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Abstract

Complex network models have become a major tool in the modeling
and analysis of many physical, biological and social phenomena. A complex
network exhibits behaviors which emerge as a consequence of interactions
between its constituent elements, that is, remarkably, not the same as
individual components.

One particular topic that has attracted the researchers’ attention is
the analysis of how synchronization occurs in this class of models, with
the expectation of gaining new insights of the interactions taking place
in real-world complex systems. Most of the work in the literature so far
has been focused on the synchronization of a collection of interconnected
nodes (forming one single network), where each node is a dynamical system
governed by a set of nonlinear differential equations, possibly displaying
chaotic dynamics.

In this thesis, we study an extended version of this problem. In
particular, we consider a setup consisting of two complex networks which
are coupled unidirectionally, in such a way that a set of signals from the
master network are injected into the response network, and then investigate
how synchronization is attained. Our analysis is fairly general. We impose
few conditions on the network structure and do not assume that the nodes
in a single network are synchronized.

This work can be divided into two main parts; outer synchronization in
fractional-order networks, and outer synchronization in ordinary networks.
In both cases the system parameters are perturbed by bounded, time varying
and unknown perturbations. The synchronizer feedback matrix is possibly
perturbed with the same type of perturbations as well. In both cases, of
fractional-order and ordinary networks, we build up several theorems that
ensure the attainment of synchronization in various scenarios, including, e.g.,
cases in which the coupling matrix of the networks is non-diffusive (hence we
can avoid this assumption, which is almost invariably made in the literature).
In all the cases of interest, we show that the scheme for coupling the networks
is very simple, as it reduces to the computation of a single gain matrix whose
dimension is independent of the number of network nodes. The structure
of the designed synchronizer is also very simple, making it convenient for
real-world applications.

Although all of the proposed schemes are assessed analytically, numerical
results (obtained by computer simulations) are also provided to illustrate the
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proposed methods.

viii



Resumen

Las redes complejas se han convertido en una herramienta fundamental
en el anlisis de muchos sistemas f́ısicos, biológicos y sociales. Una red
compleja presenta comportamientos que “emergen” como consecuencia de
las interacciones entre sus elementos constituyentes pero que no se observan
de forma individual en estos elementos.

Un aspecto en concreto que ha atrapado la atención de muchos
investigadores es el análisis de cómo se producen fenómenos de sincronización
en esta clase de modelos, con la esperanza de alcanzar una mayor
comprensión de las interacciones que tienen lugar en sistemas complejos del
mundo real. La mayor parte del trabajo publicado hasta ahora ha estado
centrado en la sincronización de una colección de nodos interconectados (que
forman una nica red con entidad propia), donde cada nodo es un sistema
dinmico gobernado por un conjunto de ecuaciones diferenciales no lineales,
posiblemente caóticas.

En esta tesis estudiamos una versión extendida de este problema.
En concreto, consideramos un sistema formado por dos redes complejas
acopladas unidireccionalmente, de manera que un conjunto de señales de la
red principal se inyectan en la red secundaria, e investigamos cómo se alcanza
un estado de sincronización. Este fenómeno se conoce como “sincronización
extern”. Nuestro anlisis es muy general. Se imponen pocas condiciones a
las estructura de las redes y no es necesario suponer que los nodos de cada
red estén sincronizados entre śı previamente.

Esta memoria se puede dividir en dos bloques: la sincronización externa
de redes descritas por ecuaciones diferenciales de orden fraccionario y
la sincronización externa de redes ordinarias (descritas por ecuaciones
diferenciales de orden entero). En ambos casos, se admite que los
parmetros del sistema puedan estar sujetos a perturbaciones desconocidas,
posiblemente variables con el tiempo, pero acotadas. La matriz de
realimentación del esquema de sincronización puede sufrir el mismo tipo
de perturbación. En ambos casos, con ecuaciones de orden fraccionario
o entero, construimos varios teoremas que aseguran que se alcance la
sincronización en escenarios diversos, incluyendo, por ejemplo, casos en los
que la matriz de acoplamiento de las redes es no difusiva (por lo tanto,
podemos evitar esta hipótesis, que es ubicua en la literatura). En todos los
casos de interés, mostramos que el esquema necesario para interconectar las
redes es muy simple, puesto que se reduce al clculo de una nica matriz de
ganancia cuya dimensión es independiente de la dimensión total (número de
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nodos) de las redes. La estructura del sincronizados es también muy sencilla,
lo que la hace potencialmente adecuada para aplicaciones del mundo real.

Aunque todos los esquemas que se proponen se analizan de manera
rigurosa, también se muestran resultados numéricos (obtenidos mediante
simulación) para ilustrar los métodos propuestos.
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Chapter 1

Introduction

1.1 Nonlinearity and chaos

A system whose state changes with time is often termed a “dynamical
system” or “oscillator”. If this change occurs in a continuous fashion over
time, we refer to a continuous-time dynamical system, whereas we use the
term “discrete time” for a dynamical system whose state remains constant
for intervals of time and changes only at certain instants. In this thesis we
focus on continuous time systems, the mathematical description of which is
usually given by ordinary differential equations (ODEs) and a set of initial
conditions, namely

ẋ(t) = f (x(t))

x (t0) = x0, (1.1)

where x(t) ∈ Rn is an n× 1 vector of real variables that fully describes the
system state at time t ∈ R (and, hence, we refer to it as the state vector),
f is a function Rn → Rn, also called vector field, and x0 ∈ Rn is the initial
condition, i.e., the value of the state vector at the initial time t0. If the
function f is nonlinear, then the system is said to be nonlinear, and it is
termed linear otherwise. We define the dimension of a nonlinear system as
the size of its state vector (number n of coordinates).

Chaos is a special property appearing in some nonlinear dynamic
systems. Many biological, social, as well as electrical and mechanical systems
exhibit chaotic behavior. Chaotic systems are special cases of general
nonlinear systems, i.e., a linear system can never be chaotic. This means
that all definitions and theorems that hold for nonlinear systems can be
applied to chaotic systems. Chaotic systems are extremely sensitive to the
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value of the initial conditions and, although they can be described by fairly
simple equations, they exhibit a very complex and random-like behavior.

The sensitivity to initial conditions that characterizes chaos also gives
rise to a number of special, sometimes counter-intuitive, properties peculiar
to chaotic systems. The study of such properties, often related to the
synchronization and the control of chaotic oscillators, has attracted a
great deal of attention and originated a whole field of investigation in the
intersection of mathematics, physics and engineering. In Section 2.1.2 we
provide an account of some of the more relevant of these properties.

1.2 Fractional-order dynamics

Fractional calculus as an extension of ordinary calculus has a 300 year old
history. It has been found that the behavior of many physical systems can be
properly described by using fractional-order system theory and important
fundamental physical considerations in favor of the use of fractional-
derivative based models are given, e.g., in [94]. Indeed, fractional-order
derivatives provide a powerful instrument for the description of memory
and hereditary properties of different substances. This is claimed to be the
most significant advantage of the fractional-order models in comparison with
integer-order models, which, in fact, neglect such effects.

A fractional-order differential equation can be written as

dqx(t)

dtq
= f (x(t))

x (t0) = x0, (1.2)

which is comparable to the ordinary system (1.1), except that the derivative
degree q can take values between 0 and 2, 0 < q < 2. Further details
on fractional-order dynamics and its characteristic features are provided in
Section 2.7.

A number of fractional-order systems exhibiting chaotic behavior have
been identified by several authors [14, 15, 101, 66], a fact that has opened
new paths for research.

1.3 Complex networks

After the seminal work in [103], complex network models have become
ubiquitous in the analysis of many phenomena appearing in the physical,
biological, and social sciences. The Internet and the World Wide Web, social
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networks, networks describing the interaction between cell components, and
neural networks are some other samples of complex network systems around
us.

Another feature of complex systems is that they exhibit properties that
appear as a result of the local interactions between many of its constituent
elements [24]. Remarkably, the emergent patterns are not present at a local
scale, i.e., they are not inherent to the individual components, but rather
emerge at the system level, due to the aggregate interactions [6].

The study of the topology of interactions in a large variety of real-world
systems, in various fields, reveals that, despite the inherent differences, most
complex networks are characterized by the same topological properties. This
makes complex networks radically different from regular lattices and random
graphs, the standard models studied in mathematical graph theory. Small-
world networks [9, 114, 5, 113] and scale free networks [9, 19, 122] could
be mentioned as the best known types of network models that appear to
provide an adequate representation of a large number of real-world complex
systems. A classification of complex network models together with a further
discussion of their use in various scientific fields can be found in [109, 24].
For obvious reasons, involving the richness of their dynamical behavior, the
study of networks composed of chaotic elements has become a prominent
field of research in the last decade [9, 89, 113].

1.4 Network synchronization

With the pioneering work of Pecora and Carroll [91], it was shown that
chaotic systems can be synchronized. Synchronization happens between
two systems coupled in a proper way, such that using some feedback signals
one of the systems is forced to mimic the trajectory of the other one.
The phenomenon of synchronization between two dynamical systems is
fundamental in science [23] and has a wealth of applications in technology
[50].

In recent years, the study of synchronization phenomena in complex
dynamical networks has attracted the interest of many researchers. Indeed,
complex networks have become a mainstream area of research for over a
decade, as they have been identified as powerful tools for modeling a variety
of real-world systems that otherwise appear intractable.

In general, two kinds of network synchronization can be defined. The first
(historically) one is the the synchronization of all nodes inside a network,
which is often referred to as “inner synchronization” [9]. More recently, the
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possibility to synchronize two (initially separate) networks that are coupled
in a suitable manner through some of their nodes has drawn attention
from several authors [64, 28, 123]. This type of synchronization is usually
referred to as “outer synchronization”, a term originally coined in [64]. In
this thesis we focus on the study of the outer synchronization between two
complex networks that are known up to some uncertainty, e.g., in the model
parameters or in the feedback signals used in the coupling scheme.

The spread of an infectious disease across different groups of individuals
is an example of a real-world phenomenon that can be modeled by way
of outer synchronization. For example, the avian influenza was known to
spread among domestic and wild birds, but at a later stage infected human
beings unexpectedly [102].

Several other important examples can be found in the literature [111, 64].
We believe that the challenge of understanding the dynamics of coupled
complex networks nowadays is one of the most relevant across various fields
of science.

1.5 Robust control

The development of robust control theory began in the late 1970s and
early 1980s and soon produced a number of techniques for dealing with
bounded system uncertainty [21, 131]. Robust control methods are designed
to function properly as long as uncertain parameters or disturbances are
within some prescribed bounds. Therefore, they aim to achieve resilient
performance and/or stability in the presence of bounded modeling errors.

Uncertainty is an unavoidable difficulty in any real world problem [21].
In general, two main facts make a model uncertain. The first one is
that analytical or computational models which closely describe physical
systems are difficult or impossible to precisely characterize and simulate.
Whichever model we may propose, no matter how detailed, can never be
a completely accurate representation of a real physical, biological or social
system [130, 117, 128]. Even the model of a simple circuit could be uncertain,
if we admit that the impedance of the resistors is subject to change by
increasing the temperature, as a result of transmitting an electrical current
through it [86]. Considering a time-variant resistance would reduce this
uncertainty. However, trying to remove the uncertainty by modelling is
typically a poor solution. On one hand, a model that was originally simple
may easily become undesirably complex. On the other hand, each time we
extend a model we can reasonably expect to extend the uncertainty as well.
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In the example of the resistance, we may reckon that it will change with
temperature, but the actual relationship can only be known approximately.
Therefore, one enters an endless loop of modelling, identifying uncertainties
and extending the model and, at each stage, the model becomes more
intricate. Instead of trying to model a real-world system exactly, it is often
more practical to represent the uncertainty in the model in a way that it
remains simple and realistic. We may, for example, define some nominal
values for the model parameters and then admit some variations around
these values, variations often referred to as disturbances or perturbations.
If the arbitrary parameter a has the nominal value an, the perturbed value
ã can be defined as

ã = an + ∆a(t),

where ∆a(t) is the additive disturbance that is commonly considered to have
an unknown but bounded value.

The existence of modeling errors is not the only fact leading us to robust
control, however. Indeed, real systems are always exposed to environmental
disturbances, or maybe implemented in unknown environments. So even if
the model is extremely accurate, we may not be able to measure accurately
all the inputs to the system. The effects of such uncertainties arising from
external sources can also be mitigated by robust control methods.

Let us remark that robust control techniques rely on bounding
the uncertainty rather than expressing it in the form of a probability
distribution. A controller that can operate under bounded uncertainties
is called a robust controller. Therefore, a controller is robust when a certain
performance can be guaranteed with any choice (within a predefined set)
of some parameters and functions involving the descriptive equations of the
system dynamics. From this viewpoint, robust control theory might be
stated as a worst-case analysis method rather than a typical case method.
It must be recognized that some performance may be sacrificed in order to
guarantee robustness. For example, one may have to generate control signals
with higher energy (compared to an ideal case with no uncertainty).

1.6 Contributions

1.6.1 Summary

We have tackled the problem of outer synchronization between two complex
networks in a master-slave configuration, whose constituent nodes are
described by nonlinear differential equations, possibly leading to chaotic
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dynamics. An outline of the key contributions of this work is given below.
Then we elaborate further on the specific results obtained for fractional-order
and integer-order dynamical networks in Chapters 3 and 4, repectively.

• Fractional-order dynamical networks. We ha carried out the first
(to our best knowledge) rigorous analysis of outer synchronization for
complex networks described by fractional-order differential equations.
It is based on the linearization of the synchronization error and,
hence, it only guarantees local convergence. The results, however,
are very broad in scope. They include networks described by integer-
order differential equations as a special case, account for generalized
synchronization phenomena and depend on very mild assumptions.

• Global outer synchronization. For the case of networks described
by sets of integer-order differential equations, we have devised schemes
that guarantee synchronization independently of the initial conditions
of the system amd, again, under very mild assumptions regarding the
network structure.

• Robust synchronization. Both for fractional and integer-order
dynamics, our analysis is general enough to take into account modeling
errors such as mismatches in the network parameters. Also, it
naturally provides guidelines for the design of the controllers that
ensure outer synchronization. The resulting schemes are non fragile
as well, i.e., they are also robust to mismatches in the parameters of
the controllers.

