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Fecha:

Tribunal

Presidente:

Vocal:

Secretario:

iii



iv



Acknowledgements

There is not enough space and time to write this section. I hope to have
the rest of my life to thank all the people that have made me happy!

v



vi



Abstract

This thesis presents several relationships between information theory and
estimation theory over random transformations that are governed through
probability mass functions of the type binomial, negative binomial and
Poisson.

The pioneer expressions that arose relating these fields date back to the
60’s when Duncan [14, 15] proved that the input–output mutual information
of a channel affected by Gaussian noise can be expressed as a time integral
of the causal minimum mean square error. With the time, additional works
due to Zakai1, Kadota [30], Mayer-Wolf [40], Lipster [38] and Guo et al. [23]
–among others– suggested the fact that there could be a hidden structure
relating concepts such as the mutual information with some estimation
quantities over a wide range of scenarios. The most prominent work in
this field states that, over a real-valued Gaussian channel, the derivative
of the input–output mutual information with respect to the signal to noise
ratio is proportional to the mean square error achieved when measuring the
loss between the input X and its conditional mean estimate based on an
observation on the output. The minimum value of the mean square error
is achieved precisely by the conditional mean estimate of the input, which
gives rise to the well known “I-MMSE”2 relationship. Similar expressions
can be derived by studying the derivative of the relative entropy between
two distributions obtained at the output of a Gaussian channel.

The expressions proved for the Gaussian channel translate verbatim to
the Poisson channel [3] where the main difference lies in the loss function
used to state the connection between information and estimation. In this
framework, regarding the derivative of the input–output mutual information,
it is further known that the considered loss function achieves its minimum
value when is measured the difference between the input and its conditional
mean estimate. This behavior has two main implications: in the context
of the information–estimation relationships, it gives rise to the “I-MMLE”3

1In [23] it is pointed out that results obtained initially by Duncan regarding
relationships between information and estimation where also obtained independently by
Zakai.

2In “I-MMSE” the “I” stands for “Information” and the “MMSE” stands for “Minimum
Mean Square Error”.

3In “I-MMLE” the “I” stands for “Information” and the “MMLE” stands for
“Minimum Mean Loss Error”. Notice that the “I-MMSE” relationship could also be
denominated as an “I-MMLE” relationship.
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relationship over the Poisson model; second, it converts the loss function to
a Bregman divergence, a property that is shared with the square distance
used to state information–estimation relations in the Gaussian channel.

Based on the previous results we explore similar relationships in the
context of the binomial and negative binomial models. In each model,
using a deterministic input preprocessing, we develop several information–
estimation relationships, depending solely on input statistics and its
respective conditional estimates, that in some scenarios are given through
Bregman divergences as was done formerly for the Gaussian and Poisson
models. Working over models whose mean is given by a linear scaling of
the input X through a parameter θ, we show for the binomial and negative
binomial models, that the derivative of the input–output mutual information
is given through a Bregman divergence where the arguments are the mean
of the model and its conditional estimate. This condition gives rise to
relationships that are of the same kind as the “I-MMSE” and the “I-MMLE”
found initially for the Gaussian and Poisson models. Similar expressions are
developed for the relative entropy, where the arguments of the Bregman
divergence are the conditional mean estimate of the model θX assuming
that X ∼ PX and its correspondent mismatched version when X ∼ QX .
Making the input scaling factor tends to zero, we show that the derivative
of the input–output mutual information is proportional to the expectation
of a Bregman divergence between the input X and its mean E[X]. This
behavior is similar to that proved for the case of the Gaussian channel
where, when the signal to noise ratio goes to zero, the derivative of the
mutual information tends to the variance of the input.

Furthermore, using an arbitrary input preprocessing function that is
not necessarily linear, we prove that several scenarios lead to information–
estimation expressions that are given through Bregman divergences even
though this is not always the case. In those cases where the information–
estimation relationship is given through the minimum of a Bregman
divergence, an information–estimation relationship similar to the “I-MMSE”
and “I-MMLE” relationships can be stated. Finally, we provide conditions
for which the results obtained for the binomial and negative binomial
models converge asymptotically to information–estimation relationships over
the Poisson model. This technique let us present connections between
information and estimation over the Poisson model that cover wider
scenarios than those studied so far.
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Resumen

En esta tesis se estudian diversas relaciones entre la teoŕıa de la
estimación y la teoŕıa de la información sobre transformaciones aleatorias
donde la relación entre la entrada y la salida está dada a través de
distribuciones de probabilidad del tipo binomial, binomial negativo y
Poisson.

Las primeras expresiones encontradas que relacionan estos dos campos
datan de la década de lo 60’s cuando Duncan [14, 15] provó que la
información mutua entre la entrada y la salida de un canal del tipo Gaussiano
equivale a la integral en el tiempo del mı́nimo error cuadrático medio entre
la entrada y su estimación condicionada a la observación de la salida.

Estudios posteriores, hechos por Zakai4, Kadota [30], Mayer-Wolf [40]
y Lipster [38], -entre otros- sugirieron la existencia de relaciones más
fuertes entre la teoŕıa de la estimación y la teoŕıa de la información que
teńıan validez sobre un amplio espectro de transformaciones aleatorias. A
la fecha, el resultado más destacado concerniente a las relaciones entre
estas dos teoŕıas establece que, sobre un canal del tipo Gaussiano, la
derivada de la información mutua con respecto a la relación señal a ruido
es proporcional al error cuadrático medio obtenido entre la entrada y su
correspondiente estimación a través de la media condicionada al valor de
la salida. En este caso, una propiedad fundamental de la conexión entre
estimación e información se basa en que el valor del error cuadrático medio
es mı́nimo cuando la estimación de la entrada se hace a través de la
media condicional, lo que da lugar a lo que es conocido en la literatura
como la relación “I-MMSE”5. Expresiones similares entre información y
estimación son obtenidas para el caso de la entroṕıa relativa entre dos
distribuciones obtenidas a la salida del canal Gaussiano, donde de nuevo,
el nexo, estimación–información está dado a través del error cuadrático.

En el contexto del canal del tipo Poisson –usado frecuentemente en el
modelado de canales ópticos– las relaciones entre información y estimación
encontradas hasta el momento tienen forma similar a las encontradas en
el caso del canal Gaussiano donde la única diferencia radica en la función
de pérdida utilizada. En otras palabras, mientras que en caso del canal

4En [23] se indica que algunos de los resultados obtenidos inicialmente por Duncan,
relacionados con las relaciones entre la teoŕıa de la información y la teoŕıa de la estimación
fueron también obtenidos por Zakai de manera independiente.

5En esta notación, la “I” representa “Información” y “MMSE” representa “Mı́nimo
error cuadrático medio” por sus siglas en inglés.
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Gaussiano la relación información–estimación está dada a través del error
cuadrático, en el caso del canal Poisson, la relación está dada a través de la
divergencia de Bregman que aparece en la representación exponencial de la
distribución Poisson. Como consecuencia de esto, debido a las propiedades
de las divergencias de Bregman se concluye que la función de pérdida es
mı́nima cuando se utiliza para comparar la diferencia entre la entrada del
canal Poisson y su estimación a través de la media condicional. Este
comportamiento da lugar a lo que es conocido en el ámbito del canal Poisson
a la relación “I-MMLE”6, de manera análoga a la relación “I-MMSE” en el
caso del canal Gaussiano.

Basados en los resultados anteriores en esta tesis son presentadas
relaciones similares en el contexto de los modelos binomial y binomial
negativo. En cada modelo, asumiendo un pre-procesado determinista
de la entrada, son demostradas diversas relaciones entre información y
estimación que están dadas en términos de estad́ısticos de la entrada y sus
correspondientes estimas condicionales. En algunos casos, dichas relaciones
son a través de divergencias de Bregman aunque ése no es siempre el caso.
Cuando el pre–procesado de la entrada es lineal se muestra que para los
modelos binomial y binomial negativo, la derivada de la información mutua
está dada a través de divergencias de Bregman donde los argumentos de la
función de pérdida son la media del modelo (que depende de la entrada) y su
media condicional. Estas caracteŕısticas dan lugar a relaciones de la misma
naturaleza que las denominadas “I-MMSE” en el caso del canal Gaussiano
y la “I-MMLE” en el caso del canal Poisson. Expresiones similares son
obtenidas en el caso de la entroṕıa relativa. Posteriormente, cuando el
parámetro que afecta linealmente a la entrada se hace tender a cero, es
demostrado que la derivada de la información mutua es proporcional al valor
esperado de la divergencia de Bregman (usada para expresar la derivada de
la información mutua en el modelo Poisson) entre la entrada y su media.
Este comportamiento es similar al obtenido en el caso del canal Gaussiano
donde el valor de la derivada de la información mutua cuando la relación
señal a ruido tiende a cero está dado por el valor esperado de la distancia
Eucĺıdea entre la entrada y su media (varianza).

Utilizando un pre-procesado arbitrario en la entrada que no es
lineal necesariamente, es mostrado que diversos escenarios dan lugar a
relaciones entre información y estimación a través de divergencias de
Bregman. Cuando dichas divergencias de Bregman son minimizadas se

6En este caso, la “I” se refiere a “Información” y “MMLE” se refiere a “Mı́nimo error
de pérdida medio” por sus siglas en inglés.
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puede establecer la existencia de una relación entre información y estimación
del mismo tipo que las denominadas “I-MMSE” y “I-MMLE” estudiadas
anteriormente. Para concluir, se presentan diversos escenarios en los
modelos binomial y binomial negativo sobre los que las relaciones entre
información y estimación encontradas convergen asintóticamente a las
relaciones encontradas en el caso del modelo Poisson. Esta técnica permite
la obtención de resultados, desconocidos hasta ahora para el modelo Poisson,
a partir de los resultados obtenidos para los modelos binomial y binomial
negativo.
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Chapter 1

Introduction

The problem of communication defined by Shannon on his seminal papers
[50, 51, 52] as “that of reproducing at one point either exactly or
approximately a message selected at another point” found a mathematical
translation through the concept of mutual information via the coding
theorem. Roughly speaking, such theorem states that, for a random
transformation between two random variables X and Y , the maximum rate
at which reliable communication is possible, known as capacity, is given
by the maximum of the mutual information between X and Y , where the
maximization space is with respect to the set of all distributions of X while
the random transformation PY |X is kept fix. Denoted by I(X;Y ), the input–
output mutual information between X and Y is defined as follows.

Definition 1. [13] The mutual information I(X;Y ) between two random
variables X and Y is defined as,

I(X;Y ) = D(PXY ||PX × PY ) (1.1)

where, for two probability measures P and Q, defined on the same measurable
space, their relative entropy D(P ||Q) is defined as

D(P ||Q) =

{ ∫ [
log dP

dQ

]
dP if P � Q

∞ otherwise.
(1.2)

Remark 1. Formally, for a continuous output Y i.e., if for every x
PY |X(·|x) is absolutely continuous with respect to the Lebesgue measure, the
mutual information can be expressed as:

I(X;Y ) = E

[
log

fY |X(Y )
fY (Y )

]
, (1.3)
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where fY |X stands for the probability density function of a random
transformation between an input X and a continuos output Y . Similarly, in
the case of a discrete output Y , (1.1) is equivalently expressed as:

I(X;Y ) = E

[
log

PY |X(Y |X)
PY (Y )

]
. (1.4)

Estimation theory deals mainly with ways of estimating information
based on observations of random variables. Towards this end, there are
several known estimation rules, i.e., functions of the observed variable that
give an estimation of the transmitted information (input random variable)
according to some restrictions that account for constraints in complexity,
error probability, optimality, etc. In this setting, suppose that our optimality
criterion is the mean square error, i.e., for a given estimate of the transmitted
signal x̂ = h(y), our goal is to minimize the function,

mse = E[(X − X̂)2]. (1.5)

It is well known (see for example [31, p. 313]) that the function h(y)
that minimizes the mean square error is given by the mean of the posterior
probability density function PX|Y , i.e., h(y) = E[X|Y = y] which is referred
to as the conditional mean estimate. Mathematically speaking, the previous
idea is expressed as follows,

E[X|Y = y] = arg min
X̂(y)

E[(X − X̂(y))2]. (1.6)

In recent years, multiple relationships between information and
estimation have played a fundamental role in the development of theoretical
and practical advances in the study of communication systems. Initially
in 2004, Guo, Shamai and Verdú, stated a key information-estimation
relationship over the Gaussian channel [23]. Its simplicity and massive usage
of the Gaussian distribution to model several scenarios in the problem of
communication highlight the importance of this expression. Based on the
previous key quantities used in the estimation and information fields, in the
following section we proceed to state a link between them for the Gaussian
channel.

1.1 Notation conventions

In this chapter and throughout the thesis, we use the following notation. Let
X and Y be the input and output, respectively, of a random transformation

2



PY |X that depends on a parameter θ. Each domain set is denoted as X ,
Y and Θ. Let PX and QX denote two distributions over the input X
that are independent of θ. Additionally, let PY and QY be two probability
distributions induced at the output Y by each input distribution PX and QX
respectively, through the random transformation PY |X . Unless otherwise
stated, the output distributions PY and QY depend implicitly on θ.

1.2 Gaussian Channel

The Gaussian channel in its simplest form is defined as follows. For a real-
valued input X, the output Y is given by,

Y =
√

snrX +N, (1.7)

where, snr stands for the signal to noise ratio of the channel when E[X2] = 1
and N is Gaussian distributed with zero mean and unit variance. In this
scenario, regardless of the input distribution, the link between information
and estimation is given by [23],

d
dsnr

I(X;Y ) =
1
2
E
[
(X − E[X|Y ])2

]
, (1.8)

,
1
2
mmse(snr), (1.9)

where mmse(·) stands for the Minimum Mean Square Error in concordance
with (1.5) and (1.6). The left hand side (LHS) of (1.8) represents the
derivative of the input-output mutual information and the right hand side
(RHS) represents the square distance between the input X and its estimate
through the conditional mean estimate.

Several additional expressions can be derived upon the landmark
expression stated in (1.8). As is shown in (1.1), an information theory
concept closely related with the mutual information is the relative entropy
between two distributions P and Q defined in (1.2). Although the relative
entropy is not symmetric, in some scenarios it is considered as a measure
of distance between the distributions P and Q, given that it is always
positive [13, Theorem 9.6.1]. Hence, a second expression linking information
measures with the estimation theory field through the conditional mean
estimate is stated as follows in the context of the relative entropy. Suppose
that PX and QX are two distributions of X such that E[X2] and EQ[X2]
are finite, where we use the subscript Q to indicate that X ∼ QX and
analogously omit it when X ∼ PX . Then, for an input-output relationship

3



given by (1.7) the derivative of the relative entropy between the output
distributions PY and QY with respect to changes in the snr parameter is
given by [62],

d
dsnr

D(PY ||QY ) =
1
2
E
[
(E[X|Y ]− EQ[X|Y ])2

]
, (1.10)

where EQ[X|Y ] represents the conditional mean estimate of X when X ∼
QX . Notice that (1.10) has a similar structure to that found in (1.8), in the
sense that it is given in terms of the square distance between the conditional
mean estimates E[X|Y ] and EQ[X|Y ].

Additionally, notice that, based on the expression given for the mutual
information and the relative entropy, we get that

1
2
E
[
(X − EQ[X|Y ])2

]
=

d
dsnr

(I(X;Y ) +D(PY ||QY )) , (1.11)

i.e., the expectation of the difference between the input X and the
conditional mean estimate EQ[X|Y ] (when assumed a mismatched prior
QX), is proportional to the derivative with respect to the snr of the sum
of the mutual information and relative entropy.

Several applications arise from the aforementioned information-
estimation relationships, such as power allocation over parallel Gaussian
channels [39, 44], multiuser detection [26] and nonlinear filtering [23, 66].
Furthermore, the expression given in (1.8) can be used to state a proof of
Shannon’s entropy power inequality [63, 24, 59] and to study the capacity
region of several multiuser channels [58, 73, 10]. The above expressions can
also be generalized to multiple input multiple output (MIMO) scenarios over
vector valued channels [23] and to continuous time channel models [23, 66].

1.3 Poisson Channel

In the search of multiple expressions relating the information field with the
estimation field, one natural model to consider is the Poisson channel. This
channel is frequently used to model optical communication systems where
the transmitter sends information by modulating the intensity of an optical
signal, while the receiver tries to make an informed guess of the transmitted
message by using the arrival moments of the individual photons [70, 71].

In the following, we briefly state the Poisson model considered and then
present analogous information-estimation relationship to those stated for
the Gaussian channel.
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Let X and Y be the input and output, respectively, of a random
transformation where, for a given X = x, the conditional distribution1 of
the channel is Poisson with mean θX > 0, i.e.,

PY |X(y|x) =
(θx)y

y!
e−θx, y = 0, 1, 2, . . . (1.12)

where θ stands for an input scaling factor playing a similar role as the snr
in the context of the Gaussian channel.

Guo, Shamai and Verdú, after presenting their seminal work on
the information-estimation relationships for the Gaussian channel, stated
further expressions for the Poisson channel over discrete and continuous
models. In this case, the counterpart relationship to (1.8) relating the
mutual information with the conditional mean estimate can be stated as
follows. Let X be a positive random variable such that E[X logX] < ∞.
Then, considering a Poisson channel (1.12) with mean θX > 0 we have that
[25],

d
dθ
I(X;Y ) = E

[
X log

X

E[X|Y ]

]
, (1.13)

for all θ > 0. Thinking in terms of loss functions, one question that naturally
arises is whether the function inside the expectation in (1.13) corresponds
to a function with similar properties to those fulfilled by the square distance
which is the loss function used in the definition of the mmse (1.5). To tackle
this issue, lets define the function `P : (0,∞)× (0,∞)→ (0,∞) as follows,2

`P (a, â) = a log
a

â
− (a− â), a, â ∈ (0,∞). (1.14)

In the context of the Poisson channel with input X and output Y , for a
given realization of the input, let a = x, and for a given realization of the
output let â(y) = E[X|Y = y]. Based on the function `P , calculating its
expected value we get that,

E [`P (X,E[X|Y ])] = E

[
X log

X

E[X|Y ]
− (X − E[X|Y ])

]
(1.15)

= E

[
X log

X

E[X|Y ]

]
(1.16)

=
d
dθ
I(X;Y ). (1.17)

1Throughout this monograph and unless other condition is stated, we assume that all
the random transformations PY |X considered depend on a parameter θ over which we take
derivatives. Dependency of PY |X on θ is implicit.

2Here, the subscript P stands for “Poisson”.
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In order to state several properties of the function `P , lets define the function
φ(a) = a log a with θ ∈ (0,∞). For all a > 0, notice that d2φ(a)

da2 > 0, proving
by this way the strictly convex behavior of the function φ(·). The first order
Taylor approximation of the function φ(a) around a point â is given by the
function,

φ(â) +
d
da
φ(a)

∣∣∣∣
a=â

(a− â). (1.18)

The difference between the function φ(a) and its first order Taylor
approximation around the point â, called error, is given by,

error(a, â) = φ(a)− φ(â)− (a− â)
d
da
φ(a)

∣∣∣∣
a=â

(1.19)

= φ(a)− φ(â)− (a− â) (log â+ 1) (1.20)
= a log a− a log â− (a− â) (1.21)
= `P (a, â). (1.22)

Such a function is called a Bregman divergence. Bregman divergences are
functions that quantify the difference between the value of a strictly convex
function and its first order Taylor approximation. Deeper mathematical
treatment of this kind of functions is given in Chapter 3. Comparing (1.22)
with (1.13) we see that the derivative of the relative entropy corresponds to
the Bregman divergence associated with the function φ(a) = a log a. Notice
that the strictly convexity of the function φ(·) ensures that the value of the
function `P (a, â) is always positive.

Along the same lines, the square distance considered for the Gaussian
channel belongs to the set of Bregman divergences. Indeed, for φ(a) = a2,
the difference between this function and its first order Taylor approximation
based on the point â is given by,

`G(a, â) = φ(a)− φ(â)− (a− â)
d
dθ
φ(a)

∣∣∣∣
a=â

(1.23)

= a2 − â2 − (a− â)2â (1.24)

= a2 − 2âa+ â2 (1.25)

= (a− â)2, (1.26)

where we use the subscript G to make reference that `G corresponds to
the loss function used over the Gaussian channel to describe information
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measures. One consequence of the functions `G and `P being Bregman
divergences, explored in more detail in Chapter 3, is that,

arg minz∈σ(Y )E [`(X, z)] = E[X|Y = y], (1.27)

where σ(Y ) stands for the σ-algebra generated by the output of the channel
Y and ` is any Bregman divergence. In other words, the conditional mean
estimate of X based on an observation of Y minimizes the expected loss of
the functions `G and `P . This behavior implies that the derivative of the
mutual information over the Gaussian and Poisson channels corresponds
to the minimum value of a given loss function. This leads to the “I-
MMSE” relationship pertaining to the Gaussian channel defined in [23] and
its analogous for the Poisson channel defined by Atar et al. in [3] known as
the “I-MMLE” relationship.

Additional information measures over the Poisson channel gave rise to
an alternative representation in terms of estimation quantities depending
on conditional mean estimates and its mismatched versions. Let PX and
QX be two distributions over an input random variable X that is bounded.
Each distribution obtained at the output of the Poisson channel with mean
θX is denoted by PY and QY , respectively. The Poisson counterpart to the
expression given in (1.10) for the Gaussian channel, regarding the derivative
of the relative entropy is given by [3],

d
dθ
D(PY ||QY ) = E[`P (E[X|Y ],EQ[X|Y ])]. (1.28)

To complete the analogy with the Gaussian channel, notice finally that

E [`P (X,EQ[X|Y ])] =
d
dθ

(I(X;Y ) +D(PY ||QY )) . (1.29)

The Poisson channel has motivated research in several directions in
the past. A comprehensive history of these results can be found in
[25]. Additionally, the information–estimation relationship found in [3]
was applied in [34] to determine the secrecy capacity of the degraded
Poisson wiretap channel, which essentially consists of determining the
maximum achievable rate between a transmitter and an intended receiver
while ensuring that only a negligible amount of information is leaked to
an eavesdropper. Moreover [65], proposes a generalization of the classical
Bregman divergence in order to produce a vectorial version of (1.10) and
(1.28) given in [62] and [3], respectively. It is worth to point out here that
the vector Poisson channel has several applications in fields such as medical
imaging [17] or document classification [72].
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1.4 A Common Framework

As a consequence of the functions `P and `G being Bregman divergences,
we highlight the following properties:

� Several information measures find an alternative representation
through the expectation of certain functions that depend on input
statistics and conditional mean estimates. Those representations can
be associated with loss functions due to the fact that the connection
between information and estimation is given in terms of Bregman
divergences.

� The derivative of the mutual information with respect to the input
scaling factor is equal to the minimum of the expected loss of a
Bregman divergence.

� Due to the strict positiveness of Bregman divergences, the derivative of
the mutual information and the derivative of the relative entropy are
increasing in the parameters considered over each model. Conditions
to establish the monotonicity of the mutual information when
expressed in terms of conditional quantities are studied in [45]. They
give rise to applications in the field of network information theory
[19]. Specifically, in a broadcast channel setting, the increasing nature
of the mutual information gives rise to the “More Capable” Broadcast
Channels for which the capacity region is known.

� Assuming a mismatched distribution QX , the expectation of the loss
function E [`(X,EQ[X|Y ])] is proportional to the sum of the derivative
of the relative entropy and the derivative of the mutual information.
Based on the previous assertion, the sum of the relative entropy and
the mutual information gets the following alternative representation,

I(X;Y ) +D(PY ||QY ) =
∫ θ

0
E [` (X,EQ[X|Y ])] dγ (1.30)

which is increasing in θ.

� All the expressions obtained over a discrete time framework can be
translated akin to the continuous time case.
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1.5 Scope of this thesis

Based on the information–estimation expressions found for the Gaussian and
Poisson channels, we observe that expressions given in (1.8) and (1.13) to
describe the derivative of the mutual information over each channel can be
represented through a unique relation;

d
dθ
I(X;Y ) ∝ 1

θ
E[`(θX,E[θX|Y ])]. (1.31)

Note that the arguments of the loss function are given by the mean of
the channel θX and its conditional mean estimate E[θX|Y ]. In the case of
the Gaussian channel, the loss function ` corresponds to the square distance
denoted by `G and in the case of the Poisson channel the loss function is
the one defined in (1.14). Similarly, based in (1.10) and in (1.28), for the
relative entropy we have that,

d
dθ
D(PY ||QY ) ∝ 1

θ
E[`(E[θX|Y ],EQ[θX|Y ])], (1.32)

where the unique difference with the expression given for the mutual
information lies in the arguments of the loss function. In this thesis, we
explore whether the expressions given in (1.31) and (1.32) continue to hold
in other scenarios different to the ones previously treated. This would allow
us to translate to other models all the functional properties proven for the
behavior of the mutual information and relative entropy for the Gaussian
and Poisson channels.

Specifically, the core of this thesis is the study of several information-
estimation relationships over different models, predominantly, Gaussian,
Poisson, binomial and negative binomial.

Initially in Chapter 2 we present the state of the art in the study of the
representation of information measures in terms of estimation quantities
over a wide range of scenarios. In addition, we show advantages and
disadvantages of the results known so far.

Based on the importance of the expressions found in (1.8), (1.10) for
the Gaussian channel and in (1.13), (1.28) for the Poisson channel and
its representation in terms of loss functions, in Chapter 3 we provide a
self-contained treatment for the set of Bregman divergences jointly with
their main properties. One characteristic that arises naturally is their close
relationship with exponential family distributions. This connection has lead
to several applications in fields such as Machine Learning [5], [68], [27],
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Statistical Learning [18] and Optimization [9]. Even though the presentation
of the binomial and negative binomial models is relegated to Chapters 4
and 5, in Chapter 3 we also show the exponential representation of such
distributions in order to make comparisons in future sections.

In Chapter 4 we formally present the structure of the binomial
model considered in this thesis. Initially we state the information-
estimation relationship that constitutes the binomial counterpart to the
relationship stated in (1.8) and in (1.13) for the Gaussian and Poisson
channels, respectively. The relationship is given in terms of a Bregman
divergence, which for the mutual information attains its minimum value
at the conditional mean estimate, like the “I-MMSE” relationship for the
Gaussian channel and the “I-MMLE” relationship for the Poisson channel.
Furthermore, an information-estimation relationship through a Bregman
divergence is also derived for relative entropy. Finally, we show that there
exists a Bregman divergence for which its expectation in the mismatched
case, corresponds to the derivative of the sum between the relative entropy
and the mutual information.

