macro-prudential policies.
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cost elasticities (Hughes and Mester, 2013; Koetter, 2008; Malikov et al., 2013). However,

studies that incorporate bank risk taking in efficiency measurements have traditionally

included only proxies of credit risk exposure (i.e. non-performing loans or loan losses

provisions), omitting other important risks faced by banks (e.g. liquidity, market and

capital exposures).

Credit risk proxies are usually included into costs and profit functions as a measure

of output quality that directly affects the technology (Hughes and Mester, 1998; Mester,

1996) or as an undesirable output where reductions are desirable (see applications in

Assaf et al., 2013; Park and Weber, 2006; Zago and Dongili, 2011). Under that approach,

risk taking is assumed as an exogenous component of the banking production process.

This contrasts with recent empirical literature that illustrates how most of the bank

inefficiency corresponds to poor management (or riskier strategies), which is reflected in

a higher ex-post credit risk, i.e. elevated share of NPLs (Lepetit et al., 2008).

When risk taking is modeled as endogenous, we can find two approaches in the

literature: Firstly, structural models of banking production that account for managerial-

risk preferences and endogenous risk taking. In these models, bank performance is

measured in the risk-return space that incorporates the trade-off between expected profit

and risk.3 Secondly, SFA models in which firm-specific characteristics are modeled as

elements that affect the inefficiency distribution instead of the production technology.

This framework avoids additional assumptions on firms behavior and their impact on

the production technology. Recently, Radić et al. (2012) applied this approach to assess

cost and profit efficiency of a sample of G-7 investment banks. This paper included

a set of measures of risk exposure and other firm-specific and macro-related factors as

environmental variables and found that those variables affect the inefficiency distribution

rather than the production technology. Moreover, it was observed that omitting risk

taking from the efficiency estimation leads to underestimate profit efficiency, and that

liquidity and capital are the most relevant risk exposures explaining efficiency. Overall,

these findings suggest that bank risk taking can be modeled as an endogenous bank

characteristic without imposing additional assumptions on their behavior or technology.

Recent literature recognizes that risk exposure may also affect banks with different

characteristics in different ways. Foreign banks may deal better with risk exposure given

3These models were developed by Hughes et al. (1996, 2001) and have been recently applied by
Koetter (2008).
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cheaper access to funding sources or more diversification (see Chen and Liao, 2011).

Similar effects could be faced by large institutions or those operating in different markets,

mainly associated to scale economies (Bos and Kool, 2006; Wheelock and Wilson, 2012).

In addition, there is evidence supporting the fact that high-leveraged institutions (or

lower capitalized) tend to take on more risk when they can adjust their capital structures

and also in presence of market power (Borio and Zhu, 2012; Dell’Ariccia et al., 2011).

Banks with a higher risk propensity may choose to produce less fixed interest bearing

loans and engage more in securities or derivatives trading, increasing their market risk

exposure. Likewise, lower capitalized banks may increase their risk of insolvency due to

credit losses or sudden security price deterioration (Mester, 2008). Risky banks tend to

attract more deposits because bank creditors demand higher interest rate as a way to

exert market discipline (Demirgüç-Kunt and Huizinga, 2004). Therefore, it is relevant

not only to account for risk exposure measures as possible inefficiency drivers, but also

to recognize differences in the way risk exposure may affect different banks.

In this context, the proposed SFA model with random inefficiency coefficients allows

us to identify the role of bank risk-taking on driving inefficiency and different effects of

risk taking on banks involved in merges and acquisitions (M&A) and banks with different

size and affiliation. We account for an integral group of risk exposure covariates (i.e.

risks of credit, liquidity, capital, and market), and bank characteristics related to size

and affiliation (i.e. domestic or foreign-owned bank). By comparing models with fixed

and random coefficients we identify the impact that risk taking has on cost and profit

efficiency of each bank depending on their specific characteristics. To the best of our

knowledge, this proposal constitutes the first SFA model that incorporates endogenous

risk taking within a Bayesian framework and that accounts for individual effects of

covariates in the inefficiency.

3.2.2.1 Evidence from the Colombian banking sector

The efficiency of the Colombian banking sector has been extensively studied because

of: i) the increase on M&A in the banking industry as a result of the growing affluence

of capital flows from advanced and other emerging economies; and ii) for regulatory

objectives trying to identify micro and macro prudential measures to reduce bank default
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episodes and to mitigate contagion among financial institutions.4

Recent studies have applied the standard stochastic frontier approach using alter-

natively Cobb-Douglas or translog functions to characterize the technology and find

evidence of low cost efficiency during the 90s (Clavijo et al., 2006; Estrada and Oso-

rio, 2004). The most recent studies for the Colombian banking sector find a general

improvement of both technical and cost efficiency along with a greater heterogeneity

among banks. Cepeda et al. (2013) use a non-parametric frontier model to evaluate the

efficiency of Colombian banks for the period 2000-2009. They found that technical effi-

ciency gradually improved during the decade up to the global financial crisis of 2008-09,

when all estimated measures of efficiency decreased and a negative productivity change

was found. Also, a high heterogeneity in efficiency scores was observed among banks

irrespective of their size and affiliation, and M&A were found to have a significant and

positive impact on bank efficiency for merged or acquired banks.

For the same period, Galán et al. (2014c) estimated input-oriented technical efficiency

using a dynamic Bayesian SFA model. It was found that foreign ownership has positive

and persistent effects on efficiency, while the effects of size are positive but rapidly

adjusted. High inefficiency persistence in Colombian banks with important differences

between institutions were also identified. In particular, merged banks were found to

exhibit low costs of adjustment that allow them to recover rapidly the efficiency losses

derived from merging processes.

Moreno and Estrada (2013) studied the role of market power in explaining efficiency

gains in Colombian banks during the 2004-2012 period. By using alternative SFA and

nonparametric models, it was found that there is a positive relationship between market

power and efficiency, which is explained by the product differentiation that allows banks

to gain in efficiency while they do not charge excessive credit prices.

However, none of these studies have yet incorporated the role of bank-risk-taking

on the banking production to estimate efficiency. As mentioned in the previous section

risk taking plays a major role in explaining the inefficiency of banks and it should be

properly accounted for in efficiency estimations.

4In particular, several bank regulatory measures were adopted by the end of nineties as a result of
the Mexican and Asian crisis that also affected the Colombian banking sector (see Clavijo et al., 2006,
for a detailed review on the evolution of M&A, regulation and performance of the Colombian banking
industry during the regional and local financial crises).
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3.2.3 Data and empirical model

We employ annual data from 31 commercial banks for the period 2002-2012. This is an

unbalanced panel data set from the local central bank (Banco de la República) and the

financial supervisory agency (Superintendencia Financiera de Colombia). We follow the

financial intermediation approach in which banks employ deposits, labor and physical

capital to produce loans, securities investments and other financial services (Berger,

2007).5 We consider as input prices: the price of deposits (p1), which is the ratio of

interest expenses divided by total deposits; the price of labor (p2), which is personnel

expenses divided by the total number of employees, and the price of physical capital

(p3), which is calculated as the ratio of operating expenses (i.e. non-interest reduced by

personnel) to total fixed assets. As outputs we consider: loans (y1) including consumer,

commercial, mortgage, and microcredit; securities (y2), which includes public and private

bonds holdings, and other securities investments; and off-balance-sheet (OBS) activities

(y3) measured as the ratio of non-interest income over total income. Non-interest income

includes securitization, brokerage services, and management of financial assets for clients

which represent an important source of income for Colombian banks.6 Total costs are

considered as the sum of interest and non-interest costs and total profit as the earned

net profit.

We define a set of bank-specific characteristics including: size (z1), measured as

the level of total assets; and foreign ownership (z2), which is a binary variable taking

the value of 1 if more than 50% of bank shares are foreign owned, and 0 otherwise.

As aforementioned, these effects have been found to be relevant inefficiency drivers in

previous studies.

Additionally, we include several specific measures of credit, liquidity, capital and

market risk according to recent literature, the Colombian financial regulation and the

Basel III standards. Credit risk (z∗1) is measured as risky loans over total loans. We use

risky loans instead of NPLs because it is a measure of ex-ante credit risk assumed by

banks when they assign loans, which is based on internal loan ratings associated to their

5Hughes and Mester (1993) provide evidence that confirm that deposits should be treated as inputs
(see Sealey and Lindley, 1977, for a discussion on the intermediation approach).

6In a recent study, Tabak and Tecles (2010) find that omitting OBS as an output over (under)
estimate cost (profit) efficiency results.
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probability of default.7 In addition, the regulation establishes that loan losses provisions

are required for each loan according with its rating. Thus, higher credit risk exposure

is associated to more provisions for potential loan losses. As we mentioned before, the

use of NPLs in the estimation of bank efficiency may lead to biased estimates of bank

technology (Malikov et al, 2013). Liquidity (z∗2) is measured as liquid assets over total

assets.8 Higher liquid assets prevent banks from losses due to rapid price deterioration

and also for the maturity mismatch. Capital risk exposure (z∗3) is measured as capital

equity over total assets. Capital risk is considered as a proxy for regulatory conditions

that may affect bank inefficiency. Lower capitalization is usually associated to higher

inefficiency.9 Finally, market risk exposure (z∗4) is measured as securities investments

over total assets. Operating costs associated to securities investments are generally lower

that those involved in monitoring and assessing of loans which may induce less efficient

banks to engage on more securities investments. However, higher holdings of securities

by banks also entail higher market risk exposure.

Table 3.4 exhibits the summary statistics of the main variables described above,

where all monetary values are expressed in thousands of U.S. dollars at constant prices

of year 2012.

Table 3.4: Summary statistics

Variable Mean SD Min Max

Total loans 3,342,012 4,206,436 11,553 28,267,020
Securities 1,265,349 1,339,794 563 6,461,458
OBS 0.0354 0.0299 0.0266 0.0587
Price of deposits 0.0248 0.0121 0.0009 0.0923
Price of labour 36.44 22.30 3.13 142.03
Price of capital 1.92 2.66 0.29 17.30
Total assets 5,503,680 6,425,746 39,699 41,786,469
Credit risk exposure 0.0988 0.0667 0.0019 0.3839
Liquidity risk exposure 0.2296 0.0667 0.0019 0.3839
Capital risk exposure 0.1211 0.0757 0.0448 0.7854
Market risk exposure 0.2381 0.1368 0.0013 0.7478
Total cost 1,132,776 1,402,621 15,673 7,722,227
Total profit 76,927 377,974 - 784,642 2,809,771

Source: Colombian central bank and financial supervisory agency.

7This measure of ex-ante credit risk has been used in the literature to identify bank risk-taking in
the credit market (Ioannidou and Penas, 2010).

8Liquid assets include cash holdings, negotiable and available to sell public and private debt instru-
ments and pledged collateral in repurchase agreement operations.

9We use both Tier I and Tier II capital requirements as measure of capital equity.
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We evaluate cost and profit efficiency for the Colombian banking sector. Thus, we

use cost and profit functions for the frontier specification in (3.4), and we choose to

represent them with translog multi-product functions. The estimated model is:

ln cit = β0 +
∑3

m=1 βm ln ymit +
∑2

r=1 δr ln prit + 1
2

∑3
m=1

∑3
n=1 βmn ln ymit ln ynit

+1
2

∑2
r=1

∑2
s=1 δrs ln prit ln psit +

∑3
m=1

∑2
r=1 ηmr ln ymit ln prit + κ1 t

+1
2 κ2 t

2 +
∑3

m=1 φmt ln ymit +
∑2

r=1 ϕrt ln prit +
∑4

j=1 ωjz
∗
jit

+ vit + uit

vit ∼ N(0, σ2
v)

uit ∼ exp(λit)

λit = exp(γ0 +
∑2

h=1 γhzhit +
∑4

j=1 γ
∗
ji
z∗jit),

(3.5)

where cit is the total cost or the total profit, y are outputs, p are input prices and t

is a time trend in order to account for technological change. Linear homogeneity of

the cost function is achieved by normalizing total costs and input prices by the price of

capital (p3). We include two types of heterogeneity variables: i) those related to size (z1)

and foreign ownership (z2), which are modeled in the inefficiency distribution and have

common effects to all banks; and, ii) those capturing banks risk-exposure (z∗1 , z
∗
2 , z
∗
3 , z
∗
4),

which may be included either in the frontier or in the inefficiency. In the latter case, they

are able to be modeled either with common or firm-specific effects on banks inefficiency.

In order to overcome the problem of calculations of logarithms of negative profits, we

correct profit values by a factor corresponding to the absolute value of the lowest profit

plus one (see Tecles and Tabak, 2010). Symmetry of the cross-effects is accomplished by

imposing βmn = βnm, δrs = δsr.

3.2.4 Results

From the general model in (3.5) we estimate four models intended to evaluate cost

efficiency (C1 to C4) and four models assessing profit efficiency (P1 to P4). Mod-

els C1 and P1 do not include any risk-exposure variable, so ω1, ω2, ω3, ω4 = 0 and

γ∗1i, γ
∗
2i, γ

∗
3i, γ

∗
4i = 0. Models C2 and P2 include the risk-exposure variables only in the

frontier and then γ∗1i, γ
∗
2i, γ

∗
3i, γ

∗
4i = 0. Models C3 and P3 include the risk covariates only

in the inefficiency but restrict them to have a common effect on the inefficiency of all

banks; thus, ω1, ω2, ω3, ω4 = 0 and γ∗1i, γ
∗
2i, γ

∗
3i, γ

∗
4i = γ∗1 , γ

∗
2 , γ
∗
3 , γ
∗
4 . Finally, our proposed

specification to model random inefficiency coefficients is estimated in models C4 and P4

(ω1, ω2, ω3, ω4 = 0). This allows the effects of risk exposure to be different among banks.
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Table 3.5: Posterior mean and standard deviation of parameter distributions in cost models

Parameter Model C1 Model C2 Model C3 Model C4

No risk Risk in frontier Risk in inefficiency Random coefficients

Mean SD Mean SD Mean SD Mean SD

β0 5.6560 0.6469 6.1830 0.5926 5.8790 0.5956 5.3440 0.7086

β1 0.0533 0.0398 0.1317 0.0391 0.0296 0.0185 0.0873 0.0593

β2 0.0927 0.0652 0.0995 0.0719 0.0792 0.0677 0.0401 0.0316

β3 0.0475 0.0349 0.0315 0.0214 0.0516 0.0329 0.0571 0.0425

β11 0.0712 0.0275 0.1238 0.0257 0.0780 0.0304 0.0873 0.0415

β12 0.0186 0.0275 -0.0752 0.0296 0.0119 0.0300 0.0022 0.0383

β13 -0.0048 0.0030 -0.0014 0.0027 -0.0044 0.0031 -0.0029 0.0033

β22 0.0116 0.0241 0.1217 0.0322 0.0157 0.0255 0.0033 0.0369

β23 0.0018 0.0020 -0.0014 0.0019 0.0015 0.0020 0.0012 0.0021

β33 0.0011 0.0010 0.0005 0.0010 0.0010 0.0010 0.0014 0.0009

δ1 0.1544 0.1243 0.2440 0.1524 0.1484 0.1025 0.0959 0.0812

δ2 0.1802 0.1620 0.1125 0.0704 0.1726 0.1272 0.1515 0.1315

δ11 0.2195 0.0596 0.1356 0.0689 0.1866 0.0707 0.0397 0.0977

δ12 -0.2212 0.0430 -0.1651 0.0434 -0.2062 0.0453 -0.1467 0.0580

δ22 0.2010 0.0518 0.1204 0.0519 0.1857 0.0528 0.1831 0.0523

η11 0.1508 0.0257 0.1401 0.0253 0.1492 0.0270 0.1623 0.0379

η12 -0.0298 0.0234 -0.0216 0.0205 -0.0289 0.0239 -0.0354 0.0310

η21 -0.0175 0.0252 -0.0473 0.0251 -0.0283 0.0311 -0.0979 0.0365

η22 -0.0836 0.0235 -0.0521 0.0220 -0.0752 0.0256 -0.0439 0.0292

η31 0.0012 0.0039 0.0007 0.0032 0.0017 0.0037 0.0033 0.0038

η32 0.0035 0.0036 0.0048 0.0031 0.0023 0.0038 -0.0016 0.0041

κ1 -0.3458 0.1273 -0.3620 0.1074 -0.3589 0.1279 -0.3092 0.1086

κ2 0.0022 0.0046 -0.0007 0.0045 0.0022 0.0046 0.0051 0.0038

φ1 0.0364 0.0114 0.0355 0.0099 0.0373 0.0115 0.0364 0.0105

φ2 -0.0344 0.0085 -0.0300 0.0077 -0.0349 0.0085 -0.0359 0.0075

φ3 0.0002 0.0008 0.0000 0.0007 0.0001 0.0008 -0.0006 0.0007

ϕ1 -0.0401 0.0141 -0.0424 0.0131 -0.0417 0.0142 -0.0388 0.0133

ϕ2 0.0167 0.0122 0.0108 0.0106 0.0166 0.0120 0.0099 0.0106

ω1 (credit) 0.1344 0.3519

ω2 (liquidity) -0.1887 0.2062

ω3 (capital) 1.7340 1.0197

ω4 (market) -2.0900 1.1383

γ0 1.0350 0.4927 0.5318 0.2616 0.8946 0.7756 1.0090 0.6995

γ1(ln assets) -0.1981 0.0531 -0.1731 0.0574 -0.2318 0.0693 -0.1595 0.0873

γ2 (foreign) -0.8144 0.3824 -1.1700 0.5051 -0.6873 0.2202 -0.1918 0.0856

γ∗
1 (credit) 0.2002 1.0850 0.3162 0.7598

γ∗
2 (liquidity) 0.3692 0.6539 -1.9667 1.5432

γ∗
3 (capital) 1.5380 0.6128 2.9476 0.9247

γ∗
4 (market) 0.0432 1.0600 -0.0168 1.1441

Posterior eff. 0.8934 0.0653 0.9092 0.0570 0.7923 0.1466 0.7102 0.2251

DIC3 2982.76 2916.44 2497.59 2007.75

LPS -9.62 -29.34 -65.19 -90.67
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Table 3.6: Posterior mean and s.d. of parameter distributions in profit models