• Synchronization schemes independent of the network size.
Based on a result on the eigendecomposition of certain Kronecker
products of matrices, the construction of the synchronization schemes
proposed in Chapters 3 and 4 is made independent of the network size.
As a consequence, the computations required for the design of practical
synchronizers are considerably simpler compared to other methods in
the literature [64, 65, 69].

• Mild assumptions on the network topology. Most previous
contributions from other auhors rely on a number of hypotheses
on the coupling matrix that describes the topology of the networks
(diffusivity, balance, symmetry, ...). Our approach allows to remove
most of these assumptions (in some cases all of them).
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1.6.2 Fractional-order networks dynamics

In Chapter 3, we tackle the outer synchronization of two perturbed complex
networks with fractional-order dynamics. We first obtain a linearized
version of the synchronization error dynamics and then carry out a stability
analysis that provides simple sufficient and necessary conditions for the
synchronization error to converge locally toward zero. Our approach avoids
the need to compute eigenvalues of large system matrices (only their relative
position is relevant) or to impose restrictive assumptions on the structure of
the coupling matrices of the networks. Although we state our main results
for the case of two identical networks with known parameters, we also show
how they can be extended to systems in which the network parameters
are perturbed. This extension is based on an alternative formulation of
the conditions for the convergence of the synchronization error in terms of
LMI’s. Under some assumptions on the coupling matrices, we also provide
analytical results regarding the generalized synchronization of the networks.

1.6.3 Integer-order networks dynamics

In Chapter 4, we investigate robust schemes for global outer synchronization
of two perturbed complex networks. A theorem that provides a sufficient
condition for the global outer synchronization of two networks with known
parameters is proved. The sufficient condition in the latter theorem is
formally given as an LMI that has to be satisfied by the system of coupled
networks. The argument of the proof includes the design of the gain of the
synchronizer, which is a constant square matrix with dimension given by
the number of dynamic variables in a single network node. Therefore, the
complexity of the scheme is independent of the size of the overall network,
which can be much larger.

The basic result is subsequently elaborated, first in order to simplify the
design of the synchronizer while holding the assumption of the coupling
matrix being diffusive. Then, the latter assumption is relaxed and
a sufficient condition for global outer synchronization is given. The
corresponding LMI involves the maximum eigenvalue of the coupling matrix
but avoids any other assumptions on it (in particular, the coupling matrix
is not assumed to be diffusive anymore). Next, we investigate schemes
that reduce the dimension of the synchronizer signals, which can be made
lesser than the dimension of the state in a single node. Finally, we obtain
synchronizers that are robust to model errors in the parameters of the
networks. As before, sufficient conditions for global synchronization are
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given in the form of an LMI with only mild assumptions on the coupling
matrix.

1.7 Thesis organization

The rest of the thesis is organized as follows.

In Chapter 2, we present the necessary mathematical background
required to understand the rest of the thesis. This chapter opens with an
introduction to chaos theory. We then provide basic concepts, definitions
and stability theorems of nonlinear systems, followed by an introduction to
linear matrix inequalities. These two topics are our most important tools
in proving the main theorems. The problem of synchronization in chaotic
systems, which is the base of our research, is then presented. We later
discuss the concept of fractional-order differential equations, which is the
governing dynamics of one of our two studied problems. After presenting
the concept of complex network models, we are ready to define the main
problem of this thesis, which is the synchronization between two complex
networks.

In Chapter 3, the outer synchronization between two fractional-order
networks is investigated. After the definition of networks with fractional-
order dynamic nodes and the synchronization error, a key lemma on the
eigenvalues of a certain class of matrices is introduced. Based on this
lemma, the stability criterion of linear fractional-order systems and some
mathematical manipulations, we produce a condition that guarantees the
synchronization between two networks. We convert these conditions into the
form of linear matrix inequalities, which facilitates the design of controllers
and the subsequent analysis of networks with uncertain parameters. All the
analytical results stated in this chapter refer to the local synchronization of
the networks.

In Chapter 4, we study the outer synchronization between two
networks with integer-order dynamical nodes. Besides the key lemma
introduced in Chapter 3, we fruitfully use the different statements of the
Lyapunov stability theorem to provide a condition that guarantees the
global synchronization between the networks independently of their initial
conditions. We then extended these results to systems with unknown
parameters and external disturbances. Finally, we explore the possibility of
synchronization with a reduced number of control channels between nodes
of the two networks.

Chapter 5 contains a summary of the main results in this thesis, and
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suggests some ideas for future research in this field.
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Chapter 2

Background

In this Chapter we introduce basic material to be used in the rest of this
chapter. We start with the definition of chaotic dynamics and and its basic
mathematical properties. Then we review the fundamentals of stability
analysis and control of general nonlinear dynamical systems, which naturally
leads to the introduction and discussion of linear matrix inequalities, a tool
that is used extensively in subsequent chapters. The last sections of the
chapter are devoted to the synchronization of chaotic systems, later extended
to complex networks, and, finally, an introduction to dynamical systems
described by fractional order differential equations.

2.1 Chaotic dynamical systems

The theory of chaos is one of those mathematical and physical constructs
that can instantaneously seize the people’s imagination and interest. It
transcends the disciplines: philosophy, religion, mythology and science each
has its own perspective on chaos. In this section, we give some mathematical
insight and facts on the theory of chaos. We start with a historical survey
that lays the grounds of what is known today as nonlinear science and chaos
theory. Then, we introduce the most relevant properties of chaotic systems.

2.1.1 Historical perspective

In ancient Greek mythology, chaos was the “primeval emptiness preceding
the genesis of the universe, turbulent and disordered, mixing all the
elements” (adapted from [119]). From this turmoil, order eventually emerged
to shape the world. Though naive, this tale connects two key concepts of
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the modern theory of chaos and makes them interdependent: order and
disorder. Philosopher Aristotle also articulated an important property that
characterizes chaos, and will be later known as the sensitivity to initial
conditions (SIC). The conclusion he drew was that “the least initial deviation
from the truth is multiplied later a thousandfold” [10]. With this statement,
Aristotle described a form of exponential divergence with time; a slightly
modified (one could say disturbed) original concept or “truth” may end with
a complete different and unexpected final form.

Finding its roots in social sciences and Greek myth, the ideas of chaos and
SIC were considered irrelevant from a scientific point of view for centuries.
Only in 1876, as James Clerk Maxwell was developing his kinetic theory,
he argued that a small variation in the current state makes the prediction
of future states impossible. At this time, however, he was convinced
that the key factor rendering his effect visible was the complexity of the
system through its large number of variables. Later in 1892, the problem
of stability was addressed mathematically by the Russian mathematician
Aleksandr Lyapunov. For the first time, he calculated the divergence rate
between the trajectories of identical dynamical systems with different initial
conditions. At about the same time, in 1898, the French mathematician
Jacques Hadamard remarked that a discrepancy in the initial conditions of
a dynamical system could lead to an unpredictable long-term evolution. In
1908, another French mathematician, Henri Poincarè, deepened Hadamard’s
idea and concluded that any prediction of future states was impossible, as
a result of his famous study of the stability of the 3-body problem.

Other significant milestones in the theory of dynamical systems came
about after Henri Poincarè discoveries. We cite the work of B. Van
der Pol and Aleksander Andronov in the 1920’s and 1930’s on the study
of oscillations in relaxed and self-sustained oscillators, respectively. In
the 1950’s, Kolmogorov, Arnold, and Moser focused their attention on
the persistence of motion of quasi-periodic oscillators and obtained the
fundamental KAM Theorem 1.

In the 1960’s, the theory of chaos received unprecedented attention
as Edward Lorenz, a meteorologist at the Massachusetts Institute of
Technology (MIT), proposed a graphical representation of SIC in a simplified
numerical model of the Earth atmosphere. The model he developed is a 3-

1The KAM Theorem proves the existence of invariant tori (quasi-periodic trajectories)
in the phase space of an integrable hamiltonian system after perturbation [12, Appendix 8].
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dimensional nonlinear model described by
ẋ1(t) = −σ (x1(t)− x2(t))

ẋ2(t) = ρx1(t)− x2(t)− x1(t)x3(t)

ẋ3(t) = −βx3(t) + x1(t)x2(t)

, (2.1)

where x1(t), x2(t) and x3(t) are dynamic variables, while σ, ρ and β are static
static parameters. Lorenz wanted to analyze data produced by his model
on long sequences; however, at this time computing power was extremely
limited. Therefore, to obtain large sequences, one had to run multiple
sequential simulations. It is precisely what he did, except that when he
initiated the next simulation with the last results from the previous run with
a lower precision, he noticed that the model did not duplicate the expected
evolution that a single simulation would have produced (see Figure 2.1).

Figure 2.1: Numerical evidence of the sensitivity to initial condition in the
Lorenz system, as observed historically by Lorenz. Depicted in blue dashed
line is the evolution with initial condition with 5-digit precision; depicted in
red solid line is the same evolution with a duplicated initial condition with
a 3-digit precision.

Contrary to his expectations, the lower-precision initial conditions would
not have negligible consequences on the system’s dynamics. This discovery
and subsequent work contributed to explain the inaccuracy of long-term
weather forecasting and were summarized by E. Lorenz at the 139th meeting
of the American Association for the Advancement of Science (AAAS) with
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this now famous statement: “Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?” [71]. That is how the SIC was also known as
the “butterfly effect”. After this major turn, research on nonlinear dynamics
and chaos theory stepped up.

In 1971, David Ruelle and Floris Takens proposed an alternative
mathematical explanation of the turbulence in fluid dynamics based on the
existence of so-called “strange attractors” [97]. A couple of years later, Tien-
Yien Li and James A. Yorke used the term chaos to describe the erratic and
unpredictable behavior arising in deterministic nonlinear maps. At about
the same time, Mitchell J. Feigenbaum unraveled the universality of behavior
occurring in a particular class of systems as they transition to chaos, and
derived the Feigenbaum constant [43].

2.1.2 Properties of chaotic systems

In this section, some special properties of chaotic systems are brought.

Sensitivity to initial conditions (SIC) [104]: SIC can be considered
as the most apparent property of chaotic systems, and as such it caused
the discovery by Lorenz, as mentioned in the previous section. In a chaotic
system, two arbitrarily close points in the state space lead to significantly
different future trajectories. Thus, an arbitrarily small perturbation of
the current trajectory may lead to significantly different future behavior.
Numerical evidence of SIC in the Lorenz system is shown in Figure 2.1.

Strange attractors [104]: An attractor is a set towards which a
dynamic variable evolves over time. An attractor can be a point, a finite
set of points, a curve, a manifold, or even a complicated set with a
fractal structure known as a strange attractor. Having strange attractors
is a peculiar property of chaotic systems. Figure (2.2) shows the strange
attractors of the Lorenz system.

Some other properties of chaotic systems are listed below. Since we do
not make an explicit use of them later chapters, short description suffices.

Topological mixing [104]: Topological mixing (or topological
transitivity) means that the system evolves over time so that any given
region or open set of its phase space eventually overlaps with any other
given region.

Density of periodic orbits [104]: Every point in the space is
approached arbitrarily closely by periodic orbits.

Minimum complexity of a chaotic system [104]: Discrete-time
chaotic systems, such as the logistic map, can exhibit strange attractors
whatever their dimensionality. In contrast, for continuous-time dynamical
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systems, the Poincarè Bendixson theorem shows that a strange attractor
can only arise in dimensions three or higher.

Figure 2.2: Strange attractor of the Lorenz system.

2.2 Stability of nonlinear systems

The concept of stability is ubiquitous in dynamical system theory and it
underlies the notions of attractors, bifurcation theory, and synchronization.
We first need to define the equilibrium point of a dynamic system. Consider
a general nonlinear system defined by

ẋ(t) = f (x(t))

x (t0) = x0, (2.2)
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where x(t) ∈ Rn is the state space with dimension n at time t, f : Rn → Rn
is a nonlinear function and x0 ∈ Rn is the initial condition.

For system (2.2), the vector x(t) = xe is an equilibrium point if

f(xe) = 0.

It is possible to define different kinds of stability. The two main types are
described below.

Definition 2.1 An equilibrium point is stable in the Lyapunov sense if for
all ε > 0 there exists δ > 0 such that

if ‖x (t0) ‖ < δ then ‖x (t) ‖ < ε, ∀t > t0

Lyapunov stability guarantees that the trajectory of the system in phase
space will remain in a certain vicinity of the equilibrium point, as long as
the initial state belongs to a region D defined by ‖x (t0) ‖ < δ. This kind
of stability guarantees that the states of the system do not diverge. In
practice, we usually need to show the the states of (for example) an error
system converge to zero. This is given explicitly in the next definition.

Definition 2.2 An equilibrium point is asymptotically stable if there exist
δ > 0 such that

‖x (t0)− xe‖ < δ implies lim
t→∞
‖x (t)− xe‖ = 0,

where t0 is the initial time instant.

Asymptotic stability includes Lyapunov stability as a particular case, but
imposes that all trajectories initiated in the neighborhood of the equilibrium
point must converge asymptotically towards it. Furthermore, a system is
globally asymptotically stable if lim

t→∞
x(t) = 0 for all initial states x(t0).

A major inconvenient with the definition asymptotical of stability is that
it requires the evaluation of the state trajectories. However, it is much easier,
and also practical, to check the stability of a system without necessity of
making the system run. This is precisely what Lyapunov stability theorems
provide.

Lyapunov stability is named after Aleksandr Lyapunov, a Russian
mathematician who published his book “The General Problem of Stability
of Motion” in 1892 [77]. His work, initially published in Russian and then
translated into French, received little attention for many years. Interest in
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it started in the 1950’s when the so-called “Second Method of Lyapunov”
(see below) was found to be applicable to the stability of aerospace guidance
systems which typically contain strong nonlinearities not tractable by other
methods. A large number of publications appeared ever since in the control
and systems literature.

Lyapunov, in his original 1892 work, proposed two methods for proving
stability [77]. The first method developed the solution in a series which was
then proved to converge within certain bounds. The second method, which is
almost universally used nowadays, makes use of a Lyapunov function V (x)
which has an analogy with the potential function of classical dynamics.
Theses two methods are described below.