In Chapter 5 we state for the negative binomial model similar results to
those found for the binomial model. Specifically, we show that all the results
found in Chapter 4 translate verbatim to the negative binomial model using
an alternative Bregman divergence.

Assuming a specific configuration in the constitution of the binomial
model, we show in Chapter 6 that asymptotically,3 results found for the
binomial model converge to those obtained for the Poisson model over
different scenarios. We conclude this thesis in Chapter 7 with some remarks
and conclusions build upon the results found for the binomial, negative
binomial and Poisson models. Finally, additional results are presented,
where the interplay between the information theory and the estimation
theory leads to striking questions.

3Specifically this statement holds when the number of trials n used to generate the
binomial model goes to infinite.
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Chapter 2

State of the Art

Posterior to the landmark expression given in (1.8), several attempts have
been done in order to explore deeper relationships linking the information
field with the estimation field. Most of the work done relies on the analysis
of the information–estimation expressions over models where the noise is
additive. Additional works have been done in order to find an information–
estimation expression that works over all kind of channels. In this case, the
main issue with the expressions found lies on the difficulty to extract useful
conclusions from the results obtained.

A striking property that is worth pointing out is the fact that the
Gaussian and Poisson distributions belong to the set of infinitely divisible
distributions. Specifically, a random variable X is infinitely divisible if, for
all n ∈ N, there exists a sequence of independent identically distributed
(i.i.d) random variables Y1, . . . , Yn such that,

X
d= Y1 + · · ·+ Yn, (2.1)

where d= denotes equality in distribution. To see further details about this
type of random variables and its properties see [1, 32, 33]. Recently, it
has been brought to our attention the publication of a paper that studies
relations between information and estimation over Lévy channels, which rely
heavily on infinitely divisible distributions. We refer the interested reader
to [28, 29].

This chapter is mainly dedicated to the presentation of different
information estimation relationships studied previously. In Section 2.1 we
show an expression for the derivative of the mutual information in terms
of conditional estimates for the case of additive noise channels. Section 2.2
deals with a similar scenario where it is assumed that the distribution of the
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noise belongs to the set of exponential family distributions. The last scenario
considered in this chapter, in Section 2.3, states an information estimation
expression that works over a wide range of random transformations, and is
due to Palomar et al. [42]. However, the gain in generality comes at the
cost of increased complexity of the result. At the end, we provide a section
with a set of conclusions derived upon those results illustrated along this
chapter.

2.1 Additive Noise Channels

In this section, we show different information-estimation results regarding
additive noise channels due to Guo et al. [22]. Assume that the output of a
random transformation PY |X is given by the following expression,

Y = f(θ,X) +W, (2.2)

where W is an arbitrary continuous random variable that is independent of
X and f(θ,X) is a measurable deterministic preprocessing of the input X
that is differentiable with respect to the parameter θ. In this framework,
several regularity conditions are assumed in order to guarantee the validity
of the results obtained. Suppose that the following conditions are satisfied:

A1. The input PX and the noise probability density function PW are fixed
and independent of θ.

A2. The expression d
dwPW (w) is uniformly continuous over the support of

PW .

A3. The function E
[

d
dW logPW (W )|Y = y

]
exists for all x ∈ X and y ∈ Y.

A4. For every θ and ω(y) integrable, we have∣∣∣∣logPY (y)
d

dθ
PY (y)

∣∣∣∣ ≤ ω(y) (2.3)

in a neighborhood of θ0.

Notice that these technical conditions are satisfied by the most common
distributions used in communications.

Theorem 1 ([22]). Consider a general additive noise channel given by
(2.2). Then, for every input distribution and noise distributions that satisfy
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conditions A1-A4,

d
dθ
I(X;Y ) = −E

[
E
[
f ′(θ,X)|Y

]
E

[
d

dW
logPW (W )

∣∣∣∣Y ]] (2.4)

where f ′(θ,X) stands for the derivative of the preprocessing function with
respect to θ, i.e.,

f ′(θ,X) ,
∂

∂θ
f(θ,X). (2.5)

The previous expression has several advantages. First, it covers a
wide set of scenarios studied in the communication systems. Second, the
expression found holds regardless of the input distribution; basically it is
composed of two terms involving conditional estimates, one depending on the
estimate of the derivative of the input preprocessing and the other depending
on the distribution of the noise. Additionally, as was pointed out before,
the regularity conditions A1-A4 are sufficiently mild for Theorem 1 to be
useful. The mayor drawback in the expression given by Theorem 1 is the
fact that in most of the cases, the term d

dw logPW (w) depends on the output
Y which means that the expression at the RHS of (2.4) not only depends on
conditional mean estimates of the input, in contrast to the initial expressions
given in (1.8) and (1.13).

Example 1 (Scalar Gaussian Channel with variance σ2).
Consider a Gaussian channel where the input-output relationship is given
by,

Y =
√
θX +W (2.6)

where W is a Gaussian distribution with zero mean and variance σ2. In this
case notice that,

d
dw

logPW (w) = − w
σ2
. (2.7)
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Therefore, applying Theorem 1 we get that,

d
dθ
I(X;Y ) =

1
2σ2θ1/2

E [E[X|Y ]E [W |Y ]] (2.8)

=
1

2σ2θ1/2
E
[
E[X|Y ]E

[
Y − θ1/2X|Y

]]
(2.9)

=
1

2σ2θ1/2
E
[
E[XY ]− θ1/2E [X|Y ]2

]
(2.10)

=
1

2σ2
E
[
X2 − E [X|Y ]2

]
(2.11)

=
1

2σ2
mmse(θ). (2.12)

Notice that, in order to obtain an information–estimation expression
that is determined entirely by the input and its conditional mean estimates,
the steps from (2.9) to (2.12) are required. When dealing with other models
different to the Gaussian, these steps may not hold.

2.2 Additive Channels with Noise from the
Exponential Family

In the following section we state some results given by Raginsky and
Coleman [45], pertaining to additive noise channels where the distribution
of the noise is a member of the exponential family. Consider the following
input-output relationship,

Y = X +W, (2.13)

where W is a random variable that belongs to the exponential family, i.e.,
for a given function ρ : Y → R,

PW (y) = e−θρ(y)−A(θ) (2.14)

which depends implicitly on θ and ρ. The quantity A(θ) known as the log
partition function or cumulant function is defined as,

A(θ) = logZ(θ) (2.15)

where,

Z(θ) =
∫
e−θρ(y)µ(dy) <∞, θ ∈ (0,∞), (2.16)
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with µ a σ−finite fixed reference measure defined over a measurable space
(Y,FY , µ) that is translation invariant, i.e., for any A ∈ FY and y ∈ Y,
µ(A − y) = µ(A). Based on the input-output structure of the model, the
conditional distribution of the channel is given by,

PY |X(y|x) =
e−θρ(y−x)

Z(θ)
. (2.17)

Even though it is not explicit in the notation, the conditional distribution
PY |X depends on the parameter θ, denominated natural parameter. In what
follows we study the behavior of the mutual information with respect to
changes in the value of the natural parameter. Several known channels
treated in the communications field match with the scenario described by
(2.13). The Gaussian channel is one of those models, where ρ(y) = y2

and Z(θ) =
√
π/θ. Additionally, using a module 2 arithmetic, the Binary

Symmetric Channel (BSC) matches with the model given in (2.13) with
ρ(y) = y and Z(θ) = 1 + e−θ. To state the main result, i.e., the derivative
of the input–output mutual information, assume that the input distribution
PX is such that, for all θ in some neighborhood of every θ0 > 0,∣∣∣∣ d

dθ
A(θ|y)PY (y)

∣∣∣∣ ≤ ω(y) (2.18)

for some integrable function ω(y), where

A(θ|y) , log
∫
e−θρ(y−x)dPX(x). (2.19)

In [45] it is shown that the technical condition (2.18) holds for a wide variety
of cases, and is used for the sake of formality. In the following theorem
we state an information-estimation relationship for additive noise channels
where the distribution of the noise belongs to the exponential family.

Theorem 2 ([45]). Let the input distribution PX be such that condition
(2.18) holds. Then,

d
dθ
I(X;Y ) = θ

d2

dθ2
A(θ) + cov{E[ρ(Y −X)|Y ], A(θ|Y )}, (2.20)

where the expectation is with respect to the distribution PXY .

In light of the previous result there are several comments to make: even
though the expression obtained for the derivative of the mutual information
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holds for a wide range of channels, the main drawback is that (2.20) depends
on the output Y not only through conditional mean estimates of the input.
In other words, comparing (2.20) with the expressions obtained for the
Gaussian channel in (1.8) and in (1.13) for the Poisson channel, the main
difference relies on the fact that (1.8) and (1.13) only depend on input
statistics and conditional mean estimates of the input, meanwhile, (2.20)
depends directly on the expected value of the function ρ(Y − X). This
explicit dependency on Y , for example in the case of the Gaussian channel,
masks the fact that the derivative of the mutual information corresponds to
the minimum square error. Additionally, in those cases where the output
Y takes values on positive and negative sets, it is harder to state the
monotonicity of the mutual information based on the expression found for
its derivatives.

2.3 Representation of Mutual Information via
Input Estimates

In this section we show a general information-estimation relationship that
works over any kind of channels without assuming any special structure.
After presenting the main result stated initially in [42] we discuss several
benefits and drawbacks from the obtained expressions.

Consider again a random transformation PY |X that depends on a
parameter θ (not necessarily from the exponential family or additive). In
this section, unless otherwise is stated, all distributions over the output
alphabet Y depend on the parameter θ through the conditional PY |X .
Before proceeding formally with the results, assume the following regularity
conditions:

• For a given x ∈ X and a distribution QY independent of θ,

d
dθ

EQ
[
PY |X(Y |x)

]
= EQ

[
d
dθ
PY |X(Y |x)

]
. (2.21)

• For a given y ∈ Y and PX independent of θ,

d
dθ

E
[
PY |X(y|X)

]
= E

[
d
dθ
PY |X(y|X)

]
. (2.22)

These assumptions are required in order to state the proof of Theorem
3. They are satisfied by most of the distributions used in communications
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as is illustrated in [42] through examples. Theorem 3, due to Palomar and
Verdú, characterizes the derivative of the input-output mutual information
for an arbitrarily random transformation over arbitrary alphabets.

Theorem 3 ([42]). Let PY |X be a random transformation which is
differentiable with respect to θ and let X be a random input with distribution
PX independent of θ. Then,

d
dθ
I(X;Y ) = E

[
logPX|Y (X|Y )

d
dθ

logPY |X(Y |X)
]
, (2.23)

where the expectation is with respect to the joint distribution PXY .

In [42], Theorem 3 was specialized to the following class of channels.

Theorem 4 ([42]). Let PY |X be a differentiable random transformation
that depends on θ, where the output alphabet is continuous. If

d
dθ
PY |X(y|x) = −Φθ(x)

d
dy
PY |X(y|x), (2.24)

where Φθ(x) is some function of θ and x, then,

d
dθ
I(X;Y ) = E

[
Φθ(x)

d
dy

logPX|Y (X|Y )
]
. (2.25)

Several conclusions can be drawn from Theorems 3 and 4. To better
illustrate them, consider the following example.

Example 2. Let PY |X be a Poisson channel (1.12) with mean θX. Based
on Theorem 3 we have that,

d
dθ
I(X;Y ) = E

[
d
dθ
(
logPY |X(Y |X)

)
logPX|Y (X|Y )

]
(2.26)

= E

[
1

PY |X(Y |X)
d
dθ
(
PY |X(Y |X)

)
logPX|Y (X|Y )

]
(2.27)

= E

[(
Y

θ
−X

)
logPX|Y (X|Y )

]
. (2.28)

Even though results stated in Theorems 3 and 4 work over a wide range
of scenarios, in several cases the expression found involves the calculation
of the posterior PX|Y which in general is difficult to obtain. Additionally,
notice that the expression found in (2.28) differs from that given in (1.13) in
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the sense that it still depends directly on the output Y . Further calculations
are needed in order to obtain the expression given in (1.13).

In general, the results presented by Palomar and Verdú prove their
advantages when they can be applied to any random transformation without
assuming any structure in the input-output relationship, i.e., it is not
assumed an additive nature for the noise or even that it belongs to any
special set of distributions, like the exponential family. For instance,
Theorem 3 allows for a characterization of the behavior of the mutual
information over scenarios such as the discrete memoryless channel, additive
noise models, Poisson models, etc. The major difficulty in this case is the
fact that the information estimation expression found, uses the calculation
of the posterior PX|Y which is not easy to obtain in most of the cases.

2.4 Concluding Remarks

Throughout this chapter, we presented several attempts made in the past
in order to find representations of information measures such as the mutual
information and relative entropy in terms of conditional estimates. Initially,
assuming certain structures in the input-output relationship, information-
estimation relationships similar to those shown in the Introduction were
presented. However, most of the expressions found depend on the output
of the channel Y not only through conditional estimates of functions of
the input. This is in contrast to the behavior of (1.8) and (1.13) which
only depend on conditional mean estimates of the input. In Section 2.3
we presented an information-estimation relationship that works over any
kind of random transformation and, under mild regularity conditions, let us
express the derivative of the mutual information in terms of expectations
of functions that depend on the calculation of the posterior PX|Y , which
generally are not easy to compute. Notice that the resulting expressions
depend again on expectations of the output Y as is illustrated in Example 2.
It is worth pointing out that expressions that depend only on input statistics
and conditional mean estimates through the expectation of loss functions
give rise to the “I-MMSE” and “I-MMLE” relationships. A key point in
those relationships is that the expectation of such loss functions achieves its
minimum value when they are evaluated at the conditional mean estimate
of the input. This conclusion can not be stated from the expressions studied
in this section when the information–estimation expression depends on the
output Y not only through conditional estimates.
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Chapter 3

Bregman Divergences

Bregman divergences were proposed by Lev M. Bregman in 1967 to develop
solutions to convex optimization problems [9]. These class of functions
have found several applications that lie in fields such as machine learning
[5, 48, 27], estimation theory [4, 18] and computational geometry [41], among
others. The structure of this chapter is as follows. In Section 3.1 we state
the definition of a Bregman divergence jointly with a set of properties.
Subsequently, in Section 3.2 we present a one–to–one relationship between
the Bregman divergences and the exponential family distributions. This
connection opens up several questions regarding the information estimation
relationships over those models where the random transformation PY |X
belongs to the exponential family distributions.

3.1 Definition and Properties

Bregman divergences, posteriorly to their application to the solution of
optimization problems, became popular due to their behavior when dealing
with the expectation of such functions. Before stating this behavior
mathematically together with other useful properties, we first provide some
background.

Let (Ω,F , P ) be a probability space and let X be a F−measurable
random variable that we want to estimate. Let y be an observation of
the random variable Y . The available information about X that can be
obtained by observing y is represented by σ(Y ). Mathematically, σ(Y ) is
the σ−algebra generated by Y and contains all Borel-measurable functions
of Y .

Definition 2. Let φ : Ω→ R be a continuously differentiable strictly convex
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function defined on a convex set Ω ⊆ R
d. Consider two points a, â ∈ Ω.

Then, the Bregman divergence between a and â, associated with the function
φ(·) is defined by,

�φ(a, â) = φ(a) − φ(â) − 〈a − â,∇φ(â)〉, (3.1)

where, 〈·, ·〉 denotes the inner product and ∇φ(â) represents the gradient of
the function φ(·) evaluated at â.

Note that �φ(a, â) is equal to the difference between φ(a) and its first
order Taylor approximation based on the behavior of the function φ(·) at
the point â. This definition is graphically illustrated in Figure 3.1.

φ( ˆ a )

aˆ a 

φ(a)

(a − ˆ a )

∇φ( ˆ a )(a − ˆ a )

 φ (a, ˆ a )

φ(a) −φ( ˆ a )

Figure 3.1: Bregman divergence definition.

Bregman divergences are pseudo-metrics that neither need to satisfy the
triangle inequality nor need to be symmetric. In Theorem 5 we state the
basic properties of the Bregman divergences family. We give posteriorly the
proof to these properties for the sake of completeness.

Theorem 5 (Bregman divergences: basic properties). Let φ : Ω →
R be a strictly convex function and let �φ be the Bregman divergence
associated with φ(·). Then,

(i) �φ(a, â) ≥ 0 for all a, â ∈ Ω with equality if and only if a = â.

(ii) �φ(a, â) is strictly convex on its first argument.

(iii) For a, â, ã ∈ Ω,

�φ(a, â) = �φ(a, ã) + �φ(ã, â) − 〈a − ã,∇φ(â) −∇φ(ã)〉. (3.2)
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Proof. To prove Property (i), let a, â ∈ Rd with a 6= â and consider φ
restricted to the line passing through them, i.e., the function defined by
g(t) = φ(tâ+ (1− t)a), for t ∈ [0, 1]. Additionally, notice that,

d
dt
g(t) = ∇φ(tâ+ (1− t)a)T (â− a). (3.3)

Due to the fact that φ is strictly convex, g is strictly convex. Therefore, we
get that,

g(1) > g(0) +
d
dt
g(t)

∣∣
t=0

, (3.4)

which implies that,

g(1) = φ(â) > g(0) +
d
dt
g(t)

∣∣
t=0

= φ(a) +∇φ(a)T (â− a) (3.5)

and therefore,

0 < φ(â)− φ(a)−∇φ(a)T (â− a) (3.6)
= `φ(â, a). (3.7)

Property (ii) is a direct consequence of the definition of Bregman
divergences jointly with the strictly convexity nature of the function φ(a).

To prove property (iii), let a, â, ã ∈ Ω, then

`φ(a, ã) + `φ(ã, â)− 〈a− ã,∇φ(â)−∇φ(ã)〉
= φ(a)− φ(ã)− (a− ã)∇φ(ã)

+ φ(ã)− φ(â)− (ã− â)φ(â)− (a− ã)∇φ(â) +∇φ(ã)(a− ã) (3.8)
= φ(a)− φ(â)−∇φ(â)(a− â) (3.9)
= `φ(a, â). (3.10)

We refer to [8] for further properties satisfied by the set of convex functions.

Theorem 6 ([4]). Let φ : Rd → R be a strictly convex differentiable
function and let `φ be the corresponding Bregman divergence. Let X be an
arbitrary random variable taking values in Rd such that E[X] and E[φ(X)]
are finite. Then, among all the functions of Y , the conditional expectation
is the unique minimizer of the Bregman divergence, i.e.,

arg min
z∈σ(Y )

E [`φ(X, z)] = E[X|Y ]. (3.11)
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Proof. Using Property (iii) of Theorem 5, we have that,

E [`φ(X, z)] = E [`φ(X,E[X|Y ]) + `φ(E[X|Y ], z)]
− 〈X − E[X|Y ],∇φ(z)−∇φ(E[X|Y ])〉 (3.12)

= E [`φ(X,E[X|Y ])] + E [`φ(E[X|Y ], z)] , (3.13)

which implies that,

E [`φ(E[X|Y ], z)] = E [`φ(X, z)]− E [`φ(X,E[X|Y ])] , (3.14)

which due to Property (i) of Theorem 5 is minimum when z = E[X|Y ].

In Table 3.1 we provide several Bregman divergences used throughout this
thesis. With a slight abuse of notation, we use `G to denote the square
distance, `I stands for the Itakura–Saito distance, `P stands for the Bregman
divergence build upon the convex function φ(x) = x log x, and `b, `nb
stand for the Bregman divergences used to state information estimation
relationships in the case of the binomial and negative binomial models,
respectively.

Notation `φ(a, â) φ(a) domain of `φ(·, ·)
`G(a, â) (a− â)2 a2 R2

`I(a, â) a
â − log a

â − 1 − log a (0,∞)2

`P (a, â) a log a
â − (a− â) a log a [0,∞)2

`b(a, â) a log a(1−â)
â(1−a) −

a−â
1−â a log a

1−a (0, 1)2

`nb(a, â) a log a(1+â)
â(1+a) −

a−â
1+â a log a

1+a [0,∞)2

Table 3.1: Example Bregman divergences.

3.2 Exponential Families and Bregman
Divergences

Given a random variable X ∈ Rd, let ξ be a collection of functions
ξi : Rd → R, known as sufficient statistics. For a given vector of sufficient
statistics ξ, let θ = {θ1, · · · , θ|ξ|} be the associated vector of natural or
exponential parameters where |ξ| is the number of functions in the collection
ξ. For each x ∈ Rd we use 〈θ, ξ(x)〉 to denote the Euclidean inner product
in R|ξ| of the two vectors θ and ξ(x).
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Definition 3. The exponential family associated with ξ consists of the
following parametrized collection of density functions

Pθ(x) = exp{〈θ, ξ(x)〉 −A(θ)}ν(x) (3.15)

In Section 2.2 we restricted ourselves to a scalar version through the
function ρ(y)(see (2.14)). The log-partition function A(θ), corresponding to
the distributions indicated in (3.15) is given by,

A(θ) = log
∫

exp 〈θ, ξ(x)〉ν(dx). (3.16)

With the set of sufficient statistics ξ fixed, each parameter vector θ indexes a
particular member Pθ of the family. The canonical parameters θ of interest
belong to the set

Θ , {θ ∈ R|ξ||A(θ) <∞}. (3.17)

A distribution of the exponential family is said to be minimal if there does
not exist a non-zero vector λ ∈ R|ξ| such that the linear combination,

〈λ, ξ(x)〉 =
∑

i∈{1,··· ,|ξ|}

λiξi(x) (3.18)

is equal to a constant.

Definition 4. Consider a d-dimensional real-valued random vector X
distributed according to an exponential family density Pθ specified by the
natural parameter θ ∈ int(Θ). The expectation of a natural statistics ξi(X)
with respect to Pθ is called the expectation parameter, given by,

µi = µi(θ) = E[ξi(X)] =
∫
ξi(x)Pθ(x)dx. (3.19)

Remark 2. It can be shown that the Hessian ∇2A(θ) is positive
semidefinite [64]. Therefore, A(θ) is strictly convex in θ when Pθ is minimal.

Remark 3. The derivative of the log-partition function A(θ) with respect
to the i-th component of the natural parameter is given by

∂

∂θi
A(θ) = µi(θ) = E [ξi(X)] =

∫
ξiPθ(x)dx. (3.20)

The proof to (3.20) can be obtained by differentiating inside the integral in
the definition of A(θ). See [64] for further details.
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Definition 5 ([46]). Let A(θ) be a real-valued function on Rd. Then, its
conjugate function φ(µ) is given by,

φ(µ) = sup
θ∈dom(A)

{〈µ, θ〉 −A(θ)}. (3.21)

The following theorem, due to Banerjee et al., demostrates the existence
of a one-to-one relationship between the set of Bregman divergences and the
exponential family distributions.

Theorem 7 ([5]). Let Pθ be a probability density function of a exponential
family distribution where φ(µ) is the conjugate function of A(θ). Let
θ ∈ Θ be the natural parameter and µ ∈ int(dom(φ)) be the corresponding
expectation parameter (3.19). Let dφ be the Bregman divergence associated
with the function φ. Then Pθ can be uniquely expressed as,

Pθ(x) = exp{−dφ(x, µ)}bφ(x), (3.22)

where bφ(x) , exp{φ(x)}ν(x).

Now we proceed to illustrate this theorem with some distributions from
the exponential family set. In what follows we give an answer to the question
whether the function dφ used in Theorem 7 corresponds to the functions `G
and `P used to express information measures over the Gaussian and Poisson
channels, illustrated previously in (1.8) and (1.13).

Example 3 (Exponential form: Gaussian distribution).
Let Pθ(x) be a standard Gaussian distribution with mean µ and variance
σ2. Then,

Pθ(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 (3.23)

=
1√

2πσ2
e−

x2

2σ2 +xµ

σ2−
µ2

2σ2 (3.24)

= ex·θ−
σ2θ2

2
1√

2πσ2
e−

x2

2σ2 (3.25)

where, to obtain (3.25) we replace θ = µ/σ2. Consequently by (3.15) and
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(3.21),

φ(µ) = sup
θ∈R
{µ · θ −A(θ)} (3.26)

= sup
θ∈R
{µ · θ − σ2θ2

2
} (3.27)

= µ · µ
σ2
− σ2

2
µ2

σ4
(3.28)

=
1
2
µ2

σ2
, (3.29)

which means that, by the definition of the Bregman divergence,

dφ(x, µ) =
1

2σ2
`G(x, µ). (3.30)

According to Theorem 7 we have that,

Pθ(x) = e−
1

2σ2 `G(x,µ)bφ(x) (3.31)

= e−
1

2σ2 `G(x,µ)eφ(x) 1√
2πσ2

e−
x2

2σ2 (3.32)

=
1√

2πσ2
e−

1
2σ2 `G(x,µ), (3.33)

where, based on (3.20) with A(θ) = σ2θ2/2,

µ(θ) =
d
dθ
A(θ) = E[X] = σ2θ = µ. (3.34)

Example 4 (Exponential form: Poisson distribution). Let Pθ(x) be
a Poisson distribution with mean λ. For θ = log λ, we have that

Pθ(x) =
λx

x!
e−λ (3.35)

=
1
x!
e−λ+x log λ (3.36)

=
1
x!
ex·θ−λ (3.37)

=
1
x!
ex·θ−e

θ
. (3.38)

For the Poisson distribution with mean λ, using (3.15) and (3.21), we obtain

φ(µ) = sup
θ∈R
{µ · θ −A(θ)} (3.39)

= sup
θ∈R
{µ · θ − eθ} (3.40)

= µ logµ− µ, (3.41)
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which implies that, by the definition of the Bregman divergence,

dφ(x, µ) = φ(x)− φ(µ)− 〈x− µ,∇φ(µ)〉 (3.42)

= x log
x

µ
− (x− µ) (3.43)

= `P (x, µ). (3.44)

Hence, we get that

Pθ(x) =
λx

x!
e−λ (3.45)

= exp{−`P (x, µ)}exp{x log x− x}
x!

(3.46)

where, with A(θ) = eθ,

µ(θ) =
d
dθ
A(θ) = E[X] = eθ = λ. (3.47)

The remainder of Section 3.2 is devoted to the analysis of the exponential
representation form of the binomial and negative binomial distributions.
Notice that each exponential representation is given by a unique function
dφ (see Theorem 7). For the sake of clarity we postpone to Chapters 4
and 5 respectively, the comparisons between the functions dφ, given by the
exponential representation, and the correspondent functions `φ that give rise
to several information estimation relationships in the context of the binomial
and negative binomial models.