Parameter Model P1 Model P2 Model P3 Model P4

No risk Risk in frontier Risk in inefficiency Random coefficients

Mean SD Mean SD Mean SD Mean SD

β0 9.7890 7.1260 9.8730 7.3150 3.6980 9.0530 7.2050 6.0130

β1 3.0250 1.1470 3.4950 1.0970 4.0310 1.3970 2.9140 0.9397

β2 -3.3910 0.9323 -4.1220 0.8941 -4.5860 1.0290 -3.5380 0.6589

β3 -0.1987 0.1027 -0.2175 0.1001 -0.2612 0.1112 -0.2122 0.0797

β11 -0.4570 0.1279 -0.5658 0.1180 -0.5109 0.1588 -0.3992 0.1253

β12 0.2672 0.0993 0.3844 0.0952 0.3070 0.1290 0.2313 0.1010

β13 0.0173 0.0076 0.0176 0.0078 0.0152 0.0073 0.0128 0.0062

β22 0.0104 0.0686 -0.0778 0.0718 0.0288 0.0889 0.0477 0.0806

β23 -0.0034 0.0072 -0.0050 0.0049 -0.0011 0.0067 0.0011 0.0039

β33 0.0006 0.0020 0.0017 0.0020 0.0011 0.0017 -0.0014 0.0013

δ1 -1.6780 1.8830 -2.9660 1.6890 -4.3810 2.0620 -3.3070 1.2900

δ2 0.8204 1.2470 1.6330 1.1820 2.2720 1.2190 1.6450 0.7651

δ11 0.1789 0.1828 0.1024 0.1445 -0.0292 0.1694 -0.0434 0.1290

δ12 -0.0006 0.1784 0.0439 0.1391 0.0949 0.1584 0.0831 0.0942

δ22 -0.0767 0.1830 -0.1739 0.1760 -0.1500 0.1826 -0.2043 0.1071

η11 0.1704 0.1354 0.2448 0.1256 0.3185 0.1649 0.2352 0.0979

η12 0.1229 0.0991 0.0634 0.0926 0.0364 0.1116 0.1109 0.0725

η21 0.0051 0.0684 -0.0042 0.0538 -0.0443 0.0694 -0.0298 0.0461

η22 -0.1236 0.0698 -0.0946 0.0602 -0.0905 0.0717 -0.1137 0.0465

η31 -0.0087 0.0113 -0.0118 0.0113 -0.0157 0.0113 -0.0091 0.0071

η32 -0.0055 0.0090 0.0006 0.0099 0.0040 0.0106 -0.0033 0.0066

κ1 -0.3355 0.3613 -0.3630 0.2986 -0.5431 0.3371 -0.5106 0.2075

κ2 0.0066 0.0109 0.0031 0.0090 -0.0052 0.0091 -0.0010 0.0065

φ1 0.0658 0.0282 0.0587 0.0267 0.0825 0.0289 0.0776 0.0205

φ2 -0.0225 0.0185 -0.0163 0.0167 -0.0224 0.0177 -0.0304 0.0129

φ3 -0.0031 0.0018 -0.0027 0.0017 -0.0025 0.0018 -0.0018 0.0010

ϕ1 0.0486 0.0381 0.0335 0.0323 0.0436 0.0327 0.0241 0.0201

ϕ2 -0.0538 0.0422 -0.0466 0.0310 -0.0523 0.0339 -0.0436 0.0185

ω1 (credit) -0.7570 0.6517

ω2 (liquidity) -1.1490 0.6117

ω3 (capital) -0.4682 0.7637

ω4 (market) 0.1237 0.9031

γ0 -0.9668 0.4019 -1.4530 0.6724 -1.2240 1.1640 -1.4140 1.2740

γ1(ln assets) 0.0556 0.0429 0.0826 0.0527 0.0721 0.0593 0.1407 0.0848

γ2 (foreign) 1.0120 0.1713 1.1330 0.1966 1.0410 0.2180 1.0180 0.4408

γ∗
1 (credit) -3.2610 1.2480 -1.9774 0.6750

γ∗
2 (liquidity) 0.2454 0.5587 -1.0640 1.2801

γ∗
3 (capital) 1.6180 0.5611 2.1365 0.7649

γ∗
4 (market) -0.9284 0.3005 -1.9271 0.5147

Posterior eff. 0.5146 0.2638 0.5313 0.2719 0.6067 0.2818 0.6409 0.3281

DIC3 3168.01 3085.10 2466.83 2368.70

LPS -180.01 -282.42 -305.94 -401.56
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Results of the models using both the cost and profit functions derived from (3.5)

are presented in tables 3.5 and 3.6, where posterior means and probability intervals are

showed for all the parameters. We observe that loans, investments and OBS affect cost

positively in all models as well as input prices. In the case of profits, the relationship is

also positive for loans and investments but negative, although not significant, for OBS.

This result for OBS was also found by Tabak and Tecles (2010) in an application to the

Indian banking sector. However, in that work loans and investments are also found to

be not significant when OBS is included in the model in both cost and profit models.

Regarding input prices the coefficients are not relevant in any of the profit models.

We also found decreasing returns to scale in all the models, which may suggest low

margin for more M&A processes in the sector. When scale economies are analyzed by

groups of banks with similar characteristics of size, ownership, and involvement in M&A

we find that while big, domestic and merged institutions operate at decreasing returns to

scale; small, foreign and non-merged banks present increasing returns to scale.10 These

results coincide with those reported in Galán et al. (2014c) using an input distance

function, and suggest that M&A processes carried out mainly by domestic and large

institutions may led them to be oversized; while small and foreign banks may still present

some potential scale gains.

We observe that size and foreign ownership are important inefficiency drivers in all the

models. Their effects are negative on cost inefficiency and positive on profit inefficiency.

This suggests that large and foreign banks are more cost efficient but less profit efficient

than their counterparts. Previous studies have also found similar effects. Chen and Liao

(2011) find that foreign banks perform better than local banks because they may deal

better with risk exposure given cheaper access to funding sources or more diversification.

Fries and Taci (2005) find similar results for banks with majority of foreign ownership in

emerging economies. Regarding size, previous studies have found that large institutions

tend to exhibit greater efficiency associated to higher scale economies (see Bos and

Kool, 2006; Glass and McKillop, 2006; Hughes and Mester, 2013; Wheelock and Wilson,

2012).In previous applications to Colombian banks, both foreign and large banks have

been also found to be more cost efficient than local and small banks (see Galán et al.,

2014c; Moreno and Estrada, 2013). However, the fact that larger banks are found to

operate on decreasing returns to scale while they exhibit higher cost efficiency may

10Small and large banks are those below and above the median of the total assets, respectively.
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suggest that those banks benefit from lower funding costs. This relatively advantage

over smaller banks has been recently reported in the literature as evidence of the too-

important-to-fail dilemma where larger banks take advantage of their size for funding

at lower cots and for taking on more risk (IMF, 2014; Santos, 2014). Bertay et al.

(2013) analyzed a large sample of banks for 90 countries during the period 1992-2011

and found that banks interest costs tend to decline with systemic size. This result was

found for all banks except for those with very low capitalization level. Interestingly, as

it will be mentioned further, we also find that lower capitalization (i.e. higher capital

risk exposure) is associated with lower cost and profit efficiency.

Regarding the effects of risk exposure, posterior results for risk coefficients and model

comparison indicators lead to similar conclusions in both the cost and profit models.11

That is, models including risk exposure improve from a model omitting these variables;

and, from these models, the one including these covariates in the inefficiency distribution

exhibit better fit and predictive performance. Moreover, no important effects of any risk

measure are observed when they are modeled in the frontier, while some risk exposures

are found to be very relevant when they are included in the inefficiency distribution.

This suggests that risk-taking is an important driver of banks inefficiency. Also, cost

and profit efficiency are found to be over and under estimated, respectively, when risk

exposure measures are not modeled in the inefficiency distribution.

We identify that greater capital risk exposures lead to lower cost and profit efficiency.

There is evidence showing that highly capitalized banks tend to be more efficient than

thinly capitalized banks (Kwan and Eisenbeis, 1997). This may be associated to the fact

that lower capitalized banks may increase their risk of insolvency due to credit losses or

sudden security price deterioration.12

Credit and market risks are also found to be key drivers of profit efficiency, providing

evidence in favor of risk-taking in both the credit and securities markets. This may

be related to the skimping hypothesis in Berger and DeYoung (1997), showing that

when banks relax credit standards (or expend lower resources in the analysis of loan

applications) they try to increase their quantity of loans and perform better (more

profitable). This ex-ante credit risk is reflected in a growing proportion of risky loans

11Lower values for DIC3 and LPS indicate better fit and predictive performance.
12See evidence for the U.S banks in Hughes and Mester (2001) and for German banking industry in

Koetter (2008).
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3.2 A stochastic frontier model with random inefficiency coefficients

which also tend to increase during periods of lower interest rates. A similar strategy is

adopted by banks in the securities market. Banks with a higher risk appetite may choose

to produce less fixed interest bearing loans and engage more in securities, increasing their

market risk exposure (Mester, 2008).

3.2.5 Analysis of risk random coefficients

Results of DIC3 and LPS favour our proposed inefficiency specification with random

coefficients for risk covariates in both cost and profit models. These results suggest not

only that risk exposure measures are important inefficiency drivers but also that risk has

different effects on cost and profit inefficiency of banks with different characteristics.

Figure 3.4: Average posterior distributions of risk random coefficients by groups of banks
under cost model C4
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Figures 3.4 and 3.5 exhibit the posterior distributions of the four risk exposure bank-

specific coefficients averaged by groups of banks, in models C4 and P4, respectively. The

analysis is performed by groups of banks with different characteristics of size (small vs

large banks), ownership (domestic vs foreign banks), and involvement in M&A processes

(merged vs non-merged banks).13 We observe two main results when heterogeneity in

13Small and large banks are those below and above the median of the total assets, respectively.
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

the effects of risk on efficiency is accounted for: firstly, some groups of banks are more

affected than others at the same risk exposure levels; and secondly, some types of risk

become relevant as inefficiency drivers for some groups of banks.

Figure 3.5: Average posterior distributions of risk random coefficients by groups of banks
under profit model P4
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In particular, credit risk is identified as a key cost inefficiency driver for foreign and

non-merged banks, in the sense that higher exposures to credit risk reduce cost efficiency

of these types of banks. Likewise, liquidity exposure is only identified as having relevant

negative effects on cost inefficiency of foreign banks. Moreover, the effect on domestic

banks is almost nonexistent. This result indicates that holding less liquid assets is more

costly for foreign banks which could be associated to their incentives to engage on more

risk taking. Regarding capital risk exposures, the positive effects on cost inefficiency

are similar between types of banks. However, increasing capital in the same proportion

is more likely to affect non-merged institutions. Finally, market risk is not relevant for

any of the analyzed types of banks following the conclusion obtained from the fixed

coefficients model.

Regarding bank-specific effects of risk on profit efficiency, it is observed in Figure

3.7 that credit risk affects more large, foreign and merged banks. Thus, these types of
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3.2 A stochastic frontier model with random inefficiency coefficients

banks benefit more by assuming the same credit risk exposures than their counterparts.

On the other hand, small, domestic and non-merged banks find more benefits when they

increase market risk in the same proportions. As to liquidity and capital exposures,

no differences are identified between these groups of banks. As in the fixed coefficients

model, liquidity continues to be non-relevant explaining profit efficiency; while increasing

capital has similar positive effects on profit inefficiency for all banks.

3.2.6 Analysis of efficiency

The most important changes in the posterior efficiency estimations are observed when

the model is allowed to estimate bank-specific risk coefficients in the inefficiency distri-

bution. In these cases, the average posterior cost efficiency decreases and profit efficiency

increases with respect to the other models. This suggests that considering heterogene-

ity in the way risk affects inefficiency has important effects on estimations. It is also

observed that in both cost and profit models, the dispersion of the posterior efficiency

presents important increases in the random coefficient models. This suggests that these

models are recognizing differences between banks in terms of their risk exposure and

that these differences have effects on their efficiency estimations.

Figures 3.6 and 3.7 exhibit the average posterior distributions of cost and profit

efficiency, respectively. Posterior efficiency is analyzed by groups of banks and results

from models with fixed and random coefficients of risk covariates are presented.

In general, bank specific characteristics are found to be relevant factors that differ-

entiate banks performance. Large banks exhibit higher costs efficiency levels than small

banks in both fixed and random coefficients models. However, the random coefficient

models show a higher difference among large and small institutions. A possible explana-

tion for the differences between banks with different size may be associated to the fact

that large banks are considered by creditors as too-important-to-fail and then, they are

willing to offer funds at lower costs. In the case of small banks the result can be seen

as opposite in the sense that creditors and depositors may ask for higher return as a

way to exert market discipline (see evidence in Hughes and Mester, 2013; Wheelock and

Wilson, 2012). Regarding affiliation, domestic institutions present higher costs efficiency

than foreign banks but this difference is only important under the random coefficients

model, suggesting that domestic banks benefit from the differences in the way credit

and liquidity risk affect these banks. On the other hand, no important differences are
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

Figure 3.6: Average posterior distributions of cost efficiency by groups of banks in Models
C3 and C4
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observed in cost efficiency between merged and non-merged banks. As presented further,

differences are more evident in the evolution of their efficiency.

Regarding profit efficiency, the random coefficients model identifies some differences

in the location and dispersion of the posterior efficiency distributions. The main dif-

ference in profit efficiency is observed between domestic and foreign banks. Domestic

banks almost double profit efficiency of foreign banks in both models.

Finally, focusing on the results of our preferred models with random coefficients, the

evolution of cost and profit efficiency over time is presented in Figure 3.8 by groups of

banks. Small banks have been more volatile in both cost and profit efficiency over time,

while large banks have been more stable and present higher cost efficiency during all the

period. This may suggest that large banks are less sensitive to environmental conditions.

Foreign banks present lower profit efficiency with the lowest value presented in 2008

coinciding with the global financial crisis. This suggest that foreign institutions could

be affected by their operations and investments in international markets. Nevertheless,

in the last years, foreign banks exhibit an increasing trend in profit efficiency and their

scores are very close to those of local banks.
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3.2 A stochastic frontier model with random inefficiency coefficients

Figure 3.7: Average posterior distributions of profit efficiency by groups of banks in Models
P3 and P4
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Regarding merged banks, we observe that they present decreases in cost and profit

efficiency in the first years after these processes have been carried out (2005 - 2006).

However, in the last two years they seem to recover part of these losses. This pattern

was also found in Galán et al. (2014c) by using an input-oriented technical efficiency

approach under a dynamic SFA model. They find that merged banks are able to recover

very fast their efficiency levels and present higher efficiency than non-merged institutions

due to lower adjustment costs. Cuesta and Orea (2002) had also found a similar pattern

in merged Spanish banks after evaluating output-oriented technical efficiency. Here, we

find that these effects are even more evident when we assess integrally costs and revenues

in a profit efficiency analysis.

3.2.6.1 Empirical implications

Our findings remark the importance of considering different types of bank risk exposure

as cost and profit inefficiency drivers. In particular, large and foreign banks exhibit

higher costs efficiency, which can be associated to scale economies but also to “too-big-

too-fail” considerations that benefit large banks from lower deposit and funding costs.
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

Figure 3.8: Evolution of mean posterior cost and profit efficiency by groups of banks in
random coefficient models
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Regarding risk effects on inefficiency, we find that greater exposures to credit and market

risks are found to be key drivers of profit efficiency. These findings suggest that banks

may have incentives for risk-taking in both the credit and securities markets. We also

find evidence to support that lower capital risk conduct to higher efficiency in both

costs and profits. Finally, our proposal to include random coefficients in the inefficiency

capture differences in the way risk affects cost and profit efficiency of banks involved in

M&A processes, and banks with different size and type of ownership. We identify large,

foreign and merged banks to benefit more by assuming the same credit risk exposures

than their counterparts; while small, domestic and non-merged banks institutions to

take advantage of assuming higher market risk.

Regulators should take into account not only the impact of requirements in capital

and liquid assets on cost and profit efficiency of banks, but also that these policies

have different, and sometimes opposite, effects on banks with different characteristics.

Moreover, the fact that large and merged banks are found to face lower costs and to have

incentives to take on more risk in credit and securities markets constitute a signal for

regulators to be alert on these institutions. Regulators should also consider alternative
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3.3 Conclusions

measures to limit risk taking incentives associated to the fact that large banks exploit

the benefits from being considered as too-important-to-fail. This is even more important

given the recent local expansion of financial conglomerates, which makes more difficult for

regulators to monitor their behavior and may enhance regulatory arbitrage and expose

other market participants (non-banking institutions) to higher risk exposure, boosting

systemic risk. Work is currently in progress on this area as well as on the relationship

between risk taking and the too-important-to-fail dilemma in the interbank market.

3.3 Conclusions

In stochastic frontier analysis, unobserved inefficiency heterogeneity has been little ex-

plored. In this chapter we have put forward the modeling of heterogeneity in a Bayesian

context by proposing two alternative methods to capture unobserved sources of hetero-

geneity in the inefficiency distribution: i) through a random parameter which can be

allowed to be time-varying depending on the application, and ii) through firm-specific

random coefficients of observed covariates.

In the first case, the effects of its inclusion in different parameters of a truncated

normal distributed inefficiency were studied. Our findings suggest that unobserved

inefficiency heterogeneity can be properly captured by a random parameter. Models

including this parameter whether alone or simultaneously with observed covariates im-

prove in terms of fit and predictive performance as long as latent heterogeneity remains

unidentified. In this sense, it can be used to distinguish unobserved heterogeneity from

inefficiency and to validate the suitability of observed covariates to capture it. As ob-

served in Chapter 2, differences in efficiency rankings and mean scores were found when

inefficiency heterogeneity was included in different parameters of a truncated normal

inefficiency distribution. Also for unobserved heterogeneity, we find that its inclusion in

the location parameter of the inefficiency has an effect on separating the firm specific

posterior efficiency distributions from each other; while a shrinking effect on the indi-

vidual posterior efficiency distributions is identified when it affects the scale parameter.