Lyapunov first method (indirect method): The indirect method
of Lyapunov uses the linearization of a system to determine the local
stability of the original system. Consider the system (2.2) with continuously
differentiable f , where f(0) = 0. Define

A =
∂f(x)

∂x

∣∣∣∣
x=0

(2.3)

to be the Jacobian matrix of f(x) with respect to x, evaluated at the origin.
Then, the system

ż(t) = Az(t) (2.4)

is referred to as the linearization of equation (2.2) around the origin.
The stability of system (2.4) determines the local stability of the original
nonlinear equation. If matrix A(t) in (2.4) is time-invariant, then we can
check the stability by means of the following lemma.

Lemma 2.1 [59] The linear time-invariant system

ż(t) = Az(t) (2.5)

with state vector z(t) ∈ Rn and system matrix A is globally asymptotically
stable if, and only if, all eigenvalues of matrix A are in the open left half
complex plane. Moreover, the system is stable if all eigenvalues on the
imaginary axis (if any) have order one.

Lyapunov second method (direct method): In this method no
linearization is done, but the actual system itself is is analysed. Unlike with
the indirect method, the stability analysis by the direct method is global,
not local. This method, which is almost universally used nowadays, is a
generalization of the idea that if there is some “measure of energy” in a
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system then we can study the rate of change of the energy of the system to
ascertain stability.

Theorem 2.1 [59] Let x = 0 be the equilibrium point for (1.1) and D ⊂ Rn
be a domain containing x = 0. Let V : D → R be a continuously
differentiable function, such that

V (0) = 0 and V (x(t)) > 0 in D\ {0} (2.6)

V̇ (x(t)) 6 0 in D (2.7)

Then x = 0 is stable. Moreover, if

V̇ (x(t)) < 0 in D\ {0} (2.8)

then x = 0 is asymptotically stable

Theorem 2.1 gives sufficient conditions for the stability of the origin
of a system. It does not, however, give a prescription for determining
the Lyapunov function V (x(t)). Since the theorem only gives sufficient
conditions, the search for a Lyapunov function establishing stability of an
equilibrium point could be arduous. However, it is a remarkable fact that
the converse of Theorem 2.1 also exists: if an equilibrium point is stable,
then there exists a function V (x(t)) satisfying the conditions of Theorem
2.1. However, the utility of this and other converse theorems is limited
by the lack of a computable technique for generating Lyapunov functions.
Theorem 2.1 also stops short of giving explicit rates of convergence towards
equilibrium. It may be modified to do so in the case of exponentially stable
systems.

Definition 2.3 The equilibrium point x∗ = 0 is an exponentially stable
equilibrium point of (1.1) if there exist constants m,α > 0 and ε > 0 such
that

‖x(t)‖ 6 me−α(t−t0) ‖x(t0)‖ (2.9)

for all ‖x(t0)‖ 6 ε and t > t0. The largest constant α which may be utilized
in (2.9) is called the rate of convergence.

Exponential stability is a strong form of stability. Exponential convergence
is important in applications because it can be shown to be robust to
perturbations and is essential for the consideration of more advanced control
algorithms, such as adaptive ones [59]. A system is globally exponentially
stable if the bound in equation (2.9) holds for all x0 ∈ Rn.

18



Theorem 2.2 [59] x∗ = 0 is an exponentially stable equilibrium point of
ẋ(t) = f(x(t)) if, and only if, there exists ε > 0 and a function V (x) which
satisfies

α1 ‖x‖2 6 V (x) 6 α2 ‖x‖2

V̇ (x) 6 −α3 ‖x‖2∥∥∂V
∂x (x)

∥∥ 6 α4 ‖x‖ (2.10)

for some positive constants α1, α2, α3, α4, and ‖x‖ 6 ε.

It can be shown that Theorem 2.2 introduces bounds on m and α used in
(2.9), namely

m 6

(
α2

α1

)1/2

and α >
α3

2α2
. (2.11)

The Lyapunov theory has been one of the most effective tools in the control
of dynamical systems. This claim is evidenced by the fact that, although
classical and well established in the literature, this concept is even today
extensively exploited in many different practical and theoretical problems.
In particular, the Lyapunov approach is one of the most powerful tools
to deal with the problem of controlling uncertain systems. This theory
is practically necessary when dealing with uncertain (especially nonlinear)
systems with time-varying parameters. Moreover, for important classes of
problems and special classes of functions the theory is supported by efficient
numerical tools such as those based on LMI’s. We extensively use the
Lyapunov stability criteria in LMI structure in this thesis.

2.3 Linear matrix inequalities

In this section, we introduce linear matrix inequalities (LMI’s). LMI’s
appear in many control problems, such as the Positive Real lemma, quadratic
optimization problems, H∞ design problems, and so on. There exist very
reliable numerical solution tools for LMI. In this thesis, we have used the
yalmip toolbox in Matlab.

2.3.1 Basic definitions

Basic definitions of matrix properties, as well as the definition of LMI are
provided here.
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Definition 2.4 The n × n matrix P is positive definite if for all nonzer
vectors u ∈ Rn, we have

u>Pu > 0.

Matrix P is negative definite if u>Pu < 0. Replacing the signs > and <
with > and 6 gives the definitions of semi-positive definite and semi-negative
definite matrix, respectively.

Definition 2.5 For the n×n matrix P , the following notations are defined.

P > 0 : P is positive definite, (2.12a)

P > 0 : P is semi-positive definite, (2.12b)

P < 0 : P is negative definite, (2.12c)

P 6 0 : P is semi-negative definite. (2.12d)

With these preliminaries, we can provide the definition of an LMI.

Definition 2.6 An LMI has the form

F (x) , F0 +
n∑
i=1

xiFi > 0, (2.13)

where xi ∈ Rn, i = 1, · · · , n, are variables and the symmetric matrices
Fi = F>i ∈ Rn×n, i = 0, · · · , n, are given.

We say this LMI is feasible if there exists a set of solutions {xi ∈ Rn,
i = 1, · · · , n}, that satisfy (2.13).

2.4 Synchronization of chaotic systems

2.4.1 Historical Perspective

Synchronization comes from the greek words “syn” (with) and “chronos”
(time), literally occurring at the same time. Synchronization of oscillators
is a universal and ubiquitous phenomenon in nature [92]. It was discovered
by Christian Huygens in 1665, who observed perfect in- and out-of-phase
oscillations of two pendulums clocks dynamically coupled by their common
support and concluded on the existence of “sympathy on two clocks” [53].

The synchronization of chaotic systems was long thought to be
counterintuitive or impossible, especially because of the sensitivity to initial
conditions preventing two identical chaotic systems from displaying perfectly
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correlated time evolutions. However, in 1983, Fujisaka and Yamada paved
the way with their pioneering studies on chaos synchronization [45, 125, 126]
followed by the work of L. Pecora and T. Carroll, who demonstrate
theoretically and experimentally the existence of complete synchronization
with an electronic version of a Lorenz system [91].

2.4.2 Basic definitions

There exist various types of synchronization. We propose in this subsection
a non-exhaustive rapid overview of their mathematical formulations. In this
thesis we only deal with complete and generalized synchronization, albeit in
the context of complex networks.

We define the chaotic master and slave systems as

ẋ(t) = f(x), ẏ(t) = g(y) + u, (2.14)

respectively, where x ∈ Rn and y ∈ Rn are state vectors and u is the
synchronizer signal.

According to (2.14), different types of synchronization can be defined as
follows.

Definition 2.7 In complete synchronization, the states of the
interacting systems x and y converge asymptotically to the same trajectory,
i.e.:

lim
t→∞
‖x(t)− y(t)‖ = 0. (2.15)

Complete synchronization was originally described in [22].

Definition 2.8 In generalized synchronization, the states of the two
interacting systems are functionally related. There exists a function Ψ :
Rn → Rn such that

lim
t→∞
‖x(t)−Ψ (y(t)) ‖ = 0. (2.16)

This type of synchronization was introduced for the first time in [98].

In most cases described so far, the interaction between the systems is
instantaneous. In practice and particularly in the optoelectronic systems,
the interactions are delayed. This leads to the definition of anticipating
synchronization.
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Definition 2.9 Anticipating synchronization is established when

lim
t→∞
‖x(t)− y(t− τ)‖ = 0. (2.17)

with τ the time delay.

This type of synchronization was proposed for the first time in [110].
For a detailed treatment of the synchronization of nonlinear systems, we

refer the reader to Ref. [23].

2.4.3 Properties of LMI’s

A very useful property of LMI is convexity. In simple words, convexity
means that if the LMI’s

F0 +

n∑
i=1

xiFi > 0, (2.18a)

F0 +
n∑
i=1

xiFi > 0 (2.18b)

with a solution set {x∗i ∈ Rn, i = 0, · · · , n} are simultaneously satisfied,
then we have

F0 +

n∑
i=1

x∗iFi > 0, (2.19)

where
Fi = λiFi + (1− λi)Fi, λi ∈ [0, 1] , i = 0, · · · , n. (2.20)

As we see in next chapters, this property is very useful when the system
uncertainties can be mapped to a convex area. The following lemma is a
very useful tool in connection with LMI’s. It can convert a special, but
common, family of bilinear matrix inequalities into an LMI structure.

Lemma 2.2 (Schur Complement) Let P be a symmetric matrix defined
by [

A B
B> C

]
; (2.21)

then we have

X > 0 if, and only if, A > 0, C −B>A−1B > 0

and
X > 0 if, and only if, C > 0, A−B>C−1B > 0.
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2.4.4 Some examples

The history of LMI’s in the analysis of dynamical systems goes back more
than 100 years. The story begins circa 1890, when Lyapunov showed that
the system (2.5) is stable if and only if there exists a positive definite matrix
P such that the LMI (2.22) is satisfied2. To be specific, the following result
can be proved.

Lemma 2.3 System (2.5) is exponentially asymptotically stable if, and only
if, the following LMI is satisfied

A>P + PA < −Q. (2.22)

when P > 0 and Q > 0 are positive matrices with appropriate dimensions.

It is easy to show that (2.22) can be expressed in the form of (2.13) [26].

Another important LMI in control theory is the Riccati inequality. After
the pioneering paper [118], algebraic Riccati equations have been used
extensively in optimal control. Optimal controllers can be constructed by
computing a positive definite symmetric matrix P that satisfies the algebraic
Riccati inequality

A>P + PA+ PBR−1B>P +Q < 0, (2.23)

where A and B are fixed matrices, Q is a fixed symmetric matrix, and R is a
fixed symmetric positive definite matrix. The Riccati inequality is quadratic
in P but can be expressed as an LMI by applying the Schur complement
lemma, namely [

−A>P − PA−Q PB
B>P R

]
< 0. (2.24)

The Ricatti inequality also plays a role in checking the passivity of linear
systems, which is a key property for developing robustness analysis tools
for linear systems. It also appears in the bounded real lemma approach
and checking the H∞ of a transfer function. Needless to say, in each case
the resulting Ricatti inequality may be apparently different, but it can be
rewritten in the general form of (2.24). The interested reader is referred to
[26].

2This theorem is actually equivalent to Theorem 2.1
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2.5 Complex networks

Networks are all around us, and we are ourselves, as individuals, the units of
a network of social relationships of different kinds and, as biological systems,
the delicate result of a network of biochemical reactions [20, 84, 4]. Coupled
biological and chemical systems, neural networks, social interacting species,
the process of spreading a disease, the Internet and the World Wide Web,
are some other examples of systems composed by a large number of highly
interconnected dynamical units. Networks can be tangible objects in the
Euclidean space, such as electric power grids, the Internet, highways or
subway systems, and neural networks. Or they can be entities defined in an
abstract space, such as networks of acquaintances or collaborations between
individuals.

A network description involves a reduction of the system’s components to
nodes and a reduction of the interactions between the components to links,
connecting the nodes. Naturally, in a network description many details of the
original system may be neglected. However, the simplification still captures
the essential features and facilitates the mathematical analysis. For example,
structural properties of the derived network can provide insight into both
the regular functioning and the failure of the system under consideration, or
allow the identification of critical and redundant components of the system.

Graph theory [25, 115] is the natural framework for the exact
mathematical treatment of complex networks and, formally, a complex
network can be represented as a graph. In general, a network can be
defined as a set of nodes joined by some links. As mentioned before,
such a definition is convenient to describe a variety of systems in many
scientific fields, including biology, infrastructures, social systems, internet
and others. For example, a scientific collaboration network would be made
up by considering the scientists and co-authored papers as nodes and links
of a network, respectively. The air transport network consisting of airports,
as nodes, and air routes, as links, is another example.

In Figure 2.3, some general schematics of networks are brought forth. If
no direction is defined for the links, the network is called undirected (Figure
2.3(a)). The example of a scientific collaboration network is an instance of
an undirected network. The network is called directed when the connection
between nodes has a flow direction (Figure 2.3(b)). For example, in a disease
spread network, the links between two nodes (i.e., two sick persons) is defined
as an arrow from the transmitter to the newly infected individual. In Figure
2.3(c), a weighted undirected network is shown. Existence of strong and
weak ties between individuals in social networks [79, 83] and the diversity of
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Figure 2.3: Graphical representation of a undirected (a), a directed (b), and
a weighted undirected (c) graph with 7 nodes and 14 links. In the directed
graph, adjacent nodes are connected by arrows, indicating the direction of
each link. In the weighted graph, the values wi,j reported on each link
indicate the weights of the links, and are graphically represented by the link
thicknesses.

the predator-prey interactions in food webs [95] are two examples of weighted
undirected and weighted directed networks, respectively.

2.6 Network synchronization

2.6.1 Mathematical representation of a network

In Section 1.3, the basic definition and scheme of a network were presented.
Here, we provide the mathematical description of a network. Consider a
network that consists of N identical nodes, each one being a dynamical
subsystem described by an n-dimensional system of differential equations3

as

ẋ(t) = Ax(t) + f(x(t)), (2.25)

where xi (t) ∈ Rn is the state vector at time t, comprising n real variables,
A ∈ Rn×n is an n × n matrix with real entries that describes the linear
component of the node dynamics, while f : Rn → Rn is a continuous function
that describes the nonlinear component of the dynamics of the system.