Example 5 (Exponential form: binomial distribution). Let Pθ(x) be
a binomial distribution with parameters (n, p), i.e.,

Pθ(y) =
(
n

y

)
py(1− p)n−y, y ∈ {0, 1, · · · , n}, (3.48)

with p ∈ (0, 1) and n ∈ Z+
0 . Following a similar procedure to that used in

Examples 3 and 4, we get that,

φ(µ) = µ log
µ

n− µ
− n log

n

n− µ
. (3.49)

Then, the Bregman divergence associated with (3.48) is given by,

dφ(x, µ) = x log
x(n− µ)
(n− x)µ

− n log
n− µ
n− x

. (3.50)
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which implies that,

Pθ(y) = e−dφ(y,µ)eφ(y)

(
n

y

)
(3.51)

where φ(y) is given in (3.49) and

µ(θ) =
d
dθ
A(θ) = E[Y ] = n

eθ

1 + eθ
= np. (3.52)

with A(θ) = n log(eθ + 1).

Example 6 (Exponential form: negative binomial distribution).
Let Pθ(x) be a negative binomial distribution with parameters (r, q), i.e.,

Pθ(y) =
(
y + r − 1

y

)
qy(1− q)r, y = 0, 1, · · · (3.53)

Then,

Pθ(y) = e−dφ(y,µ)eφ(y)

(
r + y − 1

y

)
(3.54)

where,

dφ(y, µ) , dnb = y log
y(r + µ)
(r + y)µ

+ r log
r + µ

r + y
(3.55)

with

φ(y) = y log
y

r + y
− r log

r + y

r
. (3.56)

3.3 Concluding Remarks

In this chapter we have defined and proved several properties satisfied by
Bregman divergences. Their positiveness implies that the derivative of the
mutual information is positive for all values of θ where the expressions given
in (1.8) and (1.13) are valid. This means also that the mutual information
is an increasing function of θ, a fact that, for instance, has applications
for the class of “More Capable” Broadcast channels, studied previously
in [19, 20, 12]. Similar conclusions can be derived for relative entropies.
Furthermore, property stated in Theorem 6, regarding the minimization of
the expected value of Bregman divergences, give rise to the “I-MMSE” and
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“I-MMLE” relationships in the context of Gaussian and Poisson models.
This property plays a fundamental role in the characterization of similar
relationships over the binomial and negative binomial models, which are
studied in Chapters 4 and 5, respectively.

Additionally we present a result obtained previously in [5] that shows
a one-to-one relationship between the exponential family distributions and
the Bregman divergences functions. Taking into account this relationship
we prove that the Bregman divergence that appears in the exponential
form of the Gaussian and Poisson distributions is related with the Bregman
divergence used in (1.8) and (1.13) to represent the derivative of the mutual
information. Later on, in Chapters 4 and 5 we explore in the context of the
binomial and negative binomial models whether this connection stills been
valid. Furthermore, facing different structures in the constitution of each
model, we show that the connection between information and estimation is
not always given through a unique Bregman divergence.
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Chapter 4

Binomial Model

In this chapter1 we present new information estimation expressions for a
random transformation based on the binomial distribution. The binomial
model is useful in the treatment of the deletion channel, which was
introduced by Levenshtein [37] and is widely used to model packet switching
networks and systems with synchronization errors.

Initially, adopting a linear scaling of the input θX where θ is the input
scaling factor, we show that the derivative of the relative entropy between
two distributions obtained at the output of the model can be represented
through the expectation of a Bregman divergence `b, similar to (1.10) and
(1.28) showed previously for the Gaussian and Poisson models respectively.
When we analyze the behavior of the input–output mutual information, we
show that its derivative with respect to the input scaling factor can also
be represented through the expectation of the function `b. The context
over which this behavior is analyzed, leads to an information–estimation
relationship similar to the “I-MMSE” and “I-MMLE” relationships showed
previously for the Gaussian and Poisson models.

For an arbitrary θ-dependent preprocessing of the input Xθ, we show
different expressions for the mutual information and the relative entropy
in terms of conditional mean estimates. Among other applications, these
expressions let us state a relationship between the Bregman divergence used
in the exponential form of the binomial distribution (3.50) and the derivative
of some information measures expressed through the Bregman divergence `b.

Along the process we highlight several connections between the Poisson
and binomial models.

1Some results presented through this chapter were published jointly with Professors F.
Pérez-Cruz and D. Guo in [54, 57, 56, 21, 55].
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4.1 Model definition

The binomial model is based on the binomial distribution that describes the
probability of having y successful trials in n independent Bernoulli trials,
each with probability p to succeed:

P (Y = y) =
(
n

y

)
py(1− p)n−y, y = 0, 1, . . . , n. (4.1)

We define the binomial model of order n as a random transformation that
maps an input random variable X to an integer output random variable Y ,
where, conditioned on X = x, Y has distribution Binomial (n, f(θ, x)). In
this model f(θ, x) represents a deterministic θ-dependent preprocessing of
the input. The conditional probability mass function (pmf) of the model is
given by,

PnY |X(y|x) =
(
n

y

)
(f(θ, x))y(1− f(θ, x))n−y, y = 0, 1, . . . , n. (4.2)

Dependency of Y on θ is implicit for notational convenience. Variables
X and Y are viewed as the input and output of the binomial model,
respectively, where f(θ, x) controls the probability of success of each of the
Bernoulli trials that contributes to Y . Also for notational convenience, we
use the shorthand

Xθ = f(θ,X). (4.3)

Furthermore, it is assumed that f(θ,X) is differentiable with respect to θ,
and we denote the derivative of the preprocessed input by,

X ′θ =
∂f(θ,X)

∂θ
. (4.4)

To present different relations between estimation and information, let
PX and QX be two input distributions. The two input distributions induce
two output distributions through the same n-th order binomial model (4.2),
denoted by PnY and QnY , respectively. We shall use En [·] to represent the
expectation with respect to the probability measure PnXY = PXP

n
Y |X . We

use the subscript Q, i.e., EnQ [·], when the expectation is with respect to the
probability measure QnXY = QXP

n
Y |X . Similarly, we use En [Xθ|Y ] (resp.

EnQ [Xθ|Y ]) to denote the conditional estimate of Xθ given the corresponding
output Y of the n-th order binomial model, when X ∼ PX (resp. X ∼ QX).
In particular, in view of (4.2),

En [Y |Xθ = z] = nz, (4.5)
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where we use the superscript n to specify that the expectation pertains to
the n-th order binomial model.

4.2 Information-Estimation Relationships

Connections between information and estimation have proved their own
benefits in the past, predominantly in the Gaussian and Poisson models.
Starting from their simplicity and ending up in proofs for the entropy
power inequality [63] and applications in the field of secrecy capacity [34],
these kind of relationships have important implications in those problems
tackled by the information theory community. Along this section we present
several information-estimation expressions assuming different scenarios in
the constitution of the binomial model.

4.2.1 Linear Scaling (Xθ = θX)

We begin with a set of results concerning linear scaling of the input where
Xθ = θX such that θX ∈ (0, 1).

Theorem 8. Let X be a random variable taking its values in (0, xmax),
following distribution PX or QX . Let Y be the output of the n-th order
binomial model described by (4.2) with Xθ = θX. Then,

d
dθ
D(PnY ‖QnY )

=
n

θ
En−1

[
`b(θX,En−1

Q [θX|Y ])
]
− n

θ
En−1

[
`b(θX,En−1[θX|Y ])

]
(4.6)

=
n

θ
En−1

[
`b(En−1 [θX|Y ] ,En−1

Q [θX|Y ])
]

(4.7)

and

d
dθ
D(PnY ‖QnY ) = En

[
Y

θ
`I
(
X−1 − θ,EnQ[X−1|Y ]− θ

)]
− En

[
Y

θ
`I
(
X−1 − θ,En[X−1|Y ]− θ

)]
(4.8)

= En
[
Y

θ
`I
(
En[X−1|Y ]− θ,EnQ[X−1|Y ]− θ

)]
(4.9)

hold for all θ ∈ (0, x−1
max).

Proof. See Section 4.4.5 for the proof of (4.7) and Section 4.4.1 for the proof
of (4.9).
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Theorem 8 provides two sets of expressions, both with their merits, for
the rate of change of the relative entropy as a function of the scaling α.
The RHS of both (4.7) and (4.9) involves some loss (Bregman divergence)
due to the mismatched estimation by assuming a distribution QX while the
true distribution is PX . In (4.7) the loss function considers the conditional
mean of X and in (4.9) the loss function considers the conditional mean of
X−1. In (4.7) the RHS is proportional to the expected distance between two
posterior mean estimates with respect to the binomial model of order n− 1,
measured through the Bregman divergence `b, while the expectation in the
LHS is with respect to the binomial model of order n. Moreover, in (4.9),
all the expectations are with respect to the underlying n-th order binomial
model. However, the RHS becomes the inner product of Y/θ and the loss
function does not rely on the posterior mean estimate.

The following theorem shows that the derivative of the input–output
mutual information across the binomial model can also be related to a
Bregman divergence.

Theorem 9. Let X ∼ PX be a random variable taking its value in (0, xmax).
Let Y be the output of the n-th order binomial model described by (4.2) with
Xθ = θX. Then,

d
dθ
I(X;Y ) =

n

θ
En−1

[
`b(θX,En−1[θX|Y ])

]
(4.10)

= En
[
Y

θ
`I
(
X−1 − θ,En[X−1|Y ]− θ

)]
(4.11)

hold for all θ ∈ (0, x−1
max).

Proof. See Section 4.4.6 for the proof of (4.10) and Section 4.4.2 for the
proof of (4.11).

Based on the definition of the function `b and subsequently rearranging
algebraically the terms of the expression given in (4.10), we obtain an
alternative representation for the mutual information expression written in
terms of the function `P .

Corollary 1. Assume the same set of conditions used in Theorem 9. Then,

d
dθ
I(X;Y ) = nEn−1

[
`P

(
X,

En−1[X|Y ](1− θX)
1− θEn−1[X|Y ]

)]
. (4.12)

Mathematically speaking, (4.10) and (4.12) are equal, but based on the
arguments used in (4.12), the function `P does not achieve its minimum
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value, given that the second argument is not the conditional mean of the
input X. In the case of (4.10) notice that the function `b do achieve its
minimum value through the use of the arguments X and its conditional
mean estimate.

Adding (4.7) and (4.10) and using property (iii) of the Bregman
divergence functions yield the following result.

Theorem 10. Let X and Y be defined as in Theorem 8. Then,

En−1
[
`b(θX,En−1

Q [θX|Y ])
]

=
θ

n

d
dθ

[I(X;Y ) +D(PnY ‖QnY )] (4.13)

holds for all θ ∈ (0, x−1
max).

Theorem 10 shows that the mismatched estimation penalty incurred
when we estimate the random variable X through the mismatched prior
distribution QX is proportional to the derivative of sum of the relative
entropy between PX and QX and the input-output mutual information.
In this case, the mismatched penalty measured through the loss function
`b is minimum when QX = PX for all x ∈ X . For QX = PX , the relative
entropy between PnY and QnY is zero and the minimum of the loss function
is proportional to the derivative of the mutual information:

min
QX

En−1
[
`b(θX,En−1

Q [θX|Y ])
]

=
θ

n

d
dθ
I(X;Y ). (4.14)

The counterpart results to (4.13) regarding the Gaussian and Poisson
channels are, respectively, shown in [66] and [3].

4.2.2 Arbitrary Scaling

We now study the more general case in which f(θ,X) = Xθ ∈ (0, 1) depends
on the parameter θ in an arbitrary manner, which is not necessarily linear.
In particular, the first part of Theorems 8 and 9 can be regarded as corollary
of these general results. We assume that the set of feasible values for the
parameter θ, denoted by Θ is an open real number set.

Theorem 11. Under both distributions PX and QX , let Xθ ∈ (0, 1) and X ′θ
be integrable and bounded. Let Y be the output of the n-th order binomial
defined in (4.2) with Xθ as the input. Then,

d
dθ
D(PnY ‖QnY ) = Fn−1

Q (Xθ)− Fn−1
P (Xθ) (4.15)
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holds for all θ ∈ Θ, where

Fn−1
Q (Xθ)

= nEn−1

[
X ′θ log

(1− En−1
Q [Xθ|Y ])Xθ

(1−Xθ)En−1
Q [Xθ|Y ]

−
En−1
Q [X ′θ|Y ](Xθ − En−1

Q [Xθ|Y ])

(1− En−1
Q [Xθ|Y ])En−1

Q [Xθ|Y ]

]
.

(4.16)

Proof. See Section 4.4.3.

For Xθ = θX, (4.16) simplifies to

Fn−1
Q (θX)

= nEn−1

[
X log

(1− En−1
Q [θX|Y ])θX

(1− θX)En−1
Q [θX|Y ]

−
En−1
Q [X|Y ](θX − En−1

Q [θX|Y ])

(1− En−1
Q [θX|Y ])En−1

Q [θX|Y ]

]
(4.17)

=
n

θ
En−1

[
`b(θX,En−1

Q [θX|Y ])
]
. (4.18)

in which we can see that, in the general case, X ′θ might preclude us from
using the Bregman divergence for the binomial model.

Theorem 12. Let Xθ, X ′θ and Y be defined as in Theorem 11. Then,

d
dθ
I(X;Y ) = Fn−1

P (Xθ) (4.19)

= n En−1

[
X ′θ log

(1− En−1 [Xθ|Y ])Xθ

(1−Xθ)En−1 [Xθ|Y ]

]
, (4.20)

holds for all θ ∈ Θ.

Proof. See Section 4.4.4.

We illustrate with a simple example how Theorem 12 can be applied
and show that the achieved result cannot be represented by a Bregman
divergence. We set Xθ = X + θ such that 0 < x + θ < 1 for all x ∈ X . A
similar scenario was studied in [25] for the Poisson model. Applying (4.20),
we get that the derivative of the mutual information can be expressed as:

d
dθ
I(X;Y ) = nEn−1

[
log

(X + θ)(1− En−1[X + θ|Y ])
(1− (X + θ))En−1[X + θ|Y ]

]
(4.21)

= nEn−1
[
g
(
(X + θ),En−1[X + θ|Y ]

)]
, (4.22)
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where,

g(a, â) = log
a(1− â)
(1− a)â

− a− â
(1− â)â

. (4.23)

Although g(a, â) can be obtained from (3.1) with φ(a) = log(a)− log(1−a),
it is not a Bregman divergence because log(a)− log(1− a) is non-convex on
(0, 1).

Recall from the analysis given in (3.30) and (3.44) that results obtained
for the Gaussian and Poisson models suggest a straight relationship between
the Bregman divergence used in the exponential form of the conditional
distribution of the model and the derivatives of the information measures
treated. Hence a natural extension to these results consists on finding out the
relationship between the Bregman divergence used to obtain the exponential
form of the binomial distribution (3.50), and the Bregman divegence `b used
in Theorems 8 and 9 to express the derivative of the relative entropy and
mutual information.

Theorem 13. Let X be a positive bounded random variable that can be
distributed as either PX or QX . Let Y be the output of a n-th binomial
model with parameters (n, θX/n). Then,

1
θ
En−1

[
db
(
θX,En−1[θX|Y ]

)]
<

d
dθ
I(X;Y ), (4.24)

and

1
θ
En−1

[
db

(
En−1[θX|Y ],En−1

Q [θX|Y ]
)]

<
d
dθ
D(PnY ||QnY ), (4.25)

where we use db, to denote the Bregman divergence associated with the
exponential representation of the binomial distribution, given in (3.50).

Proof. See Section 4.4.7.

Expression (4.24) shows that in the case of the binomial model the
derivative of the mutual information, up to a scaling factor, constitutes an
upper bound for the expectation of the Bregman divergence db associated
with the binomial distribution on its exponential form (see (3.50) and
(3.51)). The generality of the bound relies on the fact that it holds regardless
of the input distribution. A similar analysis applies in the case of the
derivative of the relative entropy.
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4.2.3 Low Input Scaling

Previously, in works due to Guo et al. [69] and to Lapidothet al. [35]
was analyzed the low input scaling behavior for the Gaussian and Poisson
channels. In the former, the expression found has a fundamental meaning
in the wideband communications regime; it determines the minimum energy
required per bit to achieve reliable communication [61]; in the latter, it was
established that, at low input scaling regimes, the capacity of the Poisson
channel scales like E log 1/E where E represents the average input power.

The expressions given for the low input scaling regime play a
fundamental roll in terms of efficiency. This claim is based on the fact
that, an ideal scenario to work over is that that achieves the maximum rate
of change of the mutual information when small increases in the amplifying
factor are allowed2. Additionally, based on the concavity of the mutual
information over the input scaling space, the derivative of the mutual
information is maximum when the input scaling tends to zero.

Based on the expressions found for the derivative of the mutual
information and relative entropy, in this section, we study the behavior
of such derivatives when the input scaling θ goes to zero. These expressions
show that, over certain scenarios, the low input scaling regime for the
binomial models has the same behavior that the one found for the Poisson
channel and is independent of the number trials n made to constitute the
binomial model.

Theorem 14. Let X ∼ PX be a positive bounded random variable taking
its values in (0, θ−1

max). Let Y be the output of the n-order binomial model
described by (4.2) with Xθ = θX. Then,

lim
θ→0

d
dθ
I(X;Y ) = nE [`P (X,E[X])] (4.26)

= nE

[
X log

X

E[X]

]
. (4.27)

Proof. See Section 4.4.8.

Even though the most prominent information-estimation relationship is
given in terms of the function `b, Theorem 14 shows the close relationship
between the Bregman divergence `P and the binomial model. In the context

2This claim works over such channels where the mutual information is increasing in
θ. An analogous statement can be done when the mutual information has a decreasing
nature.
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of the Poisson model, Atar et al. [3] describe the function shown in (4.27)
as the input-dependent expression that is the analogous to the variance in
the Gaussian case. This claim appears as consequence of the behavior of
the function `P .

Corollary 2. Let X ∼ PX be a positive bounded random variable taking its
values in (0, n/θmax). Let Y be the output of the n-th order binomial model
described (4.2) with Xθ = θX/n. Then,

lim
θ→0

d
dθ
I(X;Y ) = E [`P (X,E[X])] (4.28)

= E

[
X log

X

E[X]

]
. (4.29)

Proof. See Section 4.4.9.

The analogous expression for the relative entropy to that given in Theorem
14 at low input scaling factor is given as follows.

Theorem 15. Assume the same set of conditions used in Theorem 14.
Then,

lim
θ→0

d
dθ
D(PnY ||QnY ) = n`P (E[X],EQ[X]). (4.30)

Proof. Starting from the expression given for the derivative of the relative
entropy in Theorem 8, the proof to Theorem 15 is similar to the proof of
Theorem 14.

Based on expression obtained for Theorem 15 notice that the low input
scaling behavior for the relative entropy only depends on the mean of each
input distribution, feature shared with those results given previously for the
Gaussian model.3

Corollary 3. Assume the same set of conditions used in Corollary 2. Then,

lim
θ→0

d
dθ
D(PnY ||QnY ) = `P (E[X],EQ[X]). (4.32)

Proof. See Section 4.4.10.
3Let Y be the output of the Gaussian model shown in (1.7). Then, it can be shown

that,

lim
snr→0

E[X|Y ] = E[X] (4.31)

Therefore, limsnr→0D(PY ||QY ) only depends on E[X] and EQ[X].
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4.3 Concluding Remarks

Throughout this chapter we study several information-estimation
relationships that arise in the context of the binomial models. In this case
we have that, for a linear input scaling Xθ = θX, the derivative of the
input-output mutual information is related to the conditional mean estimate
through a Bregman divergence, as was shown previously for the Gaussian
and Poisson models. Based on this fact, we can state for the binomial model
a relationship that plays a similar role to the “I-MMSE” relationship in the
case of the Gaussian channel and to the “I-MMLE” relationship in the case
of the Poisson channel.

Over a second scenario, we characterize the derivative of the relative
entropy between two distributions PnY and QnY obtained at the output of a
binomial model. In the linear case, the information-estimation relationship
is given in terms of the same Bregman divergence used to describe the mutual
information.

A striking property that appears in the process is the fact that those
expressions given in terms of the Bregman divergence `b can also be given
in terms of the Bregman divergence `P used in the context of the Poisson
models. The difference in this case arises in the arguments that are used
by each function. When dealing with the mutual information expression,
the arguments of the function `b are θX and its conditional mean estimate,
which guarantees that the expected loss achieves its minimum value. In
the case of the function `P , the arguments used are X and (1−θX)X̂

1−θX̂
where

X̂ = En−1[X|Y ] at which the function `P does not achieves its minimum
value, given that the second argument is not exactly the conditional mean
estimate of the first.

When dealing with an arbitrary function Xθ we show that there is a
connection between information and estimation through the function F(Xθ),
which let us express the derivative of the relative entropy and mutual
information in terms of conditional estimates. This relationship has several
advantages:

• It is useful to prove that not in all the cases the information–estimation
relationship is given through a Bregman divergence.

• It is demonstrated that, up to a scaling factor, the expectation of the
Bregman divergence db between the mean of the model θX and its
conditional estimate En−1[θX|Y ] is an upper bound for the derivative
of the input–output mutual information which is expressed through

38



the function `b. A similar upper bound can be found for the derivative
of the relative entropy. The generality of these expressions lie on the
fact that they hold regardless of the input distribution.

• Broadcast channels context. In several circumstances it is useful to
establish scenarios over which the mutual information is monotone over
the parameter θ. This property leads to the notion of “more capable
Broadcast channels” for which the capacity region is completely
characterized [19, 36, 20].

In the low input scaling regime, we show that, as long as the parameter
θ goes to zero, the limit of the derivative of the mutual information and its
similar, in the context of the relative entropy, is governed by the Bregman
divergence `P . Specifically, in the case of the mutual information, the
low input scaling behavior only depends on the function E[`P (X,E[X]) =
E
[
X log X

E[X]

]
which in [3] is cited as the input-dependent function over the

Poisson model, that plays a roll similar to the variance in the Gaussian
model. In the case of the derivative of the relative entropy, we prove
that its low input scaling regime only depends on the mean of each input
distribution.

4.4 Proofs

In this appendix, we collect the proofs for the binomial model. Organization
of this section is given mainly because of the dependency between each
result. Initially we prove (4.9) in Theorem 8 and (4.11) in Theorem 9.
Later we prove Theorems 11 and 12 which let us conclude, as particular
cases, expressions given in (4.7) in Theorem 8 and (4.10) in Theorem 9.
We conclude this section with the proofs to results pertaining the low input
scaling behavior of the binomial model.

4.4.1 Proof of (4.9) in Theorem 8.

Proof of (4.9) hinges on the following lemma, which translates the derivative
of the output pmf to a certain difference function.

Lemma 1. Let PnY be the pmf of the output of the binomial model described
by (4.2) with θX as the input. For every y = 0, . . . , n,

d
dθ
PnY (y) =

1
θ

(yPnY (y)− (y + 1)PnY (y + 1)) , (4.33)
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where we use the convention that PnY (n+ 1) = 0.

Lemma 1 resembles a result for Gaussian models in [23], where the
derivative with respect to the scaling parameter translates to the derivative
with respect to the output variable. For the binomial model, the output is
discrete and the result consists of the difference of the output distribution
(modulated by the variable y) in lieu of derivative.

Proof. We start with

PnY (y) = E

[(
n

y

)
(θX)y (1− θX)n−y

]
. (4.34)

Evidently,

d
dθ
PnY (y) = E

[(
n

y

)
d
dθ
(
(θX)y (1− θX)n−y

)]
(4.35)

=
y

θ
E

[(
n

y

)
(θX)y (1− θX)n−y

]
− (n− y)

θ
E

[(
n

y

)
(θX)y+1 (1− θX)n−y−1

]
(4.36)

=
y

θ
PnY (y)− y + 1

θ
E

[(
n

y + 1

)
(θX)y+1(1− θX)n−y−1

]
(4.37)

where in (4.35) we use the interchangeability property (see Lemma 2 in
Appendix 4.4.3). We note that (4.35)–(4.36) hold for y = 0, . . . , n. In
arriving at (4.37), we use (4.34) and the convention that

(
n
n+1

)
= 0. In fact,

the second term in (4.36) and the second term in (4.37) are both equal to 0
for y = n. Using (4.34) again, we arrive at (4.33) from (4.37).

Proof of (4.9) in Theorem 8. From the definition of relative entropy,

D(PnY ‖QnY ) =
n∑
y=0

PnY (y) log
PnY (y)
QnY (y)

, (4.38)

it is not difficult to show that

d
dθ
D(PnY ‖QnY )

=
n∑
y=0

(
log

PnY (y)
QnY (y)

)
dPnY (y)

dθ
−
PnY (y)
QnY (y)

dQnY (y)
dθ

(4.39)

= θ−1(A−B), (4.40)
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where

A = θ
n∑
y=0

(
log

PnY (y)
QnY (y)

)
dPnY (y)

dθ
(4.41)

=
n∑
y=0

(
log

PnY (y)
QnY (y)

)
(yPnY (y)− (y + 1)PnY (y + 1)) (4.42)

=
n∑
y=1

(
log

PnY (y)
QnY (y)

)
yPnY (y)−

n−1∑
y=0

(
log

PnY (y)
QnY (y)

)
(y + 1)PnY (y + 1) (4.43)

=
n∑
y=1

(
log

PnY (y)
QnY (y)

)
yPnY (y)− yPnY (y) log

PnY (y − 1)
QnY (y − 1)

(4.44)

=
n∑
y=1

yPnY (y) log
PnY (y)QnY (y − 1)
PnY (y − 1)QnY (y)

(4.45)

and

B = θ

n∑
y=0

PnY (y)
QnY (y)

dQnY (y)
dθ

(4.46)

=
n∑
y=0

PnY (y)
QnY (y)

(yQnY (y)− (y + 1)QnY (y + 1)) (4.47)

=
n∑
y=1

yPnY (y)−
n−1∑
y=0

PnY (y)
QnY (y)

(y + 1)QnY (y + 1)) (4.48)

=
n∑
y=1

yPnY (y)−
n∑
y=1

yQnY (y)
PnY (y − 1)
QnY (y − 1)

(4.49)

=
n∑
y=1

yPnY (y)
(

1−
PnY (y − 1)QnY (y)
PnY (y)QnY (y − 1)

)
, (4.50)

where (4.39) relies on d
dθ

∑n
y=0 P

n
Y (y) = 0 and, in (4.42) and (4.47) we apply

the result obtained in Lemma 1. Since (4.33) holds for any input distribution
PX , it remains true if PX is replaced by another distribution QX , as long as
the input θX belongs to the interval (0, 1). Moreover,

PnY (y − 1) = E

[(
n

y − 1

)
(θX)y−1 (1− θX)n−y+1

]
(4.51)

=
y

n− y + 1
En
[

1− θX
θX

∣∣∣∣Y = y

]
PnY (y), (4.52)

41



where (4.52) is because

E
[
h(X)PnY |X(y|X)

]
= En [h(X)|Y = y]PnY (y) (4.53)

holds for every measurable function h(x).
Similarly,

QnY (y − 1) =
y

n− y + 1
EnQ

[
1− θX
θX

∣∣∣∣Y = y

]
QnY (y) (4.54)

so that

PnY (y − 1)QnY (y)
PnY (y)QnY (y − 1)

=
En[X−1 − θ|Y = y]
EnQ[X−1 − θ|Y = y]

. (4.55)

Therefore,

d
dθ
D(PnY ‖QnY ) =

1
θ

n∑
y=1

yPnY (y)`I
(
En[X−1 − θ|Y = y],EnQ[X−1 − θ|Y = y]

)
(4.56)

= En
[
Y

θ
`I
(
En[X−1 − θ|Y ],EnQ[X−1|Y ]− θ

)]
(4.57)

by plugging (4.55) into (4.45) and (4.50) and subsequently (4.40).