In the case, of the model preserving the scaling property by affecting both the location

and scale parameters, both effects are observed. Therefore, these results are consistent

whether we use observed covariates or our proposal to model unobserved heterogeneity.
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

In general, models preserving the scaling property can be used with our proposal to cap-

ture unobserved inefficiency heterogeneity. This allows to decompose inefficiency into a

base component measuring natural managerial skills and other measuring the effect of

latent factors causing unobserved heterogeneity.

Regarding our second proposal, we find that modeling random coefficients for the

inefficiency covariates captures firm-specific effects which remain unidentified under the

regular fixed coefficients models. That is, the random coefficients model identifies inef-

ficiency drivers that result as not relevant in models with fixed coefficients. Moreover,

some of these heterogeneity variables are found to be very important explaining ineffi-

ciency for some firms. Also, the magnitude of the effects of these covariates may change

among firms. These effects remain unobserved if they are not modeled and affect the

posterior efficiency estimations. Overall, this specification distinguishes firms in terms

of the effects of inefficiency drivers and separates unobserved heterogeneity related to

these effects from efficiency.
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3.4 Appendix

3.4 Appendix

A. MCMC results for the unobserved random parameter τ

As described in Section 3.1.1, we identified very slow convergence in the MCMC sim-

ulations for the unobserved random parameter τ . We present in Figures 3.9 and 3.10

plots of the MCMC chains for the hyper-parameter τ at three different starting points

for the models preserving the scaling property (Model A in Section 3.1.2.1 for the WHO

application and Model C in Section 3.1.2.2 for the airlines application). In the empirical

applications we used a starting value equal to zero.

Figure 3.9: MCMC iterations for different initial values of parameter τ - WHO application
- Model A
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The conclusion we got in both cases is that the parameters are identifiable but the

convergence is very slow. In fact, the parameters started to converge around 40,000

iterations and we also found a high autocorrelation of order around 20. Therefore, we

decided to consider a thinning equal to 25, to discard the first 50,000 iterations and run

a total of 550,000 iterations. This implies that we retain data from 20,000 iterations as

in models without the random parameter.14 When the time-varying specification is used

14In those cases we remain running 50,000 with a thinning equal to 2 and discarding the first 10,000.

67



3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

Figure 3.10: MCMC iterations for different initial values of parameter τ - Airlines appli-
cation - Model C
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the main difference is that the dispersion of the MCMC iterations is higher. This was

observed in all the models containing this parameter.
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B. WinBUGS code a truncated normal model with a random parameter

capturing unobserved heterogeneity - WHO application

model {

for (i in 1:N) {

m[i]<- mu*exp(tao[firm[i]])

sigmau[i] <- (1/sqrt(lambda))*exp(tao[firm[i]])

#In case of using also observed covariates:

#z[i]<- gamma[1]*z1[i]+gamma[2]*z2[i]+gamma[3]*z3[i]

#m[i]<- mu*exp(z[i]+tao[firm[i]])

#sigmau[i] <- (1/sqrt(lambda))*exp(z[i]+tao[firm[i]])

nu[i]<-1/(sigmau[i]*sigmau[i])

u[i] ~ djl.dnorm.trunc(m[i],nu[i],0,1000)

eff[i] <- exp(- u[i]) }

for ( i in 1:N ) {

mp[i] <- alpha - u[i]+beta[1]*x1[i]+beta[2]*x2[i]+beta[3]*x3[i]+beta[4]*zp1[i]

+beta[5]*zp2[i]+beta[6]*ze1[i]+beta[7]*ze2[i]+beta[8]*ze3[i]

+beta[9]*ze4[i]+beta[10]*ze5[i]+beta[11]*ze6[i]

y[i] ~ dnorm(mp[i], prec) }

mu <- psi/sqrt(lambda)

psi ~ dnorm(0.0,1)

lambda~dgamma(5,lambda0)

lambda0 <- 5*log(rstar)*log(rstar)

#In case of using also observed covariates:

#for (i in 1:6) {

#gamma[i] ~ dnorm(0.0, 0.1) }

#Alternative prior for gamma:

#for (i in 1:6) {

#gammastar[i] ~ dnorm(0.0, 0.1)

#gamma[i] <- gammastar[i] / sqrt(lambda) }

alpha ~ dnorm(0.0, 1.0E-06)

for (i in 1:5) {

beta[i] ~ dnorm(0.0, 1.0E-06) }

#For firm specific random parameter:

for (i in 1:K){

tao[i] ~ dnorm(mutao,prectao) }

mutao ~ dnorm(0.0, 0.1)

prectao~ dgamma(0.5, 0.5)

prec ~ dgamma(0.001, 0.001)

sigmasq <- 1 / prec }
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3. MODELING UNOBSERVED INEFFICIENCY HETEROGENEITY

C. WinBUGS code for a model with random inefficiency coefficients -

Banks risk-taking application

model{

for (i in 1:N) {

z[i]=gamma[1]*z1[i]+gamma[2]*z2[i]

zstar[i]=gammai[1,firm[i]]*z3[i]+gammai[2,firm[i]]*z4[i]+gammai[3,firm[i]]*z5[i]

+gammai[4,firm[i]]*z6[i]

lambda[i]<-exp(gamma0+z[i]+zstar[i])

u[i] ~ dexp(lambda[i])

eff[i]<- exp(-u[i]) }

for (i in 1:N) {

#+u for costs and -u for profit

mu[i] <- alpha - u[i]+ beta[1]*lny1[i]+beta[2]*lny2[i]+beta[3]*lny3[i]

+delta[1]*lnp1[i]+delta[2]*lnp2[i]+betamn[i]+deltars[i]

+etamr[i]+kappa[1]*t[i]+0.5*kappa[2]*t[i]*t[i]+tcross[i]

betamn[i] <- 0.5*betam[1]*lny1[i]*lny1[i]+betam[2]*lny1[i]*lny2[i]

+betam[3]*lny1[i]*lny3[i]+0.5*betam[4]*lny2[i]*lny2[i]

+betam[5]*lny2[i]*lny3[i]+0.5*betam[6]*lny3[i]*lny3[i]

deltars[i] <- 0.5*deltar[1]*lnp1[i]*lnp1[i]+deltar[2]*lnp1[i]*lnp2[i]

+0.5*deltar[3]*lnp2[i]*lnp2[i]

etamr[i] <- eta[1]*lny1[i]*lnp1[i]+eta[2]*lny1[i]*lnp2[i]+eta[3]*lny2[i]*lnp1[i]

+eta[4]*lny2[i]*lnp2[i]+eta[5]*lny3[i]*lnp1[i]+eta[6]*lny3[i]*lnp2[i]

tcross[i] <- phi[1]*t[i]*lny1[i]+phi[2]*t[i]*lny2[i]+phi[3]*t[i]*lny3[i]

+varphi[1]*t[i]*lnp1[i]+varphi[2]*t[i]*lnp2[i]

y[i] ~ dnorm(mu[i], prec) }

lambda0 <- -log(rstar)

gamma0<-log(expgamma0)

expgamma0~dexp(lambda0)

for (j in 1:2) {

gamma[j]<- log(expgamma[j])

expgamma[j] ~ dexp(lambda0) }

for (j in 1:4) {

gammastar[j]~dexp(lambda0)

for (i in 1:K) {

expgammai[j,i]~dexp(gammastar[j])

gammai[j,i]<- log(expgammai[j,i]) } }

alpha ~ dnorm(0.0, 0.001)
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for (i in 1:3) {

beta[i] ~ dnorm(0.0, 0.001) }

for (i in 1:2) {

delta[i] ~ dnorm(0.0, 0.001) }

for (i in 1:6) {

betam[i] ~ dnorm(0.0, 0.001) }

for (i in 1:3) {

deltar[i] ~ dnorm(0.0, 0.001) }

for (i in 1:6) {

eta[i] ~ dnorm(0.0, 0.001) }

for (i in 1:2) {

kappa[i] ~ dnorm(0.0, 0.001) }

for (i in 1:3) {

phi[i] ~ dnorm(0.0, 0.001) }

for (i in 1:2) {

varphi[i] ~ dnorm(0.0, 0.001) }

prec ~ dgamma(0.01, 0.01)

sigmasq <- 1 /prec }
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Chapter 4

Inefficiency Heterogeneity in

Dynamic Models∗

The decision making process followed by producers is dynamic in nature. Technology and

environment change continuously and variations with respect to their current production

conditions have to be considered by firms. However, firms face restrictions and costs in

the adjustment process. Regulation, quasi-fixed or indivisible inputs, and transaction,

information and other adjustment costs are important factors preventing firms from

making free and instant adjustments towards optimal conditions. In this context, firms

may not only be inefficient at some point, but this inefficiency may persist from one

period to the next, and firms may find it optimal to remain partly inefficient in the

short-run.

This issue has been little studied in the efficiency measurement literature but has

recently become an important concern. In stochastic frontier models, we can find two

alternative approaches to deal with time dependent inefficiencies. The first of these de-

fines deterministic time specifications for the evolution of efficiency. As examples we

find the proposals by Kumbhakar (1990) and Battese and Coelli (1992) where a time

invariant inefficiency measure is multiplied by a parametric function of time, the model

by Cornwell et al. (1990) that defines producer specific parameters, and the proposal by

Lee and Schmidt (1993) where time dummies are used. These models have the problem

of imposing arbitrary restrictions on the short-run efficiency and are not able to model

∗Part of the work in this chapter has been accepted for publication in the European Journal of
Operational Research (see Galán et al., 2014c).
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firm-level dynamic behaviour. A more recent approach involves the dynamic behaviour

of inefficiency by considering models that estimate long-run efficiency. These models

recognize a persistence effect of firms’ inefficiency over time and specify its evolution as

an autoregressive process. In this context, Ahn et al. (2000) defined an error structure

intended to capture the relationship between the short and long-run dynamics. This

pioneer proposal has been criticized for its economic foundations and for modeling au-

toregressive processes on nonnegative variables. An alternative proposal that avoids this

problem and argues that improvements on efficiency depend on the costs of adjustment

was introduced by Tsionas (2006). This model was applied to a sample of US banks

and very high inefficiency persistence was found out, suggesting the presence of high

adjustment costs in the banking sector.

In this context, the model proposed by Tsionas (2006) becomes very relevant in

accounting for inefficiency persistence. This model presents two main characteristics: It

assumes a constant persistence parameter for all firms in the sector, and it allows the

inclusion of observed heterogeneity in the inefficiency. However, unobserved sources of

heterogeneity may also affect efficiency estimations under a dynamic framework. In this

chapter we present an extension of the dynamic SFA specification in Tsionas (2006) in

order to account for unobserved sources of heterogeneity. In particular, firm specific

inefficiency persistence and unobserved technological heterogeneity. Finally, we also

study the effects of including observed covariates in or out the inefficiency dynamics and

propose a general specification able to model these differences.

This chapter is composed of three sections. Section 4.1 presents a dynamic SFA

model able to capture unobserved sources of heterogeneity. We apply the proposed

model to the electricity sector by using a sample of Colombian distribution utilities.

Section 4.2 presents a inefficiency specification that allows modeling observed covariates

in and out the inefficiency dynamics. The effects on the efficiency posterior distributions

are assessed using a sample of Colombian banks during the last decade. Empirical results

in both applications are of great interest not only for understanding the effects of the

treatment of heterogeneity in dynamic models, but also for regulators and firms in these

sectors. Finally Section 4.3 concludes the chapter.
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4.1 A Dynamic Model with Unobserved Heterogeneity

4.1 A Dynamic Model with Unobserved Heterogeneity1

We propose a dynamic stochastic frontier model that accounts for both observed and

unobserved heterogeneity sources. This is mainly an extension of the model introduced

by Tsionas (2006) that combines it with other recent proposals in the literature of dy-

namic SFA models. In particular, the proposed specification accounts for observed firm

characteristics in the inefficiency dynamics, as in Tsionas (2006), but also captures two

additional sources of unobserved heterogeneity: the first one is related to differences in

the adjustment costs among firms. It is possible that firms with different characteristics

face different costs of adjustment. This would introduce a source of unobserved hetero-

geneity among firms which may have relevant effects on the efficiency estimations (see

Galán et al., 2014c).

The second unobserved heterogeneity source is related to technological heterogeneity

and we model it in a similar way to the dynamic model in Emvalomatis (2012). This

author presented a dynamic model with no observed covariates in the inefficiency where

unobserved technological heterogeneity is introduced. His findings reveal important

biases in the efficiency estimations when this unobserved effects is not considered. The

general model is given by the following equations:

yit =αi + xitβ + vit − uit, vit ∼ N(0, σ2
v) (4.1)

log uit =ω + zitγ + ρi log ui,t−1 + ξit, ξit ∼ N(0, σ2
ξ ), t = 2...T (4.2)

log ui1 =
ω + zitγ

1− ρi
+ ξi1, ξi1 ∼ N

(
0,

σ2
ξ

1− ρ2
i

)
, t = 1. (4.3)

Equation (4.1) represents the stochastic frontier, where in the case of a production

function yit is the output for firm i at time t, αi is the firm specific parameter intended to

capture unobserved technological heterogeneity, xit is a row vector of the input quanti-

ties, β is a vector of parameters, vit is the idiosyncratic error assumed to follow a normal

distribution, and uit is the inefficiency component. The dynamic specification for the

inefficiency is represented by (4.2), where ω is a constant term, zit is a row vector of

firm specific heterogeneity variables, γ is a vector of parameters, ρi is the heterogeneous

1Much of the work in this section is joint work with Professor Michael Pollitt from University of
Cambridge (see Galán and Pollitt, 2014a).
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persistence parameter capturing, for every firm, the proportion of inefficiency that is

transmitted from one period to the next, and ξit is a white noise process with constant

variance σ2
ξ , which may capture unobserved random shocks in the dynamic component.

Finally, equation (4.3) represents the specification of the inefficiency in the first period

and is intended to initialize a stationary dynamic process.

Stationarity is imposed by requiring the persistence parameters to satisfy |ρi| < 1.

This is important in order to avoid possible divergence of log uit to positive or negative

infinity, which would lead to efficiencies equal to zero or to one. These results are not

desirable since in the first case they would mean that completely inefficient firms remain

in the market, and in the second case that firms may be fully efficient, contradicting the

adjustment cost theory behind the formulation. In general, if a firm has a value of ρi

close to 1 it would suggest that this firm presents high adjustment costs, which translates

into a high proportion of inefficiency being transmitted from one period to the next. On

the other hand, if this value is close to 0, a low proportion of inefficiency is persistent in

time, implying that the firm may move quicker towards more optimal conditions.

The general model in (4.2) and (4.3) allows to evaluate different specifications by

imposing restrictions over some parameters. If αi = α is assumed, then unobserved

technological heterogeneity is not accounted for. If ρi = ρ is imposed, homogeneous

persistence is assumed for all companies in the sector. If ρ = 0 the model reduces to a

static model where the inefficiency follows a log-normal distribution with firm specific

mean. Finally, if no inefficiency covariates are observed, then γ = 0 would be assumed.

4.1.1 Bayesian inference

Inference of the model in (4.1) till (4.3) is carried out using the Bayesian approach as

earlier. In general, we assume non-informative but proper prior distributions for all

the parameters. For the parameter capturing unobserved heterogeneity in the fron-

tier we define a hierarchical structure where αi ∼ N(α, λ−1
αi ) and the hyperparameter

α ∼ N(0, λ−1
α ). Priors for the precision parameters λ are set to 0.1 and 0.001 for the

firm specific parameters and the hyperparameter, respectively. For parameters in β we

assume a normal prior distribution β ∼ N(0,Λ−1
β ) where Λβ is a precision diagonal

matrix with priors set to 0.001 for all parameters. The variance of the idiosyncratic

error component is assumed to follow an inverse gamma distribution σ2
v ∼ IG(a, b) with

priors set to 0.01 and 100 for the shape and scale parameters.
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The inefficiency component as defined in (4.2) follows a log-normal distribution where

uit|ui,t−1, ω, zit,γ, ρi, σ
2
ξ ∼ LN(ω + zitγ + ρi log ui,t−1, σ

2
ξ ) for t = 2...T . For t = 1, the

inefficiency is distributed ui1|ω, zi1,γ, ρi, σ2
ξ ∼ LN

(
ω+zi1γ

1−ρi ,
σ2
ξ

1−ρ2i

)
.

Regarding the parameters in the inefficiency, the distribution for the common con-

stant term is ω ∼ N(µω, λ
−1
ω ) with priors set to −1.5 and 1 for the mean and precision

parameters, respectively. The distribution for the parameters of observed heterogene-

ity is: γ ∼ N(0,Λ−1
γ ) where Λ−1

γ is a diagonal matrix of precisions with priors set to

0.1 for every precision parameter. For the persistence parameters, we impose |ρi| < 1

to assure stationarity and we define a hierarchical structure with ρi = 2ki − 1, where

ki ∼ β(k, 1− k). The hyperparameter is distributed k ∼ β(r, s) with priors set to 0.5 for

shape parameters. The variance of the inefficiency component is assumed to follow an

inverse gamma distribution where σ2
ξ ∼ IG(n, d) with priors set to 10 and 100 for the

shape and scale parameters, respectively.2

Sensitivity analysis is performed on priors in the inefficiency component. Different

values are used for prior parameters in the distributions of ω, k and σ2
ξ and posterior

results are found to converge to approximately the same values.3 We also found posterior

results to be robust to the use of a truncated normal distribution for parameters ρi and

ρ.

The specification proposed accounts for firm specific effects in the frontier and the

inefficiency persistence. However, firms in the sector share a common long-run dynamic

component ω, common elasticities for the covariates given by γ, and are linked through

common parameters ρ and α that are present in the hierarchical structures defined.

As earlier, the models are run using the WinBUGS package. For all the estimated

models we use 5,000 iterations for posterior inference. The MCMC algorithm involves

50,000 iterations with 10,000 discarded in a burn-in phase and a thinning equal to 8 is

used to remove autocorrelations.

Model choice is carried out using DIC3 and LPS as in the previous chapters.