3The equation (2.25) is essentially the same as general presentation of a nonlinear
system (ẋ(t) = f(x)), except that the difference that linear and nonlinear parts are
separated.
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Consider a network made by connecting nodes described by equations of
the form of (2.25) together in a certain manner, described by the coupling
matrix C. Such a network can be described as

ẋi(t) = Axi(t) + f (xi(t)) +

N∑
j=1

cijLxj(t), i = 1, . . . , N. (2.26)

The entries of the matrix L ∈ {0, 1}n×n are binary, linking scalar state
variables in xi(t), while the N × N coupling matrix C ∈ RN×N indicates
the network topology, i.e., the connections existing among the N nodes. We
write cij to denote the (real) entry in the i-th row and j-th column of C. If
cij > 0 then there exists a link from node i to node j (i 6= j), while cij = 0
when the nodes are not connected directly. If positive, the entry cij indicates
also the strength of the connection4 between the nodes i and j. Function f
is assumed to be Lipschitz with constant η, i.e.,

‖f (x)− f (y)‖ ≤ η ‖x− y‖ ∀x, y ∈ Rn. (2.27)

In Section 2.6.3, we discuss in further detail the different possible
assumptions on matrix C and how they aid the design of synchronizer
schemes.

2.6.2 Outer synchronization

We focus on the outer synchronization between two uncertain5 complex
networks. The reader is referred to [76, 81, 9] for an in-depth discussion of
inner synchronization.

In order to investigate outer synchronization between two identical
networks, we consider Eq. (2.26) as the master network and assume the
response system to be coupled with the master through the scheme

ẏi(t) = Ayi(t) + f (yi(t)) +

N∑
j=1

cijLyj(t) + ui(t) (2.28)

where yi(t) ∈ Rn is the n×1 state vector of the response network, ui(t) ∈ Rn
is the synchronizer signal, defined as ui = K(yi − xi), and K is a constant
matrix which will be later designed in such a way that outer synchronization

4According to the different types of coupling described in Section 1.3, we here consider
the most general one, namely weighted directed coupling.

5The uncertainty in this context refers to mismatches in the network parameters and/or
any unknown perturbations of the system dynamics (e.g., additive noise processes).
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can be guaranteed. To be specific, we define global outer synchronization
between the networks defined by Eqs. (2.26) and (2.28) as follows.

Definition 2.10 Networks (2.26) and (2.28) synchronize globally if

lim
t→∞
‖yi (t)− xi (t)‖ = 0, for i = 1, 2, . . . , N. (2.29)

This definition clearly is an extension of complete synchronization as defined
in Section 2.4.2. Other types of outer synchronization can defined in the
same manner. We also investigate general synchronization between two
fractional-order systems in Chapter 4.

2.6.3 Role of the coupling matrix

It has been reported that the network coupling may affect heavily on the
synchronization scheme when some techniques are applied [64, 69, 28]. In
general, matrix C is a key element for characterizing the dynamics of both
Eqs. (2.26) and (2.28). In the literature, various assumptions are commonly
made in order to simplify the analysis of the class of systems described by
Eq. (2.26). Specifically, most authors assume the following properties.

Diffusivity: The matrix C satisfies
∑N

j=1 cij = 0, i = 1, 2, . . . , N . As

a consequence, its diagonal elements can be written as cii = −
∑N

j=1,j 6=i cij
(hence cii < 0, if the network is connected). This assumption is almost
invariably made in the literature. Assuming diffusivity implies that all
eigenvalues of matrix C have nonpositive real parts. According to the
Theorem 2.1 on the stability of linear systems, this property is very useful,
particularly for methods that consider the linearized approximation of the
model.

Other usual assumptions on the coupling matrix are listed below.
Symmetry: This happens when the coupling matrix is symmetric, i.e.,

for all i, j, cij = cji. In a symmetric matrix, all eigenvalues are real.
Irreducibility: The network is connected in such a way that for any

two nodes, there are always one or more links connecting them together.
In other words, there are no isolated clusters of nodes. Some properties of
irreducible matrices are described in [120].

Balance: Matrix C is balanced if∑
j 6=i

aij =
∑
j 6=i

aji, i = 1, 2, · · · , N.

This assumption may also facilitates the analysis of synchronization. In [69],
for example, the authors consider the coupling matrix to be both diffusive
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and balanced, and they obtain the following equality∑
j 6=i

(
A+A>

)
=
∑
j 6=i

(aij + aji) = 2
∑
j 6=i

aij = −2aii.

In the next chapters, we see that one of the contributions of the current
work is to relax some, and in some cases all, of these assumptions, even
diffusivity.

2.7 Fractional order dynamics

2.7.1 Historical notes

The concept of the differentiation operator D = d
dx is familiar to all those

who have studied elementary calculus. For suitable functions, the nth
derivative of f , namely Dnf(x) = dnf(x)

dxn , is well defined when n is a positive
integer [93] .

On September 30th, 1695, L’Hopital asked Leibniz what meaning could
be ascribed to Dnf if n were a fraction. “This is an apparent paradox
from which, one day, useful consequences will be drawn”. These words are
Leibniz’s response, what today is actually realized. Since that time fractional
calculus has drawn the attention of many outstanding mathematicians, such
as Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent. But it
was not until 1884 that the theory of generalized operators achieved such a
level in its development so as to make it suitable as a starting point for the
modern mathematicians [72].

By then the theory had been extended to include Dm operators, where
m could be rational or irrational, and positive or negative.Thus the name
fractional calculus became somewhat of a misnomer. A better description
might be differentiation and integration to an arbitrary order. However, we
shall adhere to tradition and refer to this theory as fractional calculus.

During the investigations of the general theory and applications of
differintegrals (a term that was coined to avoid the cumbersome alternate
“derivatives or integrals to arbitrary order”), it was discovered that, while
this subject is old, dating back at least to Leibniz in its theory and to
Heaviside in its application, it had been studied relatively little since the
early papers which only hinted at its scope. Maybe the main reason was
lack of today’s high speed computers which provide the necessary capabilities
to evaluate some related mathematical functions.
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2.7.2 Real world applications

In the last years a revival of interest in the subject seems to have taken
place [72, 129, 30], but the application of these ideas has not yet been
fully exposed, primarily because of their unfamiliarity. Our studies have
convinced us that differintegral operators may be applied advantageously in
many diverse areas. Within mathematics, the subject is in contact with a
very large segment of classical analysis and provides a unifying theme for a
great number of well-known, and some new, results. Applications outside
mathematics include otherwise unrelated topics such as: transmission line
theory, chemical analysis of aqueous solutions, design of heat-flux meters,
rheology of soils, growth of intergranular grooves on metal surfaces, quantum
mechanical calculations, and dissemination of atmospheric pollutants.

Fractional derivatives provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes [52].
This is the main advantage of fractional derivatives in comparison with
classical integer-order models, in which such effects are in fact neglected.
The advantages of fractional derivatives become apparent in modeling
mechanical and electrical properties of real materials, as well as in the
description of rheological properties of rocks, and in many other fields.
Fractional integrals and derivatives also appear in the theory of control
of dynamical systems, when the controlled system or/and the controller is
described by a fractional differential equation. The mathematical modeling
and simulation of systems and processes, based on the description of their
properties in terms of fractional derivatives, naturally leads to differential
equations of fractional order and to the necessity to solve such equations.

The idea of fractional derivatives and integrals seems to be quite a
strange topic, very hard to explain, due to the fact that, unlike commonly
used differential operators, it is not related to some important geometrical
meaning, such as the trend of functions or their convexity. For this reason,
this mathematical tool could be judged “far from reality”. But many
physical phenomena have an “intrinsic” fractional order description and so
fractional order calculus is necessary in order to explain them. For example,
fractional derivatives have been widely used in mathematical modeling of
viscoelastic materials [16, 44, 96]. Some electromagnetic problems can
be described by using fractional differ-integration [51, 41]. In physical
chemistry, the current is proportional to the fractional derivative of the
voltage when the interface is put between a metal and an ionic medium
[62]. In the fractional capacitor theory, if one of the capacitor electrodes
has a rough surface, the current passing through it is proportional to the
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non-integer derivative of its voltage [33]. Also, the existing memory in
dielectrics used in capacitors is justified by fractional derivative based models
[116]. The anomalous diffusion phenomena in inhomogeneous media can be
explained by non-integer derivative based equations of diffusion [11, 40]. The
electrode-electrotype interface is an example of fractional-order processes
because at metal-electrolyte interfaces the impedance is proportional to the
non-integer order of frequency for small angular frequencies [54, 57].

Another example for an element with fractional-order model is the
fractance. The fractance is an electrical circuit with non-integer order
impedance [61]. This element has properties that lie between resistance
and capacitance. Tree fractance [82] and chain fractance [88] are two
well known examples of fractances. The resistance-capacitance-inductance
(RLC) interconnect model of a transmission line is a fractional-order model
[29]. Heat conduction as a dynamical process can be more adequately
modeled by fractional-order models than integer-order models [56]. In
biology, it has been deduced that the membranes of cells of biological
organism have fractional-order electrical conductance [32] and then are
classified in the group of non-integer order models. Also, it has been shown
that modeling the behavior of brainstem vestibule-oculumotor neurons by
fractional-order differential equations has more advantages than classical
integer-order modeling [7]. In mechanics, it has been found that the water
flow on a dyke with porous internal structure is proportional to the fractional
derivative of the dynamic pressure at the water/dyke interface [90]. In
economy, it has been known that some finance systems can display fractional
order dynamics [60]. More examples for fractional-order dynamics can be
found in Ref. [100]. Moreover, applications of fractional calculus have been
reported in many areas such as signal processing [78], image processing [31],
automatic control [17] and robotics [42]. These examples and many other
similar samples perfectly clarify the importance of consideration and analysis
of dynamical systems with fractional-order models.

2.7.3 Preliminaries and definitions

The differintegral operator, denoted by Dq
t , is a combined differentiation-

integration operator commonly used in fractional calculus. This operator
is a notation for taking both the fractional derivative and the fractional
integral into a single expression and is defined by

Dq
t =


dq

dtq q > 0
1 q = 0∫ t

0 (dτ)−q q < 0

. (2.30)
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There are several definitions for fractional derivatives [94]. The
commonly used ones are the Grunwald-Letnikov, Riemann-Liouville, and
Caputo definitions. The Grunwald-Letnikov definition is given by

Dq
t =

dqf(t)

d (t− a)q

= lim
N→∞

[
t− a
N

]−q N−1∑
j=0

(−1)j
(
q

r

)
f

(
t− j

[
t− a
N

])
. (2.31)

The Riemann-Liouville definition is the simplest and easiest definition to
use. It is given by

Dq
t =

dqf(t)

d (t− a)q

=
1

Γ (n− q)
dn

dtn

∫ t

0
(t− τ)n−q−1 f (τ) dτ, (2.32)

where n is the first integer which is not less than q, i.e., n− 1 6 q < n and
Γ is the Gamma function,

Γ (z) =

∫ ∞
0

tz−1e−tdt. (2.33)

For functions f(t) having n continuous derivatives for t > 0, where n− 1 6
q < n, the Grunwald-Letnikov and the Riemann-Liouville definitions are
equivalent. The Laplace transforms of the Riemann-Liouville fractional
integral and derivative are given as follows,

L {Dq
t f(t))} = sqF (s) q 6 0, (2.34)

L {Dq
t f(t))} = sqF (s)−

n−1∑
k=0

skDq−k−1
t f(0)

n− 1 < q 6 n ∈ N. (2.35)

Unfortunately, the Riemann-Liouville fractional derivative appears
unsuitable to be treated by the Laplace transform technique, since it requires
the knowledge of the non-integer order derivatives of the function at t = 0.
This problem does not exist in the Caputo definition that is sometimes
referred to as smooth fractional derivative in literature. This definition of
derivative is given as

Dq
t f(t) =

{
1

Γ(m−q)
∫ t

0
f (m)(τ)

(t−τ)q+1−mdτ, m− 1 < q < m
dm

dtm f(t), q = m
, (2.36)
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where m is the first integer larger than q. It is found that the equations with
Riemann-Liouville operators are equivalent to those with Caputo operators
under the homogeneous initial conditions assumption [94]. The Laplace
transform of the Caputo fractional derivative is

L {Dq
t f(t)} = sqF (s)−

n−1∑
k=0

sq−1−kf (k)(0), n− 1 < q 6 n ∈ N. (2.37)

Contrary to the Laplace transform of the Riemann-Liouville fractional
derivative, only integer order derivatives of the function f appear in the
Laplace transform of the Caputo fractional derivative. For zero initial
conditions, Eq. (2.37) reduces to

L {Dq
t f(t)} = sqF (s). (2.38)

In this thesis, the notation Dq
t indicates the Caputo fractional derivative.

2.7.4 Stability of fractional-order systems

Starting from Eq. (2.30), it is possible to study the stability of fractional-
order systems. A fractional-order differential equation with 0 < α < 1
typically presents a stability region that is larger than that of the same
equation with integer order α = 1 [2]. Consider a system with an n-
dimensional state vector x(t) taking values over Rn (i.e., all state variables
are real) and evolving with the time variable t. All the results in chapter 3
are ultimately based on the following “α-stability” lemma.

Lemma 2.4 [80]. Consider the linear fractional-order system

dαx (t)

dtα
= Ax (t) , with x(0) = x0, (2.39)

where 0 < α < 1, x ∈ Rn, and A ∈ Rn×n is a constant matrix with
eigenvalues ξ1, . . . , ξn. System (2.39) is asymptotically stable around 0 if,
and only if,

|arg (ξi)| >
απ

2
, i = 1, . . . , n. (2.40)

Throughout this thesis, “α-stable matrix A” means that all eigenvalues of
matrix A satisfy condition (2.40) and, as a consequence, limt→∞ x(t) = 0 for
all x0 ∈ Rn. If Eq. (2.40) holds with α = 1, then the matrix A is Hurwitz
(and limt→∞ x(t) = 0 as well).
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2.7.5 Simulation of fractional-order systems

The numerical simulation of a fractional differential equation is as not
simple as that of an ordinary differential equation. In the field of fractional
chaos, two approximation methods have been proposed for the numerical
integration of a fractional differential equation. The first method is based on
the approximation of the fractional-order system behavior in the frequency
domain. To simulate a fractional order system by using the frequency
domain approximations, the fractional order equation of the system is first
considered in the frequency domain and then the Laplace transform of the
fractional integral operator is replaced by its integer order approximation.
Then the approximate equations in frequency domain are transformed back
into the time domain. The resulting ordinary differential equations can be
numerically solved by applying well-known numerical methods. However, it
has been shown that the simulation results using this approach can be very
far from the reality [106].