4.4.2 Proof of (4.11) in Theorem 9.

Using Theorem 8,

d
dθ
I(X;Y ) =

∫
d
dθ
D(PnY |X=x‖P

n
Y )dPX(x) (4.58)

=
∫

EPn
Y |X=x

[
Y

θ
`I
(
x−1 − θ,En[X−1|Y ]− θ

)]
dPX(x) (4.59)

= En
[
Y

θ
`I
(
X−1 − θ,En[X−1|Y ]− θ

)]
, (4.60)

where we have fix x ∈ X and let PnY = PnY |X=x, which can be regarded as
the output distribution of a binomial model with deterministic input θx.
We have also relabeled QnY by PnY in the second argument of the relative
entropy.
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4.4.3 Proof of Theorem 11.

Before proceeding with a formal proof for Theorem 11, we present several
results regarding the binomial model with parameters (n,Xθ). Recall that
Xθ = f(θ,X) and X ′θ = ∂f(θ,X)/∂θ.

Lemma 2. [Exchangeability Property]. Let the function Xθ = f(θ,X) :
Θ × X → (0, 1) be such that |∂f(θ,x)

∂θ | < M for all (θ, x) ∈ Θ × X where
M ∈ R+. Then,

d
dθ

E
[
PnY |X(y|X)

]
= E

[
d
dθ
PnY |X(y|X)

]
(4.61)

= yPnY (y)En
[
X ′θ
Xθ

∣∣∣∣Y = y

]
− (n− y)PnY (y)En

[
X ′θ

1−Xθ

∣∣∣∣Y = y

]
, (4.62)

where PnY |X is given by (4.2).

Proof. By [6, Theorem 12.13] the derivative and the integral operators can
be exchanged in order if the following conditions hold:

(i) The derivative d
dθP

n
Y |X(y|x) exists for all values of (θ, x) ∈ Θ×X .

(ii) There exists a function ω(x) such that for all (θ, x) ∈ Θ×X ,∣∣∣∣ d
dθ
PnY |X(y|x)

∣∣∣∣ ≤ ω(x) (4.63)

and E[ω(X)] <∞.

The first condition is verified as follows,

d
dθ
PnY |X(y|x) = PnY |X(y|x)

∂f(θ, x)
∂θ

y

f(θ, x)︸ ︷︷ ︸
(I)

−PnY |X(y|x)
∂f(θ, x)
∂θ

n− y
1− f(θ, x)︸ ︷︷ ︸

(II)

,

(4.64)

in which we have used the definition of PnY |X(y|x) in (4.2). Due to the fact

that 0 < f(θ, x) < 1 and |∂f(θ,x)
∂θ | < M for all (θ, x) ∈ Θ×X we can conclude

that (4.64) is well defined over the domain considered.
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For (ii), we proceed to prove the existence of integrable upper and lower
bounds for (I) and (II) in (4.64) independently, and we then combine them.
The term (I) is zero for y = 0. For y 6= 0 we have that,∣∣∣∣PnY |X(y|x)

∂f(θ, x)
∂θ

y

f(θ, x)

∣∣∣∣
= n

(
n− 1
y − 1

)
(f(θ, x))y−1 (1− f(θ, x))n−y

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ (4.65)

= n Pn−1
Y |X (y − 1|x)

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ < Mn, (4.66)

because |∂f(θ,x)
∂θ | < M , 0 < Pn−1

Y |X (y|x) < 1 for all (θ, x) ∈ Θ × X and
y ∈ {1, 2, . . . , n}.

For the second term, (II), observe that it is zero for y = n. For
y ∈ {0, 1, . . . , n− 1} we have∣∣∣∣PnY |X(y|x)

n− y
1− f(θ, x)

∂f(θ, x)
∂θ

∣∣∣∣
= n

(
n− 1
y

)
(f(θ, x))y (1− f(θ, x))n−y−1

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ (4.67)

= n Pn−1
Y |X (y|x)

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ < Mn. (4.68)

Combining (4.66) and (4.68), we get Condition (ii).

Next, we provide a set of lemmas that let us write different expressions
regarding the binomial channel of order n in terms of conditional estimates
carried over a binomial model of order n− 1.

Lemma 3.

En
[
Y En

[
X ′θ
Xθ

∣∣∣∣Y ] log
PnY (Y )
QnY (Y )

]
= nEn−1

[
En−1[X ′θ|Y ] log

En−1[Xθ|Y ]Pn−1
Y (Y )

En−1
Q [Xθ|Y ]Qn−1

Y (Y )

]
. (4.69)

Proof. Before proceeding with the proof, we highlight several facts that are
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useful later. First, for a given y 6= 0,

yEn
[
X ′θ
Xθ

∣∣∣∣Y = y

]
PnY (y)

= E

[
∂f(θ,X)

∂θ

n(n− 1)!
(y − 1)!(n− y)!

(f(θ,X))y−1(1− f(θ,X))n−y
]

(4.70)

= nE

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y − 1|X)

]
. (4.71)

Second, for an arbitrary function θ(y) we have,

n∑
y=1

θ(y) log
PnY (y)
QnY (y)

=
n−1∑
y=0

θ(y + 1) log
PnY (y + 1)
QnY (y + 1)

(4.72)

=
n−1∑
y=0

θ(y + 1) log
E
[
(f(θ,X))y+1(1− f(θ,X))n−y−1

]
EQ [(f(θ,X))y+1(1− f(θ,X))n−y−1]

(4.73)

=
n−1∑
y=0

θ(y + 1) log
E
[
f(θ,X)Pn−1

Y |X (y|X)
]

EQ

[
f(θ,X)Pn−1

Y |X (y|X)
] . (4.74)

In order to prove the lemma, we transform the LHS of (4.69) as follows,

n∑
y=0

yE

[
X ′θ
Xθ

∣∣∣∣Y = y

]
PnY (y) log

PnY (y)
QnY (y)

= n
n∑
y=1

E

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y − 1|X)

]
log

PnY (y)
QnY (y)

(4.75)

= n

n−1∑
y=0

E

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y|X)

]
log

E
[
f(θ,X)Pn−1

Y |X (y|X)
]

EQ

[
f(θ,X)Pn−1

Y |X (y|X)
] (4.76)

= n

n−1∑
y=0

En−1[X ′θ|Y = y]Pn−1
Y (y) log

En−1[Xθ|Y = y]Pn−1
Y (y)

En−1
Q [Xθ|Y = y]Qn−1

Y (y)
, (4.77)

where we eliminate the first term of the sum (y = 0) and apply (4.71) to
yield (4.75); we have a change of variable from y to (y− 1) and apply (4.74)
to yield (4.76); and, to obtain (4.77), we have relied on (4.53).

Finally, we apply the definition of conditional mean estimate and replace
f(θ,X) by Xθ and ∂f(θ,X)/∂θ by X ′θ to establish (4.69).
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Lemma 4.

En
[
(n− Y )En

[
X ′θ

1−Xθ

∣∣∣∣Y ]log
PnY (Y )
QnY (Y )

]
= nEn−1

[
En−1[X ′θ|Y ] log

En−1[1−Xθ|Y ]Pn−1
Y (Y )

En−1
Q [1−Xθ|Y ]Qn−1

Y (Y )

]
. (4.78)

Proof. In this proof, initially we highlight two facts that are used later in
the proof. First, for every y 6= n we have,

(n− y)En
[

X ′θ
1−Xθ

∣∣∣∣Y = y

]
PnY (y)

= E

[
∂f(θ,X)

∂θ

n(n− 1)!
y!(n− y − 1)!

(f(θ,X))y(1− f(θ,X))n−y−1

]
(4.79)

= nE

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y|X)

]
. (4.80)

Second, for every y 6= n,

log
PnY (y)
QnY (y)

= log
E [(f(θ,X))y(1− f(θ,X))n−y]
EQ [(f(θ,X))y(1− f(θ,X))n−y]

(4.81)

= log
E
[
(1− f(θ,X))Pn−1

Y |X (y|X)
]

EQ

[
(1− f(θ,X))Pn−1

Y |X (y|X)
] . (4.82)

To prove Lemma 4, we transform the LHS of (4.78) as follows,

n∑
y=0

(n− y)En
[

X ′θ
1−Xθ

∣∣∣∣Y = y

]
PnY (y) log

PnY (y)
QnY (y)

= n
n−1∑
y=0

E

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y|X)

]
log

PnY (y)
QnY (y)

(4.83)

= n

n−1∑
y=0

E

[
∂f(θ,X)

∂θ
Pn−1
Y |X (y|X)

]
log

E
[
(1− f(θ,X))Pn−1

Y |X (y|X)
]

EQ

[
(1− f(θ,X))Pn−1

Y |X (y|X)
] (4.84)

= n

n−1∑
y=0

En−1[X ′θ|Y = y] log
En−1[1−Xθ|Y = y]Pn−1

Y (y)
En−1
Q [1−Xθ|Y = y]Qn−1

Y (y)
Pn−1
Y (y), (4.85)

where in (4.83) we have used (4.80) and eliminated the last term of the sum
because it is zero; in (4.84) we write the expression in (4.83), using (4.82),
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in terms of binomial distributions with parameters (n − 1, f(θ, x)); finally
we apply (4.53) to obtain (4.85).

Lemma 5.

En
[
Y EnQ

[
X ′θ
Xθ

∣∣∣∣Y ]] = nEn−1

[
En−1[Xθ|Y ]

En−1
Q [X ′θ|Y ]

En−1
Q [Xθ|Y ]

]
. (4.86)

Lemma 6.

En
[
(n− Y )EnQ

[
X ′θ

1−Xθ

∣∣∣∣Y ]] = nEn−1

[
En−1
Q [X ′θ|Y ]

En−1[1−Xθ|Y ]
En−1
Q [1−Xθ|Y ]

]
.

(4.87)

We omit the proof of Lemmas 5 and 6 as they are easily obtained using
proofs of Lemmas 3 and 4, respectively.

Proof of (4.15) in Theorem 11. This proof is based on writing the
derivatives of PnY and QnY in terms of conditional estimations. By definition,
the derivative of the relative entropy with respect to θ is given by,

d
dθ
D(PnY ‖QnY ) =

n∑
y=0

dPnY (y)
dθ

log
PnY (y)
QnY (y)︸ ︷︷ ︸

(I)

−
n∑
y=0

PnY (y)
QnY (y)

dQnY (y)
dθ︸ ︷︷ ︸

II

, (4.88)

where the derivative penetrates the sum by the finiteness of the output
alphabet Y. Calculation of the first term (I) is obtained as follows,

n∑
y=0

dPnY (y)
dθ

log
PnY (y)
QnY (y)

=
n∑
y=0

y En
[
X ′θ
Xθ

∣∣∣∣Y = y

]
log

PnY (y)
QnY (y)

PnY (y)

−
n∑
y=0

(n− y)En
[

X ′θ
1−Xθ

∣∣∣∣Y = y

]
PnY (y) log

PnY (y)
QnY (y)

(4.89)

= n
n−1∑
y=0

En−1[X ′θ|Y = y] log
En−1[Xθ|Y = y](1− En−1

Q [Xθ|Y = y])

En−1
Q [Xθ|Y = y](1− En−1[Xθ|Y = y])

Pn−1
Y (y),

(4.90)
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where (4.89) is a consequence of the exchangeability property illustrated in
Lemma 2, (4.90) is the expression obtained in (4.89) written in terms of the
conditional mean estimates over a binomial channel with n− 1 trials, which
is proven explicitly in Lemmas 3 and 4.

The second term of (4.88), (II), simplifies to,

n∑
y=0

PnY (y)
QnY (y)

dQnY (y)
dθ

=
n∑
y=0

y EnQ

[
X ′θ
Xθ

∣∣∣∣Y = y

]
PnY (y)−

n∑
y=0

(n− y) EnQ

[
X ′θ

1−Xθ

∣∣∣∣Y = y

]
PnY (y)

(4.91)

= n

n−1∑
y=0

En−1
Q [X ′θ|Y = y]

En−1[Xθ|Y = y]− En−1
Q [Xθ|Y = y]

En−1
Q [1−Xθ|Y = y]En−1

Q [Xθ|Y = y]
Pn−1
Y (y),

(4.92)

where (4.91) appears as consequence of the exchangeability property and
(4.92) is due to Lemmas 5 and 6.

Putting together expressions obtained in (4.90) and (4.92) yields the
desired result.

4.4.4 Proof of Theorem 12.

We prove Theorem 12 by applying Theorem 11 to the relation between the
mutual information and relative entropy,

I(X;Y ) =
∫
D(PnY |X=x‖P

n
Y )dPX(x), (4.93)

in which PnY |X=x represents the output distribution of a binomial
deterministic model with input distribution being a point mass at x, denoted
as δ(x). The derivative of the mutual information with respect to θ is given
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by,

d
dθ
I(X;Y ) =

∫
d
dθ
D(PnY |X=x‖P

n
Y )dPX(x) (4.94)

=
∫ (

Fn−1
δ(x),P (f(θ,X))− Fn−1

δ(x),δ(x)(f(θ,X))
)

dPX(x) (4.95)

=
∫

Fn−1
δ(x),P (f(θ,X))dPX(x) (4.96)

= Fn−1
P (Xθ) (4.97)

= n En−1

[
X ′θ log

Xθ(1− En−1[Xθ|Y ])
(1−Xθ)En−1[Xθ|Y ]

]
, (4.98)

where4,

Fn−1
δ(x),P (f(θ,X)) = nEPn−1

Y |X=x

[
∂f(θ, x)
∂θ

log
f(θ, x)(1− En−1[f(θ,X)|Y ])
(1− f(θ, x))En−1[f(θ,X)|Y ]

−
En−1

[
∂f(θ,X)
∂θ

∣∣∣Y ] (f(θ, x)− En−1[f(θ,X)|Y ])

(1− En−1[f(θ,X)|Y ])En−1[f(θ,X)|Y ]

 .
(4.99)

This definition is different from the one in (4.16), because the true
input distribution is a delta function and we only take the expectation
with respect to Pn−1

Y |X=x and not Pn−1
XY . In (4.96), we use the fact that

Fn−1
δ(x),δ(x)(f(θ,X)) = 0, because En−1

δ(x) [f(θ,X)|Y ] = f(θ, x). In (4.97), we
make use of the definition in (4.16), when we integrate over PX . Finally
(4.98) is due to

En−1

[
En−1[X ′θ|Y ](Xθ − En−1[Xθ|Y ])
(1− En−1[Xθ|Y ])En−1[Xθ|Y ]

]
= En−1

[
En−1

[
En−1[X ′θ|Y ](Xθ − En−1[Xθ|Y ])
(1− En−1[Xθ|Y ])En−1[Xθ|Y ]

∣∣∣∣∣Y
]]

(4.100)

= En−1

[
En−1[X ′θ|Y ](En−1[Xθ|Y ]− En−1[Xθ|Y ])

(1− En−1[Xθ|Y ])En−1[Xθ|Y ]

]
(4.101)

= 0. (4.102)

4In (4.99), the subscript P in Fn−1
δ(x),P (Xθ) makes reference to the fact that the

conditionals En−1[Xθ|Y ] at the RHS of the equation are with respect to the distribution
induced by PX × Pn−1

Y |X .
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4.4.5 Proof of (4.7) in Theorem 8.

Replacing Xθ by θX in (4.15), we get,

d
dθ
D(PnY ‖QnY ) = Fn−1

Q (θX)− Fn−1
P (θX) (4.103)

= nEn−1

[
X log

1− En−1
Q [θX|Y ]

En−1
Q [θX|Y ]

−
(X − En−1

Q [X|Y ])

1− En−1
Q [θX|Y ]

]

− nEn−1

[
X log

1− En−1[θX|Y ]
En−1[θX|Y ]

]
(4.104)

=
n

θ
En−1

[
θX log

(1− En−1
Q [θX|Y ])En−1[θX|Y ]

En−1
Q [θX|Y ](1− En−1[θX|Y ])

]

− n

θ
En−1

[
(En−1[θX|Y ]− En−1

Q [θX|Y ])

1− En−1
Q [θX|Y ]

]
(4.105)

=
n

θ
En−1

[
`b(En−1[θX|Y ],En−1

Q [θX|Y ])
]
. (4.106)

4.4.6 Proof of (4.10) in Theorem 9.

Replacing Xθ by θX in (4.19), we get,

d
dθ
I(X;Y ) = Fn−1

P (θX) (4.107)

= nEn−1

[
X log

θX(1− En−1[θX|Y ])
(1− θX)En−1[θX|Y ]

− (X − En−1[X|Y ])
1− En−1[θX|Y ]

]
(4.108)

=
n

θ
En−1

[
`b(θX,En−1[θX|Y ])

]
. (4.109)

4.4.7 Proof of Theorem 13

Let db denote the Bregman divergence associated with the exponential form
of the binomial distribution given in (3.50). Then, for a, â ∈ (0, n),

db(a, â) = n db∗

(
a

n
,
â

n

)
(4.110)

where db∗ is the Bregman divergence associated with the convex function

b∗(a) = a log
a

1− a
− log

1
1− a

. (4.111)
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Using the linearity of the Bregman divergences we obtain that,

db∗

(
a

n
,
â

n

)
= `b

(
a

n
,
â

n

)
− dφ

(
a

n
,
â

n

)
, (4.112)

> 0, (4.113)

where dφ(a, â) constitutes the Bregman divergence build upon the convex
function φ(a) = − log(1 − a). Hence, for a given Y = y ∈ Z+

0 , for a = θX
and â(y) = En−1[θX|Y = y] we get,

1
θ
En−1

[
db
(
θX,En−1[θX|Y ]

)]
<
n

θ
En−1

[
`b

(
θX

n
,En−1

[
θX

n

∣∣∣∣Y ])] (4.114)

=
d
dθ
I(X;Y ), (4.115)

where to obtain (4.115) we use the expression found in Theorem 12 with
Xθ = θX/n. The equivalent expression for the derivative of the relative
entropy is consequence of the inequalities given by (4.112) and (4.113).

4.4.8 Proof of Theorem 14

Carrying out the expectation over (4.10) let us get that,

d
dθ
I(X;Y ) = nEn−1

[
X log

X(1− θEn−1[X|Y ])
(1− θX)En−1[X|Y ]

]
.

Therefore, calculating the limit, we obtain,

lim
θ→0

d
dθ
I(X;Y ) = nE[X logX]− n lim

θ→0

n−1∑
y=0

A(y) log
A(y)

B(y)− θA(y)
, (4.116)

where we use the shorthands A(y) , E[XPn−1
Y |X (y|X)] and B(y) ,

E[Pn−1
Y |X (y|X)]. First notice that,

lim
θ→0

A(y) = lim
θ→0

(
n− 1
y

)
E[X(θX)y(1−θX)n−y−1]

= lim
θ→0

(
n− 1
y

) n−y−1∑
k=0

(
n− y − 1

k

)
(−1)kθk+yE[Xk+y+1] (4.117)

= E[X]1{y=0}, (4.118)
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where 1{U} is the indicator function of U , which is equal to 1 if condition
U is satisfied and equal to 0 otherwise. Following a similar procedure, we
obtain that,

lim
θ→0

B(y) = 1{y=0}. (4.119)

Based on (4.118), we get that

lim
θ→0

n−1∑
y=0

A(y) logA(y) = E[X] log E[X]. (4.120)

Additionally, as consequence of (4.117) notice that the expression A(y)
is a polynomial in θ with exponents between y and (n − 1). Similarly the
function B(y) − θA(y) is a polynomial in θ with exponents between y and
n. Therefore, for y 6= 0 we get

lim
θ→0

A(y)log(B(y)−θA(y)) = − lim
θ→0

(A(y))2 d
dθ (B(y)−θA(y))

(B(y)− θA(y)) d
dθA(y)

(4.121)

= 0, (4.122)

where in (4.121) we use L’Hospital’s rule [47], and (4.122) can be stated once
we show that the polynomial obtained in the numerator in (4.121) contains
terms with higher degree than its counterparts in the denominator. In
effect, notice that (A(y))2 d

dθ (B(y)− θA(y)) is a polynomial where the least
exponent of θ is 2y+ (y−1) = 3y−1, meanwhile, for (B(y)− θA(y)) d

dθA(y)
the least exponent on θ is y+ (y−1) = 2y−1. Then, when we multiply and
divide by θ2y−1, the grade of the polynomial in the numerator is greater than
the grade of the polynomial in the denominator, fact that let us conclude
that the entire expression, in the limit, tends to zero. For y = 0 we have

lim
θ→0

A(y) log (B(y)− θA(y)) = 0. (4.123)

Replacing (4.120), (4.122) and (4.123) in (4.116) let us get the desired result.

4.4.9 Proof of Corollary 2

In this case, the derivative of the mutual information with respect to θ is
given by Theorem 12,

d
dθ
I(X;Y ) = En−1

[
X log

X(1− 1
nEn−1[θX|Y ])

(1− θX
n )En−1[X|Y ]

]
.

Then, carrying out a similar procedure to that shown in the proof of
Theorem 14, let us obtain the desired result.
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4.4.10 Proof of Corollary 3

Let Y be the output of a binomial model with parameters (n, θX/n). Then,
by Theorem 11, the derivative of the relative entropy between the marginals
PnY and QnY with Xθ = θX/n, is given by,

d
dθ
D(PnY ||QnY ) = FQ

(
θX

n

)
− FP

(
θX

n

)
(4.124)

= En−1

X log

(
1− Er+1

Q

[
θX
n

∣∣Y ])En−1[X|Y ](
1− En−1

[
θX
n |Y

])
En−1
Q [X|Y ]


− En−1


(
En−1[X|Y ]− En−1

Q [X|Y ]
)

(
1− En−1

Q

[
θX
n

∣∣Y ])
 . (4.125)

We get the desired result once we make θ tend to zero inside the expectation
in (4.125). This procedure is justified in the proof of Theorem 14 in Section
4.4.8.
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Chapter 5

Negative Binomial Model

In this chapter1 we explore several expressions linking the information field
with the estimation field for the negative binomial model. The negative
binomial model can be interpreted as an over-dispersed Poisson model, as
the variance of the negative binomial is always larger than its mean. From
a Bayesian perspective, if the mean of a Poisson random variable is gamma
distributed, the unconditional distribution (integrate out the mean) is a
negative binomial. From this viewpoint, the negative binomial can be used
to model lasers or LEDs whose mean number of photons vary in each firing.

The methodology employed throughout this chapter is similar to that
used in Chapter 4 for the binomial model. Initially assuming a linear
preprocessing of the input Xθ = θX we show that information measures
such as the relative entropy and mutual information, find an alternative
representation in terms of conditional estimates through the expectation
of a Bregman divergence `nb. This fact leads to different consequences
in the behavior of the mutual information, similar to those developed for
models such as the Gaussian, Poisson and binomial. Later, assuming an
arbitrary deterministic preprocessing of the input Xθ we present a general
information-estimation expression that in some cases is given through
a Bregman divergence. As consequence of these expressions we state
a relationship between the Bregman divergence used in the exponential
representation of the negative binomial distribution (3.55) and the Bregman
divergence `nb used to express the derivative of some information measures.
Finally, based on the results obtained over the linear preprocessing of the
input Xθ = θX we show that, over certain scenarios, the low input scaling

1Some results presented through this chapter were published jointly with Professors F.
Pérez-Cruz and D. Guo in [54, 57, 56, 21, 55].
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behavior of the relative entropy and mutual information is similar to that
found for the binomial model.

5.1 Model definition

The negative binomial distribution of order r is defined by the following
pmf:

P (Y = y) =
(
y + r − 1

y

)
(1− q)rqy, y ∈ {0, 1, . . . } , Z+

0 , (5.1)

which is the probability that y successful trials are seen before the r-th
failure occurs, where the trials are independent Bernoulli random variables,
each with probability q to succeed. We refer to (5.1) as a negative binomial
distribution with parameters (r, q).

We define a negative binomial model as a random transformation from a
random variable X to an integer random variable Y , where, conditioned on
X = x, Y has negative binomial distribution with parameters (r, f(θ, x)/(1+
f(θ, x)). In this case the mapping f(θ,X) represents a preprocessing
of the input which depends on a parameter θ. Therefore, the random
transformation that governs the model is given by the following conditional
pmf,

P rY |X(y|x) =
(
y + r − 1

y

)(
f(θ, x)

1 + f(θ, x)

)y( 1
1 + f(θ, x)

)r
, y ∈ Z+

0 . (5.2)

For notational convenience we use the shorthand

Xθ = f(θ,X). (5.3)

We further assume that the function Xθ is differentiable and denote its
derivative as,

X ′θ =
∂f(θ,X)

∂θ
. (5.4)

Throughout this section we employ similar conventions to those used in the
case of the binomial model. In particular, we use PX and QX to denote two
input probability laws and P rY and QrY to denote the corresponding output
distributions, where the underlying negative binomial model is of order r.
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5.2 Information-Estimation Relationships

In this section we prove that, based on alternative expressions found for the
negative binomial model, all of those consequences explored previously for
models such as the Gaussian, Poisson and binomial, translate akin to the
context of the negative binomial model.