4.1.2 Application to Colombian electricity distribution utilities

The electricity market reform introduced in Colombia in 1994 established a new struc-

ture of the sector and new conditions for private participation and competition. The

2This is the same prior used by Tsionas (2006) and Galán et al. (2014c).
3The priors used centre the efficiency prior distributions at 0.8.
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reform was mainly motivated by an energy crisis suffered in 1992-1993 that caused major

blackouts as a consequence of extreme droughts. This situation revealed the inefficiency

and inability of the state-owned industry to satisfy an increasing demand and to deal

with weather events. The regulatory reform adapted a version of the UK model with

the creation of a pool where prices are settled in a bidding process. The Electric Law of

1994 created the regulatory commission Comisión Reguladora de Enerǵıa y Gas (CREG)

and split the traditional vertically integrated and monopolistic system into the activi-

ties of generation, transmission, distribution and retailing. As a consequence, the seven

major public holdings in charge of multiple activities from generation to distribution

previous to the reform were divested into eleven companies performing only one of these

activities and two companies involved in both generation and distribution. Although

generation and distribution were allowed to be performed by the same company, limits

to the amount of electricity that the distributor could buy from its own generation firm

were set and separate managerial and accounting procedures were required.

However, privatization and competition have been slow processes in Colombia. After

the reform only two of the new companies were fully privatized and, although in the fol-

lowing years several companies were open to private capital, in most of the cases private

investors are minority shareholders and firms remain under the control of municipalities

and regional governments. Certainly, privatization and competition have been identified

as pending issues in Colombia in previous studies analyzing the effects of the first years

of the reform (see Larsen et al., 2004; Pombo and Taborda, 2006).

Nevertheless, these processes have accelerated in recent years. From 2010 to 2012,

the number of generating and retailing firms has increased by 23% and 32%, respectively,

and most of the companies involved in these activities are classified as private-owned. In

distribution, companies with a majority of public capital account for 62% of total firms

and serve 51% of the total users. Currently there are 54 generation, 33 distribution and

85 retailing companies. Of the generation firms, 12 are also involved in distribution and

15 combine generation exclusively with retailing activities.4

In general, the effects of the reform have been positive in terms of the ability of the

electricity sector to overcome extreme weather conditions and to satisfy the increasing

4Information provided by the national supervisory agency of public services Superintendencia de
Servicios Públicos Domiciliarios (SSPD) in 2013.
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demand. Since the reform, Colombia has not experienced blackouts in spite of some se-

vere droughts that have affected the region during the 1997-1998 and 2009-2010 periods,

and that have seriously affected neighbor countries. Moreover, Colombia has become

an electricity exporter to Ecuador and Venezuela and it is currently planning to export

electricity to other Central American and Caribbean countries.5

On the other hand, the effects of the reform in terms of energy losses and service

quality have not been successful until recent years. During the first ten years of the

reform, energy losses and electricity interruptions did not present reductions and were

even higher than previous to the reform. Colombia also exhibited very bad performance

in these aspects when compared to other countries in the region (see Dyner et al., 2006;

Larsen et al., 2004). Only from 2008, can important reductions in energy losses be

observed. In terms of the length of interruptions, although it is possible to identify some

improvements since 2005, it is only until 2011 that significative reductions are evident.

In both cases, these improvements are consequence of changes in the regulation, as is

discussed further below.

Meeting the quality requirements and satisfying the increases in electricity consump-

tion and users has required distribution companies to make important investments. In

fact, capital and operational expenses have increased by more than 30% during the pe-

riod 1998 - 2012. This suggests the need to study the effects of the reform and the

latest regulations established by CREG on efficiency. Concerning this issue, some few

previous studies have quoted the effects on efficiency of the reform in Colombia and no

major gains have been identified. Pombo and Taborda (2006) use Data Envelopment

Analysis (DEA) to perform an analysis of technical efficiency of Colombian distribution

firms during the period from 1985 to 2001. The authors find no major changes during

the period and highlight that the most efficient firms previous to the reform continue

to be in the best-practice frontier but firms which were inefficient have not been able

to change this condition and present even lower efficiency scores. A similar result was

found by Melo and Espinosa (2005), who measure the technical efficiency of Colombian

distributors from 1999 to 2003 using Stochastic Frontier Analysis (SFA). The authors

find out that public companies perform better than those privately owned but that there

have not been major changes in technical efficiency in the immediate years after the re-

form. This Colombian evidence contrasts with the effects of the electricity reforms on

5In 2011, Colombia exported 1.740 GWh. Information from the Ministry of Mines and Energy.
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performance in other South American countries (see Mota, 2003; Pérez-Reyes and Tovar,

2009; Pollitt, 2004, 2008, for the cases of Brazil, Chile, Argentina and Peru, respectively.)

Findings from these studies may suggest the presence of high adjustment costs in the

Colombian distribution sector that imply inefficiency to be highly persistent in time. In

this context, it is costly for firms to move towards optimal conditions and they may find

it optimal to remain inefficient in the short-run. These studies have also evidenced the

existence of important differences among firms with different characteristics in terms of

their performance.

Therefore, this application has two main aims: first, to identify the presence of ad-

justment costs in the distribution sector after the reform and distinguish heterogeneity

in the technology and the inefficiency among Colombian distributors; second, to estimate

measures of efficiency that consider costs and quality of service in the Colombian elec-

tricity sector and their evolution from the first years after the reform into the following

fifteen years. In particular, we focus on the last five years, when most of the changes in

terms of quality, demand and costs have occurred.

4.1.2.1 The Colombian electricity distribution sector

The activity of electricity distribution in Colombia is defined by CREG as the trans-

portation of electricity from the national transmission system, which operates at voltages

above 220 Kv, to the final user. There are four different levels of tension operated by the

distributor. That is, from level 1, which involves tension levels below 1 Kv, to level 4 with

tension levels between 57.5 Kv and 115 Kv. CREG follows a cost of service type of reg-

ulation and establishes the pricing formula for distributors for each of the tension levels

considering demand, investments, and administration, operation and maintenance costs.

The length of the price review is five years and the first pricing period was 1998-2002.6

Besides prices, service quality and energy losses have also been under regulation. In

1998 CREG established maximum values for both duration and number of interruptions

by tension level, as well as compensations to users when companies exceeded these

maximums.7 However, small and slow improvements motivated CREG to modify this

scheme in 2008. The new regulation introduced quality incentives in the pricing formula

6CREG resolution 031 of 1997.
7CREG resolution 070 of 1998.
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Figure 4.1: Average CHL and EL ratio per firm
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and compensations for the most affected users.8 Under this model, an index of service

discontinuity is calculated quarterly and three ranges of values for this index are set:

if distribution companies exceed an acceptable range their pricing formula is revised

down; if they perform better than the acceptable values their formula is revised up;

and if their discontinuity index is within the acceptable range their formula does not

change. The implementation of this mechanism has been postponed and only from 2011

have all companies had to report this index. The effects of this last regulatory scheme

are still uncertain. In the literature, some studies have found this direct mechanism of

incentive regulation to have negative effects on quality of service (see Ter-Martirosyan

and Kwoka, 2010). However, the most important reductions in the length of interruptions

have occurred since then. This can be observed in Figure 4.1, where the evolution in

customer hours lost (CHL) and energy losses (EL) from 1998 to 2012 is presented for

the sample of distribution companies described in Section 4.1.5.

Regarding energy losses, new regulations were also set by CREG in 2008 by estab-

lishing a program for reducing losses and setting upper limits for the percentage of losses

recognized by users via tariff.9 The effects of this regulation also seem to be positive

(see Figure 4.1).

8CREG resolution 097 of 2008.
9CREG resolutions 199 and 121 of 2007.
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Figure 4.2: Average number of customers and electricity consumption per firm
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During the period 1998-2012, the electricity consumption and the number of con-

nected users have also presented important increases (27% and 51%, respectively). Fig-

ure 4.2 presents this evolution for the same firms above. We can observe that, after

a period characterized by economic recession and low growth rates (1999-2003), con-

sumption and customers exhibit an upward trend with high growth in the most recent

years.

Satisfying the demand and meeting the quality requirements have had effects on the

costs of distribution firms. Figure 4.3 presents the evolution of capital and operational

expenses in real US dollars of 2012 for the same companies in the figures above. We

observe important increases, mainly in operational expenses, from 2007, when relatively

higher capital expenses were made. The overall increase in real total expenses from 1998

to 2012 was 31%.

Higher distribution costs have had an impact on the tariff for the final user. Figure

4.4 plots the evolution of the tariff per kWh by decomposing it into each of their com-

ponents. Although almost all the components of the tariff have increased in real terms,

the proportion of the distribution component has raised from 33% to 40% during the

period, with a particular increase in 2011 and 2012.

Regarding tariffs, it is important to remark that CREG establishes their value only

for regulated users. After the reform, customers were separated into regulated and

non-regulated users, which are differentiated in terms of their power demand and con-
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Figure 4.3: Average operational and capital expenses per firm
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sumption. Since 2000, CREG has defined regulated users as those with power demands

under 0.1 MW and monthly consumption below 55 MWh.10 Non-regulated users are

allowed to negotiate sale prices with retailing companies.

4.1.3 Heterogeneity in the electricity sector

Accounting for both observed and unobserved heterogeneity in stochastic frontier models

is still a concern since efficiency estimations are sensitive to the modeling of sources of

heterogeneity. In the case of observed heterogeneity, previous applications to the electric-

ity distribution sector have studied the effects of including different types of covariates

in the frontier, in the inefficiency or both. Hattori (2002) found out that heterogene-

ity sources related to the load factor, customer density and consumption density affect

both, the shape of the frontier and the level of technical efficiency. Goto and Tsutsui

(2008) found only customer density to have impacts on the technical efficiency of U.S.

electricity distribution firms in a model that also includes consumption density, time and

a deregulation index in the inefficiency distribution. In a recent study, Growitsch et al.

(2012) considered weather factors and found them to be influential on costs but having

limited effects in the efficiency estimations.

However, Growitsch et al. (2012) achieved more sensitivity in the efficiency estima-

tions when unobserved heterogeneity is included by using a True Random Effects (TRE)

10CREG Resolution 131 of 1998.
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Figure 4.4: Evolution of tariff per kWh in Colombia in real terms of 2012
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model as proposed by Greene (2005). Other recent studies in electricity distribution have

also been found to be relevant to considering this latent source of heterogeneity in SFA

models. Kopsakangas-Savolainen and Svento (2011) perform a good analysis of the ef-

fect of observed and unobserved heterogeneity and warn of the high changes produced

in rankings of cost efficiency under different models.

In the context of dynamic inefficiency models, Emvalomatis et al. (2011) studied the

effect of including technological unobserved heterogeneity in an application to power

generation plants in the US. Their findings reveal high persistence of inefficiency over

time but also biases in the efficiency estimations when unobserved factors are not con-

sidered. However, it is also possible to think of heterogeneity regarding the persistence

parameters. This would be related to possible differences in the adjustment costs among

firms. The only studies considering this issue have been applications to the banking

sector, where this type of heterogeneity has been found to be relevant (see Galán et al.,

2014c; Huang and Chen, 2009).11

11Huang and Chen (2009) include firm specific persistence parameters in the context of models with
forward-looking rational expectations while Galán et al. (2014c) include them in relation to the theory
of adjustment costs.
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4.1.4 Stochastic input distance function

Given that electricity distributors do not have control over electricity consumption and

the number of users, which are their natural outputs, it is only possible to use input-

oriented models for measuring technical efficiency. In this context, we assume that

distribution firms use an N × 1 vector of inputs x = (x1, x2, . . . , xN )′ to provide an

M × 1 vector of outputs q = (q1, q2, . . . , qM )′. Thus, we define an input set as follows:

Lg(q) = x : x and technology g can produce q, (4.4)

where the technology g satisfies the axioms of closeness, boundedness, strong dispos-

ability and convexity as described by Färe and Primont (1995). This technology can be

represented by an input distance function, which is defined as:

DI(x,q, g) = sup
λ
{λ : x/λ ∈ Lg(q) ≥ 1}, (4.5)

where λ denotes the maximum amount by which an input vector can be radially con-

tracted while the output vector remains constant. We assume that every distribution

firm employs the best available technology in each period. Thus, the Debreu-Farrell

input-oriented measure of technical efficiency (TE) for firm i in period t is:

TE(xit, qit, t) ≡ 1/DI(xit, qit, t). (4.6)

The input distance function has the following features: it is homogeneous of degree

one, a non-decreasing concave function of inputs, and a non-increasing quasi-concave

function of outputs (see Färe and Primont, 1995). Linear homogeneity implies that it

is possible to normalize all the inputs in the distance function by an arbitrarily chosen

input xNit :

1/xNit = DI(xit/xNit , qit, t) exp(−uit), (4.7)

where uit ≡ lnDI(xit/xNit , qit, t) ≥ 0. Then, a firm is technically efficient if and only if

uit = 0 or similarly, TE(xit, qit, t) = 1.

Regarding the technology representation, we use a translog functional form to param-

eterize the distance function. So, we define vit ≡ lnDI(xit/xNit , qit, t)−TL(xit/xNit , qit, t),
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where TL(.) is the translog function. In this case, (4.7) becomes:

yit = TL(xit/xNit , qit, t) + vit − uit, (4.8)

where yit ≡ − lnxNit . If any outputs or normalized inputs are stochastic then vit is

stochastic and (4.8) becomes a standard translog stochastic frontier model. For estima-

tion purposes, the random noise term vit is assumed to follow a normal distribution and

the inefficiency component uit is assumed to follow a nonnegative distribution. Using

the results for individual inefficiencies, TE in each period is calculated as:

TEit = exp(−uit). (4.9)

Changes in productivity may also be computed from a stochastic distance func-

tion (see Balk, 2001; Orea, 2002, for a parametric approach to the computation of the

Malmquist productivity index). In this context an input-oriented Malmquist produc-

tivity index can be computed and decomposed into technical efficiency change (TEC),

technical change (TC), scale efficiency change (SEC) and an input mixed effect (IME)

as follows:

MPItI = TECI · TCt,t+1
I · SECtI ·MEtI , (4.10)

where I denotes the input orientation, and the four components can be defined using a

parametric translog specification as:12

TECI =
DI(x

t, qt, t)

DI(xt+1, qt+1, t+ 1)
(4.11)

TCt,t+1
I =

DI(x
t+1, qt+1, t+ 1)

DI(xt+1, qt+1, t)
(4.12)

SECtI =
D̆I(x

t, qt, t)

D̆I(xt, qt+1, t)
· DI(x

t, qt+1, t)

DI(xt+1, qt, t)
(4.13)

MEtI =
D̆I(x

t, qt+1, t)

D̆I(xt+1, qt+1, t)
· DI(x

t+1, qt+1, t)

DI(xt, qt+1, t)
, (4.14)

12Lovell (2003) defines the combined effect of SECtI and MEtI as the volume effect.
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where D̆I stands for an input distance function associated with constant returns to scale

(see Pantzios et al., 2011, for the derivation using the translog input oriented model).

4.1.5 Data and empirical model

Information on expenses, consumption, users, network length and quality indicators was

collected for a sample of 21 electricity distribution firms during the period 1998 - 2012.

The main data sources are CREG, SSPD and annual reports of the companies. Firms in

the sample distributed 81% of the total consumed KwH in Colombia during the period

and share 98% of total customers in the country. The data set is an unbalanced panel

with a total of 246 observations. Table 4.4 presents a summary of statistics of the main

variables. Monetary values are expressed in thousands of US dollars in real terms of

2012 after deflating by the consumer price index.

Table 4.1: Summary statistics

Variable Mean SD Minimum Maximum

Residential consumption (MWh) 785,665 1,118,006 13,499 4,687,938

Non-residential consumption (MWh) 729,120 1,138,132 9,069 5,637,621

Residential customers (#) 405,457 491,828 34,365 2,247,024

Non-residential customers (#) 40,672 57,430 2,935 294,734

Network length (Km) 16,587 15,673 232 70,795

Customer hours lost (hours) 89.12 101.94 6.20 580.89

Energy losses (%) 16.25 7.45 4.02 38.57

Consumption density (kWh/user) 2,836 1,120 436 6,642

Customer density (users/Km) 43.41 45.42 9.85 194.42

Total Expenses (thousands USD) 239,034 363,063 1,395 1,768,163

From these variables two outputs and three inputs are selected for the specification

of the input distance function. Consumption and number of customers are the standard

outputs in electricity distribution; however, they are usually highly correlated (0.95 in

our sample) and one of them should be chosen to avoid collinearity problems. In our

case, we select the number of users divided into residential (y1) and non residential users

(y2). Inputs are total expenses (x1), energy losses (x2) and customer hours lost (x3).

Total expenses is the sum of operational and capital expenses. The former include ad-

ministrative, operative and maintenance expenditures and the latter corresponds to the

value of new investments in network cables, lines, ducts, tunnels and other machinery,

plant and equipment. Considering overall total expenses is desirable for benchmarking
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electricity utilities (see Giannakis et al., 2005). Moreover, since we also account for qual-

ity measures, including total expenses recognizes that distribution firms adopt different

strategies mixing capital and operating investment inputs in order to improve quality of

service (see Jamasb et al., 2012). We also include energy losses and the length of inter-

ruptions as inputs where reductions are desirable. This approach has been used before

in applications to the electricity sector using SFA models with distance functions (see

Growitsch et al., 2009; Tovar et al., 2011; von Hirschhausen et al., 2006). Giannakis et al.

(2005) and Yu et al. (2009) have also found these variables to be relevant in performing

electric utilities benchmarking analysis explicitly including quality of service. Energy

losses is the percentage of energy lost due to technical reasons and customer hours lost

is the duration of service interruptions measured in hours per customer. We also include

the network length measured in kilometers (km) as a characteristic of the output which

is not directly under the control of firms.

Finally, we consider two inefficiency heterogeneity variables. These are consumption

density (z1) and customer density (z2). Consumption density is measured as the number

of KwH consumed per customer and customer density is measured as the number of

users per kilometer. Both variables are expected to affect the inefficiency negatively in

the sense that firms serving areas with low customer and consumption density may face

a higher input-output relationship and more managerial difficulties in providing optimal

service quality and resources allocation. Previous studies have also modeled these vari-

ables in the inefficiency distribution. Hattori (2002) and Goto and Tsutsui (2008) found

these density characteristics to be relevant technical inefficiency drivers in the US and to

produce changes in the results when they are omitted from the inefficiency distribution.