The other algorithm to find an approximation for fractional-order
systems is based on the predictor-corrector scheme [36, 37]. This method
is an improved version of Adams-Bashforth-Moulton algorithm [37, 38, 63].
Consider the following differential equation:

Dq
t y(t) = r (t, y(t))) , 0 6 t 6 T, y(k)(0) = y

(k)
0 ,

k = 0, 1, · · · ,m− 1. (2.41)

This differential equation is equivalent to the Volterra integral equation [39]

y(t) =

m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(q)

∫ t

0
(t− s)q−1 r (s, y (s)) ds (2.42)

with m− 1 < q 6 m. Now, set h = T/N , tn = nh (n = 0, 1, · · · , N). Then
Eq. (2.42) can be discretized as follows,

yh (tn+1) =

m−1∑
k=0

y
(k)
0

tkn+1

k!
+

hq

Γ(q + 2)
r
(
tn+1, y

p
h (tn+1)

)
+

hq

Γ (q + 2)

n∑
j=0

aj,n+1r (tj , yh (tj)) , (2.43)

where the predicted value yph (tn+1) is determined by

yph (tn+1) =
m−1∑
k=0

y
(k)
0

tkn+1

k!
+

1

Γ(q)

n∑
j=0

bj,n+1r (tj , yh (tj)) (2.44)
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and

aj,n+1 =


nq+1 − (n− q)(n+ 1)q, j = 0

(n− j + 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1, 1 6 j 6 n

1 j = n+ 1

,

bj,n+1 =
hq

q
((n+ 1− j)q − (n− j)q) . (2.45)

The estimation error of this approximation can be shown to be [37]

max
j=0,1,··· ,N

|y(tj)− yh(tj)| = O (hp) ,

where p = min (2, 1 + q).
A fractional-order system can be numerically integrated by applying the

method described above. Consider the following fractional-order system:
dq1x
dtq1 = f1 (x, y, z)
dq2y
dtq2 = f2 (x, y, z)
dq1z
dtq3 = f3 (x, y, z)

; 0 < qi 6, i = 1, 2.3, (2.46)

with initial condition (x0, y0, z0). The above system can be discretized as
follows

xn+1 = x0 + hq1
Γ(q1+2)

[
f1

(
xpn+1, y

p
n+1, z

p
n+1

)
+

n∑
j=0

α1,j,n+1f1 (xj , yj , zj)

]

yn+1 = y0 + hq2
Γ(q2+2)

[
f2

(
xpn+1, y

p
n+1, z

p
n+1

)
+

n∑
j=0

α2,j,n+1f2 (xj , yj , zj)

]

zn+1 = z0 + hq3
Γ(q3+2)

[
f3

(
xpn+1, y

p
n+1, z

p
n+1

)
+

n∑
j=0

α3,j,n+1f3 (xj , yj , zj)

](2.47)

where 

xpn+1 = x0 + 1
Γ(q1)

n∑
j=0

β1,j,n+1f1 (xj , yj , zj)

ypn+1 = y0 + 1
Γ(q2)

n∑
j=0

β2,j,n+1f2 (xj , yj , zj)

zpn+1 = z0 + 1
Γ(q3)

n∑
j=0

β3,j,n+1f3 (xj , yj , zj)

,

αi,j,n+1 =


nqi+1 − (n− q)(n+ 1)qi , j = 0

(n− j + 2)qi+1 + (n− j)qi+1

− 2(n− j + 1)qi+1,
1 6 j 6 n

1, j = n+ 1

(2.48)
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and

βi,j,n+1 =
hqi

qi
((n+ 1− j)qi − (n− j)qi) .

We have simulated all the fractional-order models in the present work
by means of this method.

2.8 Summary

We have introduced several concepts, mathematical definitions and theorems
that are used in subsequent chapters. Since the synchronized networks
investigated in this thesis have nodes with chaotic dynamics, the basic
concepts of chaos have been reviewed in the first place. As the problem
of synchronization reduces to a zero convergence problem, the main
concepts and theorems on stability and, in particular, zero convergence
of a dynamic system, are provided in this chapter. LMI’s are powerful
tools for analyzing the stability of dynamical systems, hence we have
introduced this object and reviewed some of its main properties. We then
introduced the concept of fractional-order systems, which is the governing
dynamics of two synchronized networks investigated in this thesis. Chaos
synchronization in its simple form, and the basic concepts of complex
networks have been provided as the required preliminaries for the statement
of network outer synchronization, that is the main problem in this thesis.
We have also addressed some common assumptions on coupling matrix of
the synchronized networks, which we aim to relax in our approach to the
problem of the outer synchronization. Finally, we have reviewed the concept
of fractional-order differential equations, that is central to the analysis of
outer synchronization to be introduced in Chapter 3.
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Chapter 3

Synchronization of
fractional-order networks

3.1 Introduction

In recent years, the study of the dynamics of fractional-order differential
systems [27, 58] has attracted the interest of many researchers. In particular,
it has been shown that some fractional-order differential systems behave
chaotically or hyperchaotically, such as the fractional-order Chua circuit
[49], the fractional-order Chen system [75], the fractional-order Lu system
[74], and others [8, 1]. Following these findings, the synchronization of
chaotic fractional-order systems has become a popular research topic due
to its potential applications in secure communications and control [80]. For
example, in [35] the synchronization of two fractional-order Lu systems has
been studied. Also, the synchronization of two perturbed fractional-order
Chen systems and the synchronization of two fractional-order Chua systems
have been investigated in [15] and [70], respectively. Some additional
attempts to attain synchronization of fractional-order systems can be found
in [73, 34, 46].

The study of synchronization phenomena in complex dynamical networks
whose nodes are governed by fractional-order nonlinear differential equations
has also been addressed recently. Although complex networks have been a
mainstream area of research for over a decade [103, 85], nearly all the effort
has been devoted to systems where the dynamics of the individual nodes are
modeled by integer-order (albeit possibly nonlinear) differential equations.
Results on the synchronization of complex dynamical networks of fractional-
order nodes have only been reported recently [112, 105] and they are limited
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to specific network configurations (such as the star topology in [112] or the
ring topology of [105]).

In this chapter, we first investigate outer synchronization between two
networks with diffusively-coupled, fractional-order dynamical nodes and
then extend the analysis to relax several assumptions on the coupling scheme
of the networks. In particular, we first obtain a linearized version of the
synchronization error dynamics and then carry out a stability analysis that
provides simple sufficient and necessary conditions for the synchronization
error to converge locally toward zero1. Our approach avoids the need to
compute eigenvalues of large system matrices (only their relative position
is relevant) or to impose restrictive assumptions on the structure of the
coupling matrices of the networks. Although we first state our main results
for the case of two identical networks with known parameters, we also show
how they can be extended to systems in which the network parameters
are perturbed and, therefore, they are neither identical nor exactly known.
This extension is based on an alternative formulation of the conditions for
the convergence of the synchronization error in terms of LMI’s. Under some
assumptions on the coupling matrices, we also provide analytical results
regarding the generalized synchronization of the networks2.

The rest of the this chapter is organized as follows. Section 3.2 is
devoted to a formal description of the network model and a statement of the
synchronization problem to be addressed. In Section 3.3 we introduce our
main results on the synchronization of two identical complex networks with
fractional-order dynamical nodes. The extension to perturbed networks is
carried out in Section 3.4. Numerical examples are presented in Section 3.5
and, finally, Section 3.6 is devoted to a brief summary and discussion of the
obtained results.

1Specifically, we find sufficient and necessary conditions for the fractional-order
differential equations governing the dynamics of the synchronization error, e(t), to have a
fixed point at e(t) = 0.

2Two systems A and B are in a generalized synchronization status when the state of
the system B can be obtained as a deterministic transformation of the state of the system
A.
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3.2 Network model

Consider a network that consists of N identical nodes, each one being an
n-dimensional system of fractional-order differential equations given by

dαxi (t)

dtα
= f (xi (t)) +

N∑
j=1

cijχxj (t) , i = 1, 2, . . . , N, (3.1)

where 0 < α < 2 is the derivative degree, f : R× Rn → Rn is a continuous
differentiable function that describes the dynamics of the individual nodes,
xi (t) ∈ Rn is the state vector of node i at time t, χ ∈ Rn×n is a constant
matrix with 0-1 elements linking coupled scalar variables and the matrix
C = (cij) ∈ RN×N indicates the coupling configuration among the nodes of
the network. Specifically, cij > 0 when there is a link from node j to node
i (i 6= j) and cij = 0 otherwise. If positive, the entry cij indicates also the
strength of the connection between the nodes i and j.

As mentioned earlier, matrix C is of great importance for the behavior
of the network. In the literature, a number of assumptions are commonly
made in order to simplify the analysis of the class of systems described by
Eq. (3.1). The most common assumed properties are listed in Section 2.6.3.

In this chapter, we show that these assumptions can often be relaxed.
Indeed, we prove in chapter, that appropriate synchronization schemes can
be found without assuming diffusivity, symmetry, balance or irreducibility.

Before definition of the response network, we introduce the open-
plus-closed-loop (OPCL) scheme. Since the pioneering work in [55], the
concept of OPCL has aroused new interest in nonlinear control problems.
Particularly, it has been used to achieve outer synchronization between
identical complex networks (governed by ordinary differential equations)
[69, 64]. This technique is very general and has advantages of both open
loop and closed loop control schemes. The original application of the OPCL
technique was on integer-order systems, hence the matrix H was assumed to
be Hurwitz. We will show that, for our purpose, it is enough that matrix H
be α-stable to achieve synchronization. The Hurwitz condition for integer-
order systems so becomes a special case. We refer the reader to [65, 48]
and references therein for some other applications of the OPCL method in
synchronization.

In order to investigate outer synchronization between two identical
networks we consider Eq. (3.1) as the master network and assume there
is a response system coupled with the master network in an OPCL scheme
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[55], namely

dαyi (t)

dtα
= f (yi (t)) +

(
H − ∂f(x)

∂x

∣∣∣∣
x=xi(t)

)
(yi (t)− xi (t))

+
N∑
j=1

cijχyj (t) , i = 1, 2, · · · , N (3.2)

where yi (t) ∈ Rn is the state vector of node i in the response system at time
t, while α,N, f, cij and χ are the same as an Eq. (3.1). The second term in
the right side of Eq. (3.2) is the synchronizer signal which is obtained using
the OPCL method. In particular, H is a constant matrix and ∂f

∂x denotes the
Jacobian matrix of function f : Rn → Rn, which is evaluated at the point
x = xi(t) in Eq. (3.2). The master network of Eq. (3.1) and the response
network of Eq. (3.2) synchronize when their state variables converge toward
a common value, i.e., when lim

t→∞
yi(t)− xi(t) = 0 for every node i.

In the sequel, we assume that the matrix χ in Eqs. (3.1) and (3.2) is an
n × n identity matrix, χ = In. This is done for the sake of clarity, but the
analysis can be extended for other values of χ.

3.3 Synchronization analysis

In this section, we investigate the phenomenon of outer synchronization
between the coupled networks defined by Eqs. (3.1) and (3.2). We first
obtain a linearized fractional-order model for the synchronization error in
Section 3.3.1. Then, we introduce our main results in Section 3.3.2, followed
by extensions using a formulation based on LMI’s in Section 3.3.3 and
considering generalized synchronization in Section 3.3.4. Finally, we provide
a theorem, in Section 3.3.5, that relates the outer synchronization of the
networks directly with the eigenvalues of C and H.
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3.3.1 Error dynamics

Let us introduce the error signal ei (t) = yi (t) − xi (t), whose fractional
derivative yields

dαei (t)

dtα
=

dαyi (t)

dtα
− dαxi (t)

dtα

= f (xi (t) + ei (t))− f (xi (t)) +

(
H − ∂f

∂x

∣∣∣∣
x=xi(t)

)
ei (t)

+
N∑
j=1

cijej (t) = Gxi(t)(ei(t)) (3.3)

for i = 1, ..., N . When the errors vanish, i.e., limt→∞ ei(t) = 0 for
i = 1, ..., N , the master and response networks given by Eqs. (3.1) and
(3.2), respectively, synchronize. Unfortunately, it is hard to study the global
stability of Eq. (3.3) around ei(t) = 0 because both the function f and
its Jacobian ∂f

∂x are possibly nonlinear. To circumvent this difficulty, we
propose to work with a linear approximation of the function Gxi(t) on the
right-hand side of Eq. (3.3). Assuming the nonlinearity f is continuous and
differentiable, a first-order Taylor series expansion of Gxi(t)(ei(t)) around
ei(t) = 0 yields

Gxi(t)(ei(t)) ≈ Hei(t) +
N∑
j=1

cijej(t)

= Ĝxi(t)(ei(t)), (3.4)

where Ĝxi(t)(ei(t)) is a linear approximation of the fractional derivative of
the error at time t. In the sequel, we adopt this approximation and study
the stability of the set of equations

dαei (t)

dtα
= Ĝxi(t)(ei(t))

= Hei (t) +

N∑
j=1

cijej (t) , i = 1, . . . , N. (3.5)

Note that we change the notation and use ei(t) in order to explicitly indicate
that this error signal is only an approximation of the true error ei(t). The
global stability of Eq. (3.5) around ei(t) = 0 implies the local stability of
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the original Eq. (3.3) around ei(t) = 0. In practice, this means that there
exists ε > 0 such that the conditions

lim
t→∞

ei(t) = 0, ∀ei(0), and‖ei(0)‖ < ε (3.6)

together imply that

lim
t→∞

ei(t) = 0.

Consequently, we adopt the following definition of local synchronization.

Definition 3.1 The master network (3.1) and the response network (3.2)
synchronize locally when limt→∞ ei(t) = 0, irrespective of ei(0), for i =
1, ..., N .

Several propositions in this paper have the form “the networks (3.1) and
(3.2) synchronize locally if, and only if, the set of conditions S is satisfied”.
If the latter claim is true, then the alternative statement “the system of
equations of the form of (3.3), with i = 1, ..., N , has a fixed point at ei(t) = 0
(i = 1, ..., N) if, and only if, the set of conditions S is satisfied” is also true.