5.2.1 Linear Scaling (Xθ = θX)

We start with a simple linear scaling, where Xθ = θX is positive and
bounded for some θ > 0.

Theorem 16. Let X be a positive bounded random variable with
distribution PX or QX . Let Y be the output of an r-th order negative
binomial model described by (5.2) with Xθ = θX. Then,

d
dθ
D(P rY ‖QrY )

=
r

θ

(
Er+1

[
`nb

(
θX,Er+1

Q [θX|Y ]
)]
− Er+1

[
`nb
(
θX,Er+1[θX|Y ]

)])
(5.5)

=
r

θ
Er+1

[
`nb(Er+1 [θX|Y ] ,Er+1

Q [θX|Y ])
]

(5.6)

and

d
dθ
D(P rY ‖QrY ) = Er

[
Y

θ
`I
(
X−1 + θ,ErQ[X−1|Y ] + θ

)]
− Er

[
Y

θ
`I
(
X−1 + θ,Er[X−1|Y ] + θ

)]
(5.7)

= Er
[
Y

θ
`I
(
Er[X−1|Y ] + θ,ErQ[X−1|Y ] + θ

)]
(5.8)

hold for all θ > 0.

Proof. See Section 5.4.5 for the proof of (5.6) and Section 5.4.1 for the proof
(5.8).

As in the binomial model, the derivative of the relative entropy admits two
different representations; one considers conditional estimates over negative
binomial models of order (r+1), and the other involves conditional estimates
over models of order r.

A related result connects the derivative of the input–output mutual
information to the expected estimation error under two different Bregman
divergences.
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Theorem 17. Let X be a positive bounded random variable with
distribution PX . Let Y be the output of a r-th order negative binomial model
described by (5.2) with Xθ = θX. Then,

d
dθ
I(X;Y ) =

r

θ
Er+1

[
`nb(θX,Er+1 [θX|Y ])

]
(5.9)

= Er
[
Y

θ
`I
(
X−1 + θ,Er[X−1|Y ] + θ

)]
(5.10)

hold for all θ > 0.

Proof. See Section 5.4.6 for the proof of (5.9) and Section 5.4.2 for the proof
of (5.10).

One striking property that appears again, but now in the context of
the negative binomial model is the fact that the mutual information can
alternatively be represented through the expectation of the function `P ;
function that gives rise to the “I-MMLE” relationship for the Poisson model,
proved initially in [25].

Corollary 4. Assume the same set of conditions used in Theorem 17.
Then,

d
dθ
I(X;Y ) = rEr+1

[
`P

(
X,

Er+1[X|Y ](1 + θX)
1 + θEr+1[X|Y ]

)]
. (5.11)

Similarly to the case studied for the binomial model, notice that even
though (5.9) and (5.11) are mathematically identical, the expectation in
(5.9) achieves its minimum value meanwhile the expectation in (5.11) does
not. This is a direct consequence of the arguments used over each Bregman
divergence. As consequence of Property (iii) stated in Theorem 5 we can
state the following result.

Theorem 18. Let X and Y be defined as in Theorem 16. Then,

Er+1
[
`nb(θX,Er+1

Q [θX|Y ])
]

=
θ

r

d
dθ

[D(P rY ‖QrY ) + I(X;Y )] (5.12)

holds for all θ > 0.

Theorem 18 shows that the mismatched estimation penalty incurred
when we estimate the random variable X through the mismatched prior
distribution QX is proportional to the sum of derivative of the relative
entropy between PX and QX and the input-output mutual information.

In addition, the minimum value achieved by the LHS of (5.12) is
proportional to the derivative of the mutual information, as was pointed
out in Theorem 10 for the binomial model.
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5.2.2 Arbitrary Scaling

We now generalize Theorem 16 and 17 to the case where the input Xθ

depends on θ in an arbitrary manner. Throughout this section, the set of
feasible values for the parameter θ, denoted as Θ is an open real number
set. We also assume that the function Xθ is always positive and bounded.

Theorem 19. Under both distributions, PX and QX , let Xθ and X ′θ be
integrable and bounded. Let Y be the output of the r-th order negative
binomial model described by (5.2) with Xθ as input. Then,

d
dθ
D(P rY ‖QrY ) = Gr+1

Q (Xθ)− Gr+1
P (Xθ) (5.13)

holds for all θ ∈ Θ, where Gr+1
Q (Xθ) is given by,

Gr+1
Q (Xθ) = rEr+1

X ′θ log

(
1 + Er+1

Q [Xθ|Y ]
)
Xθ

(1 +Xθ) Er+1
Q [Xθ|Y ]


− rEr+1

Er+1
Q [X ′θ|Y ]

(
Xθ − Er+1

Q [Xθ|Y ]
)

(
1 + Er+1

Q [Xθ|Y ]
)

Er+1
Q [Xθ|Y ]

 . (5.14)

Proof. See Section 5.4.3.

The generalized version of Theorem 17 is stated as follows.

Theorem 20. Let Xθ, X ′θ and Y be defined as in Theorem 19. Then,

d
dθ
I(X;Y ) = Gr+1

P (Xθ) (5.15)

= rEr+1

[
X ′θ log

(
1 + Er+1 [Xθ|Y ]

)
Xθ

(1 +Xθ)Er+1 [Xθ|Y ]

]
(5.16)

holds for all θ ∈ Θ.

Proof. See Section 5.4.4.

As we did in Section 4.2.2, we let Xθ = X+θ where θ ∈ R+ and compute
the derivative of the mutual information using Theorem 20,

d
dθ
I(X;Y ) = −rEr+1

[
`ψ
(
X + θ,Er+1[X + θ|Y ]

)]
, (5.17)
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where `ψ(·, ·) is the Bregman divergence build with ψ(a) = − log a
1+a on

R+. Expression given in (5.17) suggests that the mutual information decays
when the parameter θ increases. This behavior is similar to that found over
a Poisson model with mean X + θ given in [25]. In Section 4.2.2 we showed
a case where the result could not be expressed as a Bregman divergence,
whereas here the reverse is true.

A second application of the results stated in Theorems 19 and 20, where
the input of the model is preprocessed through the function Xθ is stated as
follows. In the search of a relationship between the Bregman divergence used
in the exponential form of the negative binomial distribution (3.55) and the
function `nb we arrive to the following theorem, which in words, states that
the expectation of the function used in the exponential form of the negative
binomial distribution in (3.55), up to a scaling factor, constitutes an upper
bound for the derivative of the mutual information. A similar upper bound
is stated in the case of the derivative of the relative entropy.

Theorem 21. Let X be a positive bounded random variable that can be
distributed as either PX or QX . Let Y be the output of a r-th negative
binomial model with parameters

(
r, θX
r+θX

)
. Then,

1
θ
Er+1

[
dnb
(
θX,Er+1[θX|Y ]

)]
>

d
dθ
I(X;Y ) (5.18)

and

1
θ
Er+1

[
dnb

(
Er+1[θX|Y ],Er+1

Q [θX|Y ]
)]

>
d
dθ
D(P rY ||QrY ), (5.19)

where we denote dnb as the Bregman divergence used in (3.55) to build the
exponential form of the negative binomial distribution.

Proof. See Section 5.4.7.

5.2.3 Low input scaling

As was pointed out in Section 4.2.3, the low input scaling behavior of several
models has been studied previously, showing these results their own merits
in terms of efficiency for the Gaussian, Poisson and binomial models. In this
section, we explore the low input scaling behavior pertaining the negative
binomial model.

Based on the expression given for the derivative of the input-output
mutual information, in the following theorem we show that the low input
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scaling behavior in the negative binomial model can be expressed in terms
of the Bregman divergence `P used to describe the mutual information when
dealing with Poisson models.

Theorem 22. Let X ∼ PX be a positive bounded random variable. Let Y
be the output of the r-order negative binomial model described by (5.2) with
Xθ = θX. Then,

lim
θ→0

d
dθ
I(X;Y ) = rE [`P (X,E[X])] (5.20)

= rE

[
X log

X

E[X]

]
. (5.21)

Proof. See Section 5.4.8.

Similarly as was stated in the case of the binomial model, Theorem 22
shows the importance of the function E[`P (X,E[X])] at low input scaling
factors for the negative binomial model. At the end, we can conclude that
up to a scaling factor, the low input scaling behavior of the binomial and
negative binomial models is the same. Equality on their behavior is stated
formally as follows.

Corollary 5. Let X ∼ PX be a positive bounded random variable. Let Y
be the output of the r-order negative binomial model described by (5.2) with
Xθ = θX/r. Then,

lim
θ→0

d
dθ
I(X;Y ) = E [`P (X,E[X])] (5.22)

= E

[
X log

X

E[X]

]
. (5.23)

Proof. See Section 5.4.9.

The expression for the relative entropy at low input scaling regime is stated
as follows.

Theorem 23. Let X be a positive bounded random variable that can be
distributed as either PX or QX . Let Y be the output of the r-order negative
binomial model described by (5.2) with Xθ = θX. Then,

lim
θ→0

d
dθ
D(P rY ||QrY ) = r`P (E[X],EQ[X]). (5.24)
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Proof. The proof to this theorem is similar to that developed to state
Theorem 22, shown in Section 5.4.8.

Corollary 6. Let X be a positive bounded random variable that can be
distributed as either PX or QX . Let Y be the output of the r-order negative
binomial model described by (5.2) with Xθ = θX/r. Then,

lim
θ→0

d
dθ
D(P rY ||QrY ) = `P (E[X],EQ[X]). (5.25)

Proof. See Section 5.4.10.

5.3 Concluding Remarks

In this chapter, we show several connections between information and
estimation for the negative binomial model, which can be used over specific
circumstances as a statistical model for photon-emission based systems.

The most prominent expression found for the negative binomial model,
states a relationship between information measures such as the relative
entropy and mutual information and the conditional mean estimate through
a Bregman divergence `nb. This fact reveals that the information measures
that we are treating behave similarly over all the statistical models studied
before. Specifically, we can state that both, mutual information and
relative entropy are increasing in the value of θ; the expression for the
derivative of the mutual information corresponds to the minimum value
attained by the expectation of a Bregman divergence; the expectation of
the Bregman divergence `nb over a mismatched prior QX is directly related
with the derivative of the sum between the relative entropy and the mutual
information, etc. Additionally, we highlight that, at first sight, expressions
given by (5.9) and (5.11) are equal but they hide one property in the
background. While the function `nb attains its minimum value when is
evaluated with arguments θX and θEr+1[X|Y ] the function `P used in (5.11)
does not attain its minimum value at those values at which it is evaluated
(Theorem 6 in Chapter 2). This difference shows the importance of the
function `nb in the case of the negative binomial model.

Assuming an arbitrarily deterministic preprocessing of the input Xθ we
state a general expression linking information measures with conditional
estimates. This approach has several advantages:

• Over several scenarios in the negative binomial model we show that the
information–estimation relationship is still characterized by a Bregman
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divergence, even though this is not always the case and is not always
through the function `nb. In other words, depending on the shape of
Xθ in some cases the information–estimation relationship is through a
Bregman divergence different to `nb.

• In the search of a relationship between the functions dnb and `nb we
show that, up to a scaling factor, the derivative of the input–output
mutual information, expressed through the function `nb is a lower
bound for the expectation of the Bregman divergence dnb where the
arguments are the mean of the model θX and its conditional estimate
Er+1[θX|Y ]. Recall from the analysis given in Section (3.2) that, dnb is
the Bregman divergence used in the exponential form of the negative
binomial distribution. A similar argument can be applied in the case
of the derivative of the relative entropy.

• As was stated in the binomial case, identifying those scenarios
over which the mutual information has a monotone behavior with
respect to changes in the parameter θ is useful in the context of the
broadcast channels given that the monotonicity gives rise to the “More
Capable” Broadcast channels. This kind of channels have a completely
characterized capacity region [19, 36, 20].

At low input scaling regimes, the function `P used to state information-
estimation expressions for the Poisson model, appears to describe the
behavior of the negative binomial model. The expressions found, which
only depend on input statistics strengthen the importance of the function
E[X log X

E[X] ] in the context of the mutual information and `P (E[X],EQ[X])
in the context of the relative entropy. We note that meanwhile in the relative
entropy side, the behavior is basically given by the first moment statistics of
the input, in the case of the mutual information the behavior of the model
depends also on the statistics E[X logX].

5.4 Proofs

In this section, we develop the proofs for the negative binomial model. We
first present a proof of (5.8) in Theorem 16 and (5.10) in Theorem 17.
Subsequently we present proofs for Theorem 19 and 20 which let us conclude
statements proposed in (5.6) in Theorem 16 and (5.9) in Theorem 17. We
close this section with the proof to results related with the low input scaling
regime of the negative binomial model.
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5.4.1 Proof of (5.8) in Theorem 16

First we state a Lemma that let us calculate the derivative of the marginal
P rY with respect to the parameter θ.

Lemma 7. [Exchangeability Property]. Let the function Xθ = f(θ,X) :
Θ×X → R+ be such that Xθ and X ′θ are bounded, with |X ′b| < M for some
M ∈ R. Then,

d
dθ

E
[
P rY |X(y|X)

]
= E

[(
d
dθ
P rY |X(y|X)

)]
(5.26)

= yP rY (y)En
[
X ′θ
Xθ

∣∣∣∣Y = y

]
− (y + r)P rY (y)En

[
X ′θ

1 +Xθ

∣∣∣∣Y = y

]
, (5.27)

where P rY |X(y|x) is given by (5.2).

Proof. By [6, Theorem 12.13] the derivative and the integral operators can
be exchanged in order if the following conditions hold:

(i) The derivative d
dθP

r
Y |X(y|x) is well defined for all (θ, x) ∈ Θ×X .

(ii) There exists a function ω(x) such that for all (θ, x) ∈ Θ×X ,∣∣∣∣ d
dθ
P rY |X(y|x)

∣∣∣∣ < ω(x), (5.28)

and E[ω(X)] <∞.

For (i), the derivative of the conditional P rY |X is given by

d
dθ
P rY |X(y|x) = P rY |X(y|x)

∂f(θ, x)
∂θ

y

f(θ, x)︸ ︷︷ ︸
(I)

−P rY |X(y|x)
∂f(θ, x)
∂θ

(y + r)
f(θ, x) + 1︸ ︷︷ ︸

(II)

.

(5.29)

Therefore, due to the fact that f(θ, x) > 0 and |∂f(θ,x)
∂θ | < M for all

(θ, x) ∈ Θ × X , we conclude that (5.29) is well defined over the domain
Θ×X .
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For (ii), we proceed to prove the existence of integrable upper and lower
bounds for (I) and (II) in (5.29). Notice that the term (I) is zero for y = 0.
For y 6= 0 we have,∣∣∣∣P rY |X(y|x)

∂f(θ, x)
∂θ

y

f(θ, x)

∣∣∣∣
=
r(r + y − 1)!

(y − 1)!r!

(
f(θ, x)

f(θ, x) + 1

)y−1( 1
f(θ, x) + 1

)r+1 ∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ (5.30)

= rP r+1
Y |X(y − 1|x)

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ < Mr, (5.31)

where P r+1
Y |X represents a negative binomial distribution with parameters

(r + 1, f(θ, x)/(f(θ, x) + 1)).
We can apply a similar procedure to (II), which leads to,∣∣∣∣P rY |X(y|x)

∂f(θ, x)
∂θ

(y + r)
f(θ, x) + 1

∣∣∣∣ =
r(y + r)!
y!r!

(f(θ, x))y

(f(θ, x) + 1)y+r+1

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣
(5.32)

= rP r+1
Y |X(y|x)

∣∣∣∣∂f(θ, x)
∂θ

∣∣∣∣ < Mr. (5.33)

Combining (5.29), (5.31) and (5.33) yields Condition (ii).

Proof of (5.8) hinges on the following result that reduces the derivative
of the output pmf to a certain difference.

Lemma 8. Let P rY be the pmf of the output of the negative binomial model
described by (5.2), with Xθ = θX, where the input X is always positive and
follows an arbitrary distribution PX . For every y ∈ Z+,

d
dθ
P rY (y) =

1
θ

(yP rY (y)− (y + 1)P rY (y + 1)) . (5.34)

Proof. We start with

P rY (y) = E

[(
y + r − 1

y

)(
1

θX + 1

)r ( θX

θX + 1

)y]
. (5.35)
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Evidently,

d
dθ
P rY (y) = E

[(
y + r − 1

y

)
d
dθ

((
1

θX + 1

)r ( θX

θX + 1

)y)]
(5.36)

=E

[(
y + r − 1

y

)(
1

θX + 1

)r( θX

θX + 1

)y(y
θ
− (y + r)X

θX + 1

)]
(5.37)

=
y

θ
P rY (y)− y + 1

θ
E

[(
y + r

y + 1

)(
1

θX + 1

)r( θX

θX + 1

)y+1
]

(5.38)

=
1
θ

(yP rY (y)− (y + 1)P rY (y + 1)) , (5.39)

where in (5.36) we have used the exchangeability property shown in Lemma
7. Since (5.34) holds for any input distribution PX , it remains true
if PX is replaced by another distribution QX , as long as the input is
always nonnegative. It is interesting to see that (5.34) is literally identical
to (4.33).

Proof of (5.8) in Theorem 16, based on Lemma 8, resembles that of (4.9)
in Theorem 8. Using similar techniques to those shown in Section 4.4.1 we
arrive to,

d
dθ
D(P rY ‖QrY ) =

1
θ

∞∑
y=1

yP rY (y) (T (y)− log T (y)− 1) , (5.40)

where

T (y) =
P rY (y − 1)QrY (y)
P rY (y)QrY (y − 1)

. (5.41)

Moreover,

P rY (y − 1) =E

[(
y + r − 2
y − 1

)(
1

θX + 1

)r ( θX

θX + 1

)y−1
]

(5.42)

=E

[
y

y + r − 1

(
y + r − 1

y

)(
1

θX + 1

)r( θX

θX + 1

)y−1
]

(5.43)

=
y

y + r − 1
Er
[
1 +

1
θX

∣∣∣∣Y = y

]
P rY (y). (5.44)

Similarly,

QrY (y − 1) =
y

y + r − 1
ErQ

[
1 +

1
θX

∣∣∣∣Y = y

]
QrY (y). (5.45)
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Therefore,

T (y) =
Er
[
X−1 + θ|Y = y

]
ErQ [X−1 + θ|Y = y]

. (5.46)

Equation (5.8) is thus established using the definition of `I , given in Table
3.1, Chapter 3, jointly with (5.40) and (5.46).

5.4.2 Proof of (5.10) in Theorem 17

Fix x ∈ X and let QrY = P rY |X=x. Taking into account the expression
obtained for the derivative of the relative entropy we have,

d
dθ
D(QrY ‖P rY ) =

d
dθ
D(P rY |X=x‖P

r
Y ) (5.47)

= EP r
Y |X=x

[
Y

θ
`I
(
x−1 + θ,Er[X−1|Y ] + θ

)]
. (5.48)

Therefore,

d
dθ
I(X;Y ) =

∫
d
dθ
D(P rY |X=x‖P

r
Y )dPX(x) (5.49)

=
∫

EP r
Y |X=x

[
Y

θ
`I
(
x−1 + θ,Er[X−1|Y ] + θ

)]
dPX(x) (5.50)

= Er
[
Y

θ
`I
(
X−1 + θ,Er[X−1|Y ] + θ

)]
. (5.51)

5.4.3 Proof of Theorem 19

Next, we provide a set of lemmas to express certain quantities over the
negative binomial model of order r in terms of conditional estimates over
negative binomial models of order r + 1. We use Xθ = f(θ,X) and
X ′θ = ∂f(θ,X)/∂θ.

Lemma 9.

Er
[
Y Er

[
X ′θ
Xθ

∣∣∣∣Y ] log
P rY (Y )
QrY (Y )

]
= rEr+1

[
Er+1[X ′θ|Y ] log

Er+1[Xθ|Y ]P r+1
Y (Y )

Er+1
Q [Xθ|Y ]Qr+1

Y (Y )

]
. (5.52)
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Proof. We shall use two facts in this proof. First, for every positive integer
y,

yEr
[
X ′θ
Xθ

∣∣∣∣Y = y

]
P rY (y)

= rE

[
∂f(θ,X)

∂θ

(r + y − 1)!
(y − 1)!r!

(
f(θ,X)

1 + f(θ,X)

)y−1( 1
1 + f(θ,X)

)r+1 ]
(5.53)

= rE

[
∂f(θ,X)

∂θ
P r+1
Y |X(y − 1|X)

]
. (5.54)

Second, for an arbitrary function θ(y),

∞∑
y=1

θ(y) log
E
[
P rY |X(y|X)

]
EQ

[
P rY |X(y|X)

]
=
∞∑
y=0

θ(y + 1) log
E
[
P rY |X(y + 1|X)

]
EQ

[
P rY |X(y + 1|X)

] (5.55)

=
∞∑
y=0

θ(y + 1) log
E

[(
f(θ,X)

1+f(θ,X)

)y+1 (
1

1+f(θ,X)

)r]
EQ

[(
f(θ,X)

1+f(θ,X)

)y+1 (
1

1+f(θ,X)

)r] (5.56)

=
∞∑
y=0

θ(y + 1) log
E
[
f(θ,X)P r+1

Y |X(y|X)
]

EQ

[
f(θ,X)P r+1

Y |X(y|X)
] . (5.57)
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In order to prove Lemma 9, we manipulate the LHS of (5.52) as follows,

∞∑
y=0

y Er
[
X ′θ
Xθ

∣∣∣∣Y = y

]
log

P rY (y)
QrY (y)

P rY (y)

= r

∞∑
y=1

E

[
∂f(θ,X)

∂θ
P r+1
Y |X(y − 1|X)

]
log

E
[
P rY |X(y|X)

]
EQ

[
P rY |X(y|X)

] (5.58)

= r
∞∑
y=0

E

[
∂f(θ,X)

∂θ
P r+1
Y |X(y|X)

]
log

E
[
f(θ,X)P r+1

Y |X(y|X)
]

EQ

[
f(θ,X)P r+1

Y |X(y|X)
] (5.59)

= r

∞∑
y=0

Er+1[X ′θ|Y =y]log
Er+1[Xθ|Y =y]P r+1

Y (y)
Er+1
Q [Xθ|Y =y]Qr+1

Y (y)
P r+1
Y (y), (5.60)

where (5.58) is consequence of (5.54) jointly with the fact that the first
term of the sum (y = 0) disappears; in (5.59) we changed y by (y + 1) and
apply (5.57); and (5.60) is the result of applying, in (5.59), the definition of
conditional estimate over a negative binomial model and replacing f(θ,X)
by Xθ and f ′(θ,X) by X ′θ.

Lemma 10.

Er
[
(Y + r) Er

[
X ′θ

1 +Xθ

∣∣∣∣Y ] log
P rY (Y )
QrY (Y )

]
= rEr+1

[
Er+1[X ′θ|Y ] log

Er+1[1 +Xθ|Y ]P r+1
Y (Y )

Er+1
Q [1 +Xθ|Y ]Qr+1

Y (Y )

]
.

Proof. We use the following two facts: First,

(y + r)Er
[

X ′θ
1 +Xθ

∣∣∣∣Y = y

]
P rY (y)

= rE

[
∂f(θ,X)

∂θ

(r + y)!
y! r!

(f(θ,X))y

(1 + f(θ,X))y+r+1

]
(5.61)

= rE

[
∂f(θ,X)

∂θ
P r+1
Y |X(y|X)

]
. (5.62)

69



Second,

log
E
[
P rY |X(y|X)

]
EQ

[
P rY |X(y|X)

] = log
E

[
(1 + f(θ,X))

(
f(θ,X)

1+f(θ,X)

)y (
1

1+f(θ,X)

)r+1
]

EQ

[
(1 + f(θ,X))

(
f(θ,X)

1+f(θ,X)

)y (
1

1+f(θ,X)

)r+1
]

(5.63)

= log
E
[
(1 + f(θ,X))P r+1

Y |X(y|X)
]

EQ

[
(1 + f(θ,X))P r+1

Y |X(y|X)
] . (5.64)

Therefore, taking the LHS of (5.61) we have,
∞∑
y=0

(y + r) Er
[

X ′θ
1 +Xθ

∣∣∣∣Y = y

]
log

P rY (y)
QrY (y)

P rY (y)

= r

∞∑
y=0

E

[
∂f(θ,X)

∂θ
P r+1
Y |X(y|X)

]
log

E
[
(1 + f(θ,X))P r+1

Y |X(y|X)
]

EQ

[
(1 + f(θ,X))P r+1

Y |X(y|X)
] (5.65)

= r
∞∑
y=0

Er+1[X ′θ|Y = y] log
Er+1[1 +Xθ|Y = y]P r+1

Y (y)
Er+1
Q [1 +Xθ|Y = y]Qr+1

Y (y)
P r+1
Y (y), (5.66)

where (5.65) is consequence of (5.62) and (5.64).

Lemma 11.

Er
[
Y ErQ

[
X ′θ
Xθ

∣∣∣∣Y ]] = rEr+1

[
Er+1
Q [X ′θ|Y ]

Er+1[Xθ|Y ]
Er+1
Q [Xθ|Y ]

]
. (5.67)

Lemma 12.

Er
[
(Y + r) ErQ

[
X ′θ

Xθ + 1

∣∣∣∣Y ]] = rEr+1

[
Er+1
Q [X ′θ|Y ]

Er+1[Xθ + 1|Y ]
Er+1
Q [Xθ + 1|Y ]

]
.

(5.68)

We omit the proof of Lemmas 11 and 12 as the results can be obtained
using the same steps used to prove Lemmas 9 and 10, respectively.