Growitsch et al. (2009) found similar effects for eight European countries when includ-

ing customer density in the mean of a truncated normal distributed inefficiency. In the

case of Colombia, Melo and Espinosa (2005) have tested the inclusion of both density

variables in the frontier and the inefficiency and have concluded about relevant effects

of these variables as inefficiency drivers.

We use a translog representation of the technology for the input distance function

derived in (4.8). The estimated model with the dynamic specification presented in (4.1)
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till (4.3) is the following:

− lnx1it = αi +
∑2

m=1 βm ln ymit + βm+1 ln kmit +
∑2

r=1 δr ln
(
xrit
x1it

)
+1

2

∑2
m=1

∑2
n=1 βmn ln ymit ln ynit + 1

2

∑2
r=1

∑2
s=1 δrs ln

(
xrit
x1it

)
ln
(
xsit
x1it

)
+
∑2

m=1

∑2
r=1 ηmr ln ymit ln

(
xrit
x1it

)
+ κ1 t+ 1

2 κ2 t
2 +

∑2
m=1 φmt ln ymit

+
∑2

r=1 ϕrt ln
(
xrit
x1it

)
− uit + vit

log uit = ω +
∑2

p=1 γpzpit + ρi log ui,t−1 + ξit; ξit ∼ N(0, σ2
ξ ); t = 2...T

log ui1 =
ω+

∑2
p=1 γpzpi1
1−ρi + ξi1; ξi1 ∼ N

(
0,

σ2
ξ

1−ρ2i

)
; t = 1.

(4.15)

Total expenses are used as a numeraire to accomplish linear homogeneity in inputs

and cross-effects symmetry is imposed by requiring βmn = βnm and δrs = δsr.

4.1.6 Estimation Results

We estimate four different models derived from (4.15). The first three models do not

account for unobserved technological heterogeneity, that is, αi = 0. In addition, model

(S) restricts ρi = 0, so the model becomes static and the inefficiency term follows a log-

normal distribution with observed heterogeneity in its location parameter. The second

model (D) restricts ρi = ρ, which implies a dynamic model with fixed persistence pa-

rameter. The third model (DPH) allows heterogeneous persistence through ρi. Finally,

the fourth model (DPUH) is the complete model in (4.15), which is dynamic and allows

for heterogeneous persistence and unobserved heterogeneity. Results of the estimations

are presented in Table 4.5.
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Table 4.2: Posterior mean and standard deviation of parameter distributions

Parameters Model S Model D Model DPH Model DPUH

αi = α, ρi = 0 αi = α, ρi = ρ αi = α, ρi 6= ρ αi 6= α, ρi 6= ρ

Parameter Mean SD Mean SD Mean SD Mean SD

ID function

α -13.4149 1.2091 -12.6924 0.7935 -11.4653 0.6624 -11.4045 0.5543

β1(ln y1) -0.1902 0.1215 -0.0379 0.0257 -0.0346 0.0219 -0.1082 0.0266

β2(ln y2) -0.0968 0.0991 -0.1200 0.0806 -0.0712 0.0530 -0.0463 0.0248

β3(lnx2) 0.0115 0.0087 0.0244 0.0135 0.0060 0.0050 0.0149 0.0134

β4(lnx3) 0.0116 0.0088 0.0485 0.0168 0.0232 0.0197 0.0075 0.0056

β5(ln km) -0.3494 0.0739 -0.3265 0.1074 -0.1265 0.0491 -0.1413 0.0625

β6(t) -0.1724 0.1217 -0.0932 0.1336 -0.0616 0.0808 -0.0730 0.0684

β7(t2) 0.0032 0.0010 0.0046 0.0012 0.0049 0.0006 0.0050 0.0005

φ1(1/2 ln y21) -1.0098 0.3705 -1.3391 0.5202 1.6021 0.7925 1.5440 0.6968

φ2(ln y1 ln y2) 0.4733 0.3262 0.8353 0.5289 -1.4377 0.6969 -1.3677 0.6227

φ3(1/2 ln y22) 0.1132 0.3291 -0.2584 0.5504 1.2588 0.6821 1.2503 0.6303

φ4(1/2 lnx22) 0.0868 0.0463 0.0470 0.0450 0.0105 0.0362 0.0005 0.0346

φ5(lnx2 lnx3) -0.0951 0.0224 -0.0652 0.0321 -0.0160 0.0147 -0.0037 0.0147

φ6(1/2 lnx23) 0.0302 0.0174 0.0209 0.0194 0.0164 0.0112 0.0138 0.0124

δ1(ln y1 lnx2) -0.2636 0.1341 -0.2488 0.1303 0.2395 0.1451 0.1911 0.1275

δ2(ln y2 lnx2) 0.4149 0.0977 0.3551 0.1001 -0.2212 0.1136 -0.1622 0.0967

δ3(ln y1 lnx3) 0.0175 0.0822 -0.0168 0.0767 -0.0375 0.0563 0.0140 0.0554

δ4(ln y2 lnx3) -0.2235 0.0728 -0.1163 0.0623 0.0371 0.0542 0.0035 0.0525

κ1(t ln y1) 0.0252 0.0211 0.0353 0.0238 0.0192 0.0157 0.0175 0.0141

κ2(t ln y2) -0.0238 0.0196 -0.0233 0.0211 -0.0142 0.0138 -0.0150 0.0126

κ3(t lnx2) -0.0063 0.0075 0.0032 0.0074 0.0020 0.0047 0.0004 0.0041

κ4(t lnx3) 0.0064 0.0040 0.0045 0.0040 0.0022 0.0025 0.0025 0.0022

Inefficiency

ω -1.4049 0.8467 0.0205 0.0050 0.0017 0.0002 0.0028 0.0002

ρ 0.8366 0.0846 0.6532 0.0850 0.6507 0.0868

γ1(ln z1) -0.3443 0.1008 -0.0424 0.0081 -0.0317 0.0024 -0.0314 0.0168

γ2(ln z2) -0.4407 0.0838 -0.1277 0.0394 -0.1258 0.0553 -0.1009 0.0452

σv 0.1653 0.0315 0.1314 0.0194 0.0943 0.0017 0.0977 0.0018

σε 0.1610 0.0517 0.0613 0.0023 0.0406 0.0038 0.0347 0.0029

Mean eff. 0.5173 0.5841 0.6478 0.6373

SD eff. 0.1205 0.1551 0.2600 0.2420

DIC3 -119.12 -253.28 -339.49 -349.86

LPS 35.79 21.06 9.74 6.53
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4.1 A Dynamic Model with Unobserved Heterogeneity

We observe that the more flexible is the model in terms of accounting for dynamic

effects and heterogeneity, the better the values obtained for DIC3 and LPS. Lower

values for these criteria suggest better fit and predictive performance. Moreover, high

inefficiency persistence is estimated by the dynamic models suggesting the presence of

important adjustment costs in the Colombian distribution sector. Model D estimates

around 84% of the inefficiency being transmitted from one period to the next, which is

very similar to the average firm specific persistence estimated under models DPH and

DPUH.13 It can be also seen that not only is the average technical efficiency in the whole

sector higher in the more flexible models, but also its dispersion. This may suggest

that introducing dynamic effects and unobserved heterogeneity sources distinguishes

the presence of adjustment costs and heterogeneity from technical inefficiency and also

differentiates firms depending on their specific characteristics. These effects can also be

observed in Figure 4.5, where the evolution of efficiency over time under the four models

is plotted. We can also observe that the dynamic models accounting for persistence

heterogeneity (DPH and DPUH) identify larger improvements in TE during the period.

Figure 4.5: Evolution of posterior mean TE under different models
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In order to understand better the effects of the different specifications on the effi-

ciency estimates, we analyze the results at firm level and their evolution over time by

comparing the models derived from (4.15) from the most to the least restrictive. In Fig-

ure 4.6, we compare the posterior efficiency distribution for a firm with median values for

13Recently, Poudineh et al. (2014) found also very high inefficiency persistence in an application of a
dynamic model to Norwegian electricity utilities.
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customer and consumption density in 2012 under static and dynamic formulations. We

observe that introducing dynamic effects alter not only the location of the distribution,

by estimating higher values for technical efficiency, but also that the dispersion is lower,

which allows more certainty on the individual efficiency estimations.

Figure 4.6: Posterior efficiency distribution for a representative firm in 2012
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These differences in the posterior distributions also affect the estimation of the evo-

lution of technical efficiency over time. Figure 4.7 presents the posterior mean efficiency

estimations during the period for two firms, Electrificadora del Quindio (EDEQ) and

Empresas Públicas de Medelĺın (EPM). We observe that for EDEQ, the dynamic spec-

ification estimates gains in technical efficiency that are not identified under the static

model. This may suggest that the improvements made by this firm during the period

are more important in relative terms given the presence of high adjustment costs in the

sector. In the case of EPM, results imply that, given the adjustment costs faced by all

firms in the sector, this firm did not improve enough to identify efficiency gains.These

findings are important from the point of view of the regulator because they suggest that

firms could not explain poor performance on the basis of modelled adjustment costs.

The dynamic model analyzed assumes that all distribution firms face the same ad-

justment costs in terms of being able to adjust the same proportion of inefficiency from

one period to the next. However, firms with different characteristics may present dif-

ferent adjustment costs, so Model DPH allows for firm specific persistence parameters.

Figure 4.16 in the appendix exhibits the 95% probability intervals for the persistence
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4.1 A Dynamic Model with Unobserved Heterogeneity

Figure 4.7: Evolution of posterior mean efficiencies for EDEQ and EPM
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estimations of every firm. Important differences in the individual posterior estimations

of persistence are found, ranging from 0.31 to 0.99. This suggests large heterogeneity in

the adjustment costs of electricity distributors that could be related to certain charac-

teristics of these firms and the incentive regulation that they have faced, as is discussed

further below. These findings illustrate the importance of accounting for firm specific

persistence parameters, which have implications for the efficiency estimations and their

evolution over time as is observed in Figure 4.5.

Finally, the full model in (4.15) is estimated accounting not only for heterogeneous

persistence but also for unobserved technological heterogeneity. Although the evolution

of efficiency is similar to that estimated under Model DPH (see Figure 4.5), Model

DPUH identifies unobserved firm effects that distinguish them in terms of the estimated

efficiency. Figure 4.8 compares the posterior efficiency distributions for a low and a

high efficient firm under models DPH and DPUH.14 We observe that their posterior

distributions move and shrink, implying a reduction in the uncertainty of the individual

estimations. It is also important to notice that estimations of firm specific persistence

parameters do not present important changes compared to those obtained in Model

DPH.

14The selected firms are Central Hidroeléctrica de Caldas (CHC) and Empresa Distribuidora del
Paćıfico (DISPAC).
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Figure 4.8: Posterior efficiency distributions for CHC and DISPAC
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Focusing on our preferred model (DPUH), we can identify some links between dif-

ferences in adjustment costs and firm characteristics. We plot in Figure 4.9 the average

posterior distributions of the persistence parameter by groups of firms. In general, we

observe that firms with a higher proportion of rural and small customers present lower

adjustment costs than those which are mainly urban and serve larger customers. In

contrast, by type of ownership and number of customers, no major differences can be

observed between firms in terms of inefficiency persistence. This would imply that ru-

ral firms and those with small customers have been able to adapt more easily towards

optimal performance.

Differences between groups of Colombian utilities are also observed in terms of effi-

ciency. Figure 4.10 exhibits the average posterior technical efficiency during the period

by groups of firms. We observe that mainly urban distributors and firms serving high

consumption customers have been more efficient during the period than their coun-

terparts. Although differences are smaller, this is also the case of private and large

distributors.
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4.1 A Dynamic Model with Unobserved Heterogeneity

Figure 4.9: Average posterior distribution of ρi by groups of firms
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Figure 4.10: Average posterior distribution of efficiency by groups of firms
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However, what it is more interesting in our dynamic analysis is the change that these

firms have exhibited from 1998 to 2012 in terms of efficiency and productivity. We

compute the MPI and its decomposition as described in (4.10) till (4.14) and present the

results by group of firms in Table 4.3. We observe that all types of firms except those

urban and serving high consumption customers have increased their productivity during

the period. This improvement has been driven in all the cases by increases in technical

efficiency, which has compensated the technological regress suggested by the results for
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technical change for all firms. Regarding scale efficiency change, only private, rural and

firms with low consumption customers exhibit some improvement in terms of operating

at the efficient scale. Finally, the input-mix effect exhibit values very close to 1 for all

groups which suggest that changes in the input mix during the period have kept scale

efficiency almost unaltered.

Table 4.3: Decomposition of the Malmquist Productivity Index by groups of firms

Firms TEC TC SEC ME MPI

Private 1.0930 0.9399 1.0167 0.9956 1.0445
Public 1.1694 0.9417 0.9736 1.0023 1.0722
Small 1.2714 0.9419 0.9753 1.0024 1.1680
Large 1.1932 0.9386 0.9572 0.9996 1.0720
Rural 1.4723 0.9384 1.0343 1.0007 1.4290
Urban 1.0396 0.9407 0.9694 1.0058 0.9480
Low cons 1.4701 0.9440 1.0102 0.9987 1.4019
High cons 0.9986 0.9387 0.9666 1.0073 0.9061
Total 1.2161 0.9388 1.0332 0.9972 1.1795

In general, rural firms and those serving low consumption customers exhibit very

important increases in productivity during the post-reform period explained by improve-

ments in their scale efficiency but mainly due to large increases in technical efficiency.

These firms are also those exhibiting lower inefficiency persistence and therefore those

with higher scope for improvement.

This relationship between inefficiency persistence and changes in technical efficiency

is presented in Figure 4.11, where the average posterior inefficiency persistence is plotted

against their average posterior TE in 1998 and 2012 for every group of firms. We observe

that firms with high inefficiency persistence has barely presented changes in TE. This is in

particular noticeable for urban distributors and firms with high consumption customers.

On the other hand, rural companies and firms with more small customers seem to catch

up with their counterparts in terms of efficiency during the period.15 This suggests

that incentives introduced by the regulator during the period, mainly in terms of service

quality, have helped distributors with low consumption customers and in rural areas

to improve their efficiency but that they have not been effective for their counterparts,

which in absence of new incentives may become stuck in terms of technical efficiency.

15In Table 4.7 of the Appendix we present these results for each firm along with other firm charac-
teristics.
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Figure 4.11: Inefficiency persistence and technical efficiency by groups of firms (1998 and
2012)
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4.1.7 Empirical implications

The electricity reform in Colombia introduced the separation of activities in the elec-

tricity sector and set the conditions for privatization and competition. In general, the

reform has had positive effects on the ability of the sector to overcome extreme weather

conditions and meet demand requirements. However, for distribution companies, com-

petition and privatization have been slow processes and the users did not benefit from

improvements in service quality for the first ten years after the reform. In fact, previous

studies measuring consequences of the reform on efficiency have not found evidence of

improvements, although large differences in efficiency have been found among firms.

This may indicate the presence of high adjustment costs in the sector in Colombia and

important heterogeneity factors among distributors. We include these conditions in a

stochastic frontier model that accounts for dynamic effects and unobserved heterogeneity.

Our findings suggest high inefficiency persistence in the sector that could be related to

adjustment costs and inadequate incentive regulation. However, important differences

are found among firms. In particular, firms operating mainly in rural markets and

serving small customers present lower adjustment costs than firms with the opposite

characteristics. This condition has allowed these firms to catch up urban firms and firms

serving large users, which should draw the attention of the regulator because they seem

to be stuck in terms of technical efficiency. In fact, customer density and consumption

97



4. INEFFICIENCY HETEROGENEITY IN DYNAMIC MODELS

density are found to be important inefficiency drivers in the sector and unobserved

heterogeneity sources to be relevant in distinguishing heterogeneity from inefficiency

and identifying differences among firms.

Our findings may be helpful for the Colombian regulator and the Ministry of Mines

and Energy, which have been recently working on the composition of groups of distribu-

tion firms that would share the same prices.16 These groups have been formed following

geographical criteria. However, our results suggest that the design of these groups should

mainly consider the inefficiency persistence level of each firm and their characteristics in

terms of customer density and consumption density.

Overall, efficiency in the Colombian distribution sector has been found to exhibit

improvements. However, efficiency gains can only be clearly identified in the last five

years. This period coincides with the main reductions in the length of interruptions and

energy losses, and the highest rates of increase in the number of customers. Although

very preliminary, these results may favour the recent incentive regulation policies for

improving quality of service and reducing energy losses. Nevertheless, the last five years

have also been characterized by important increases in the electricity tariff for regulated

users. Not only the tariff per kWh has presented important increases during the period,

but also the proportion derived from distribution costs has increased relative to the other

tariff components. This implies that Colombian users are now receiving a better service

but that they are paying the costs of these improvements via higher tariffs.17 These

results suggest that incorporating willingness to pay into the efficiency analysis of the

Colombian distribution sector would be of interest for future research.

4.2 Separating Heterogeneity from Inefficiency Dynamics

The inclusion of variables that capture firm characteristics in the inefficiency component

is important to distinguish properly heterogeneity from inefficiency but they do not nec-

essarily capture inefficiency adjustment processes or have persistent effects. This can be

particularly important in a dynamic framework, since including covariates as inefficiency

drivers in an autoregressive specification implies that they have persistent effects over

16CREG resolution 058 of 2008 and Ministry of Mines and Energy resolutions: 182306 of 2009, 181347
of 2010, 180686 of 2011 and 180574 of 2012.

17In fact, for the case of UK, Yu et al. (2009) have found the social cost of outages to be considerably
higher than the utilities’ incentives.
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time. In this context, it would mean that the effects that these firm characteristics and

environmental conditions produce on inefficiency can not be easily adjusted by firms.

This would be the case of a public bank that is less efficient because of attending ru-

ral customers in remote places. This characteristic may not be easily altered and may

consequently induce high adjustment costs. However, changing other conditions such

as some managerial practices or the risk exposure of short- run investment portfolios

may be easier to adjust. In these cases, heterogeneity sources should be allowed to be

inefficiency drivers but modeled out of the dynamic specification.