Some attempts to extend classical nonlinear control techniques based on
Lyapunov functions for fractional-order systems can be found in [67, 68, 108].
However, there is still a gap between the theoretical results in those papers
and practical applications, hence they have not enjoyed much use in real-
world control problems so far. For this reason, we do not pursue a direct
analysis of the nonlinear Eq. (3.3) but rely on the linearization error of
Eq. (3.5) and the notion of α-stability in Lemma 2.4 for our analysis.
This approach to the analysis of the stability of fractional-order differential
equations has been already followed by other authors [132, 107].

All the results in this paper are obtained by way of Lemma 3.1 below,
whose statement requires the introduction of some additional notations.
Consider an n × n matrix A and an m × m matrix B with eigenvalues
and eigenvectors (xi, νi) ∈ Rn × R and (yi, µi) ∈ Rm × R, respectively, i.e.,

Axi = νixi, i = 1, . . . , n, and

Byi = µiyi, j = 1, . . . ,m, (3.7)

where xi = [xi,1, xi,2, . . . , xi,n]> and yj = [yj,1, yj,2, . . . , yj,m]> (> denotes
transposition). Let us also introduce the nm× nm matrix T as

T = A⊗ Im + In ⊗B (3.8)
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where ⊗ denotes the Kronecker product. The eigenvalues and eigenvectors
of T are denoted as τi and zi , respectively, with i = 1, . . . , nm, i.e.,

Tzi = τizi, (3.9)

where zi = [zi,1, zi,2, . . . , zm,n]>.
The following lemma makes a connection between the eigenvalues and

eigenvectors of T and those of A and B.

Lemma 3.1 Let X = [x1, . . . , xn] ∈ Rn×n and Y = [y1, . . . , ym] ∈ Rm×m be
the matrices whose columns are the eigenvectors of A and B, respectively.
The eigenvectors of T have the form zi = ψi (X ⊗ Y ), i = 1, · · · , nm,
where ψi (M) is the operator that selects the i-th column of matrix M . The
eigenvalues of T have the form

τi = νk + µj , (3.10)

where i = 1, 2, . . . ,mn, k = bi/nc+1 and j = i+n−kn. (For a real number
r ∈ R, brc is the floor operator, i.e., brc = max {a ∈ Z : a ≤ r}.)

Proof. Let ti,j denote the element in the i-th row and j-th column of matrix
T and consider the indices w = 0, . . . , n − 1 and c = 1, . . . ,m. If we define
l = wm + c, it is apparent that l runs from 1 to nm and it can be used as
an index for the rows of T . In particular, the entries of the l-th row of T
have the form

tl,wm+j = bc,j , for j = 1, . . . ,m, j 6= c
tl,l = bc,c + a(w+1),(w+1)

tl,pm+c = aw+1,p, for p = 0, . . . , n− 1, p 6= w
0, otherwise

 . (3.11)

Consider now two arbitrary eigenpairs of A and B, (xi, νi) and (yj , µj),
respectively, for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. We only need to
show that τ = νi+µj is an eigenvalue of matrix T with an nm×1 eigenvector
z defined as

z = xi ⊗ yj =

xi,1yj,1︸ ︷︷ ︸
z1

, xi,1yj,2︸ ︷︷ ︸
z2

, . . . , xi,nyj,m−1︸ ︷︷ ︸
zn(m−1)

, xi,nyj,m︸ ︷︷ ︸
znm


>

. (3.12)

This is relatively straightforward, however. Indeed, if we calculate the l-th
entry of the vector Tz, denoted (Tz)l, we obtain

(Tz)l =

mn∑
p=1

tl,pzp. (3.13)
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Substituting Eq. (3.11) into Eq.(3.13) yields

(Tz)l =

m∑
k=1

bc,kxi,w+1yj,k +

n∑
p=1

aw+1,pxi,pyj,c (3.14)

and extracting common factors xi,w+1 and yj,c, we arrive at

(Tz)l = xi,w+1

m∑
k=1

bc,kyj,k + yj,c

n∑
p=1

aw+1,pxi,p.

Finally, we note that
∑m

k=1 bc,kyj,k is the c-th entry of the vector Byj
and, similarly,

∑n
p=1 aw+1,pxi,p is the (w + 1)-th element of the vector Axi.

Since yj and xi are eigenvectors of B and A, respectively, this means that∑m
k=1 bc,kyj,k = µjyj,c and

∑n
p=1 aw+1,pxi,p = νixi,w+1. As a consequence,

(Tz)l = µjyj,cxi,w+1 + νiyj,cxi,w+1

= (µj + νi) yj,cxi,w+1

= τzl.

Since this argument is valid for any l ∈ {1, . . . , nm}, it follows that
(z, τ) ∈ Rnm × R in an eigenpair of T . Moreover, we can obtain every
eigenpair of T by enumerating the pairs (xi, νi) and (yj , µj) for i = 1, . . . , n
and j = 1, . . . ,m. �

A shorter proof for Eq. (3.10) can be found in [18, Lemma 3.24].
Now we come back to the error dynamics of Eq. (3.5). Since every ei(t)

is an n-dimensional vector, we can define an nN -dimensional global error
vector

e (t) =
[
e>1 (t), e>2 (t), . . . , e>N (t)

]
∈ RnN (3.15)

and the resulting error dynamics can be compactly written as

dαe(t)

dtα
= (IN ⊗H + C ⊗ In) e(t). (3.16)

3.3.2 Basic results

We analyze the stability of the nN -dimensional system of Eq. (3.16)
around 0 by studying the position of the eigenvalues of the system matrix,
IN ⊗ H + C ⊗ In. Direct calculation of the eigenvalues of such a large
matrix is prohibitive in practice, but using Lemma 3.1 and some properties
of the coupling matrix C we can develop useful stability criteria without
determining the exact position of the eigenvalues.
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We start with two auxiliary results concerning the eigenvalues of matrix
C and a basic property of complex numbers.

Lemma 3.2 All the eigenvalues of a diffusive matrix C have nonpositive
real parts, and 0 is an eigenvalue of matrix C. Moreover, if C is irreducible,
0 is an eigenvalue with multiplicity one.

Proof: See [121].

Now we are ready to introduce our main results regarding the
synchronization of the networks (3.1) and (3.2). We initially assume the
matrix C to be diffusive for simplicity.

Theorem 3.1 Networks (3.1) and (3.2) with symmetric and diffusive
coupling matrix C synchronize locally if, and only if, matrix H is α-stable,
where α ∈ (0, 1].

Proof: We prove sufficiency first. Assume H is α-stable and let λ1, · · · , λN
denote the eigenvalues of matrix C. Since this matrix is symmetric and real,
λi ∈ R ∀i and, according to Lemma 3.2, we can sort them out in decreasing
order as

0 = λ1 ≥ λ2 ≥ · · · ≥ λN , (3.17)

i.e., they are all nonpositive.

Now, let ξ1, · · · , ξN be the eigenvalues of H. Since H is α-stable, they all
satisfy the stability condition of Eq. (2.40). Moreover, from Lemma 3.1, all
eigenvalues of IN ⊗H+C⊗In have the form λi+ξj for some i ∈ {1, · · · , N}
and j ∈ {1, · · · , n}. Since ξj satisfies the stability condition of Eq.(2.40)
and λi is real and nonpositive, λi + ξj also satisfies Eq. (2.40) and, as a
consequence, IN ⊗H +C ⊗ In is α-stable. From (3.16), if IN ⊗H +C ⊗ In
is α-stable then limt→∞ e(t) = 0.

Now we prove necessity by contradiction. Assume that H is not
α−stable. As a consequence, there exists some j ∈ {1, · · · , n} such that
|arg(ξj)| ≤ απ

2 . Moreover, from Lemma 3.2, C has at least one null
eigenvalue, i.e., ∃i ∈ {1, · · · , N} such that λi = 0. Therefore, τi,j = λi+ξj =
ξj is an eigenvalue of IN ⊗H + C ⊗ In such that |arg(τj)| ≤ απ

2 and, as a
consequence, IN ⊗H + C ⊗ In is not α-stable (hence the networks are not
synchronized). �

Theorem 3.2 The integer-order networks (3.1) and (3.2) with diffusive
coupling matrix C and α = 1 synchronize locally if, and only if, the matrix
H is Hurwitz.
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Proof: Assume H is Hurwitz and let λ1, · · · , λN denote the eigenvalues of
matrix C. From Lemma 3.2, we obtain that

Real(λi) ≤ 0, ∀i. (3.18)

Now, let ξ1, · · · , ξN be the eigenvalues of H. Since H is Hurwitz, they all
have negative real parts, i.e.,

Real(ξi) < 0, ∀i. (3.19)

Moreover, from Lemma 3.1, all eigenvalues of IN ⊗H+C⊗In have the form
λi + ξj for some i ∈ {1, · · · , N} and j ∈ {1, · · · , n}. From Eq. (3.18) and
(3.19), it is easy to find that all these eigenvalues have negative real parts.
i.e.,

Real(ξi + λj) < 0, ∀i, j. (3.20)

which means that the system matrix in Eq. (3.16) is Hurwitz and, hence,
limt→∞ e(t) = 0.

We prove necessity by contradiction, in a way similar to the proof of
Theorem 3.1. Assume that H is not Hurwitz. As a consequence, there
exists some j ∈ {1, · · · , n} such that Real(ξj) > 0. Moreover, from Lemma
3.2, C has at least one null eigenvalue, i.e., ∃i ∈ {1, · · · , N} such that λi = 0.
Therefore, τi,j = λi + ξj = ξj is an eigenvalue of IN ⊗H +C ⊗ In such that
Real(τj) > 0 and, as a consequence, IN ⊗H +C ⊗ In is not Hurwitz, which
implies that the networks do not synchronize. �

Let us note that the same criterion (H being Hurwitz) was stated in
[69], but it was given as a sufficient condition only. This was a consequence
of using the Lyapunov stability theorem, which yields only a sufficient
condition for stability.

If we remove the symmetry assumption in Theorem 3.1, we can still
provide a sufficient condition for outer synchronization.

Theorem 3.3 Networks (3.1) and (3.2) with diffusive coupling matrix C
synchronize locally if matrix H is Hurwitz, for any α ∈ (0, 1].

Proof: The proof follows the same argument as the first part of the proof
of Theorem 3.2, hence it is omitted here. �

It is important to notice that once we have designed a synchronization
scheme (i.e., the matrix H) for a system with degree α ≤ 1, then the same
scheme is valid for any system of a lower fractional-order degree, as shown
by the following corollary.
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Corollary 3.1 If matrix H synchronizes locally the networks (3.1) and
(3.2) with derivative degree α1 ≤ 1 and symmetric diffusive coupling matrix
C, then H also synchronizes locally the same networks with any derivative
degree α2 such that α2 < α1. In particular, if H synchronizes locally the
networks (3.1) and (3.2) with integer-order derivatives, then it also works
as a local synchronizer for the same networks with fractional degree α,
0 < α < 1 .

Proof: This is a straightforward consequence of Theorem 3.1. �

3.3.3 Synchronization analysis based on LMI’s

We can also analyze the synchronization of the master and response networks
based on a different set of conditions defined by systems of LMI’s, which is
previously defined in Definition 2.6 in Section 2.3 of Chapter 2.

We first provide a criterion for the convergence of the synchronization
error, limt→∞ e(t) = 0, similar to Theorem 3.1, but stated in terms of
suitable LMI’s.

Theorem 3.4 The networks (3.1) and (3.2) with diffusive coupling matrix
C synchronize locally if, and only if, there exist positive definite matrices
Z1 and Z2 that satisfy the following LMI’s (where r = exp

{
j(1− α)π2

}
, r̄

denotes its conjugate and j =
√
−1):

(i) For 0 < α < 1 and C symmetric,

r̄Z1H
T + rHZ1 + rZ2H

T + r̄HZ2 < 0. (3.21)

(ii) For α = 1,

Z1H +HTZ1 + Z2 < 0. (3.22)

(iii) For 1 < α < 2 and C symmetric,( (
HTZ1 + Z1H

)
sin
(
απ2
) (

HTZ1 − Z1H
)

cos
(
απ2
)(

Z1H −HTZ1

)
cos
(
απ2
) (

HTZ1 + Z1H
)

sin
(
απ2
) )+ Z2 < 0.

(3.23)

Proof. From [99, Thoerem 12], the LMI in (i) holds true for some positive
definite matrices Z1 and Z2 if, and only if, the matrix H is α-stable.
Therefore, from Theorem 3.1, the synchronization error, e(t), converges to
zero.
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The LMI in (ii) holds for some positive definite Z1 and Z2 if, and only if,
the matrix H is Hurwitz [77]. Then we simply apply Corollary 3.2 to obtain
that the synchronization error e(t) converges to zero also in this case.

In [3], it is shown that the LMI of (iii) holds true for some positive
definite Z1 and Z2 if, and only if, matrix H is α-stable when 1 < α < 2.
Then, similarly to the case (ii), we only need to apply Theorem 3.1 to show
that the networks are synchronized. �.

Let us remark that the matrices Z1 and Z2 are not necessarily the same
for the three cases. E.g., when α ∈ (0, 1) (and C is symmetric), we only
need to find Z1 and Z2 such that Eq. (3.21) holds, without regard to Eqs.
(3.22) and (3.23).

3.3.4 Generalized synchronization

Somewhat contrary to intuition, it is possible to attain synchronization
between the master (3.1) and response (3.2) networks when the matrix H
in (3.2) is nulled out, i.e., it is an n × n zero matrix, H = 0n×n. This is
achieved, however, at the expense of imposing slightly different assumptions
on the coupling matrix C.

In particular, let C(ε) be the set of N×N matrices with real entries such
that the sum of the entries in each row is equal to the real number ε and
the off-diagonal elements are nonnegative, i.e.,

C(ε) ,

(ci,j) ∈ RN×N :

N∑
j=1

ci,j = ε, ∀i, and ci,j ≥ 0, ∀i 6= j

 .

Theorem 3.5 The networks (3.1) and (3.2) with derivatives of degree
0 < α ≤ 1, coupling matrix C ∈ C(ε), ε < 0, and H = 0n×n synchronize
locally.