Proof of (5.13) in Theorem 19. The derivative of the relative entropy with
respect to θ for the negative binomial model is given by,

d
dθ
D(P rY ‖QrY ) =

∞∑
y=0

dP rY (y)
dθ

log
P rY (y)
QrY (y)︸ ︷︷ ︸

(I)

−
∞∑
y=0

P rY (y)
QrY (y)

dQrY (y)
dθ︸ ︷︷ ︸

(II)

, (5.69)
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where the derivative penetrates the sum by the Lebesgue convergence
theorem [47]. Calculation of the first term (I) is obtained as follows,

∞∑
y=0

dP rY (y)
dθ

log
P rY (y)
QrY (y)

=
∞∑
y=0

y Er
[
X ′θ
Xθ

∣∣∣∣Y = y

]
P rY (y) log

P rY (y)
QrY (y)

−
∞∑
y=0

(y + r)Er
[

X ′θ
Xθ + 1

∣∣∣∣Y = y

]
P rY (y) log

P rY (y)
QrY (y)

(5.70)

= r
∞∑
y=0

Er+1[X ′θ|Y = y] log
Er+1[Xθ|Y = y](1 + Er+1

Q [Xθ|Y = y])

Er+1
Q [Xθ|Y = y] (1 + Er+1 [Xθ|Y = y])

P r+1
Y (y),

(5.71)

where (5.70) is a consequence of the exchangeability property illustrated in
Lemma 7, (5.71) is the expression obtained in (5.70) written in terms of
the conditional mean estimation over a negative binomial model with r + 1
failures, which is proven in Lemmas 9 and 10.

The second term of (5.69), (II), simplifies to,

∞∑
y=0

P rY (y)
QrY (y)

dQrY (y)
dθ

=
∞∑
y=0

y ErQ

[
X ′θ
Xθ

∣∣∣∣Y = y

]
P rY (y)−

∞∑
y=0

(y + r) ErQ

[
X ′θ

Xθ + 1

∣∣∣∣Y = y

]
P rY (y)

(5.72)

= r
∞∑
y=0

P r+1
Y (y)Er+1

Q [X ′θ|Y = y]

×

Er+1[Xθ|Y = y]
Er+1
Q [Xθ|Y = y]

−
(
1 + Er+1 [Xθ|Y = y]

)(
1 + Er+1

Q [Xθ|Y = y]
)
 , (5.73)

where (5.72) appears as consequence of the exchangeability property
(Lemma 7) and (5.73) is a result obtained of applying Lemmas 11 and 12
to the expression in (5.72).

Plugging (5.71) and (5.73) in (5.69) establishes (5.13).
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5.4.4 Proof of Theorem 20

This proof is similar to the proof for Theorem 12 in Section 4.4.4. Hence,

d
dθ
I(X;Y ) =

∫
d
dθ
D(P rY |X=x‖P

r
Y )dPX(x) (5.74)

=
∫ (

Gr+1
δ(x),P (f(θ,X)− Gr+1

δ(x),δ(x)(f(θ,X))
)

dPX(x) (5.75)

= Gr+1
P (Xθ) (5.76)

= Er+1

[
X ′θ log

(1 + Er+1[Xθ|Y ])Xθ

(1 +Xθ)Er+1[Xθ|Y ]

]
, (5.77)

where Gr+1
δ(x),P (f(θ,X)) is given by2,

Gr+1
δ(x),P (f(θ,X)) = rEP r+1

Y |X=x

[
∂f(θ, x)
∂θ

log
(1 + Er+1[f(θ,X)|Y ])f(θ, x)
(1 + f(θ, x))Er+1[f(θ,X)|Y ]

−
Er+1

[
∂f(θ,X)
∂θ

∣∣Y ] (f(θ, x)− Er+1[f(θ,X)|Y ])

(1 + Er+1[f(θ,X)|Y ])Er+1[f(θ,X)|Y ]

.
(5.78)

In this case, we note that (5.75) is consequence of (5.13) in Theorem 19 and
(5.76) is due to the definition given in (5.14).

2In (5.78), the subscript P in Gr+1
δ(x),P (Xθ) makes reference to the fact that the

conditionals Er+1[Xθ|Y ] at the RHS of the equation are with respect to the distribution
induced by PX × P r+1

Y |X .
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5.4.5 Proof of (5.6) in Theorem 16

Replacing in (5.13) Xθ by θX,

d
dθ
D(P rY ‖QrY )

= Gr+1
Q (θX)− Gr+1

P (θX) (5.79)

= rEr+1

[
X log

1 + Er+1
Q [θX|Y ]

Er+1
Q [θX|Y ]

−
(X − Er+1

Q [X|Y ])

(1 + Er+1
Q [θX|Y ])

]

− rEr+1

[
X log

1 + Er+1[θX|Y ]
Er+1[θX|Y ]

]
(5.80)

=
r

θ
Er+1

[
θX log

(1 + Er+1
Q [θX|Y ])Er+1[θX|Y ]

Er+1
Q [θX|Y ](1 + Er+1[θX|Y ])

]

− r

θ
Er+1

[
(Er+1[θX|Y ]− Er+1

Q [θX|Y ])

1 + Er+1
Q [θX|Y ]

]
(5.81)

=
r

θ
Er+1

[
`nb(Er+1[θX|Y ],Er+1

Q [θX|Y ])
]
. (5.82)

5.4.6 Proof of (5.9) in Theorem 17

Replacing in (5.15) Xθ by θX,

d
dθ
I(X;Y )

= Gr+1
P (θX) (5.83)

=rEr+1

[
X log

θX(1 + Er+1[θX|Y ])
(1 + θX)Er+1[θX|Y ]

− (X − Er+1[X|Y ])
(1 + Er+1[θX|Y ])

]
(5.84)

=
r

θ
Er+1

[
`nb(θX,Er+1[θX|Y ])

]
. (5.85)

5.4.7 Proof of Theorem 21

Let Y be the output of a negative binomial model
(
r, θX
r+θX

)
and a, â ∈ R+.

Just for simplicity in the notation we denote as dnb the Bregman divergence
used in (3.55) to build the exponential representation form of the negative
binomial distribution, i.e.,

dnb(a, â) = a log
a(r + â)
(r + a)â

+ r log
r + â

r + a
. (5.86)
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Then,

dnb(a, â) = rdnb∗

(
a

r
,
â

r

)
(5.87)

where dnb∗ is the Bregman divergence build upon the convex function

nb∗(a) = a log
a

1 + a
+ log

1
1 + a

. (5.88)

Using the linearity of the Bregman divergences we get that,

dnb∗

(
a

r
,
â

r

)
= `nb

(
a

r
,
â

r

)
+ dφ

(
a

r
,
â

r

)
(5.89)

> `nb

(
a

r
,
â

r

)
(5.90)

where dφ is the Bregman divergence build using the function

φ(a) = − log (1 + a). (5.91)

Therefore, for a given Y = y ∈ Z+
0 , with a = θX and â(y) = Er+1[θX|Y = y]

we get,

1
θ
Er+1

[
dnb
(
θX,Er+1[θX|Y ]

)]
>
r

θ
Er+1

[
`nb

(
θX

r
,Er+1

[
θX

r

∣∣∣∣Y ])] (5.92)

=
d
dθ
I(X;Y ), (5.93)

where to obtain (5.93) we use the expression found in Theorems 20 with
Xθ = θX

r . The upper bound for the derivative of the relative entropy can be
easily found once we change θX by Er+1[X|Y ] and Er+1[X|Y ] by Er+1

Q [θX|Y ]
in (5.92).

5.4.8 Proof of Theorem 22

Before proceed formally with the proof of Theorem 22 we state two lemmas.

Lemma 13. Let Y be the output of a negative binomial model with
parameters (r + 1, θX/(1 + θX)) where X is a positive bounded random
variable. Then,

lim
θ→0

E[XP r+1
Y |X(y|X)] = E[X]1{y=0} (5.94)

and

lim
θ→0

E[P r+1
Y |X(y|X)] = 1{y=0}. (5.95)
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Proof. By hypothesis we have that E[X] <∞. Additionally, notice that,

lim
θ→0

xP r+1
Y |X(y|x) = xP r+1

Y |X(y|x)
∣∣∣∣
θ=0

= x1{y=0} (5.96)

and

lim
θ→0

P r+1
Y |X(y|x) = P r+1

Y |X(y|x)
∣∣∣∣
θ=0

= 1{y=0}. (5.97)

Therefore, taking into account (5.96) and (5.97) and based on the Dominated
Convergence Theorem [47] jointly with [6, Theorem 12.11] we can introduce
the limit inside the expectation in (5.94) and (5.95) and state the desired
result.

Lemma 14. Let Y be the output of a binomial model with parameters
(r + 1, θX/(1 + θX)).Then, for a given Y = y ∈ Z+

0 ,

lim
θ→0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

= P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

∣∣∣∣
θ=0

. (5.98)

Proof. First notice that,

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

= E[XP r+1
Y |X(y|X)]

×
(

log E[XP r+1
Y |X(y|X)]− log

(
E[P r+1

Y |X(y|X)] + θE[XP r+1
Y |X(y|X)]

))
.

(5.99)

Based on the following inequality,

0 < E[XP r+1
Y |X(y|X)]

<

(
r + y

y

)(
θxmax

1 + θxmax

)y ( 1
1 + θxmax

)r+1

(1 + θxmax)r+1E[X], (5.100)

we get that,

E[XP r+1
Y |X(y|X)]

∣∣∣∣
θ=0

= E[X]1{y=0}, (5.101)
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and

E[P r+1
Y |X(y|X)]

∣∣∣∣
θ=0

= 1{y=0}. (5.102)

Expressions given in (5.101) and (5.102) together with (5.99) let us state
that,

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

∣∣∣∣
θ=0

= E[X] log E[X]1{y=0},

(5.103)

where we use the convention 0 log 0 = 0. On the other hand, the limit in
(5.99) is calculated as follows. For y = 0, based on Lemma 13 we get,

lim
θ→0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

= E[X] log E[X]1{y=0}.

(5.104)

For y 6= 0 the limit over the first term at the RHS of (5.99), based on Lemma
13 is given by,

lim
θ→0

E[XP r+1
Y |X(y|X)] log E[XP r+1

Y |X(y|X)] = 0. (5.105)

Applying L’Hospital rule [47] over the second term at the RHS of (5.99) let
us get that,

lim
θ→0

E[XP r+1
Y |X(y|X)] log

(
E[P r+1

Y |X(y|X)] + θE[XP r+1
Y |X(y|X)]

)
= − lim

θ→0

A2
y(θ)

d
dθ {By(θ) +Ay(θ)}

(By(θ) + θAy(θ)) d
dθAy(θ)

, (5.106)

where, for simplicity in the notation we define,

Ay(θ) , E[XP r+1
Y |X(y|X)] = θyE

[(
r + y

y

)
X

(
X

1 + θX

)y ( 1
1 + θX

)r+1
]

(5.107)

and

By(θ) , E[P r+1
Y |X(y|X)] = θyE

[(
r + y

y

)(
X

1 + θX

)y ( 1
1 + θX

)r+1
]
.

(5.108)
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Differentiating inside the expectation (see Lemma 7) in (5.107) and (5.108)
let us get that,

d
dθ
Ay(θ)

= θy−1E

[(
r + y

y

)(
X

1 + θX

)y ( 1
1 + θX

)r+1( yX

1 + θX
− θX2(r + 1)

1 + θX

)]
(5.109)

and

d
dθ
By(θ)

= θy−1E

[(
r + y

y

)(
X

1 + θX

)y ( 1
1 + θX

)r+1( y

1 + θX
− θX(r + 1)

1 + θX

)]
.

(5.110)

Expressions given in (5.107) and (5.108) imply that,

lim
θ→0

Ay(θ)
By(θ) + θAy(θ)

= lim
θ→0

E

[
X
(

X
1+θX

)y (
1

1+θX

)r+1
]

E

[(
X

1+θX

)y (
1

1+θX

)r+1
]

+ θE

[
X
(

X
1+θX

)y (
1

1+θX

)r+1
] (5.111)

=
E[Xy+1]
E[Xy]

, (5.112)

where in order to obtain (5.112) we use the fact that,3

lim
θ→0

E

[
Xi

(
X

1 + θX

)y ( 1
1 + θX

)r+1
]

= E[Xy+i], for i = 0, 1. (5.113)

Additionally, from Lemma 13 we get that,

lim
θ→0

Ay(θ) = 0. (5.114)

3To obtain (5.113) we use [6, Theorem 12.11] which let us calculate the limit inside the
expectation. (Similarly as was done in Lemma 13)
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Finally, calculating,

lim
θ→0

d
dθ (By(θ) + θAy(θ))

d
dθAy(θ)

= lim
θ→0

d
dθBy(θ) +Ay(θ) + θ d

dθAy(θ)
d
dθAy(θ)

(5.115)

=
E[Xy]

E[Xy+1]
, (5.116)

which is consequence of the fact that,

lim
θ→0

E

[
Xi

(
X

1 + θX

)y ( 1
1 + θX

)r+1( y

1 + θX
− θX(r + 1)

1 + θX

)]
= yE[Xy+i], for i = 0, 1. (5.117)

Putting together (5.112), (5.114) and (5.116), and replacing them in (5.106)
yields,

lim
θ→0

E[XP r+1
Y |X(y|X)] log

(
E[P r+1

Y |X(y|X)] + θE[XP r+1
Y |X(y|X)]

)
= 0, (5.118)

for y 6= 0. Consequently, taking into account (5.105), (5.118) and (5.99) we
have,

lim
θ→0

P r+1
Y (y)Er+1[X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

= 0. (5.119)

for y 6= 0. Putting together (5.119) and (5.104) and comparing them with
(5.103) let us obtain the desired result.

Proof of Theorem 22. Let Y be the output of a negative binomial model
with parameters (r, θX/(1 + θX)). Based on the expression given for the
derivative of the input output mutual information given in Theorem 17 we
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prove that,

lim
θ→0

d
dθ
I(X;Y )

= lim
θ→0

r

θ
Er+1

[
`nb(θX,Er+1[X|Y ])

]
(5.120)

= r lim
θ→0

Er+1

[
X log

(
1 + Er+1[θX|Y ]

)
X

(1 + θX)Er+1[X|Y ]

]
(5.121)

= lim
θ→0

r

[
X log

X

1 + θX

]
− r lim

θ→0

∞∑
y=0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

(5.122)

= rE [X logX]− r
∞∑
y=0

lim
θ→0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

.

(5.123)

The first term of (5.123) is justified by the Dominated Convergence Theorem
[6, Theorem 8.8]. In the second term, the exchange between the limit and
the sum is justified once we prove the following conditions,

(i) The function,

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

(5.124)

is summable over Z+
0 for each θ ∈ [0, δ), δ > 0.

(ii) There exists summable functions ξ(y) and ω(y) such that

ξ(y) ≤ P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

≤ ω(y).

(5.125)

(iii) For a given Y = y ∈ Z+
0 ,

lim
θ→0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

, (5.126)

exists and is equal to,

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

∣∣∣∣
θ=0

. (5.127)
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In effect, notice that (5.124) can be upper bounded as follows,∣∣∣∣Er+1[X|Y = y] log
Er+1[X|Y = y]

1 + θEr+1[X|Y = y]

∣∣∣∣
≤
∣∣Er+1[X|Y = y] log Er+1[X|y = y]

∣∣
+
∣∣Er+1[X|Y = y] log 1 + θEr+1[X|y = y]

∣∣ (5.128)
≤M∗ + xmax log 1 + θxmax., (5.129)

where M∗ = sup{xmax log xmax, e
−1}. To prove Condition (i), it remains

to show that (5.124) is summable for θ = 0. Effectively, from the analysis
given from (5.100) to (5.103) we have that,

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

∣∣∣∣
θ=0

= E[X] log E[X]1{y=0}. (5.130)

To state Condition (ii), taking into account (5.129) we have that,∣∣∣∣Er+1[X|Y = y] log
Er+1[X|Y = y]

1 + θEr+1[X|Y = y]

∣∣∣∣P r+1
Y (y)

≤ (M∗ + xmax log 1 + δxmax)P r+1
Y (y)(1 + δxmax)r+1 (5.131)

, ω(y) (5.132)

where

P
r+1
Y (y) =

(
r + y

y

)(
1− 1

1 + δxmax

)y ( 1
1 + δxmax

)r+1

. (5.133)

Additionally, we note that,
∞∑
y=0

ω(y) = (M∗ + xmax log 1 + δxmax) (1 + δxmax)r+1 <∞. (5.134)

Finally, Condition (iii) is proven in Lemma 14 which let us state that,

lim
θ→0

P r+1
Y (y)Er+1 [X|Y = y] log

Er+1[X|Y = y]
1 + θEr+1[X|Y = y]

= E[X] log E[X]1{y=0}.

(5.135)

Replacing (5.135) in (5.123) yields,

lim
θ→0

d
dθ
I(X;Y ) = rE

[
X log

X

E[X]

]
. (5.136)
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5.4.9 Proof of Corollary 5

For a negative binomial model with parameters (r, θX/(r + θX)), the
derivative of the mutual information with respect to θ, shown in Theorem
20 is given by,

d
dθ
I(X;Y ) = Er+1

[
X log

(
1 + Er+1

[
θX
r

∣∣Y ])X(
1 + θX

r

)
Er+1[X|Y ]

]
. (5.137)

Taking the limit over θ let us get that,

lim
θ→0

d
dθ
I(X;Y ) = E

[
X log

X

E[X]

]
. (5.138)

The exchange between the limit and the sum carried out in order to obtain
(5.138) can be justified through the same procedure used to state Theorem
22, shown in Section 5.4.8.

5.4.10 Proof of Corollary 6

Let Y be the output of a negative binomial model with parameters
(r, θX/(θX + r)). Then, based on Theorem 19, replacing Xθ by θX/r in
(5.14) and consequently in (5.13) let us get that,

d
dθ
D(P rY ||QrY ) = Gr+1

Q

(
θX

r

)
− Gr+1

P

(
θX

r

)

= Er+1

X log

(
1 + Er+1

Q

[
θX
r

∣∣Y ])Er+1[X|Y ](
1 + Er+1

[
θX
r |Y

])
Er+1
Q [X|Y ]


− Er+1


(
Er+1[X|Y ]− Er+1

Q [X|Y ]
)

(
1 + Er+1

Q

[
θX
r

∣∣Y ])
 . (5.139)

Making θ tend to zero inside the sum of (5.139) let us get the desired result.
Formally this procedure is justified by the procedure carried out in Section
5.4.8 in order to obtain Theorem 22.
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Chapter 6

Connection with the Poisson
model

In this chapter, we treat asymptotically the behavior of the binomial model
and its connection with the Poisson model. Expressions given in Chapter
3 relating the information field with the estimation field, for an arbitrarily
input pre-processing Xθ let us study the behavior of the Poisson model as
long as the number of trials over the binomial model goes to infinite. The
Poisson model has been widely treated in the past by the information theory
community due to its application in the area of optic communications; it is
often used to model pulse-amplitude modulated optical communication with
a direct-detection receiver [49]. The methodology used in this section is as
follows. At first instance we work over two special cases of the Poisson model
studied previously in [25]; the linear amplifying factor and the presence of
an additive dark current. In these two cases, based on a binomial model,
we show that under mild conditions in the model, as long as the number
of trials n goes to infinite, the input output mutual information and the
relative entropy converge to their counterpart results found previously for
the Poisson model.

Beyond these results, we characterize for the relative entropy and
mutual information the information–estimation relationship that arises over
a binomial model with an arbitrary input preprocessing Xθ when the
parameter n goes to infinite. Subsequently, departing from a Poisson model
where the mean is given by a linear scaling of the input, we show that
the low input scaling regime coincides with that found for the binomial
and negative binomial models. Furthermore, we show that in general, for
a Poisson model with an arbitrary mean Xθ the derivative of the mutual
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information and the derivative of the relative entropy are equal to the
derivatives calculated asymptotically over a binomial model with parameters
(n,Xθ/n). We finish this section with a set of conclusions derived upon
those information–estimation expressions obtained. Additionally we show
that there is a relationship between the negative binomial models and the
Poisson models that let us obtain for the Poisson model, the same results
that were obtained using the binomial model results.

6.1 Poisson model: Definition

The Poisson model is based on the Poisson distribution which can be
used to express the probability of a given number of events occurring in
a fixed interval of time if these events occur with a known average rate and
independently of the time since the last event. Mathematically, the pmf is
given by the following expression,

P (Y = y) =
λy

y!
e−λ, y ∈ Z+

0 , (6.1)

where λ > 0 is the mean of the distribution. We define the Poisson model
as a random transformation that maps an input random variable X to an
integer output random variable Y , where conditioned on X = x the output
Y is Poisson distributed with mean f(θ, x). Similarly to the previous models
studied, the function f(θ,X) represents a deterministic θ−preprocessing of
the input. Hence, the conditional pmf of the model is given by,

PY |X(y|x) =
f(θ, x)y

y!
e−f(θ,x), y ∈ Z+

0 . (6.2)

Similarly to the previous models, for notational convenience, dependency of
Y on θ is implicit. Also we use the shorthand,

Xθ = f(θ,X). (6.3)

Furthermore, it is assumed that f(θ,X) is differentiable with respect to θ,
where we denote its derivative as,

X ′θ =
∂

∂
f(θ,X). (6.4)

Suppose that the input X can be distributed according to either PX or QX .
Over a Poisson model with mean Xθ we denote each output distribution as
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PY and QY where the former assumes that X ∼ PX and the latter that
X ∼ QX . When dealing with conditional estimates, E[Xθ|Y ] stands for
the estimate of the function Xθ, based on the observation of the output Y
when X ∼ PX ; similarly, EQ[Xθ|Y ] represents the conditional estimate of
Xθ when X ∼ QX .

6.2 Information-Estimation expressions based on
the Binomial model

Throughout this section we gather all the scenarios over the Poisson model
that can be analyzed through the results obtained for the binomial model.
Hence, the main objective in this case lies in showing the conditions over the
binomial model that asymptotically end up over a Poisson model and, by
that way let us translate several information-estimation expressions obtained
in the binomial context by taking the limit as the number of trials n goes
to infinite. Therefore, a key point in the discussion is the structure used
to generate a binomial model that asymptotically converges to a Poisson
model.

6.2.1 Linear Scaling

The binomial model converges to a Poisson model with rate θX as long as
the parameter n tends to infinite and the value of p is given by the function
θX/n [53, pag. 140]. As n → ∞, the parameter p = θX/n goes to zero
while the mean of the conditional distribution of the model θX remains
fixed. Hence, for a binomial model (n− 1, θX/n),

lim
n→∞

(
n− 1
y

)(
θx

n

)y (
1− θx

n

)n−y−1

=
(θx)y

y!
e−θx, y ∈ Z+

0 . (6.5)

We now explore how the previous results are related to the Poisson model.
First, for the Poisson model, the relation between the mutual information
can be also expressed using the Itakuro-Saito divergence and the X−1

moment:

d
dθ
I(X;Y ) = −E

[
Y

θ
log

X−1

E[X−1|Y ]

]
= E

[
Y

θ
`I
(
X−1,E

[
X−1|Y

])]
. (6.6)
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And similarly for the relative entropy,

d
dθ
D(PY ‖QY ) = E

[
Y

θ
`I
(
E
[
X−1|Y

]
,EQ

[
X−1|Y

])]
. (6.7)

These results can be obtained by direct substitution of the results in [3, 25].
We now show that expressions given in Theorems 8 and 9 converge to

their Poisson counterpart when we make n tend to infinite over a binomial
model with parameters (n, θX/n).

Theorem 24. Let X ∼ PX be a random variable taking its value in
(0, xmax). Let Y be the output of the n-th order binomial model described by
(4.2) with Xθ = θX/n. Then,

lim
n→∞

d
dθ
I(X;Y ) =

1
θ
E [`P (θX,E[θX|Y ])] (6.8)

= E

[
Y

θ
`I
(
X−1,E

[
X−1|Y

])]
(6.9)

hold for all finite θ. At the RHS of (6.8) and (6.9), the expectation is with
respect to PY |XPX where PY |X is the conditional Poisson distribution with
mean θX.

Proof. See Section 6.5.1.

Theorem 25. Let X be a random variable taking its values in (0, xmax),
following distribution PX or QX . Let Y be the output of the n-th order
binomial model described by (4.2) with Xθ = θX/n. Then,

lim
n→∞

d
dθ
D(PnY ‖QnY ) = E [`P (E[X|Y ],EQ[X|Y ])] (6.10)

= E

[
Y

θ
`I
(
E[X−1|Y ],EQ

[
X−1|Y

])]
(6.11)

hold for all finite θ. At the RHS of (6.10) and (6.11), the expectations E[·]
and EQ[·] are, respectively, with respect to PY |XPX and PY |XQX where PY |X
is a Poisson model with rate θX.

Proof. The proof of this Theorem follows the same steps carried out in
Section 6.5.1 to develop the proof of Theorem 24.
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6.2.2 Additive Dark current

A second scenario frequently covered in all the research done around the
Poisson model, considers in the generation of the model, the presence of
an additive factor θ, known as dark current. Following the analysis given
in [53, pag. 140], we have that, for a binomial model with parameters
(n− 1, (X + θ)/n),

lim
n→∞

(
n− 1
y

)(
x+ θ

n

)y (
1− x+ θ

n

)n−y−1

=
(x+ θ)y

y!
e−(x+θ), y ∈ Z+

0 .

(6.12)

In this case, considering a Poisson model with mean X + θ, the derivative
of the input-output mutual information can be expressed in terms of the
Bregman divergence `P through the function (X + θ)−1:

d
dθ
I(X;Y ) = −E [`I(X + θ,E[X + θ|Y ])] (6.13)

= −E

[
Y

θ
`P
(
(X + θ)−1,E[(X + θ)−1|Y ]

)]
. (6.14)

Furthermore when dealing with the relative entropy concept, we have the
following expression,

d
dθ
D(PY ||QY ) = −E [`I(E[X + θ|Y ],EQ[X + θ|Y ])] (6.15)

= −E

[
Y

θ
`P
(
E[(X + θ)−1|Y ],EQ[(X + θ)−1|Y ]

)]
. (6.16)

In the following Theorems we show that, over a Binomial model with
parameters (n, (X+ θ)/n), as long as the number of trials n goes to infinite,
the derivative of the input-output mutual information and the derivative of
the relative entropy tend to (6.13) and (6.15) respectively.

Theorem 26. Let X ∼ PX be a random variable taking its values in
(0, xmax). Let Y be the output of the n-th order binomial model described by
(4.2) with Xθ = (X + θ)/n. Then,

lim
n→∞

d
dθ
I(X;Y ) = −E [`I(X + θ,E[X + θ|Y ])] (6.17)

= −E

[
Y

θ
`P ((X + θ)−1,E[(X + θ)−1|Y ])

]
. (6.18)

87



Proof. The proof to this Theorem follows the same steps carried out in
Section 6.5.1 simply by changing θX by X + θ.