We propose a specification for the inefficiency in the context of dynamic stochastic

frontier models that is flexible in terms of the treatment of heterogeneity. The first char-

acteristic is the separation of two components within a log-linear specification for the

inefficiency. One component, which is unobserved, will follow an autoregressive process

that captures the portion of inefficiency that is transmitted from one period to the next.

The second component is a vector of observed covariates driving the inefficiency level.

In this sense this could be seen as an extension of the model by Galán et al. (2014b)

where an unobserved random parameter is modeled in the inefficiency distribution along

with observed covariates, but where the unobserved part follows a first order autore-

gressive process. This component can also include observed variables that will capture

persistent effects of heterogeneity in the inefficiency as in the specification followed by

Tsionas (2006) for the whole inefficiency. The second characteristic is that we account

for heterogeneity in the adjustment costs by allowing the persistence parameter to be

firm-specific as in the model in the previous section (see Galán and Pollitt, 2014a).

The model is given by:

yit = xitβ + vit − uit, vit ∼ N(0, σ2
v) (4.16)

log uit = θit + zitγ + ξit, ξit ∼ N(0, σ2
ξ ) (4.17)

θit =ω + hitψ + ρi θi,t−1 + ηit, ηit ∼ N(0, σ2
η), t = 2...T (4.18)

θi1 =
ω + hi1ψ

1− ρi
+ ηi1, ηi1 ∼ N

(
0,

σ2
η

1− ρ2
i

)
, t = 1. (4.19)

The stochastic frontier is represented by (4.16) where yit represents the output for firm

i at time t, xit is a row vector that contains the input quantities, β is a vector of pa-
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rameters, vit is an idiosyncratic error assumed to follow a normal distribution, and uit

is the inefficiency component. Equation (4.17) is the log-linear specification for the inef-

ficiency where θit represents the dynamic component, zit is a row vector of firm specific

heterogeneity variables, γ is a vector of parameters and ξit is a white noise process with

constant variance σ2
ξ . The unobserved dynamic component θit follows an autoregressive

process represented by (4.18) where ω is a constant, hit is a row vector of observed

covariates, ψ is a vector of parameters, ρi is the firm specific persistence parameter mea-

suring the proportion of the dynamic part of the inefficiency that is transmitted from one

period to the next for every firm, and ηit represents unobserved random shocks in the

dynamic component and follows a normal distribution with variance σ2
η.

18 The dynamic

process is assumed to be stationary and (4.19) initializes it.

Stationarity ensures that the dynamics of the log-inefficiency do not diverge to nega-

tive or positive infinity. If this condition is not imposed, efficiency scores could be equal

to one or zero in the long-run. The first case would contradict the adjustment costs

theory that motivates the dynamic formulation and the second case would imply that

totally inefficient firms do not exit the market. Therefore, the persistence parameters are

required to satisfy |ρi| < 1. A value close to 1 for this parameter means high persistence

of the inefficiency dynamic component and slow adjustment of firms towards optimal

conditions.

Modeling firm specific persistence parameters imply that even when no covariates

are included, firms may present differences in their adjustment of common factors and

therefore different long-run inefficiencies. However, as we present in Section 4.2.1 we

model these parameters using a hierarchical structure common in Bayesian statistics

that links them to a common parameter for the whole sector. Moreover, firms in the

sector share also a common long-run dynamic component ω and common elasticities for

the covariates given by the vectors ψ and γ.

The proposed dynamic specification given by equations (4.17) till (4.19) encompasses

other models in the literature and permits us to compare some assumptions by including

restrictions. For instance, homogeneous costs of adjustments for all banks can be studied

by imposing ρi = ρ. If ρ = 0 the model is reduced to a static formulation with no

18It can be noticed that if unobserved random shocks are only allowed to affect the inefficiency via
the scale parameter of its distribution, then ηit = 0 and the inefficiency can be modeled following other
nonnegative distributions with firm specific and time-varying mean. However, other distributions can
change the interpretation of the inefficiency parameters.
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adjustment costs but where an unobserved component θit captures latent inefficiency

heterogeneity as in Galán et al. (2014b). Additionally, if ηit is also equal to 0, the model

takes the form of the Battese and Coelli (1995) static formulation. Finally, if ρi = ρ,

ξit = 0 and γ = 0 the model reduces to the dynamic model in Tsionas (2006).

4.2.1 Bayesian inference

We assume proper but relatively disperse prior distributions throughout. In particular,

the distributions assumed for the parameters in the distance function are: β ∼ N(0,Σβ)

where Σ−1
β is a diagonal matrix with precision priors set to 0.001 for all coefficients. The

variance of the idiosyncratic error term is inverse Gamma distributed, that is equivalent

to σ−2
v ∼ G(a, b) where the priors for shape and rate parameters are set to 0.01.

The specification in (4.17) implies that the inefficiency follows a log-normal dis-

tribution. Then uit|θit, zit,γ, σ2
ξ ∼ LN(θit + zitγ, σ

2
ξ ), where the location component

is composed of the unobserved dynamic parameter and the observed heterogeneity

component. The distribution for the unobserved parameter modeling the dynamics is

θit|θi,t−1, ω,hit,ψ, ρi, σ
2
η ∼ N(ω + hitψ + ρi θi,t−1, σ

2
η) for t = 2...T . Given stationar-

ity we have θi1|ω,hi1,ψ, ρi, σ2
η ∼ N

(
ω+hi1ψ

1−ρi ,
σ2
η

1−ρ2i

)
. The distribution for the common

constant ω is normal with priors set to −1.5 and 1 for the mean and precision.19 The

distribution of the parameter vector of the observed covariates in the dynamic compo-

nent is: ψ ∼ N(0,Σψ) where Σ−1
ψ is a diagonal matrix with precision priors set to

0.1. Finally, the distribution for the firm characteristic parameters in the inefficiency

are: γ ∼ N(0,Σγ) where Σ−1
γ is a diagonal with priors set to 0.1 for every precision

coefficient.

Regarding the persistence parameters, we assume |ρi| < 1 to assure stationarity.

Since the persistence parameters are allowed to vary across firms, we define a hierarchical

structure where ρi = 2ki − 1 and ki ∼ β(k, 1 − k) with k ∼ β(r, s) and priors for these

parameters set to 0.5. In the case that the homogeneous persistence restriction ρi = ρ

is imposed, we assume ρ = 2k − 1 with k defined as previously.

The variances are assumed to follow inverse gamma distributions where σ−2
η , σ−2

ξ ∼
G(n, d) with priors set to n = 10, d = 0.01 and n = 0.5, d = 0.005, respectively.20

19These values center the efficiency prior distributions at 0.8 similar to other Bayesian empirical
applications in banking.

20The first is the same prior used by Tsionas (2006) for the random shocks variance in the inefficiency
equation and the second is that suggested by West and Harrison (1997) for the state equation of Bayesian
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Sensitivity analysis was performed by allowing changes in the priors of the parameters

in the inefficiency component. In particular, different priors for ω imply different priors

on the efficiency but in our experiments, no important differences were obtained in the

posterior distributions. For the persistence parameter ρ we studied the sensitivity to the

use of a truncated normal distribution and posterior results were also found to be robust

to the use of this alternative. Small changes in the values of n and d in the priors of σ−2
η

and σ−2
ξ were also examined with no evidence of posterior sensitivity. Finally, we also

checked the posterior distribution of the idiosyncratic errors v to check the normality

and non autocorrelation assumptions. We found no evidence of non-normality or of

autocorrelation in this case. Note however that in cases where the idiosyncratic errors

do not appear to be normal, one possibility is to model using a heavy tailed distribution

such as student-t (see Griffin and Steel, 2007, for the implementation of this assumption

under a Bayesian framework). In the case of autocorrelation, it is also possible to think

of an autoregressive structure for this component.

The implementation of the models were carried out using WinBUGS with an MCMC

sample of 50.000 iterations discarding the first 20.000 and a thinning of 6 to remove

autocorrelations. As model comparison criteria we use DIC3 and LPS as earlier.

4.2.2 Application to the Colombian banking sector

We apply the new specification to a sample of Colombian banks during the last decade.

Inefficiency persistence in the banking sector has been precisely identified by Tsionas

(2006) in his application to US banks. His findings reveal very high inefficiency persis-

tence, suggesting the presence of high adjustment costs in the banking sector. Previ-

ous studies have also found evidence of inefficiency persistence in financial institutions.

Tortosa-Ausina (2002), in an analysis of transition probabilities of efficiency, found that

most of Spanish banks remain in the same state of relative inefficiency in consecutive

periods.

In particular, the Colombian banking sector is of interest since it has been charac-

terized by the arrival of foreign institutions and several mergers and acquisition (M&A)

processes that have increased the differences in terms of size among banks during this

period.

dynamic linear models.
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Certainly, the effects of foreign ownership, size and M&A on banks efficiency have

been studied previously under static formulations. Regarding foreign ownership and

size, divergent results have been obtained previously. On the one hand, using Bayesian

stochastic frontiers, Tecles and Tabak (2010) and Assaf et al. (2013) found foreign and

large banks to be more cost and profit efficient in Brazil and Turkey, respectively. Using

nonparametric methods, Ray and Das (2010) and Sathye (2003) also found positive

effects of foreign ownership on efficiency in Indian banks. On the other hand, negative

effects of foreign ownership have been found by Lensik et al. (2008) in a study including

a sample of 105 countries; while, a negative impact of size was found by Hartman and

Storbeck (1996) for banks in Sweden, and no size effects were concluded for the case of

Brazil by Staub et al. (2010). In the dynamic context, Tsionas (2006) identified size to

have persistent effects on cost efficiency of US banks. Concerning M&A, previous studies

have found none or very little improvement on input-oriented technical efficiency or cost

efficiency (see Amel et al., 2004, for a review). However, merged banks have been found

to present different time patterns than non-merged institutions and their efficiency to

be highly dependent on time (see Cuesta and Orea, 2002). In this context, introducing

time dependency into a dynamic structure and allowing merged banks to follow their

own dynamics may lead to different conclusions.

In particular, we have two main aims with this application: firstly, to evaluate the

impact of adding more flexibility to the persistence parameter and separating hetero-

geneity from the dynamics on efficiency estimations; secondly, to identify the effects of

size, foreign ownership and M&A on input-oriented technical efficiency of Colombian

banks.

4.2.2.1 The Colombian banking sector

The Colombian banking sector has experienced major changes in the last thirty years. It

passed from a high regulated and low competitive system in the eighties to a more flexible

and foreign capital open system in the nineties. From 1998 to 2002 the country suffered

a deep financial crisis that lead to a rearrangement of the banking sector. This implied

a reduction of the number of banks and a concentration of commercial and mortgage

activities under the same institution. This reorganization process occurred during the

period 2002 till 2009, which was characterized by an environment of economic recovery,

high foreign capital flows and an increase of the services provided by banks. During
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these years, several M&A processes took place leading to a reduction of the number

of financial institutions, which passed from more than forty mortgage and commercial

banks in the mid 90’s to less than twenty in 2009. Foreign capital banks had also played

an important role in Colombia during the period of study and they accounted for almost

40% of the banking entities in 2009.

As mentioned in Chapter 3, previous efficiency studies of Colombian banking sys-

tem have mainly evaluated costs and profit efficiency and have focused on the crisis

and immediate post-crisis periods (see Janna, 2003, for a review on applications to the

Colombian banking sector). All of these studies have shown similar results in terms of

an increase in the efficiency of the sector during the mid-nineties, decreases in efficiency

during the crisis period and a recovery on these indicators in the following years. The ef-

fect of bank mergers in Colombia has been studied by Estrada (2005) for the 1994−2004

period who found gains in cost efficiency specially for relatively inefficient pre-merger

banks. Clavijo et al. (2006) also studied M&A from 1990 to 2005 finding decreases in

efficiency in the subsequent periods to the processes. However, most of these occurred

during the crisis period.

4.2.2.2 Data and model specification

As the sample presented in Chapter 3, the data set used in this section is also from the

local central bank and the supervisory agency and contains most of the banks in the

application presented earlier. However, some of them are different as well as the period of

study. For this application the data set contains information from thirty one commercial

banks, which represents 87% of the total assets in the Colombian banking sector. This

is an unbalanced panel data set of quarterly data from 2000 to 2009. During the period,

nineteen M&A processes were carried out involving banks in the sample and here, we

shall consider post-merged institutions as different banks. Regarding ownership, nine

banks in the sample are foreign-owned and only one is public-owned.

As in the application in Chapter 3, we use the intermediation approach in Sealey

and Lindley (1977). However, here we represent the technology in (4.16) with an input

distance function. This allows us to consider input quantities while accounting for mul-

tiple products and avoiding using firm specific prices. The derivation of the stochastic

input distance function is the same presented in Section 4.1.4.
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We select three inputs and two outputs. Inputs are quantities of deposits (x1), labor

(x2) and physical capital (x3), including premises and other fixed assets. As outputs we

consider the total loans (y1), including consumer, industrial, commercial and real state

loans; and the total investments and other securities (y2). All monetary variables are

expressed in thousand of millions of pesos and are in real terms of 2009 by deflating

by the consumer price index. Regarding the inefficiency heterogeneity variables, they

are included either inside the dynamic inefficiency component or out of it but the same

variable is not simultaneously included in both parts. These variables are the log of total

banks assets (z1/h1), its square (z2/h2) and foreign ownership (z3/h3). Public ownership

is not considered since the sample contains only one bank with public capital. Table 4.4

reports summary statistics of these variables.

Table 4.4: Summary statistics

Variable Mean Std. Deviation Minimum Maximum

Deposits 3 886 117.8 4 661 207.2 146 005.1 29 600 000

Labor 2 984.5 2 676.6 79 20 780

Physical Capital 93 036.7 101 070.5 5 359.075 710 837.1

Loans 3 305 469.4 4 195 981.4 132 508.6 27 900 000

Investments 1 357 952.7 1 472 720.2 32 466.74 8 277 268

Assets 5 643 177.9 6 576 929.2 319 757.3 41 700 000

Input x3 is used as a numeraire to accomplish linear homogeneity in inputs and

a translog input distance function derived from (4.8) is used. The estimated model

including the dynamic specification in (4.17) to (4.19) for the inefficiency distribution is

the following:

− lnx3it = β0 +
∑2

m=1 βm ln ymit +
∑2

r=1 δr ln
(
xrit
x3it

)
+ 1

2

∑2
m=1

∑2
n=1 βmn ln ymit ln ynit

+1
2

∑2
r=1

∑2
s=1 δrs ln

(
xrit
x3it

)
ln
(
xsit
x3it

)
+
∑2

m=1

∑2
r=1 ηmr ln ymit ln

(
xrit
x3it

)
+κ1 t+ 1

2 κ2 t
2 +

∑2
m=1 φmt ln ymit +

∑2
r=1 ϕrt ln

(
xrit
x3it

)
− uit + vit

log uit = θit +
∑3

p=1 γpzpit + ξit; ξit ∼ N(0, σ2
ξ )

θit = ω + ρiθi,t−1 +
∑3

p=1 ψphpit + ηit; ηit ∼ N(0, σ2
η); t = 2...T

θi1 =
ω+

∑3
p=1 ψphpi1
1−ρi + ηi1; ηi1 ∼ N

(
0,

σ2
η

1−ρ2i

)
; t = 1.

(4.20)

In addition to linear homogeneity in inputs, we impose cross-effects symmetry by

requiring βmn = βnm and δrs = δsr.
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4.2.2.3 Estimation results

Using the specification in (4.20) we estimate four different models by adding some restric-

tions. Model I follows the same inefficiency specification in Tsionas (2006) by including

all three heterogeneity variables in the inefficiency dynamics. Therefore, ρi = ρ and γ1,

γ2, γ3 and ξit are all equal to 0. Model II consider all heterogeneity variables out of the

dynamic component but still restricts persistence to be common for all banks. Thus,

ρi = ρ and ψ1, ψ2 and ψ3 are equal to zero. Model III combines heterogeneity variables

in and out the dynamic component. In particular, following results in models I and II,

we set γ3, ψ1, and ψ2 equal to zero and we keep ρi = ρ. Finally, Model IV uses the

same combination of heterogeneity variables in Model III but allows for bank specific

persistence parameters (ρi 6= ρ).

Table 4.5 presents the estimation results for all models. If we compare Model I to

Model II we observe two main relevant results. First, Model II exhibits lower values for

DIC3 and LPS suggesting better fit and prediction performance when heterogeneity

is modeled out of the inefficiency dynamics. Second, variables regarding size become

relevant as technical inefficiency drivers and seem to present negative but decreasing

effects. This would suggest that size affects the inefficiency level at every period but

that its effects can be rapidly adjusted. On the other hand, foreign ownership presents

relevant negative effects in technical inefficiency under both models. Consequences of

these differences in the technical efficiency estimations are explored by selecting banks

with different characteristics in terms of size and ownership.