Proof: The proof is straightforward from Lemma 3.1 in this paper and [121,
Lemma 2]. Since all eigenvalues of matrix H are zero, Lemma 3.1 ensures
that the eigenvalues of matrix IN ⊗ H + C ⊗ In are the same as those of
matrix C, but with multiplicity n. From [121, Lemma 2], we know that all
eigenvalues of matrix C are numbers with negative real parts. Therefore, all
the eigenvalues of the system matrix in Eq. (3.16) also have negative real
parts. Hence, they comply with Eq. (2.40) and the system matrix is either
α-stable (for α < 1) or Hurwitz (for α = 1). �

The OPCL scheme with H = 0n×n can also lead to the generalized
synchronization [98] of the two networks. Let us adopt the following
definition.
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Definition 3.2 Two dynamical systems with state vectors x(t) and y(t) are
in generalized synchronization if there exists a function φ such that

lim
t→∞

y(t) = lim
t→∞

φ (x(t)) .

This is a weaker form of synchronization that has received a good deal of
attention [98, 127] because it allows to describe a broad class of phenomena
that occur in network systems.

Here, we carry out an approximate analysis based on the linearized error
of Eq. (3.5). In particular, we show that, provided H = 0n×n and the
coupling matrix C is suitable, the approximate error e(t) converges to a
constant value, limt→∞ e(t) = e∞ 6= 0, which is a form of generalized (outer)
synchronization.

Theorem 3.6 The networks (3.1) and (3.2) with diffusive and irreducible
coupling matrix C and H = 0n×n are in a generalized synchronization state
for the approximate error e(t).

Proof. The matrix C has a zero eigenvalue with multiplicity one. Since
H = 0n×n, we can take columns of In as its eigenvectors. Hence, the
eigenvectors associated with the zero eigenvalues of the system matrix
in Eq. (3.16) are independent, which implies that the associated blocks
of zero eigenvalues in Jordan canonical form are simple. Therefore, the
synchronization errors may not necessarily converge to zero, but they are
guaranteed to converge to fixed points, denoted ηi, i = 1, · · · , nN . Thus, the
coupled networks attain generalized synchronization, according to Definition
3.2, with the functions yi,j(t) = φk (xi(t)) = xi(t)− ηk, where i = 1, . . . , N ,
j = 1, . . . , n and k = (i− 1)n+ j. �.

Let us remark that Theorem 3.6 does not guarantee that the fractional-
order differential Eq. (3.3), that describes the dynamics of the true error,
e(t), has a fixed point at some e∞ 6= 0. It only shows that the evolution of
the approximate error e(t) suggests that generalized outer synchronization
can be achieved by the networks. In Section 3.5.1, we present a simple
illustrative example that shows how generalized synchronization is actually
attained.

3.3.5 Generic coupling matrix.

We can drop the assumptions of the coupling matrix being diffusive and
irreducible, provided that we state a joint assumption on the eigenvalues of
C and H.
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Theorem 3.7 Let λ1, . . . , λN and ξ1, . . . , ξn be the eigenvalues of C and
H, respectively. Then, the networks (3.1) and (3.2) with coupling matrix C
synchronize locally, for any 0 < α ≤ 1, if

max
i

(Real(λi)) + max
j

(Real(ξj)) < 0, (3.24)

for i ∈ {1, . . . , N} and j ∈ {1, . . . , n}.
Proof. From (3.24) and Lemma 3.1, it can be found that all the eigenvalues
of the system matrix in Eq. (3.16) are negative real numbers. Therefore,
the system (3.16) satisfies the stability condition (2.40) for any 0 < α ≤ 1
and, as a consequence, limt→∞ e(t) = 0. �

3.4 Robust synchronization

The goal of this section is to obtain necessary and sufficient conditions
for “robust” synchronization, i.e., conditions that guarantee local
synchronization even in cases of uncertainty in the parameter values, which
can, therefore, be different in the master and the response networks. We first
revisit the system model of Section 3.2 and rewrite it in a way that turns
out more useful for the subsequent analysis. Then we provide sufficient and
necessary conditions, in the form of a set of LMI’s, for local synchronization
with mismatched parameters.

3.4.1 Network model revisited

The dynamics of the nodes, both in the master (3.1) and response (3.2)
networks, depend on the nonlinear function f . Let us explicitly write f in
terms of its linear and nonlinear parts as

f(x) = Ax+ F (x), (3.25)

where x ∈ Rn, A ∈ Rn×n is a constant matrix and F : Rn → Rn is a
nonlinearity. Using Eq. (3.25) and following the same argument as in Section
3.3.1, the linearized dynamics of the synchronization error can be rewritten
as

dαei(t)

dtα
= (A+H) ei(t) +

N∑
j=1

ci,jej(t), i = 1, . . . , N. (3.26)

Note that this is not a modification of either the system or its error dynamics,
but simply an alternative way to represent them. In particular, all the results
in Section 3.3 can be rewritten with this new formulation if we simply replace
H by A+H in Theorems 3.1 through 3.7.
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3.4.2 Synchronization

We can extend Theorem 3.4 to systems that present some uncertainty in the
available knowledge of the matrices A and H. To be specific, let us assume
that A and H are perturbed as

A = An + ∆A, (3.27)

H = Hn + ∆H, (3.28)

where Hn and An denote the nominal values of the matrices and ∆H
and ∆A are unknown, albeit bounded3, perturbations. We handle both
perturbations together by introducing the matrix

P = H +A = Pn + ∆P, (3.29)

where Pn = Hn + An and ∆P = ∆H + ∆A. Note that, since ∆H and ∆A
are bounded, ∆P is also bounded and the perturbed matrix P can only take
values in a convex set that we denote as P I .

The following theorem provides necessary and sufficient conditions for
the outer (local) synchronization of the networks that can be checked when
only the nominal values, An and Hn, and the bounds for the perturbations
∆A and ∆H are known.

Theorem 3.8 Assume the coupling matrix C is diffusive. The
synchronization error of Eq. (3.26) converges to 0 if, and only if, there
exists symmetric and positive definite matrices Z1 and Z2 such that, for all
vertex matrices P ∗ ∈ P I and r = exp

{
j(1− α)π2

}
, the following LMI’s are

satisfied:

• For 0 < α < 1 and C symmetric,

r̄Z1P
∗> + rP ∗Z1 + rZ2P

∗> + r̄P ∗Z2 < 0. (3.30)

• For α = 1,
Z1P

∗ + P ∗>Z1 + Z2 < 0.

• For 1 < α < 2 and C symmetric,( (
P ∗>Z1 + Z1P

∗) sin
(
απ2
) (

P ∗>Z1 − Z1P
∗) cos

(
απ2
)(

Z1P
∗> − P ∗Z1

)
cos
(
απ2
) (

P ∗>Z1 + Z1P
∗) sin

(
απ2
) )+ Z2 < 0.

3For a matrix M ∈ Rr×k, with entries mi,j , i = 1, ..., r, j = 1, ..., k, we say that M is
bounded if every entry is bounded, i.e., there exists a constant c such that |mi,j | < c for
all i and j.
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Proof: Following exactly the same arguments as in the proof of Theorem
3.4, we can prove that, when P = P ∗ is a vertex of P I , limt→∞ ei(t) = 0 for
all i if, and only if,

• the LMI of (i) holds, C is symmetric and 0 < α < 1, or

• the LMI of (ii) holds and α = 1, or

• the LMI of (iii) holds, C is symmetric and 1 < α < 2.

However, if the LMI’s hold for all vertex matrices P ∗, then they also hold
for every P ∈ P I (because both P I and the sets defined by the LMI’s are
convex), hence limt→∞ ei(t) = 0 for all i and all P ∈ P I . �

3.5 Numerical simulations

In this section we present some computer simulation results that illustrate
the achievement of outer synchronization between two networks in some
of the scenarios considered in Sections 3.3 and 3.4. These simulations
are relevant because we can numerically integrate the true synchronization
errors ei(t) = yi(t)−xi(t), i = 1, ..., N , governed by the differential Eq. (3.3),
while the analysis of the previous sections is based on the approximate errors
ei(t), obtained by a linearization of the right-hand-side of Eq. (3.3), whose
dynamics is governed by Eq. (3.5).

3.5.1 Generalized synchronization

We first illustrate how generalized outer synchronization can be achieved
between two coupled networks using H = 0 in the OPCL scheme of Eq.
(3.2). With that aim, we consider two diffusively-coupled networks with ten
nodes each (N = 10). The general structure of the system abides by Eqs.
(3.1) and (3.2), i.e., we have a master network and a response network, but
the differential equations governing the dynamics of the nodes are of integer
order (α = 1). The nonlinear function f corresponds to the Lorenz system,
that is,

f(xi(t)) =

 −σ(xi,1(t)− xi,2(t))
ρxi,1(t)− xi,2(t)− xi,1(t)xi,3(t)
βxi,3(t) + xi,1(t)xi,2(t)

 , (3.31)
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for i = 1, ..., N , where σ = 10, ρ = 28 and β = 2/3. The coupling matrix is

C =



−2 0 0 1 0 0 0 1 0 0
1 −4 0 0 0 1 1 0 1 0
1 0 −5 0 0 1 1 1 0 1
0 0 0 −3 0 1 1 0 1 0
0 0 0 0 −3 0 2 0 1 0
0 2 1 0 0 −5 0 1 1 0
0 0 2 1 1 0 −5 0 0 1
0 0 1 0 1 1 0 −4 1 0
0 0 1 0 1 0 0 1 −6 0
0 0 0 1 0 1 0 0 1 −3


,

which can be shown to be diffusive and irreducible. A similar example was
considered in [69], but in that paper the matrix H was chosen to be non-null
in order to achieve identical synchronization.

This system matches the assumptions of Theorem 3.6, which establishes
that the linearized error e(t) converges to a (possibly non-zero) constant
value when H = 03×3. We recall that e(t) is only an approximation of
the true error e(t), hence we need to check numerically whether the latter
converges as suggested by the approximate analysis. This is indeed the
case, as observed in Figure 3.1, that shows the convergence of the true
synchronization errors, ei,j(t) = xi,j(t)− yi,j(t), for i = 1, ..., 10, j = 1, ..., 3
and 0 ≤ t ≤ 5. It can be seen that all errors converge to fixed, albeit possibly
non zero, points. This is a simple case of generalized synchronization
according to Definition 3.2.

3.5.2 Robust synchronization

Unlike the simulation of an integer-order differential equation, the numerical
simulation of a fractional differential equation is not straightforward. In
order to obtain the results presented in this section, we have applied the
predictor-corrector scheme of [36, 37], an improved version of the Adams-
Bashforth-Moulton algorithm [37, 38, 63].

We now consider two diffusively coupled networks with N = 23 nodes
each, scale-free structure and fractional-order Lorenz dynamics, with α =
0.95. In order to illustrate with numerical results the analysis of Section
3.4, we (a) introduce bounded perturbations in the parameters of the node
dynamical equations and (b) select a non-null synchronizer-matrix H in
order to show how robust synchronization can be attained.
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Figure 3.1: Generalized outer synchronization between two networks with
Lorenz dynamics. There are N = 10 nodes in each network and the order
of the differential equations is integer, α = 1. All errors converge to fixed
(albeit non-zero) points.

The dynamics of the nodes is determined by the same function f as in
Eq. (3.31), which we decompose f into linear and nonlinear parts as

f (xi(t)) =

A︷ ︸︸ ︷ −σ̃ σ̃ 0
ρ̃ −1 0

0 0 β̃


xi(t)︷ ︸︸ ︷ xi,1 (t)
xi,2 (t)
xi,3 (t)

+

F (xi(t))︷ ︸︸ ︷ 0
−xi,1(t)xi,3(t)
xi,1(t)xi,2(t)

, (3.32)

where σ̃ = σ+∆1, ρ̃ = ρ+∆2 and β̃ = β+∆3 are perturbed parameters, with
nominal values (σ, ρ, β) = (10, 28, 2/3) and bounded perturbations |∆l| ≤ 1,
l = 1, 2, 3.

Th structure of the scale-free network used in this section is depicted in
Figure 3.2. The 23 × 23 coupling matrix that determines the connectivity
of the network is
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C =



−6 − γ1 1 2 1 1 γ1 0 0 0 0 0 0 0 0 0
2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 2 −3 − γ2 0 0 0 0 0 0 0
0 0 0 0 0 2 3 0 −6 1 0 0 0 0 0
0 0 0 0 0 3 0 0 0 −4 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −4 1 1 2 0
0 0 0 0 0 0 0 0 0 0 2 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0 −3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 − γ3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 γ2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
γ3 0 0 0 0 1 0 0
−4 1 1 1 1 0 0 0
3 −3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −7 3 1
0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 −2



, (3.33)

where γl, l = 1, 2, 3 are unknown bounded perturbations (|γl| ≤ 1 for all
l). Note that, even if perturbations of C are not explicitly considered in
Theorem 3.8, the matrix of (3.33) is diffusive independently of the exact
values of γl=1,2,3 and hence we actually abide by the assumptions of Theorem
3.8. The synchronizer matrix is

H =

Hn︷ ︸︸ ︷ 0 0 0
−20 10 0

0 0 −4

+

∆H︷ ︸︸ ︷ 0 0 0
+∆4 0 0

0 0 0

 (3.34)

where −1 ≤ ∆4 < 1 is a bounded perturbation.

Similar to H, the matrix A can be split into its nominal value and a
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Figure 3.2: Graphical representation of the topology determined by the
coupling matrix C of Eq. (3.33). The links represented with thin solid
lines correspond to coefficients of the form cij = 1; those with dashed lines
correspond to coefficients of the form cij = 2; and the links with thick solid
lines correspond to coupling coefficients of the cij = 3. The “uncertain”
links, of the form cij = c + γk, where c is known and −1 < γk < 1
(k ∈ {1, 2, 3}) is an unknown perturbation, are displayed as thin solid lines
with white arrows (and k crossing bars before the tip).
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bounded perturbation, namely,

A =

An︷ ︸︸ ︷ −10 10 0
28 −1 0
0 0 −8/3

+

∆A︷ ︸︸ ︷ −∆1 ∆1 0
∆2 0 0
0 0 −∆3

 . (3.35)

Hence, we can construct P = Pn + ∆P , where Pn = Hn + An and
∆P = ∆H + ∆A, and P lies within a convex set P I , as stated in Theorem
3.8.