Theorem 27. Let X be a random variable taking its values in (0, xmax),
following distribution PX or QX . Let Y be the output of the n-th order
binomial model described by (4.2) with Xθ = (X + θ)/n. Then

lim
n→∞

d
dθ
D(PnY ||QnY ) = −E [`I(E[X + θ|Y ],EQ[X + θ|Y ])] (6.19)

= −E

[
Y

θ
`P (EQ[(X + θ)−1|Y ],E[(X + θ)−1|Y ])

]
.

(6.20)

Proof. The proof to this Theorem is just a combination of the proofs of
Theorems 25 and 26.

6.2.3 General case

In this section we briefly present information-estimation relationships when
the parameter n goes to infinite over a binomial model with parameters
(n− 1, Xθ/n). Similarly to (6.5) and (6.12), we get that [53, pag. 140],

lim
n→∞

(
n− 1
y

)(
f(θ, x)
n

)y(
1− f(θ, x)

n

)n−y−1

=
(f(θ, x))y

y!
e−f(θ,x), y ∈ Z+

0 .

(6.21)

Therefore, for a generic binomial model where the Bernoulli trials are
governed by an arbitrarily function Xθ/n we get that, as long as the
number of trials increases, the binomial model converges to a Poisson
model with mean Xθ. Based on this behavior in the following theorems we
show the corresponding information-estimation expressions for a binomial
model when the parameter n goes to infinite. Later, we show that these
expressions coincide with those who describe the mutual information and
relative entropy over the Poisson model.

Theorem 28. Let X ∼ PX be a random variable such that Xθ and X ′θ are
measurable bounded functions with Xθ > 0. Let Y be the output of the n-th
order binomial model (4.2) with parameters (n,Xθ/n). Then,

lim
n→∞

d
dθ
I(X;Y ) = E

[
X ′θ log

Xθ

E[Xθ|Y ]

]
. (6.22)

Proof. See Section 6.5.2.
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In this case, we note that the result given in Theorems 28 covers information
estimation expressions found in the cases of linear input scaling and additive
dark current noise. Notice additionally that the expression found in (6.22)
let us conclude that in all the cases where Xθ is of the form h(θ)X or
X + h(θ), for differentiable measurable functions h(θ), the derivative of the
input output mutual information is proportional to the expectation of a
Bregman divergence.

Theorem 29. Let X be a random variable distributed as either PX or QX
such that Xθ and X ′θ are measurable bounded functions with Xθ > 0. Let
Y be the output of the n-th order binomial model (4.2) with parameters
(n,Xθ/n). Then,

lim
n→∞

D(PnY ||QnY )

= E

[
E[X ′θ|Y ] log

E[Xθ|Y ]
EQ[Xθ|Y ]

−
EQ[X ′θ|Y ] (E[Xθ|Y ]− EQ[Xθ|Y ])

EQ[Xθ|Y ]

]
. (6.23)

Proof. See Section 6.5.3.

Notice that, even thought the conditional PnY |X tends to a conditional
PY |X that is Poisson, it is not proven that the derivative of the mutual
information and the derivative of the relative entropy found in (6.22) and
(6.23) correspond to the respective derivatives over a Poisson model.

6.3 Information-Estimation expressions based on
the Poisson model

As has been shown before, the low input scaling regime in some scenarios
leads to several optimum conditions in the communication problem. In this
section we show that the binomial, negative binomial and Poisson models
have the same behavior at low input scaling regimes. Specifically, we study
the behavior of several information measures over Poisson models where the
mean is determined by a linear scaling of the input and the input scaling
goes to zero. As was pointed out for the binomial and negative binomial
models in Sections 4.2.3 and 5.2.3 respectively, the Bregman divergence `P
between the input X and the mean E[X], also seems to play a fundamental
role over the Poisson model under these circumstances.

89



Theorem 30. Let X ∼ PX be a positive bounded random variable. Let Y
be the output of a Poisson model (6.2) with mean Xθ = θX. Then,

lim
θ→0

d
dθ
I(X;Y ) = E

[
X log

X

E[X]

]
. (6.24)

Proof. See Section 6.5.4.

Previously, Atar et al. [3], proved the concavity on θ of the mutual
information over a Poisson model with mean θX. This implies that the
value of the derivative of the mutual information with respect to θ achieves
its maximum value when θ goes to zero. In terms of efficiency, a direct
implication of the expression given in Theorem 30 is that the bigger the
value of E[`P (X,E[X])], the bigger the gain in terms of mutual information
for a small increase in θ.

The following theorem describes the relative entropy between two output
distributions PY and QY when the parameter θ goes to zero in the
constitution of the model.

Theorem 31. Let X be a positive bounded random variable that can be
distributed accordingly to PX or QX . Let Y be the output of a Poisson
model (6.2) with mean θX. Then,

lim
θ→0

d
dθ
D(PY ||QY ) = `P (E[X],EQ[X]). (6.25)

Proof. The proof to this Theorem follows the same steps carried out in the
proof of Theorem 30 given in Section 6.5.4.

A remarkable feature to notice in the behavior of the relative entropy is that
its behavior only depends on the mean of each input distribution, meanwhile
in the case of the mutual information, its rate of change depends on the mean
of the input and also on the input statistics E[X logX].

The rest of this section is dedicated to the development of information-
estimation expressions based on the assumption that the mean of the Poisson
model (6.2) is an arbitrary function Xθ. The main result at the end let
us state that the expressions given in Theorems 28 and 29, based on the
binomial model, correspond to the derivatives of the mutual information
and relative entropy of the Poisson model treated.

Theorem 32. Let X ∼ PX be a random variable such that Xθ and X ′θ
are measurable bounded functions with Xθ > 0. Let Y be the output of the
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Poisson model (6.2) with mean Xθ. Then,

d
dθ
I(X;Y ) = E

[
X ′θ log

Xθ

E[Xθ|Y ]

]
. (6.26)

Proof. See Section 6.5.5.

Analogously, for the derivative of the relative entropy we get the following
result.

Theorem 33. Let X be a random variable distributed as either PX or QX
such that Xθ and X ′θ are measurable bounded functions with Xθ > 0. Let Y
be the output of a Poisson model (6.2) with mean Xθ. Then,

D(PY ||QY ) = E

[
E[X ′θ|Y ] log

E[Xθ|Y ]
EQ[Xθ|Y ]

−
EQ[X ′θ|Y ] (E[Xθ|Y ]− EQ[Xθ|Y ])

EQ[Xθ|Y ]

]
.

(6.27)

Proof. The proof to this theorem follows is similar to the proof of Theorem
32 shown in Section 6.5.5.

6.4 Concluding remarks

Throughout this section we have presented several information estimation
expressions for the Poisson model. Initially, based on a set of results
obtained for the Binomial model, it is proven that they converge to their
counterpart results over the Poisson model when the number of trials of
the binomial model tends to infinite. It is remarkable that those binomial
models that asymptotically converge to the Poisson model are constituted
with n Bernoulli trials with probability of success p = Xθ/n. This leads to
a binomial model where the mean np = Xθ is independent of n.

In the context of the negative binomial model it is worth pointing out the
following scenario. Let P rY |X be the conditional distribution of a negative

binomial model with parameters
(
r,

X∗θ
1+X∗θ

)
with X∗θ = Xθ/r, i.e.,

P rY |X(y|x) =
(
r + y − 1

y

)(
f(θ, x)

r + f(θ, x)

y)y ( r

r + f(θ, x)

)r
, y ∈ Z+

0 .

(6.28)

The random transformation modeled through (6.28) corresponds to a
negative binomial model where the probability of each Bernoulli trial is given

91



by Xθ
r+Xθ

, which ends up in a model with mean equal to Xθ, independent of
r. Asymptotically, as the parameter r goes to infinite we have that [53, pag.
287],

lim
r→∞

P rY |X(y|x) =
(f(θ, x))y

y!
e−f(θ,x), y ∈ Z+

0 . (6.29)

In words, (6.29) means that, for a negative binomial model with parameters
(r,Xθ/(r +Xθ)) where the mean is given by Xθ, the conditional P rY |X
converges to a Poisson model of mean Xθ, as long as r goes to infinite.
This translates, in the case of the mutual information to expressions as the
following. Let Y be the output of a negative binomial model where the
conditional is given by (6.28). Then, by Theorem 20 in Section 5.2.2, we get
that,

d
dθ
I(X;Y ) = Gr+1

P

(
Xθ

r

)
(6.30)

= Er+1

X ′θ log

(
1 + Er+1

[
Xθ
r

∣∣∣Y ])Xθ(
1 + Xθ

r

)
Er+1[Xθ|Y ]

 , (6.31)

which asymptotically tends to,

lim
r→∞

d
dθ
I(X;Y ) = E

[
X ′θ log

Xθ

E[Xθ|Y ]

]
. (6.32)

Therefore, similarly to the binomial model, those negative binomial models
where the mean Xθ is independent of r, asymptotically produce an input-
output mutual information that is equal to the input-output mutual
information over a Poisson model with mean Xθ.

Finally, in the context of the Poisson model with a mean given by an
input scaling, it is shown that the low input scaling regime over the Poisson
model is equal to that found for the binomial and negative binomial models
in Sections 4.2.3 and 5.2.3, respectively.

6.5 Proofs

6.5.1 Proof of Theorem 24

In this section we prove that, over a binomial model with parameters
(n, θX/n), the derivative of the mutual information converge to their Poisson
counterparts as n tends to infinite. First, we prove some auxiliary lemmas
and later we proceed to show the proof of Theorem 24.
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Lemma 15. Consider a Binomial model with parameters (n − 1, θX/n)
where 0 < θX

n < 1. Then,

lim
n→∞

En−1[X|Y = y] = E[X|Y = y], (6.33)

where at the LHS of (6.33), the input output relationship is given by a
binomial model with parameters (n− 1, θX/n) and at the RHS of (6.33) the
input output relationship is given by a Poisson model with rate θX.

Proof. As n→∞, the binomial model converges to the Poisson model,

lim
n→∞

Pn−1
Y |X (y|x) = lim

n→∞

(
n− 1
y

)(
θx

n

)y (
1− θx

n

)n−1−y
(6.34)

=
(θx)y

y!
lim
n→∞

n(n− 1) · · · (n− y)
(n− θx)y+1

(
1− θx

n

)n
(6.35)

=
(θx)y

y!
e−θx (6.36)

= PY |X(y|x). (6.37)

By the Dominated convergence theorem [6, Theorem 8.8],

lim
n→∞

En−1 [X|Y = y] =
limn→∞ E

[
XPn−1

Y |X (y|X)
]

limn→∞ E
[
Pn−1
Y |X (y|X)

]
=

E[XPY |X(y|X)]
E[PY |X(y|X)]

(6.38)

where PY |X is Poisson with mean θX.

In the next Lemma, we show that the tail of a binomial distribution with
parameters (n − 1, θX/n) is upper bounded by a Poisson distribution with
rate θX for all y sufficiently large.

Lemma 16. Let Pn−1
Y |X be a binomial distribution with parameters (n −

1, θX/n) where X is a positive bounded random variable. Define

µ(y, x) =

{
(θx)y

y! e−θx if y ≥ 2dθxmaxe,
1 if 0 ≤ y < 2dθxmaxe.

(6.39)

Then, for all n > θxmax and y ∈ {0, 1, . . . },

µ(y, x) > Pn−1
Y |X (y|x). (6.40)
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Proof. The case of y < 2dθxmaxe is because Pn−1
Y |X (y|x) is a pmf. For

y ≥ 2dθxmaxe, we rearrange Pn−1
Y |X (y|x):

Pn−1
Y |X (y|x) =

(
n− 1
y

)(
θx

n

)y (
1− θx

n

)n−y−1

=
(θx)y

y!

(
1− θx

n

)n n

n− θx
· · · n− y

n− θx︸ ︷︷ ︸
Γ

. (6.41)

It then suffices to show that Γ < 1 for y ≥ 2dθxmaxe and that(
1− θx

n

)n
< e−θx, (6.42)

which is due to

n log
(

1− θx

n

)
= −n

∞∑
i=1

1
i

(
θx

n

)i
(6.43)

= −θx− n
∞∑
i=2

1
i

(
θx

n

)i
(6.44)

< −θx. (6.45)

To complete the proof, we can notice that,

Γ =
y∏
k=0

n− k
n− θx

(6.46)

≤
y∏
k=0

n− k
n− dθxmaxe

(6.47)

=
2dθxmaxe∏
k=0

n− k
n− dθxmaxe

y∏
k=2dθxmaxe+1

n− k
n− dθxmaxe

(6.48)

≤
2dθxmaxe∏
k=0

n− k
n− dθxmaxe

(6.49)

=
dθxmaxe−1∏

k=0

(n− k)(n− (2dθxmaxe − k))
(n− dθxmaxe)2

(6.50)

≤ 1, (6.51)
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where (6.47) is because xmax is the largest value that x can take, (6.49) is
because each term in the inner product in (6.48) is less than 1, and (6.51)
inequality is because the area of a square is greater than the area of a
rectangle with the same perimeter.

Proof of (6.8) in Theorem 24. We first define

m = dθxmaxe (6.52)

where m < ∞ for any finite θ. Applying Theorem 12 with Xθ = θX/n we
have that,

lim
n→∞

d
dθ
I(X;Y ) = lim

n→∞

n

θ
En−1

[
`b

(
θX

n
,En−1

[
θX

n

∣∣∣∣Y ])] (6.53)

= lim
n→∞

En−1

[
X log

X
(
1− θ

nEn−1[X|Y ]
)(

1− θX
n

)
En−1[X|Y ]

]
(6.54)

= lim
n→∞

En−1

[
X log

X

1− θX
n

]

− lim
n→∞

En−1

[
En−1[X|Y ] log

En−1[X|Y ]
1− θ

nEn−1[X|Y ]

]
(6.55)

for n ≥ m. To complete the proof, we need to interchange the limit and the
expectation in both terms in (6.55). To do so, we rely on the domineted
convergence theorem [6, Theorem 8.8]. For the first term at the RHS of
(6.55) we have the following analysis. We first prove that, for all n ≥ m,
the expectations are finite, i.e.,

En−1

[
X log

X

1− θX
n

]
= En−1 [X logX] + En−1

[
X log

1
1− θX

n

]
(6.56)

≤ xmax log xmax + xmax log
1

1− θxmax
m

(6.57)

<∞. (6.58)

The maximum is achieved when PX is a delta function at xmax and n = m.
As n increases this value decreases and this expectation is always finite.

Second, we prove that there exists a function ω(x) ≥
∣∣∣∣x log x

1− θx
n

∣∣∣∣ such

that E[ω(X)] <∞. In effect,
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∣∣∣∣∣x log
x

1− θx
n

∣∣∣∣∣ ≤ |x log x|+
∣∣∣∣x log

(
1− θx

n

)∣∣∣∣ (6.59)

≤M∗ + xmax

∣∣∣∣log
(

1− θxmax

m

)∣∣∣∣ (6.60)

, ω(x), (6.61)

where,

M∗ , sup
{
e−1, xmax log xmax

}
. (6.62)

Now we can exchange the limit and the expectation. Hence,

lim
n→∞

En−1

[
X log

X

1− θX
n

]
= E

[
lim
n→∞

X log
X

1− θX
n

]
(6.63)

= E [X logX] . (6.64)

To calculate the second term at the RHS of (6.55) we define

ϑn−1(y)=En−1[X|Y = y] log
En−1[X|Y = y]

1− θ
nEn−1[X|Y = y]

(6.65)

for y ∈ {0, 1, . . . , n− 1}. To show that

lim
n→∞

∞∑
y=0

Pn−1
Y (y)ϑn−1(y) =

∞∑
y=0

lim
n→∞

Pn−1
Y (y)ϑn−1(y), (6.66)

where we define Pn−1
Y (y) = 0 for all y ≥ n, we verify the following conditions

[6, Theorem 8.8]:

(i)
∑∞

y=0 P
n−1
Y (y)ϑn−1(y) <∞, for all n ≥ m.

(ii) There exists a summable function ω(y) such that, for all n ≥ m,∣∣Pn−1
Y (y)ϑn−1(y)

∣∣ ≤ ω(y). (6.67)

To prove Condition (i), note that 0 ≤ En−1[X|Y = y] ≤ xmax leads to

∣∣ϑn−1(y)
∣∣ ≤M∗ + xmax

∣∣∣∣log
(

1− θxmax

m

)∣∣∣∣ , (6.68)
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where M∗ is given in (6.62), which yields,∣∣∣∣∣∣
∞∑
y=0

ϑn−1(y)Pn−1
Y (y)

∣∣∣∣∣∣ ≤
∞∑
y=0

|ϑn−1(y)|Pn−1
Y (y) (6.69)

= M∗ + xmax

∣∣∣∣log
(

1− θxmax

m

)∣∣∣∣ (6.70)

<∞ (6.71)

for all n ≥ m. To prove Condition (ii), note that

Pn−1
Y (y) = E

[
Pn−1
Y |X (y|X)

]
< E [µ(y,X)] , ν(y). (6.72)

due to Lemma 16. At this point the summability of the function ν(y) is
guaranteed:

∞∑
y=0

ν(y) =
2dθxmaxe∑
y=0

1 +
∞∑

y=2dθxmax+1e

E [µ(y,X)] (6.73)

< 2dθxmaxe+ 2 (6.74)
<∞. (6.75)

Based on (6.68) and (6.72), we have

Pn−1
Y (y)

∣∣ϑn−1(y)
∣∣

≤
(
M∗ + xmax

∣∣∣∣log
(

1− θxmax

m

)∣∣∣∣) ν(y) (6.76)

, ω(y), (6.77)

and consequently,

∞∑
y=0

ω(y)

=
(
M∗ + xmax

∣∣∣∣log
(

1− θxmax

m

)∣∣∣∣) (2dθxmaxe+ 2) (6.78)

<∞ (6.79)

for all n ≥ m, which let us verify Condition (ii). We can now exchange the
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limit and the expectation, leading to,

lim
n→∞

Pn−1
Y (y)ϑn−1(y)

= lim
n→∞

Pn−1
Y (y)En−1[X|Y = y]log

En−1[X|Y = y]
1− θ

nEn−1[X|Y = y]
(6.80)

= PY (y)E[X|Y = y] log E[X|Y = y], (6.81)

where, to obtain (6.81) we have applied results in Lemma 15:

lim
n→∞

En−1[X|Y = y] = E[X|Y ], (6.82)

and

lim
n→∞

E[Pn−1
Y |X (y|X)] = PY (y). (6.83)

Combining (6.63) and (6.81) yields the desired result.

Proof of (6.9) in Theorem 24. We now show that (6.8) and (6.9) are
identical, i.e.,

E

[
X log

X

E[X|Y ]

]
= E

 ∞∑
y=0

X log
X

E[X|Y = y]
PY |X(y|X)

 (6.84)

= E

 ∞∑
y=0

X log (XE[X−1|Y = y + 1])PY |X(y|X)


(6.85)

= −E

1
θ

∞∑
y=0

(θX)y+1

y!
e−θX log

X−1

E[X−1|Y = y + 1]


(6.86)

= −E

1
θ

∞∑
y=1

(θX)y

(y − 1)!
e−θX log

X−1

E[X−1|Y = y]

 (6.87)

= −E

 ∞∑
y=0

y

θ
log

X−1

E[X−1|Y = y]
PY |X(y|X)

 (6.88)

= −E

[
Y

θ
log

X−1

E[X−1|Y ]

]
(6.89)

= E

[
Y

θ
`I
(
X−1,E

[
X−1|Y

])]
, (6.90)
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where in (6.85) we use the following fact:

1
E[X|Y = y]

=
E
[

(θX)y

y! e−θX
]

E
[
X (θX)y

y! e−θX
] (6.91)

=
E
[
X−1(θX)y+1e−θX

]
E [(θX)y+1e−θX ]

(6.92)

= E[X−1|Y = y + 1]. (6.93)

6.5.2 Proof of Theorem 28

Based on Theorem 12, the derivative of the input output mutual information
over a binomial model with parameters (n,Xθ/n) is given by,

d
dθ
I(X;Y ) = En−1

[
X ′θ log

(1− En−1[Xθ/n|Y ])Xθ

(1−Xθ/n)En−1[Xθ|Y ]

]
. (6.94)

Hence, taking the limit, we get that,

lim
n→∞

d
dθ
I(X;Y ) = lim

n→∞
En−1

[
X ′θ log

Xθ

(1−Xθ/n)

]
− lim
n→∞

En−1

[
X ′θ log

En−1[Xθ|Y ]
(1− En−1[Xθ/n|Y ])

]
(6.95)

= E

[
X ′θ log

Xθ

E[Xθ|Y ]

]
, (6.96)

where in order to obtain (6.96) rigorously speaking, we use the same
procedure used in the proof of Theorem 24 jointly with the dominated
convergence theorem [6, Theorem 8.8] and with Lemmas 15 and 16
generalized to the case when θX = Xθ where Xθ is a bounded measurable
function of the input X.

6.5.3 Proof of Theorem 29

The derivative of the relative entropy between two output distributions PnY
and QnY for a binomial model with parameters (n,Xθ/n), given by Theorem
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11 in Section 4.2.2 is expressed as follows,

d
dθ
D(PnY ||QnY )

= Fn−1
Q (Xθ/n)− Fn−1

P (Xθ/n) (6.97)

= En−1

[
X ′θ log

(1− En−1
Q [Xθ/n|Y ])Xθ

(1−Xθ/n)En−1[Xθ|Y ]

]

− En−1

[
En−1[X ′θ|Y ](Xθ − En−1

Q [Xθ/n|Y ])

(1− En−1
Q [Xθ/n|Y ])En−1

Q [Xθ]

]

− En−1

[
X ′θ log

(1− En−1[Xθ/n|Y ])
(1−Xθ/n)En−1[Xθ|Y ]

]
(6.98)

= En−1

[
X ′θ log

(1− En−1
Q [Xθ/n|Y ])En−1[Xθ|Y ]

(1− En−1[Xθ/n|Y ])En−1
Q [Xθ|Y ]

]

− En−1

[
En−1[X ′θ|Y ](Xθ − En−1

Q [Xθ/n|Y ])

(1− En−1
Q [Xθ/n|Y ])En−1

Q [Xθ]

]
. (6.99)

Carrying out the limit, let us get,

lim
n→∞

d
dθ
D(PnY ||QnY )

= E

[
E[X ′θ|Y ] log

E[Xθ|Y ]
EQ[Xθ|Y ]

−
EQ[X ′θ|Y ](E[Xθ|Y ]− EQ[Xθ|Y ])

EQ[Xθ|Y ]

]
(6.100)

where in order to obtain (6.100) we introduce the limit inside the expectation
operator in (6.99). This procedure can be justified using the same steps used
in the proof of Theorem 24 changing θX by Xθ.

6.5.4 Proof of Theorem 30

Before proceed with a formal proof to Theorem 30 we state some lemmas
required along the proof.

Lemma 17. Let X ∼ PX be a positive bounded random variable. Then, for
a Poisson model (6.2) with mean θX > 0,

lim
θ→0

E[XPY |X(y|X)] = E[X]1{y=0} (6.101)

and

lim
θ→0

E[PY |X(y|X)] = 1{y=0}. (6.102)
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Proof. By hypothesis we have that E[X] <∞. Therefore, based on the fact
that,

lim
θ→0

xPY |X(y|x) = x1{y=0} (6.103)

and

lim
θ→0

PY |X(y|x) = 1{y=0} (6.104)

together with the Dominated Convergence Theorem [6, Theorem 8.8] let us
state the desired result.

Lemma 18. For a bounded input X, let Y be the output of a Poisson model
(6.2) with mean θX. Then, for a given Y = y ∈ Z+

o ,

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y]

= PY (y)E[X|Y = y] log E[X|Y = y]
∣∣
θ=0

. (6.105)

Proof. For a given Y = y ∈ Z+
o notice that,

0 < E[XPY |X(y|X)] ≤ (θxmax)y

y!
E[X], (6.106)

which implies that,

E[XPY |X(y|X)]
∣∣
θ=0

= E[X]1{y=0} (6.107)

and analogously,

E[PY |X(y|X)]
∣∣
θ=0

= 1{y=0}. (6.108)

Based on (6.107) and (6.108) we get that,

PY (y)E[X|Y = y] log E[X|Y = y]
∣∣
θ=0

= E[XPY |X(y|X)]
(
log E[XPY |X(y|X)]− log E[PY |X(y|X)]

)
(6.109)

= E[X] log E[X]1{y=0} (6.110)

where we use the convention 0 log 0 = 0. On the other hand, based on
Lemma 17 we have that,

lim
θ→0

E[XPY |X(y|X)] = E[X]1{y=0} (6.111)
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and

lim
θ→0

E[PY |X(y|X)] = 1{y=0}. (6.112)

Therefore, for y = 0,

lim
θ→0

PY (0)E[X|Y = 0] log E[X|Y = 0]

= lim
θ→0

E[XPY |X(0|X)]
(
log E[XPY |X(0|X)]− log E[PY |X(0|X)]

)
(6.113)

= E[X] log E[X]. (6.114)

Indeed, notice that our main objective now is to calculate, for y 6= 0 the
following expression,

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y]

= lim
θ→0

E[XPY |X(y|X)]
(
log E[XPY |X(y|X)]− log E[PY |X(y|X)]

)
.

(6.115)

Taking into account (6.111), what is left to calculate (6.115) is to analyze
the following expression,

lim
θ→0

E[XPY |X(y|X)] log E[PY |X(y|X)] (6.116)

when y 6= 0. To do so, notice that,

E[XPY |X(y|X)] = E

[
X

(θX)y

y!
e−θX

]
(6.117)

= E

[
1
y!

∞∑
k=0

(−1)k

k!
θk+yXk+y+1

]
(6.118)

=
1
y!