Figure 4.12 compares the posterior technical efficiency distributions for two banks

with different sizes obtained from both models. One bank from the first quartile (Bank

A) and one bank from the fourth quartile (Bank B) of the sample are selected in terms

of assets level. We observe that while in Model I the posterior distributions of the

technical efficiencies of both banks are almost undistinguishable, in Model II Bank B

seems to have a high probability of being more efficient than Bank A. This shows that

size becomes important for differentiating banks in terms of their technical efficiency only

when it is modeled out of the dynamic component. This warns us of the possibility of

biases in efficiency estimations and wrong conclusions about the effects of heterogeneity

variables in dynamic inefficiency models when their effect is only considered as part of

the dynamics.
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Table 4.5: Posterior mean and standard deviation of parameter distributions

Parameter Model I Model II Model III Model IV
ψ1, ψ2, ψ3 = 0 γ1, γ2, γ3 = 0 ψ1, ψ2, γ3 = 0 ψ1, ψ2, γ3 = 0

ρi = ρ ρi = ρ ρi = ρ ρi 6= ρ
Mean SD Mean SD Mean SD Mean SD

Distance function
β0 -5.3801 0.3807 -5.3883 0.3813 -5.4324 0.2145 -5.2458 0.3438
β1(ln yi) -0.0216 0.0010 -0.0443 0.0021 -0.0344 0.0019 -0.0167 0.0013
β2(ln yc) -0.0065 0.0027 -0.0029 0.0012 -0.0061 0.0005 -0.0080 0.0007
β3(ln dep) 0.1290 0.0169 0.2284 0.0299 0.2240 0.0560 0.1773 0.0260
β4(ln l) 0.1029 0.0243 0.1172 0.0277 0.1198 0.0341 0.0947 0.0272
β5(t) 0.0206 0.0097 0.0283 0.0133 0.0153 0.0070 0.0193 0.0031
β6(t2) -0.0004 0.0002 -0.0003 0.0002 -0.0002 0.0001 -0.0003 0.0001
φ1(1/2 ln y2i ) -0.0808 0.0232 -0.0844 0.0243 -0.0857 0.0200 -0.0873 0.0234
φ2(ln yi ln yc) 0.0734 0.0225 0.0713 0.0218 0.0692 0.0179 0.0644 0.0153
φ3(1/2 ln y2c ) -0.1429 0.0223 -0.1458 0.0227 -0.1346 0.0219 -0.1343 0.0153
φ4(1/2 ln dep2) -0.2878 0.0988 -0.3098 0.1064 -0.3230 0.0491 -0.4601 0.0433
φ5(ln dep ln l) 0.1136 0.0491 0.1334 0.0577 0.1293 0.0379 0.1572 0.0569
φ6(1/2 ln l2) -0.0699 0.0437 -0.1004 0.0628 -0.0753 0.0299 -0.0380 0.0158
δ1(ln yi ln dep) -0.0332 0.0367 -0.0296 0.0327 -0.0122 0.0164 -0.0163 0.0175
δ2(ln yi ln l) -0.0088 0.0123 -0.0187 0.0260 -0.0251 0.0157 -0.0360 0.0127
δ3(ln yc ln dep) 0.1530 0.0306 0.1707 0.0342 0.1420 0.0165 0.1486 0.0233
δ4(ln yc ln l) -0.0171 0.0244 -0.0170 0.0244 -0.0118 0.0123 -0.0460 0.0130
κ1(ln yit) 0.0007 0.0012 0.0011 0.0018 0.0004 0.0011 0.0028 0.0047
κ2(ln yct) -0.0050 0.0022 -0.0058 0.0025 -0.0043 0.0010 -0.0054 0.0018
κ3(ln dept) 0.0096 0.0054 0.0092 0.0051 0.0097 0.0028 0.0117 0.0074
κ4(ln lt) -0.0068 0.0037 -0.0062 0.0034 -0.0068 0.0027 -0.0016 0.0114

Inefficiency
ω 0.0022 0.0003 0.0024 0.0002 0.0015 0.0002 0.0012 0.0002
ψ1(ln assets) -0.0001 0.0003
ψ2(ln assets2) 0.0000 0.0001
ψ3(foreign) -0.0033 0.0008 -0.0041 0.0003 -0.0032 0.0003
ρ 0.9954 0.0172 0.9749 0.0168 0.9670 0.0183 0.8867 0.0452

γ1(ln assets) -0.0245 0.0011 -0.0189 0.0010 -0.0458 0.0017
γ2(ln assets2) 0.0002 0.0001 0.0009 0.0002 0.0023 0.0007
γ3(foreign) -0.2061 0.0162

σ2
v 0.0012 0.0008 0.0011 0.0007 0.0013 0.0009 0.0017 0.0009
σ2
η 0.0006 0.0002 0.0003 0.0001 0.0007 0.0002 0.0010 0.0002
σ2
ξ 0.0005 0.0002 0.0002 0.0001 0.0002 0.0001
DIC3 -2789.60 -2949.20 -2961.52 -3094.10
LPS -213.72 -253.48 -261.79 -295.63

Note: In Model IV the values reported for ρ correspond to the posterior means of the individual ρi’s

Foreign ownership is found to be a relevant inefficiency driver when it is included

both in and out of the dynamic component. Thus, we explore the consequences for the

efficiency estimations of a foreign bank under both models and in two different periods.

Figure 4.13 shows that posterior efficiency distributions are quite similar in both models

in the first period but that they become different at the end of the sample period. Since

the value of the variable for this bank is the same during all the sample, this may suggest
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Figure 4.12: Posterior technical efficiency distribution for a small and large bank
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that the effect of including a covariate in the inefficiency dynamics could be cumulative

after many periods despite of the lower estimate for the coefficient. A possible reason is

that given that persistence is very high, most of the effect of the covariate is transmitted

to the next period, where once more it affects the inefficiency.

Figure 4.13: Posterior technical efficiency distribution of a foreign bank
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Since the location of foreign ownership may lead to different efficiency estimates,

we estimate a third model. Model III includes foreign ownership in the inefficiency

dynamics while keeps the assets variables out of this component. Results in terms of

fitting performance and prediction improve compared to those of the previous models
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and the coefficient for the variable remains relevant as inefficiency driver. This suggests

that foreign-owned banks present lower technical inefficiency and that the effects derived

from this type of ownership are persistent over time.

In general, inefficiency persistence is found to be very high in all models. This result

is very similar to that obtained by Tsionas (2006) for US banks. However, we explore

differences among banks by including a firm-specific persistence parameter in Model IV.

We observe that this model exhibits lower DIC3 and LPS values compared to Model

III, which suggests that recognizing heterogeneous costs of adjustment may improve the

fit and predictive performance of the model and have effects on the evolution of the

efficiency if the estimated persistence parameters are very different among banks. In

order to identify these differences, in Figure 4.14 we plot the posterior mean and 95%

probability intervals for ρi. We classify banks in three main categories: foreign and

domestic banks, large and small banks, and merged and non-merged institutions.21 We

observe differences in the average posterior mean between all complementary groups. In

particular, foreign, large and merged banks are more likely to present lower adjustment

costs than their counterparts. However, the persistence parameters between merged

and non-merged institutions are those with the highest probability of being different

as suggested from the very small overlapping between both probability intervals. The

average posterior mean for ρi among merged banks (0.71) is the lowest compared to

those of the other groups and it is not only far from that estimated for non-merged

banks (0.94) but also from that estimated for ρ in Model III (0.97) when the parameter

is assumed to be common to all banks.

These differences may have important effects in the dynamic behavior of inefficiency

over time between both groups of banks. To illustrate these effects we plot in Figure

4.15 the evolution of the mean posterior technical efficiency estimated from models III

and IV for merged and non-merged banks. It is observed that efficiency of merged banks

decreases immediately in both models after these processes are carried out. However,

Model IV identifies a rapid recovery of the efficiency of merged banks that starts around

three years after the merging process and reaches the non-merged efficiency levels after

five years. This pattern is totally different from that identified in Model III, where

technical efficiency of merged institutions seems to remain lower than that of non-merged

banks.

21We define small and large banks as those below and above the median of assets level, respectively.
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Figure 4.14: Posterior median and 95% probability intervals for firm specific persistence
parameters by type of bank
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These results contrast with those of previous studies that measure the effect of banks

M&A whether on cost or input-oriented technical efficiency (see Amel et al., 2004, for

a review on studies in developed countries). However, the pattern on the evolution of

input-oriented technical efficiency that we see for Colombian merged banks in Model IV

is similar to that identified by Cuesta and Orea (2002) in a study of output-oriented

technical efficiency of Spanish merged banks. In that study, technical efficiency was

found to exhibit a concave pattern with negative but decreasing effects during the first

six years after mergers, and positive increasing effects after that point. Although the

model estimated by Cuesta and Orea (2002) is not dynamic in nature, it allows merged

banks to follow a different temporal pattern to that of non-merged institutions. This

may suggest that mergers lead to different evolution processes of the inefficiency and

that models recognizing these differences are more appropriate.

With respect to the inefficiency drivers in the Colombian banking sector, foreign

ownership and size are found to have positive effects on technical efficiency. However, the

impact is decreasing for size. Moreover, we identify that the effects of size on inefficiency

can be rapidly adjusted by Colombian banks, while the advantages presented by foreign

banks are difficult and costly to reach or adjust.

Finally, we compare TE, TC and RTS by groups of banks following the results

from Model IV. Table 4.6 summarizes these findings. We observe that foreign banks

in Colombia present higher technical efficiency than domestic institutions, as well as
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Figure 4.15: Evolution of mean posterior efficiencies for merged and non-merged banks
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higher technical change during the last decade. These findings coincide with those

reported in other recent studies for developing countries using non-dynamic models (see

Claessens and Horen, 2012). Beyond managerial practices, the reasons could be related

to more diversification, parents expertise, or access to cheaper and multiple sources

of financial resources (see Chen and Liao, 2011). In contrast to domestic institutions,

foreign banks also present increasing returns to scale, suggesting that these institutions

have more room to raise their production scale and possibly to take M&A decisions.

Foreign banks in Colombia are characterized for being specialized in corporate clients,

offer complex products and have few branches with low operations. In a recent study,

Das and Kumbhakar (2011) also found similar scale economies for foreign banks in India.

Table 4.6: TE, TC and RTS by type of bank

Bank type TE TC RTS

Foreign 0.6011 0.0307 1.0986
Domestic 0.5476 0.0251 0.9180
Large 0.5853 0.0285 0.9202
Small 0.5304 0.0278 1.0316
Merged 0.5076 0.0326 0.9021
Non-Merged 0.5512 0.0267 1.0633

In terms of size, we find that large banks present higher TE and TC than small

institutions during the period. However, large institutions are found to operate at de-

creasing returns to scale in contrast to small banks. Higher efficiency of large banks

and potential scale gains for small banks were also recently found by Tabak and Tecles
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(2010) and Tecles and Tabak (2010) in India and Brazil, respectively. In particular,

in Colombia most large domestic banks are those involved in merger processes. Since

merged institutions also present decreasing returns to scale, this may suggest that these

processes led banks to be oversized. Also, on average, merged banks exhibit lower tech-

nical efficiency than non-merged institutions. However, they are found to present lower

adjustment costs that allow them to adjust quicker towards optimal conditions. Thus,

they would be able to present higher efficiency after some periods. Finally, technical

change is also found to be higher for merged than for non-merged banks and it can be

a consequence of the reorganization processes implied by mergers.

4.2.2.4 Empirical implications

Our findings suggest that modeling covariates in and out of the inefficiency dynamics

have implications on the identification of inefficiency determinants and on the efficiency

estimations. In particular, we find that foreign ownership has negative and persistent

effects in technical inefficiency of Colombian banks. This may suggest that some char-

acteristics of foreign banks such as country diversification and access to cheaper funding

sources can be difficult and costly to obtain or change. On the other hand, the effects

of bank size on technical inefficiency are found to be rapidly adjusted.

Colombian banks are also found to present very high inefficiency persistence, coincid-

ing with previous findings in the US and Spanish banking sectors (see Tortosa-Ausina,

2002; Tsionas, 2006, respectively). However, important differences are observed among

banks with different characteristics when firm specific persistence parameters are mod-

eled. Foreign, large and merged institutions are found to present lower adjustment costs

than their counterparts. This suggests that these institutions may benefit from diversifi-

cation or economies of scale when carrying out adjustments in their short-run operations

as these are costly for domestic, small and non merged banks. This finding is particu-

larly important for merged banks since this characteristic allows them to recover rapidly

from efficiency losses observed after merger processes.

These results are of interest not only for financial institutions, but also for regulators

given the importance that M&A have had in the sector in recent years and the role

of foreign banks in developing countries. In particular, although, our findings reveal

important decreases in efficiency of merged institutions during the initial years after

these processes are carried out, the lower inefficiency persistence of banks involved in
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M&A and the non-persistent effects of size on inefficiency may validate these processes

in the mid-term. However, the Colombian regulator should be aware of the results on

economies of scale, which leave little margin for non-merged institutions to increase their

size and reveal decreasing returns for merged and large banks. Exploring market power

considerations would be also of interest for future policy decisions in the sector. In

general, bank efficiency may be a useful indicator for financial stability considerations

given that banks with low efficiency have been found to be more prone to future defaults

(see Berger and DeYoung, 1997). In this regard, those banks with high inefficiency

persistence should be drawn to the attention of the regulator.

4.3 Conclusions

In the presence of adjustment costs, firms do not find it optimal to adapt their processes

towards efficiency. This behaviour can be captured through a dynamic specification for

the inefficiency term. One of the most relevant contributions in this context is that

by Tsionas (2006) where the inefficiency is allowed to have persistent effects over time

and to be driven by inefficiency covariates. In this work we have extended this idea in

order to recognize heterogeneity in the adjustment costs among firms and non-persistent

effects of observed heterogeneity.

Our findings suggest that accounting for unobserved sources of heterogeneity is also

very relevant under a dynamic framework. In particular, allowing the inefficiency persis-

tence parameter to be firm-specific recognizes differences in the adjustment costs among

firms, which drive the posterior efficiency estimations. In both applications, firm-specific

persistence parameters are found to be very different among firms with different charac-

teristics. This allow us to identify differences in the way firm characteristics affect the

evolution of individual efficiencies and important implications for regulators and firms

in the electricity and banking sectors.

Modeling covariates in and out of the inefficiency dynamics was also found to have

relevant effects on the identification of inefficiency determinants and on the efficiency

estimations. This points out the implications of including observed firm characteristics

in dynamic specifications.

Overall, the proposed specifications encompass other models in the literature and

adds more flexibility in terms of considering inefficiency heterogeneity in a dynamic
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context. This improves the fit and predictive performance of the models and allows

us to capture effects that have not been previously identified. Extensions of dynamic

inefficiency models such as using alternative distributions for the inefficiency are aspects

of interest for future research.
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4.4 Appendix

A. Complimentary results from the electricity distribution application

Figure 4.16: 95% probability intervals for firm specific persistence parameters under Model
DPH
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Persistence parameter

Note: See Table 4.7 for the list of firms and acronyms

Table 4.7: Average posterior mean estimations of TE and inefficiency persistence (IP)
under model DPUH, customer density (users/km) and consumption density (kWh/user) by
firm for the period 1998-2012

Firm TE IP Cust. Dens. Cons. Dens.

Central Hidroeléctrica de Caldas S.A. E.S.P. (CHC) 0.5520 0.9713 31.199 341
Centrales Eléctricas de Nariño S.A. E.S.P. (CEDENAR) 0.3045 0.9651 23.072 474
Centrales Eléctricas del Norte de Santander S.A. E.S.P. (CENSA) 0.6118 0.9872 13.996 94
CODENSA S.A. E.S.P. (CODENSA) 0.9894 0.9981 47207 830
Compañ́ıa de Electricidad de Tuluá S.A. E.S.P. (CETSA) 0.9892 0.9996 47.355 2116
Compañ́ıa Energética del Tolima S.A E.S.P (ENERTOLIMA) 0.4667 0.3120 13.205 77
Electrificadora de Santander S.A. E.S.P. (ESSA) 0.4624 0.4096 33639 152
Electrificadora del Caquetá S.A. E.S.P. (ELECTROCAQUETA) 0.4977 0.6700 20.120 209
Electrificadora del Caribe S.A. E.S.P. (ELECTRICARIBE) 0.4506 0.6960 40.553 336
Electrificadora del Huila S.A. E.S.P. (ELECTROHUILA) 0.4720 0.3862 16.663 94
Electrificadora del Meta S.A. E.S.P. (EMSA) 0.5033 0.8584 39.699 261
Empresa de Enerǵıa de Arauca E.S.P (ENELAR) 0.4260 0.7571 21.334 981
Empresa de Enerǵıa de Boyacá S.A. E.S.P. (EBSA) 0.9960 0.9999 21.356 237
Empresa de Enerǵıa de Casanare S.A. E.S.P. (ENERCA) 0.3677 0.9615 13.352 110
Empresa de Enerǵıa de Cundinamarca S.A. ESP (EEC) 0.4760 0.5221 42.579 153
Empresa de Enerǵıa de Pereira S.A. E.S.P. (EEP) 0.4913 0.6509 21.193 299
Empresa de Enerǵıa del Quind́ıo S.A.E.S.P. (EDEQ) 0.6487 0.9930 33.337 452
Empresa de Enerǵıa del Paćıfico S.A. E.S.P. (EPSA) 0.7303 0.9959 50.925 269
Empresa Distribuidora del Paćıfico S.A. E.S.P (DISPAC) 0.4233 0.8853 22.464 475
Empresas Municipales de Cali E.I.C.E E.S.P (EMCALI) 0.7328 0.9895 61.707 2331
Empresas Públicas de Medelĺın E.S.P. (EPM) 0.9015 0.9988 82.735 389
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B. WinBUGS code for a dynamic model with unobserved inefficiency

and technological heterogeneity - Colombian electricity distribution ap-

plication

model {

#K=number of firms

#N=number of observations

#M=N-K

#obs=N*1 vector with numbers of observations from 1 to N

#obsK=K*1 vector with the number of the first observation of every firm

#obsM=M*1 vector with the number of the rest of observations of every firm

#Inefficiency specification for the first observation of every firm:

for (i in 1:K) {

log(u[obsK[i]])<-(c/(1-rhofirm[obs[obsK[i]]]))+z[obsK[i]]+eta[obsK[i]]

z[obsK[i]] <- gamma[1]*lnz1[obsK[i]]+gamma[2]*lnz2[obsK[i]]

tao1[i] <- tao*(1-rhofirm[obs[obsK[i]]]*rhofirm[obs[obsK[i]]])

eta[obsK[i]] ~ dnorm(0,tao1[i]) #(c),(d) }

#Inefficiency specification for the rest of observations of every firm:

for (i in 1:M) {

log(u[obsM[i]])<-c+rhofirm[obs[obsM[i]]]*log(u[obsM[i]-1])+z[obsM[i]]

+eta[obsM[i]]

z[obsM[i]]<-gamma[1]*lnz1[obsM[i]]+gamma[2]*lnz2[obsM[i]]

eta[obsM[i]] ~ dnorm(0,tao) }

for (i in 1:N) {

mu[i] <- alphafirm[obs[i]]- u[i]+ beta[1]*lny1[i]+beta[2]*lny2[i]+beta[3]*lnx2[i]