∞∑
k=0

(−1)k

k!
θk+yE[Xk+y+1] (6.119)

where, to obtain (6.119) we use the uniform convergence [47, Theorem 7.10]
of the function

∞∑
k=0

(−1)k

y!
θk+y

k!
xk+y+1, (6.120)
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jointly with [47, Theorem 7.16]. To calculate (6.116), applying the
L’Hospital rule [47] let us get,

lim
θ→0

E[XPY |X(y|X)] log E[PY |X(y|X)] =

− lim
θ→0

d
dθE[PY |X(y|X)]E[XPY |X(y|X)]2

d
dθE[XPY |X(y|X)]E[PY |X(y|X)]

. (6.121)

In order to resolve (6.121), let us define,

gk(θ) ,
(−1)k

y!
θk+y

k!
E[Xk+y+1]. (6.122)

The derivative of each term gθ(θ) with respect to θ, denoted as g′k(θ) is given
by,

g′k(θ) =
(−1)k

y!
θk+y−1

k!
(k + y)E[Xk+y+1] (6.123)

which constitutes a sequence of continuous functions for θ ∈ [0, δ), δ > R+.
Based on [47, Theorem 7.10] we have that,

∞∑
k=0

g′k(θ) (6.124)

converges uniformly for θ ∈ [0, δ). Hence we get that,

d
dθ

E[XPY |X(y|X)] =
∞∑
k=0

(−1)k

y!
θk+y−1

k!
(k + y)E[Xk+y+1] (6.125)

constitutes a polynomial in θ where the least exponent is of grade (k − 1).
Similarly we have that,

d
dθ

E[PY |X(y|X)] =
∞∑
k=0

(−1)k

y!
θk+y−1

k!
(k + y)E[Xk+y] (6.126)

which also represents a polynomial where the least exponent is of grade
(k − 1). Based on these properties notice that due to (6.119) and (6.126)
the product,

d
dθ

E[PY |X(y|X)]E[XPY |X(y|X)]2

=

( ∞∑
k=0

(−1)k

y!
θk+y−1

k!
(k + y)E[Xk+y]

)( ∞∑
k=0

(−1)k

y!
θk+y

k!
E[Xk+y+1]

)2

(6.127)
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is a polynomial on θ with exponents belonging to the set {3y − 1, 3y, · · · }.
Similarly,

d
dθ

E[XPY |X(y|X)]E[PY |X(y|X)]

=

( ∞∑
k=0

(−1)k

y!
θk+y−1

k!
(k + y)E[Xk+y+1]

)( ∞∑
k=0

(−1)k

y!
θk+y

k!
E[Xk+y]

)
(6.128)

constitutes a polynomial on θ with exponents within the set {2y−1, 2y, · · · }.
Therefore, for y 6= 0 in (6.121), we get,

lim
θ→0

E[XPY |X(y|X)] log E[PY |X(y|X)]

= − lim
θ→0

d
dθE[PY |X(y|X)]E[XPY |X(y|X)]2

d
dθE[XPY |X(y|X)]E[PY |X(y|X)]

(6.129)

= − lim
θ→0

(
y
y!θ

y−1E[Xy] + · · ·
)(

1
y!θ

yE[Xy+1] + · · ·
)2(

y
y!θ

y−1E[Xy+1] + · · ·
)(

1
y!θ

yE[Xy] + · · ·
) (6.130)

= − lim
θ→0

(
y

(y!)3
θ3y−1E[Xy]E[Xy+1]2 + · · ·

)
(

y
(y!)2

θ2y−1E[Xy+1]E[Xy] + · · ·
) (6.131)

= − lim
θ→0

(
1
y!θ

yE[Xy]E[Xy+1]2 + · · ·
)

(E[Xy+1]E[Xy] + · · · )
(6.132)

= 0 (6.133)

where (6.130) appears as consequence of (6.128) and (6.127), (6.131) appears
when we multiply the first terms of each element in (6.130) and (6.132)
appears when we multiply and divide by θ2y−1. Consequently for y 6= 0,

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y]

= lim
θ→0

E[XPY |X(y|X)]
(
log E[XPY |X(y|X)]− log E[PY |X(y|X)]

)
(6.134)

= 0 (6.135)

where (6.135) appears as consequence of (6.133) and (6.111). We obtain the
desired result once we compare (6.135) and (6.114) with (6.110).
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Proof of Theorem 30. Departing from the expression for the derivative of
the input output mutual information over a Poisson model with mean θX
given in (1.13), we prove that,

lim
θ→0

d
dθ
I(X;Y ) = lim

θ→0
E

[
X log

X

E[X|Y ]

]
(6.136)

= E [X logX]−
∞∑
y=0

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y].

(6.137)

To exchange the sum with the limit in (6.137) we verify the following
conditions,

(i) The function PY (y)E[X|Y = y] log E[X|Y = y] is summable over Z+
0

for each θ ∈ [0, δ), δ ∈ R+.

(ii) There exists summable functions ξ(y) and ω(y) such that, for all
y ∈ Z+

0 ,

ξ(y) ≤ PY (y)E[X|Y = y] log E[X|Y = y] ≤ ω(y) (6.138)

(iii) For a given Y = y, the limit,

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y] (6.139)

exists and is equal to,

PY (y)E[X|Y = y] log E[X|Y = y]
∣∣
θ=0

. (6.140)

In effect, notice that the function |E[X|Y = y] log E[X|Y = y]| is upper
bounded by M∗ = sup{e−1, xmax log xmax} for all θ ∈ (0, δ). This condition,
jointly with (6.110) let us state Conditions (i) and (ii). Finally, Condition
(iii) is verified in Lemma 18. Consequently, we get that,

lim
θ→0

PY (y)E[X|Y = y] log E[X|Y = y] = E[X] log E[X]1{y=0}. (6.141)

Replacing (6.141) in (6.137) yields,

lim
θ→0

d
dθ
I(X;Y ) = E[X logX]− E[X] log E[X]. (6.142)
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6.5.5 Proof of Theorem 32

Let PY be the marginal distribution obtained at the output of a Poisson
model with mean Xθ. In the following Lemma, for a given Y = y, we show
an expression for the derivative of the marginal distribution PY with respect
to changes in the input scaling θ. Throughout this section we assume that
the set of feasible values is an open set, denoted by Θ.

Lemma 19. Let Xθ be a measurable differentiable bounded function such
that |X ′θ| < M,M ∈ R+ for all x ∈ X and and θ ∈ Θ. Then, for a Poisson
model with mean Xθ > 0,

d
dθ
PY (y) = E

[
d
dθ
PY |X(y|X)

]
(6.143)

= yE

[
X ′θ
Xθ

∣∣∣∣Y ]PY (y)− E
[
X ′θ|Y

]
. (6.144)

Proof. Based on [6, Theorem 12.13] we proceed to verify the following
conditions in order to exchange the derivative with the expectation,

(i) The derivative d
dθPY |X exists for all values of θ ∈ Θ.

(ii) There exists a function ω(x) such that∣∣∣∣ d
dθ
PY |X(y|x)

∣∣∣∣ ≤ ω(x) (6.145)

and E[ω(X)] <∞.

In effect,

d
dθ
PY |X(y|x) =

y

f(θ, x)
f ′(θ, x)PY |X(y|x)− f ′(θ, x)PY |X(y|x) (6.146)

which is well defined for all values of θ ∈ Θ, letting us verify Condition (i).
Condition (ii) is verified as follows;∣∣∣∣ d

dθ
PY |X(y|x)

∣∣∣∣ ≤ ∣∣∣∣ y

f(θ, x)
f ′(θ, x)

∣∣∣∣PY |X(y|x) +
∣∣f ′(θ, x)

∣∣PY |X(y|x) (6.147)

=
∣∣f ′(θ, x)

∣∣ f(θ, x)y−1

(y − 1)!
e−f(θ,x) +

∣∣f ′(θ, x)
∣∣PY |X(y|x)

(6.148)

≤M
(
PY |X(y − 1|x)1{y>0} + PY |X(y|x)

)
(6.149)

< 2M (6.150)

, ω(x). (6.151)
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Verification of Conditions (i) and (ii) let us conclude that

d
dθ
PY (y) = E

[
d
dθ
PY |X(y|X)

]
(6.152)

= y E

[
X ′θ
Xθ

∣∣∣∣Y = y

]
PY (y)− E

[
X ′θ|Y = y

]
PY (y) (6.153)

where (6.153) can be seen as consequence of (6.146).

Proof of Theorem 32. Let Y be the output of a Poisson model with mean
Xθ. By definition we have that,

I(X;Y ) = E

[
log

PY |X(Y |X)
PY (Y )

]
. (6.154)

Taking the derivative with respect to the parameter θ let us get,

d
dθ
I(X;Y ) = E

 d
dθ

∞∑
y=0

PY |X(y|X) log
PY |X(y|X)
PY (y)

 (6.155)

= E

 ∞∑
y=0

d
dθ
PY |X(y|X) log

PY |X(y|X)
PY (y)

−
PY |X(y|X)
PY (y)

d
dθ
PY (y)

 ,
(6.156)

where in (6.155) the derivative penetrates the expectation operator based on
the Dominated Convergence Theorem [47] together with Theorem [6, 12.13].
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The first term at the RHS of (6.156) is calculated as follows,

E

 ∞∑
y=0

d
dθ
PY |X(y|X) log

PY |X(y|X)
PY (y)


= E

 ∞∑
y=0

(
y
X ′θ
Xθ

PY |X(y|X)−X ′θPY |X(y|X)
)

log
PY |X(y|X)
PY (y)

 (6.157)

=E

 ∞∑
y=1

X ′θ
Xθ

(Xθ)y

(y − 1)!
e−Xθ log

PY |X(y|X)
PY (y)

−
∞∑
y=0

X ′θPY |X(y|X) log
PY |X(y|X)
PY (y)


(6.158)

=E

 ∞∑
y=0

X ′θPY |X(y|X) log
XθPY |X(y|X)

E[XθPY |X(y|X)]
−X ′θPY |X(y|X) log

PY |X(y|X)
PY (y)


(6.159)

= E

 ∞∑
y=0

X ′θPY |X(y|X) log
XθPY (y)

E[XθPY |X(y|X)]

 (6.160)

= E

[
X ′θ log

Xθ

E[Xθ|Y ]

]
(6.161)

where; in (6.157) we calculate the derivative of the conditional PY |X with
respect to θ, (6.158) appears when we eliminate the first term of the sum
given that it is zero, (6.159) appears when we change y by y − 1 in the
index of the sum, and (6.161) is consequence of the fact that E[Xθ|Y = y] =
E[XθPY |X(y|X)]

PY (y) . Subsequently, the second term at the RHS of (6.156) is given
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by,

E

 ∞∑
y=0

PY |X(y|X)
PY (y)

d
dθ
PY (y)


= E

 ∞∑
y=0

PY |X(y|X)
(
yE

[
X ′θ
Xθ

∣∣∣∣Y = y

]
− E

[
X ′θ|Y = y

]) (6.162)

= E

 ∞∑
y=1

(Xθ)y

(y − 1)!
e−Xθ

E
[
X ′θ/XθPY |X(y|X)

]
E
[
PY |X(y|X)

] −
∞∑
y=0

PY |X(y|X)E[X ′θ|Y = y]


(6.163)

= E

 ∞∑
y=0

XθPY |X(y|X)
E[X ′θ(Xθ)ye−Xθ ]
E[Xθ(Xθ)ye−Xθ ]

− PY |X(y|X)E[X ′θ|Y = y]


(6.164)

=
∞∑
y=0

E[X ′θPY |X(y|X)]−
∞∑
y=0

PY (y)E[X ′θ|Y = y] (6.165)

= 0, (6.166)

where (6.162) is consequence of Lemma 19, (6.163) appears when we
eliminate the first term of the sum because it is zero, (6.164) appears when
we change y by y − 1 in the index of the sum, (6.165) is consequence of
Fubinni’s Theorem [16, pag. 467] and finally, (6.166) appears as consequence
of the fact that E[X ′θ|Y = y] = E[X′θPY |X(y|X)]

PY (y) .
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Chapter 7

Conclusions and Ongoing
Work

7.1 Conclusions

This thesis explores information–estimation relationships over binomial,
negative binomial and Poisson models. As a starting point, we show
that those results obtained initially for the Gaussian and Poisson models
share the property that they can be represented entirely through the use
of Bregman divergences with the characteristic that those results only
depend on input statistics and their respective conditional estimates. This
property, as is shown in Chapter 2 is not fulfilled by the vast majority
of results developed recently, where the expressions given depend on the
output of the model Y not only through conditional estimates of the input.
This fact plays a fundamental role, given that the connections between
information and estimation only depending on conditional estimates through
the Bregman divergence give rise to the denominated “I-MMSE” and “I-
MMLE” relationships over the Gaussian and Poisson models, respectively.

Based on the previous results we show similar relationships in the
context of the binomial and negative binomial models. Over each model,
using a deterministic input preprocessing function Xθ, we develop several
information–estimation relationships, depending solely on input statistics
and its respective conditional estimates, that in some scenarios are given
through Bregman divergences as was done formerly for the Gaussian and
Poisson models. We highlight the following features over the results
obtained:

• Linear input scaling in the mean of the model: This scenario is similar
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to those studied previously for the Gaussian and Poisson models. We
show for the binomial and negative binomial models that the derivative
of the input–output mutual information is given through a Bregman
divergence where the arguments are the mean of the model θX and
its conditional estimate. Mathematically speaking, we prove for the
mutual information that,

d
dθ
I(X;Y ) ∝ E [`(θX,E[θX|Y ])] (7.1)

where the loss function ` is a Bregman divergence. This condition
gives rise to relationships that are of the same kind that the “I-
MMSE” and the “I-MMLE” found initially for the Gaussian and
Poisson models. Similar expressions are developed for the relative
entropy concept, where the arguments of the Bregman divergence used
are the conditional estimate of the mean θX under the distribution PX
and its correspondent mismatched version when X ∼ QX , i.e.,

d
dθ
D(PY ||QY ) ∝ E [`(E[θX|Y ],EQ[θX|Y ])] (7.2)

where again ` is a Bregman divergence.

• Low input scaling regime: Assuming that the input scaling factor
θ goes to zero, we show that the derivative of the input–output
mutual information over the binomial and negative binomial models
is proportional to the input statistics E[X logX] − E[X] log E[X]
which corresponds to the Bregman divergence `P between X and
its expectation E[X]. When we make the mean of each model
equal to θX1, we prove that the low input scaling regime is equal
for the binomial and negative binomial models. Similar results are
obtained for the relative entropy, where the low input scaling regime
is characterized by the expression `P (E[X],EQ[X]).

• Arbitrary input preprocessing: Using an arbitrary input preprocessing
we prove that several scenarios lead to information–estimation
expressions that are given through Bregman divergences even though
this is not always the case. In those cases where the information–
estimation relationship is given through a Bregman divergence, we

1To obtain a binomial model with mean θX the required input preprocessing function
is θX

n
. In the case of the negative binomial model, to obtain a model with mean θX the

input preprocessing function is θX
r

.
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can translate to the considered scenario those properties shown in
the “I-MMSE” and “I-MMLE” relationships. For those models and
scenarios over which the mutual information has a monotone behavior
in θ, in the broadcast channel setting, lead to the class of broadcast
channels known as “More Capable” channels which have a complete
characterized capacity region.

One question that naturally arises along the content presented in
Chapters 1 to 3 is whether there is a relationship between the Bregman
divergence used in the exponential form of the conditional of the
model and the Bregman divergence used to express the information–
estimation relationships. Based on the expressions found in the
arbitrary input preprocessing case we show that, up to a scaling
factor, the input–output mutual information is upper (resp. lower)
bounded by the expectation of the Bregman divergence used in the
exponential representation of the binomial (resp. negative binomial)
model. Similar bounds are obtained for the relative entropy.

• Extension to the Poisson models: It is well known that, over a
binomial model where the mean of the model is independent of the
number of trials n and the probability of each Bernoulli trial tends
to zero, as long as n goes to infinity, the binomial model converges
to the Poisson model. This property lets us extend the information–
estimation relationships found for the Binomial model to the Poisson
model.

On the other hand, we provide conditions over the negative binomial
model that let us obtain asymptotically the same results obtained for
the Poisson model. This claim let us see the duality between the
binomial and negative binomial models.

At low input scaling regime, we prove that, under mild conditions, the
Poisson model behavior is equal to that found for the binomial and
negative binomial models.

7.2 Ongoing Work

This section is a composition, mainly, of a set of results that constitute an
ongoing work. In the first case we show an alternative and as we believe novel
approach to the “I-MMSE” relationship that depends heavily on the fact
that the Gaussian distribution is a solution to the Heat equation. Then, we
show several relationships between lautum information [43] and estimation
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that can be derived using the same techniques employed in Chapters 4, 5
and 6.

7.2.1 Information–estimation relationships through partial
differential equations

Let X and Y be the input and output of a random transformation where
the input output relationship of the model considered is given by,

Y = X +N (7.3)

where N stands for a random variable that is Gaussian distributed with zero
mean and variance γ. Based on (7.3) the conditional distribution of Y given
X is a Gaussian distribution with mean X and variance γ, i.e.,

PY |X(y|x) =
1√
2πγ

e
− 1

2γ
(y−x)2

. (7.4)

In the following theorem we repeat the information-estimation relationship
between the mutual information and the minimum mean square error
(MMSE) due to Guo et al. in [23].

Theorem 34. Let X be a random variable such that E[X]2 < ∞. Then,
for the Gaussian model given in (7.3),

d
dγ
I(X;Y ) = − 1

2γ2
E
[
(X − E[X|Y ])2

]
. (7.5)

Proof. The mutual information can be written as

I(X;Y ) = D(PY |X ||PN |PX)−D(PY ||PN ) (7.6)

where PN stands for a standard Gaussian distribution with zero mean and
variance γ. The first term on the RHS of (7.6) is

D(PY |X ||PN |PX) = E

[
E

[
log e

YX
γ
− 1

2
X2

γ

∣∣∣∣X]]
= E

[
Y X

γ
− 1

2
X2

γ

]
=

1
2γ

E
[
X2
]
. (7.7)
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The derivative of this term with respect to γ is given by,

d
dγ
D(PY |X ||PN |PX) = − 1

2γ2
E
[
X2
]
. (7.8)

Now we proceed to calculate the derivative with respect to γ of the second
term at the RHS of (7.6). Taking into account that the Gaussian distribution
is a solution of a particular case of the Heat equation we have that [67],

d
dγ
PY |X(y|x) =

1
2
∂2

∂y2
PY |X(y|x) (7.9)

which implies that [11, eq. (12)]

d
dγ
PY (y) =

1
2
∂2

∂y2
PY (y). (7.10)

Therefore,

d
dγ
D(PY ||PN ) =

∫
d

dγ
PY (y) log

PY (y)
PN (y)

dy −
∫

d
dγ
PN (y)

PY (y)
PN (y)

dy (7.11)

=
1
2

∫
∂2PY (y)
∂y2

log
PY (y)
PN (y)

dy︸ ︷︷ ︸
(I)

− 1
2

∫
∂2PN (y)
∂y2

PY (y)
PN (y)

dy︸ ︷︷ ︸
(II)

.

(7.12)

where, to obtain (7.12) we use (7.10). To solve (I), we integrate by parts
over y, to obtain,

1
2

∫
∂2PY (y)
∂y2

log
PY (y)
PN (y)

dy =
1
2
∂PY (y)
∂y

log
PY (y)
PN (y)

∣∣∣∣∞
−∞

(7.13)

= 0− 1
2

∫
∂PY (y)
∂y

∂

∂y

(
log

PY (y)
PN (y)

)
dy (7.14)
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where the last step is justified by [7, eq. (9)]. Furthermore, we have that,

− 1
2

∫
∂PY (y)
∂y

∂

∂y

(
log

PY (y)
PN (y)

)
dy

= −1
2

∫ (
∂PY (y)
∂y

)2 1
PY (y)

dy +
1
2

∫
∂PY (y)
∂y

∂PN (y)
∂y

1
PN (y)

dy (7.15)

=
1
2

∫
∂PY (y)
∂y

(
y

γ
− E[X|Y = y]

γ

)
dy − 1

2

∫
y

γ

∂PY (y)
∂y

dy (7.16)

=
1
2

∫ (
y

γ
− E[X|Y = y]

γ

)
E[X|Y = y]

γ
PY (y)dy (7.17)

=
1

2γ2

∫
x

∫
yPY |X(y|x)dyPX(x)dx− 1

2γ2
E
[
E[X|Y = y]2

]
(7.18)

=
1

2γ2
E
[
(X − E[X|Y ])2

]
, (7.19)

where in (7.16) and (7.17) we use Lemma 20, proven at the end of this
section.

Term labeled as (II) is calculated similarly,

1
2

∫
∂2PN (y)
∂y2

PY (y)
PN (y)

dy = − 1
2γ

∫
∂(yPN (y))

∂y

PY (y)
PN (y)

dy (7.20)

= − 1
2γ

+
1

2γ2

∫
y2PY (y)dy (7.21)

= − 1
2γ

+
1

2γ2
(γ + E[X2]) (7.22)

=
E[X2]
2γ2

(7.23)

where to obtain (7.20) and (7.21) we use Lemma 20. Putting together (7.19)
and (7.23) yields

d
dγ
D(PY ||PN ) = − 1

2γ2
E
[
E[X|Y ]2

]
(7.24)

Finally, based on the expressions given in (7.8) and (7.24) we get that

d
dγ
I(X;Y ) = − 1

2γ2
E
[
(X − E[X|Y ])2

]
. (7.25)
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Notice that the two main ingredients in the alternative proof of Theorem 34
are the Heat Equation and Lemma 20, which characterizes the derivative of
the marginal PY with respect to y. A striking question to ask is whether
there is a similar information–estimation relationship (in terms of the square
distance) for other channel laws PY |X that satisfy the Heat Equation.
Clearly, any deviation from (7.5) would be due to the fact that PY depends
on the particular choice of PY |X which in turn enters the picture via Lemma
20.

Lemma 20. Let Y be a random variable obtained at the output of the
Gaussian channel described by (7.3). Then,

∂PY (y)
∂y

= −y
γ
PY (y) +

1
γ

E[X|Y = y]PY (y) (7.26)

Proof. Based on [7, p. 269] we have that

∂PY (y)
∂y

= −1
γ

E[(y −X)PY |X(y|X)] (7.27)

= −y
γ
PY (y) + E[X|Y = y]PY (y) (7.28)

7.2.2 Lautum Information and Estimation Theory

In this section we show expressions relating the lautum information [43] with
some estimation quantities over the Poisson and binomial models.

Introduced in [43] by Palomar and Verdú as an alternative measure of
dependency, the lautum information between two random variables X and
Y is defined as follows,

L(X;Y ) , D(PXPY ||PXY ) (7.29)

= EPXPY

[
log

PX(X̄)PY (Ȳ )
PXY (X̄, Ȳ )

]
(7.30)

where the roles of the joint PXY and the product of marginals distributions
PXPY are swapped in comparison with the definition of the mutual
information. Note that in the definition given in (7.29), variables (X̄, Ȳ )
are independent with the same marginals as (X,Y ). In [43], the authors
also present several properties and characterizations satisfied by the lautum
information. There, it is shown that the lautum information appears in
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problems such as test of independence, capacity per unit cost over certain
channels [60], gambling strategies, etc. Moreover [2] gives an information-
estimation for the lautum information in the context of the Gaussian
channel.

Lets consider a Poisson model where, conditioned on X, Y is distributed
as a Poisson with parameter θX. Recall from (1.13) that the derivative of
the input–output mutual information is given by,

d
dθ
I(X;Y ) = E

[
X log

X

E[X|Y ]

]
. (7.31)

Employing a similar procedure to that used in Chapter 6 (Theorem 32), we
find that the derivative of the lautum information for the Poisson model is
characterized as follows.

Theorem 35. Let X ∼ PX be a positive bounded random variable. Let Y
be the output of a Poisson model with mean θX > 0. Then,

d
dθ
L(X;Y ) = E

[
X log

E[X|Y ]
E[logX]

]
. (7.32)

Proof. Omitted. See Section 6.5.5 for further details.

Algebraic manipulations over (7.31) and (7.32) let us obtain the following
expression for the sum of the derivative of the mutual information and the
derivative of the lautum information. This quantity was previously studied
in the context of the Gaussian channel in [43, 2]. We present the analogous
version for the Poisson model for the sake of completeness.

Corollary 7. Assume the same conditions used in Theorem 35. Then,

d
dθ

(I(X;Y ) + L(X;Y )) = E

[
X log

X

E[logX]

]
. (7.33)

Proof. Adding up (7.31) and (7.32) let us obtain the desired result.

Let us next consider the binomial model given in (4.2). Specifically, for a
given X, let Y be binomial distributed with parameters (n, θX). Then by
Theorem 9,

d
dθ
I(X;Y ) = nEn−1

[
X log

X(1− θEn−1[X|Y ])
(1− θX)En−1[X|Y ]

]
. (7.34)

Following the procedure illustrated in the proof of Theorem 8 we obtain
the following expression for the derivative of the lautum information with
respect to θ.
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Theorem 36. Let X ∼ PX be a random variable taking its value in
(0, xmax). Let Y be the output of the n-th order binomial model described by
(4.2) with Xθ = θX. Then,

d
dθ
L(X;Y ) = nEn−1

[
X log

En−1[X|Y ]
(1− θEn−1[X|Y ])

]
− nE[X]E

[
log

X

1− θX
+ 1
]

+ nE

[
X

1− θX

]
E[1− θX].

(7.35)

Proof. Omitted. See Section 4.4.5 for further details.

The derivative of the sum between the mutual information and the lautum
information is expressed as follows.

Corollary 8. Assume the same set of conditions used in Theorem 36.
Then,

d
dθ

(I(X;Y ) + L(X;Y )) = n

[
X log

X

1− θX

]
− nE[X]E

[
log

X

1− θX
+ 1
]

+ nE

[
X

1− θX

]
E[1− θX]. (7.36)

Proof. Adding up (7.35) and (7.36) let us obtain the desired result.

Additionally, based on the procedures illustrated in the proof of Theorem 17,
similar extensions can be carried out in the context of the negative binomial
model.

So far is unknown whether the expressions given in (7.33) and (7.36)
have an operational or conceptual meaning in the context of the Poisson
and binomial models as was given in [2] for the Gaussian channel.
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for parallel Gaussian channels with arbitrary input distributions. IEEE
Trans. on Inf. Theory, 52(7):3033–3051, July 2006.

[40] E. Mayer-Wolf and M. Zakai. On a formula relating the Shannon
information to the Fisher information for the filtering problem. 61:164–
171, 1984.

[41] F. Nielsen, J. Boissonnat, and R. Nock. Bregman Voronoi diagrams:
Properties, algorithms and applications. CoRR, abs/0709.2196, 2007.
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