+beta[4]*lnx3[i]+beta[5]*lnkm[i]+beta[6]*t[i]+beta[7]*(t[i]*t[i])+tl[i]

+tlcross[i]+tlt[i]

tl[i] <- 0.5*phi[1]*(lny1[i]*lny1[i])+phi[2]*(lny1[i]*lny2[i])

+0.5*phi[3]*(lny2[i]*lny2[i])+0.5*phi[4]*(lnx2[i]*lnx2[i])

+phi[5]*(lnx2[i]*lnx3[i])+0.5*phi[6]*(lnx3[i]*lnx3[i])

tlcross[i] <- delta[1]*(lny1[i]*lnx2[i])+delta[2]*(lny2[i]*lnx2[i])

+delta[3]*(lny1[i]*lnx3[i])+delta[4]*(lny2[i]*lnx3[i])

tlt[i] <- kappa[1]*(t[i]*lny1[i])+kappa[2]*(t[i]*lny2[i])+kappa[3]*(t[i]*lnx2[i])

+kappa[4]*(t[i]*lnx3[i])

lnx1[i] ~ dnorm(mu[i], prec)

eff[i]<- exp(-u[i]) }

c ~ dnorm(-1.5, 1)

for (i in 1:2) {
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gamma[i] ~ dnorm(0.0, 0.1) }

for (k in 1:K) {

hfirm[k]~ dbeta(h,h1)

rhofirm[k] <- 2*hfirm[k]-1

alphafirm[k]~ dnorm(alpha, 0.1) }

h ~ dbeta(0.5,0.5)

h1<-1-h

rho <- 2*h-1

tao ~ dgamma(10,0.01)

alpha ~ dnorm(0.0, 0.001)

for (i in 1:7) {

beta[i] ~ dnorm(0.0, 0.001) }

for (i in 1:6) {

phi[i] ~ dnorm(0.0, 0.001) }

for (i in 1:4) {

delta[i] ~ dnorm(0.0, 0.001) }

for (i in 1:4) {

kappa[i] ~ dnorm(0.0, 0.001) }

prec ~ dgamma(0.01, 0.01)

sigmasq <- 1 /prec }
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C. WinBUGS code for a dynamic model with heterogeneous persistence

and separating heterogeneity from the inefficiency dynamics- Colombian

banking sector application

model{

#K=number of banks

#N=number of observations

#M=N-K

#obs=N*1 vector with numbers of observations from 1 to N

#obsK=K*1 vector with the number of the first observation of every bank

#obsM=M*1 vector with the number of the rest of observations of every bank

#Inefficiency specification for the first observation of every bank:

for (i in 1:K) {

log(u[obsK[i]])<-theta[obsK[i]]+z[obsK[i]]+xi[obsK[i]]

theta[obsK[i]]<-((c+s[obsK[i]])/(1-rhof[obs[obsK[i]]]))+eta[obsK[i]]

z[obsK[i]]<-gamma[1]*z1[obsK[i]]+gamma[2]*z2[obsK[i]]

s[obsK[i]]<-omega*z3obsK[i]]

tao1[i]<-tao*(1-(rhof[obs[obsK[i]]]*rhof[obs[obsK[i]]]))

eta[obsK[i]]~dnorm(0,tao1[i])

xi[obsK[i]]~dnorm(0,lambda) }

#Inefficiency specification for the rest of observations of every bank:

for (i in 1:M) {

log(u[obsM[i]])<-theta[obsM[i]]+z[obsM[i]]+xi[obsM[i]]

theta[obsM[i]]<-c+s[obsM[i]]+rhof[obs[obsM[i]]]*theta[obsM[i]-1]+eta[obsM[i]]

z[obsM[i]]<-gamma[1]*z1[obsK[i]]+gamma[2]*z2[obsK[i]]

s[obsM[i]]<-omega*z3[obsM[i]]

eta[obsM[i]]~dnorm(0,tao)

xi[obsM[i]]~dnorm(0,lambda) }

for (i in 1:N) {

mu[i]<-alpha - u[i]+ beta[1]*lnyi[i]+beta[2]*lnyc[i]+beta[3]*lndep[i]

+beta[4]*lnl[i]+beta[5]*t[i]+beta[6]*(t[i]*t[i])+tl[i]+tlcross[i]+tlt[i]

tl[i]<-0.5*phi[1]*(lnyi[i]*lnyi[i])+phi[2]*(lnyi[i]*lnyc[i])

+0.5*phi[3]*(lnyc[i]*lnyc[i])+0.5*phi[4]*(lndep[i]*lndep[i])

+phi[5]*(lndep[i]*lnl[i])+0.5*phi[6]*(lnl[i]*lnl[i])

tlcross[i]<-delta[1]*(lnyi[i]*lndep[i])+delta[2]*(lnyi[i]*lnl[i])

+delta[3]*(lnyc[i]*lndep[i])+delta[4]*(lnyc[i]*lnl[i])

tlt[i]<-kappa[1]*(t[i]*lnyi[i])+kappa[2]*(t[i]*lnyc[i])+kappa[3]*(t[i]*lndep[i])

+kappa[4]*(t[i]*lnl[i])

lnx1[i]~dnorm(mu[i], prec)
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eff[i]<-exp(-u[i]) }

c~dnorm(-1.5,1)

for (i in 1:2) {

gamma[i]~dnorm(0.0,1) }

omega~dnorm(0.0,1)

lambda~dgamma(0.5,0.005)

h~dbeta(0.5,0.5)

rho<-2*h-1

tao~dgamma(10,0.01)

h1<-1-h

for (k in 1:K) {

hf[k]~dbeta(h,h1)

rhof[k]<-2*hf[k]-1 }

alpha~dnorm(0.0,0.001)

for (i in 1:2) {

beta[i]~dnorm(0.0,0.001) }

for (i in 3:4) {

beta[i]~dnorm(0.0,0.001) }

for (i in 5:6) {

beta[i]~dnorm(0.0,0.001) }

for (i in 1:6) {

phi[i]~dnorm(0.0,0.001) }

for (i in 1:4) {

delta[i]~dnorm(0.0,0.001) }

for (i in 1:4) {

kappa[i]~dnorm(0.0,0.001) }

prec~dgamma(0.01,0.01)

sigmasq<-1/prec }
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Chapter 5

Discussion and further research

In stochastic frontier analysis the inefficiency component may be erroneously estimated

when firm characteristics are not taken into account. These firm characteristics induce

heterogeneity that might result in different firm frontiers, or may have an impact directly

on the inefficiencies. This issue has been widely studied before. However, unobserved

inefficiency heterogeneity has been little explored. In this thesis, we have put forward

the modeling of heterogeneity in a Bayesian context by capturing both observed and

unobserved heterogeneity in the inefficiency distribution under static and dynamic for-

mulations.

The first of our proposed methods captures unobserved heterogeneity in the ineffi-

ciency by modeling a random parameter in the inefficiency distribution, which can be

allowed to be whether time invariant or time-varying. Our findings suggest that unob-

served inefficiency heterogeneity can be properly captured by this random parameter.

Models including this parameter whether alone or simultaneously with observed covari-

ates improve in terms of fit and predictive performance as long as latent heterogeneity

remains unidentified. In this sense, it can be used to distinguish unobserved hetero-

geneity from inefficiency and to validate the suitability of observed covariates to capture

it.

Also, the effects of including both types of heterogeneity in different parameters of

the inefficiency distribution were studied. Differences in efficiency rankings and mean

scores were observed when inefficiency heterogeneity was included in different parame-

ters of the one-sided error distribution. This was found to be related to effects in the

posterior efficiency distributions. In particular, considering firms’ heterogeneity in the
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location parameter of the inefficiency has an effect on separating the firm specific pos-

terior efficiency distributions from each other, which leads to more reliable rankings.

On the other hand, when heterogeneity affects only the scale parameter of the ineffi-

ciency, an important shrinking effect is observed on the individual posterior efficiency

distributions. This results in less uncertainty around mean individual efficiency scores.

Finally, including the heterogeneity in both parameters of the inefficiency distribution in

models that preserve the scaling property leads to both separating and shrinking effects.

This allows less overlapping of the posterior efficiency distributions and provide both

more reliable efficiency scores and rankings. These results are consistent whether we use

observed covariates or our proposal to model unobserved heterogeneity.

Our second proposal introduces random firm specific coefficients for covariates in the

inefficiency. It was found that allowing random coefficients for the inefficiency covariates

captures firm-specific effects which remain unidentified under the regular fixed coeffi-

cients models. This specification distinguishes firms in terms of the effects of inefficiency

drivers and separates unobserved heterogeneity related to these effects from efficiency.

This was found to have relevant implications for regulation an policy making.

We extended the study of observed and unobserved heterogeneity to dynamic SFA

models. This is a topic with relative little attention within the frontier literature. Here

previous proposals were extended in order to capture two possible sources of unobserved

heterogeneity. One related to heterogeneity in the inefficiency persistence and the sec-

ond one related to unobserved technological heterogeneity. Both unobserved sources

were found to be very relevant in an empirical application to electricity distribution

utilities. In particular, heterogeneity in the inefficiency persistence was found to be very

important in explaining inefficiency and its evolution over time. Finally, the implica-

tions of including observed covariates in dynamic models were studied by mean of an

inefficiency specification that allows separating observed inefficiency heterogeneity from

the dynamic process. The model allows identifying those firm characteristics that may

have persistent effects in the inefficiency from those that can be rapidly adjusted. In

general, location of observed covariates was found to have important implications in the

identification of inefficiency drivers and posterior efficiency estimations.

Overall, new specifications to model both observed and unobserved heterogeneity

in stochastic frontier models have been proposed in a Bayesian context. These models

identify effects that are not captured with other models in the literature, which are
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shown to be very useful for firms, regulators, and policy maker in different sectors, from

health to electricity and banking.

We identify interesting future research lines from both empirical and theoretical

standpoints. Applications of the proposed models to any regulated sector are of rel-

evance due to important concerns on accounting for unobserved heterogeneity sources

when comparing firms in these sectors. Also applications to less explored areas such as

investment funds performance may have important implications. Models proposed here

can be easily implemented in the identification of persistence effects in the efficiency of

the risk-return relationship of funds and the differences among types of firms.

Theoretically, we think that extending our models to include common time specific

factors as in Bai (2009) would be interesting in order to account for spillover spatial

effects. This would allow to model heterogeneity related to geographical aspects. Also,

an extension of the dynamic models to the use of Bayesian vector autoregressive and

state space representations would allow to model endogeneity issues in a more proper

way (see Mastromarco and Woitek, 2012a,b, for the use of these techniques in efficiency

measurement). Finally, modeling inefficiency heterogeneity in nonparametric SFA mod-

els is an area of great interest. These models have the advantage of adding flexibility to

the inefficiency component while preserving an stochastic error term. In this context,

there are some recent contributions from both the frequentist and Bayesian approaches,

but modeling inefficiency heterogeneity and studying its implication in these models is

still an open topic.
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aplicación de las funciones de distancia estocástica. Ensayos sobre Poĺıtica Económica,
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Radić, N., F. Fiordelisi, and C. Girardone (2012). Efficiency and risk-taking in pre-crisis

investment banks. Journal of Finance Service Research 41(1), 81–101. 49

Ray, S. and A. Das (2010). Distribution of cost and profit efficiency: Eevidence from

Indian banking. European Journal of Operational Research 201, 297–307. 103

Reifschnieder, D. and R. Stevenson (1991). Systematic departures from the frontier: A

framework for the analysis of firm inefficiency. International Economic Review 32,

715–723. 11

Santos, J. (2014). Evidence from the bond market on banks’ “too big to fail” subsidy.

Economic Policy Review 20(2), forthcoming. 58

Sathye, M. (2003). Efficiency of banks in a developing economy: The case of India.

European Journal of Operational Research 148, 662–671. 103

Sealey, C. and J. Lindley (1977). Inputs, outputs and a theory of production and cost

at depository financial institutions. Journal of Finance 32, 1252–1266. 52, 104

Simar, L., C. Lovell, and P. van den Eeckaut (1994). Stochastic frontiers incorporating

exogenous influences on efficiency. Discussion paper no. 9403, Institut de Statistique,

Universit Catholique de Louvain. 12

Simar, L. and P. Wilson (2007). Estimation and inference in two-stage, semi parametric

models of production processes. Journal of Econometrics 136, 31–64. 4

Spiegelhalter, D., N. Best, B. Carlin, and A. van der Linde (2002). Bayesian measures

of model complexity and fit. Journal of the Royal Statistical Society, Series B 64 (4),

583–639. 21

136



REFERENCES

Staub, R., G. da Silva e Souza, and B. Tabak (2010). Evolution of bank efficiency in

Brazil: A DEA approach. European Journal of Operational Research 202, 204–213.

103

Stevenson, R. (1980). Likelihood functions for generalized stochastic frontier estimation.

Journal of Econometrics 13, 57–66. 7

Tabak, B. and P. Tecles (2010). Estimating a Bayesian stochastic frontier for the Indian

banking system. International Journal of Production Economics 125, 96–110. 47, 52,

57, 111

Tecles, P. and B. Tabak (2010). Determinants of bank efficiency: The case of Brazil.

European Journal of Operational Research 207, 1587–1598. 54, 103, 112

Ter-Martirosyan, A. and J. Kwoka (2010). Incentive regulation, service quality, and

standards in U.S. electricity distribution. Journal of Regulatory Economics 38, 258–

273. 81

Tortosa-Ausina, E. (2002). Exploring efficiency differences over time in the Spanish

banking industry. European Journal of Operational Research 139, 643–664. 102, 112

Tovar, B., F. Ramos-Real, and E. Fagundes de Almeida (2011). Firm size and produc-

tivity. Evidence from the electricity industry in Brazil. Energy Policy 39, 826–833.

88

Tsionas, E. (2002). Stochastic frontier models with random coefficients. Journal of

Applied Econometrics 17, 127–147. 10, 11, 14, 19, 46

Tsionas, E. (2006). Inference in dynamic stochastic frontier models. Journal of Applied

Econometrics 21, 669–676. iv, 74, 75, 77, 99, 101, 102, 103, 106, 109, 112, 113

van den Broeck, J., G. Koop, J. Osiewalski, and M. Steel (1994). Stochastic frontier

models: A Bayesian perspective. Journal of Econometrics 61, 273–303. iii, 8, 10

Van Roy, P. (2008). Capital requirements and bank behaviour in the early 1990s: Cross-

country evidence. International Journal of Central Banking 4(3), 29–60.

137



REFERENCES

von Hirschhausen, C., A. Cullmann, and A. Kappeler (2006). Efficiency analysis of

German electricity distribution utilities - non-parametric and parametric tests. Applied

Economics 38, 2553–2566. 88

Wang, H. (2002). Heteroscedasticity and non-monotonic efficiency effects of a stochastic

frontier model. Journal of Productivity Analysis 18, 241–253. 4, 12, 18

Wang, H. and P. Schmidt (2002). One step and two step estimation of the effects of

exogenous variables on technical efficiency levels. Journal of Productivity Analysis 18,

129–144. 12

West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models. Springer

Series in Statistics. New York: Springer-Verlag. 101

Wheelock, D. C. and P. W. Wilson (2012). Do large banks have lower costs? New esti-

mates of returns to scale for U.S. banks. Journal of Money, Credit and Banking 44(1),

171–199. 50, 57, 61

Yu, W., T. Jamasb, and M. Pollitt (2009). Willingness to pay for quality service: an

application to efficiency analysis of the UK electricity distribution utilities. Energy

Journal 30, 1–48. 88, 98

Zago, A. and P. Dongili (2011). Credit quality and technical efficiency in banking.

Empirical Economics 40(2), 537–558. 49

138


	List of Figures
	List of Tables
	1 Introduction
	1.1 The concept of efficiency
	1.2 Efficiency measurement
	1.3 Stochastic Frontier Analysis
	1.4 The Bayesian approach to SFA
	1.5 Heterogeneity in Stochastic Frontier Models
	1.5.1 Literature on Observed Heterogeneity
	1.5.2 Literature on Unobserved Heterogeneity


	2 Observed Inefficiency Heterogeneity in Stochastic Frontier Models
	2.1 Analysis of observed inefficiency heterogeneity
	2.1.1 Bayesian inference
	2.1.2 Model selection

	2.2 Empirical applications
	2.2.1 Application to WHO data set
	2.2.2 Application to Airlines

	2.3 Effects of different inefficiency distributions
	2.3.1 Application to WHO data set

	2.4 Conclusions
	2.5 Appendix

	3 Modeling Unobserved Inefficiency Heterogeneity
	3.1 A stochastic frontier model with a random parameter in the inefficiency
	3.1.1 Bayesian inference
	3.1.2 Empirical applications
	3.1.2.1 The WHO data set
	3.1.2.2 The airlines data set


	3.2 A stochastic frontier model with random inefficiency coefficients
	3.2.1 Bayesian inference
	3.2.2 Application to bank risk-taking in the Colombian banking sector
	3.2.2.1 Evidence from the Colombian banking sector

	3.2.3 Data and empirical model
	3.2.4 Results
	3.2.5 Analysis of risk random coefficients
	3.2.6 Analysis of efficiency
	3.2.6.1 Empirical implications


	3.3 Conclusions
	3.4 Appendix

	4 Inefficiency Heterogeneity in Dynamic Models
	4.1 A Dynamic Model with Unobserved Heterogeneity
	4.1.1 Bayesian inference
	4.1.2 Application to Colombian electricity distribution utilities
	4.1.2.1 The Colombian electricity distribution sector

	4.1.3 Heterogeneity in the electricity sector
	4.1.4 Stochastic input distance function
	4.1.5 Data and empirical model
	4.1.6 Estimation Results
	4.1.7 Empirical implications

	4.2 Separating Heterogeneity from Inefficiency Dynamics
	4.2.1 Bayesian inference
	4.2.2 Application to the Colombian banking sector
	4.2.2.1 The Colombian banking sector
	4.2.2.2 Data and model specification
	4.2.2.3 Estimation results
	4.2.2.4 Empirical implications


	4.3 Conclusions
	4.4 Appendix

	5 Discussion and further research
	References