For the simulations we have considered α = 0.95, hence, in order to
apply Theorem 3.8, we have to verify that the LMI of (3.30) holds true for
all vertices P ∗ of P I . This is easily done using the LMI toolbox of Matlab,
that yields

Z1 = Z2 =

 4.008 0.688 0.400
0.688 1.931 −0.114
0.440 −0.114 3.509

 ,

both of them positive definite. Therefore, Theorem 3.8 predicts that H in
(3.34) can be used as a (local) synchronizer between the networks. When
the nominal parameter values are accurate, i.e. ∆A = 0 and ∆H = 0 (no
perturbation), the networks attain identical synchronization very quickly, as
shown by Fig. 3.3. To numerically assess the robustness of proposed scheme
and corroborate the analytical results in Section 3.5.2, we have generated
the perturbations shown in Fig. 3.4. They change frequently over time, but
remain bounded between −1 and +1.

The synchronization errors are displayed in Fig. 3.5. This plot shows
that changes in the parameters of the matrices H and A result in small
perturbations of the synchronization errors, which are quickly damped. It
also reveals that the synchronization errors do not exhibit any response to
variations in the matrix C, as long as it remains diffusive.

Fig. 3.6 is a zoom into Fig. 3.5 that shows the transient behavior of the
synchronization errors and the magnitude of the error perturbations due to
the parameter changes.

3.6 Summary and conclusions

We have addressed the problem of outer synchronization between two
networks with fractional-order dynamics. Starting from a basic result that
introduces the notion of α-stability for fractional-order systems, we obtain
necessary and sufficient conditions for outer synchronization in terms of the
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Figure 3.3: Convergence toward zero of the outer synchronization errors
with the same values of Fig. 3.4, when there is no perturbation.

relative positions of the eigenvalues of a certain matrix that governs the error
dynamics. To be specific, we provide sufficient and necessary conditions for
the fractional-order differential equation of the synchronization error, e(t),
to have a fixed point at e(t) = 0.

The assumptions that we impose on the structure of the coupling matrix
of the networks are relatively mild. In particular, for a first set of results, we
only assume that the coupling is symmetric and diffusive. Since integer-order
differential equations are just a particular case of fractional-order equations,
our analysis is also valid for the outer synchronization of networks with
ordinary (integer order) dynamics, as explicitly shown by Theorem 3.2 and
Corollary 3.1.

We have also introduced a new set of conditions for outer synchronization
given in terms of LMI’s. Such conditions are often easier to check than
eigenvalue positions. To be specific, we have introduced different sets of
LMI’s for different ranges of the fractional order α, under the assumption
of diffusive coupling. The approach based on LMI’s is flexible enough to be
extended to cases in which the parameters of the networks are only known
up to bounded perturbations. Assuming the latter bound is known and the
coupling matrix of the networks is diffusive, we have also found conditions
for synchronization (this is termed “robust synchronization” because it holds
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Figure 3.4: Time-varying perturbations of the parameters in Eqs. (3.32),
(3.33) and (3.34).
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Figure 3.5: Convergence toward zero of the outer synchronization errors,
ei(t), for a system with N = 23 nodes per network, Lorenz fractional-order
dynamics, α = 0.95 and bounded perturbations.
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Figure 3.6: Transient behavior of the outer synchronization errors. This
plot is a zoom into Fig. 3.4.
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no matter the exact values of the perturbations, as far as they are bounded).
Finally, we have also investigated the generalized outer synchronization

of the networks. In particular, we have shown that it can be attained with
a very simple scheme, provided that the coupling matrix is diffusive and
irreducible. To complement it, we have also presented a numerical simulation
that shows how generalized synchronization is actually attained as suggested
by the convergence of the approximate errors.

The numerical study also includes simulation results for the robust
synchronization of two networks with perturbed parameters. Specifically,
we have shown how two coupled networks with N = 23 nodes each, scale-
free structure and fractional-order Lorenz dynamics can be synchronized
even when the parameters of the differential equations and the coupling
matrix suffer a (bounded) perturbation.
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Chapter 4

Synchronization of ordinary
networks

4.1 Introduction

Despite the increasing interest of researchers in the study of complex
dynamical networks in recent years, the amount of analytical results related
to outer synchronization that can be found in the literature is still limited. In
[64] and [65], synchronization between two continuous-time [64] and discrete-
time [65] complex networks in a master-slave configuration is investigated
using similar approaches. In both cases, the coupling matrix that determines
the topology of the networks is assumed to be diffusive and the design of
the synchronizers is based on the calculation of Jordan canonical forms.
Only local synchronization is guaranteed (as a result of using a linearization
scheme) and the master and slave systems have to be fully deterministic. No
unknown perturbations of the network variables or parameters is considered.
Another example of using linearization techniques to attain local outer
synchronization is [69]. Similar to [64, 65], the networks are assumed to be
fully deterministic (no parameter mismatch or dynamical disturbances are
considered) and the coupling matrix diffusive and, additionally, balanced.

The work in [124] is concerned with attaining outer synchronization in
finite time between two networks whose state variables are perturbed by
an additive Brownian motion process. The networks are assumed to have
the same node dynamics but possibly different topological structure. The
same as in the previous references, the coupling matrices are assumed to
be diffusive. An important feature of the scheme in [124] is the necessity
to gather signals from all the nodes in the master network in order to
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compute the synchronizer for each individual node in the slave network. For
large networks, this feature may arise obvious difficulties with the practical
complexity of the scheme. The model parameters are also considered to be
deterministic and known, the same as in the former references.

Chapter 3 in this thesis provides an example of a scheme where
synchronization is robust to perturbations in the model parameters, which
can be different and unknown across different network nodes and across
different networks. Moreover, some of the schemes proposed in Chapter 3
are proved to be valid for networks with non-diffusive coupling matrices.
However, similar to [64, 65, 69], these results rely on the use of linearization
techniques and, hence, they can only guarantee local outer synchronization.

In this chapter we investigate robust schemes for global outer
synchronization of two diffusively-coupled complex dynamical networks in
which the model parameters are not known, i.e., they are subject to an
unknown perturbation with respect to their nominal values. Our approach
relies on

(a) a basic lemma on the eigendecomposition of matrices resulting from
Kronecker products and

(b) a suitable choice of a Lyapunov function related to the synchronization
error dynamics.

Starting from these two ingredients, a theorem that provides a sufficient
condition for the global outer synchronization of two networks with known
parameters and a diffusive coupling matrix1 is proved. The sufficient
condition in the latter theorem is formally given as an LMI that has to
be satisfied by the system of coupled networks2. The argument of the proof
includes the design of the gain of the synchronizer, which is a constant square
matrix with dimension given by the number of dynamic variables in a single
network node. Therefore, the complexity of the scheme is independent of
the size of the overall network, which can be much larger.

The basic result is subsequently elaborated, first in order to simplify the
design of the synchronizer while holding the assumption of the coupling
matrix being diffusive. Then, the latter assumption is relaxed and

1It should be remarked that the term “coupling matrix” here refers to the matrix that
specifies the inner connections of each network. This is different from the network-to-
network coupling scheme, which is not given by the coupling matrix but ideally has to
be designed to ensure synchronization. Specifically, the fact that the network-to-network
coupling is diffusive is independent of the (intra-network) coupling matrices being diffusive.

2Most of the subsequent results that stem from this theorem are also expressed in terms
of LMI’s that need to be satisfied.
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a sufficient condition for global outer synchronization is given. The
corresponding LMI involves the maximum eigenvalue of the coupling matrix
but avoids any other assumptions on it (in particular, the coupling matrix
is not assumed to be diffusive anymore). Next we investigate schemes
that reduce the dimension of the synchronizer signals, which can be made
lesser than the dimension of the state in a single node. Finally, we obtain
synchronizers that are robust to model errors in the parameters of the
networks. As before, sufficient conditions for global synchronization are
given in the form of an LMI with only mild assumptions on the coupling
matrix. An illustrative numerical example for the outer synchronization
of two networks of classical Lorenz nodes with perturbed parameters is
presented.

The rest of this chapter is organized as follows. In Section 4.2 we
present a formal description of the network model and a statement of the
synchronization problem to be addressed. A set of auxiliary results, are
presented in Section 4.3. In Section 4.4 we introduce the main analytical
results. A numerical example is presented in Section 4.5 and, finally, Section
4.6 is devoted to the conclusions.

4.2 Network model and problem statement

4.2.1 Network model

The network models used in this chapter are essentially the same as those
in Chapter 3; only the fractional orders on the left hand side of equations
(3.1) and (3.2) are replaced by integer ones. The master and slave networks
in this chapter are, therefore, formally described as

ẋi = Axi + f (xi) +
N∑
j=1

cijLxj , i = 1, . . . , N, (4.1)

and

ẏi = Ayi + f (yi) +

N∑
j=1

cijLyj + ui, (4.2)

respectively, where ui(t) ∈ Rn is the synchronizer signal, defined as ui =
K(yi − xi), and K is a constant matrix which will be later designed in such
a way that outer synchronization, as described by Definition 2.10 of Section
2.6.2, can be guaranteed.
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Matrix C is a key element for characterizing the dynamics of both
different equations (4.1) and (4.2). In the literature, various assumptions
are commonly made in order to simplify the analysis of the class of systems
described by Eq. (4.1). The most common assumptions are symmetry,
irreducibility, balance and, in particular, diffusivity. These properties are
described in Section 2.6.3

In this Chapter, we relax all of these assumptions. Indeed, we show
that appropriate synchronization schemes can be found without assuming
diffusivity, symmetry, balance and irreducibility.

In the sequel, we assume that the matrix L in Eqs. (4.1) and (4.2) is an
n × n identity matrix, L = In. This is done for the sake of clarity in the
presentation of the introduced results, but they can be extended for other
values of L.

4.2.2 Problem statement

Let us introduce the n×1 error signal ei (t) = yi (t)−xi (t) ∈ Rn. The error
dynamics are described by the differential equation

ėi = ẏi − ẋi

= Aei + f (yi)− f (xi) +

N∑
j=1

cijej + ui, (4.3)

where the synchronizer signal can be rewritten as ui = Kei.
Stacking together the error signals for the N pairs of nodes in the overall

system, we can define the nN × 1 global error vector

e (t) =
[
e>1 (t), e>2 (t), . . . , e>N (t)

]
∈ RnN , (4.4)

where the superscript > denotes transposition, and the resulting error
dynamics can be compactly written as

ė = (IN ⊗ (A+K) + C ⊗ In) e+ f̄ , (4.5)

where

f̄ = f̄(t) =
[
(f (y1(t))− f (x1(t)))> , . . . , (f (yN (t))− f (xN (t)))>

]>
(4.6)

is the nN × 1 vector collecting the synchronization error in the nonlinear
components of the nodes. Note that we also skip the time dependence of
f̄(t) in Eq. (4.5).
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Our goal in this chapter is to find sufficient conditions for the two
networks to synchronize globally, i.e., to ensure that limt→∞ ‖e(t)‖ = 0
irrespective of the initial conditions. Note that, since the matrices A and C
and the nonlinear function f are given, synchronization has to be achieved
by a proper design of the gain matrix K.

4.3 Ancillary results

Studying the global synchronization of the networks (4.1) and (4.2) amounts
to analyzing the global asymptotic stability of the nN -dimensional error
signal e(t), whose dynamics are determined by Eq. (4.5). Since the number
of nodes in the network, N , can be very large in practical applications,
matrix-vector calculations involving e(t) (and the coupling matrix C as well)
may turn out prohibitive and there is a need to find analytical methods
which are both rigorous and efficient. In this section we review a number of
auxiliary results that will be later used to alleviate this difficulty.

Lemma 3.1 introduced in Section of Chapter 3 has a key role of
synchronization analysis in this Chapter. In the sequel, some other results
utilized in proofs of this chapter are brought.

The following lemma states that the eigenvalues of a matrix A are shifted
by a constant k when we perform the operation A+ kI.

Lemma 4.1 Let ηi, i = 1, . . . , n be the eigenvalues of the n × n matrix A.
The eigenvalues of matrix A+kIn, where k ∈ R is an arbitrary real constant,
are

ξi = ηi + k, i = 1, . . . , n. (4.7)

The next lemma states the well-known Lyapunov stability condition and
makes a connection among the eigenvalues of a matrix, asymptotic system
stability and the satisfaction of a corresponding LMI.

Proof. According to the definition of eigenvalues of Matrix A, the
proof is straightforward.

Lemma 4.2 Let A be an n × n matrix and let x(t) ∈ Rn be a dynamic
vector. The following statements are equivalent:

• The linear system ẋ = Ax is asymptotically stable around xo = 0.

• All the eigenvalues of matrix A have negative real part.
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• There exists a positive definite matrix P such that the LMI

PA+A>P < 0

is satisfied.

Proof. See [77].
As mentioned in Section 4.1, most of the earlier work on the outer

synchronization of complex dynamical networks builds upon the assumption
that the coupling matrix C that describes the intra-network topology is
diffusive. The reason is that this property entails a number of other useful
results involving the eigenvalues of C, which are restated by the next lemma.

Lemma 4.3 All the eigenvalues of a diffusive matrix C have nonpositive
real parts. Moreover, 0 is an eigenvalue of C in general and, if C is
irreducible, then 0 is an eigenvalue with multiplicity one.

Proof. See [121].
Finally, the inequality below will be ancillary for the stability analysis

of the error dynamics (4.5) using Lyapunov functions.

Lemma 4.4 Choose arbitrary matrices A and B with compatible
dimensions. The inequality

A>B +B>A ≤ A>QA+B>Q−1B

is satisfied for any positive definite square matrix Q with suitable dimensions.

Proof. See [13].

4.4 Global synchronization

In this section we introduce sets of sufficient conditions, expressed as LMI’s
that involve the gain matrix K, for global synchronization of the networks
(4.1) and (4.2). We start, in Section 4.4.1, with basic results for systems
where the model parameters are exactly known. We analyze the cases in
which the coupling matrix is diffusive (the same as in the existing literature)
and then relax this assumption. We also seek schemes where the dimension
of the synchronizer signals can be reduced (namely, where it can be made
smaller than the state space dimension n) in Section 4.4.2. In Section 4.4.3
we extend our analysis to systems of coupled networks where the model
parameters are subject to an unknown (albeit bounded) perturbation.
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4.4.1 Main results

Recall that the local synchronizer signals at the network nodes have the
form ui(t) = Kei(t), where ei(t) = yi(t) − xi(t) is the synchronization
error at the i-th node and K is a constant (network wide) gain matrix
of dimension n × n, and η > 0 is the Lipschitz constant of the nonlinear
function f . The following theorem provides a sufficient condition for the
gain matrix K to guarantee the global synchronization of networks (4.1)
and (4.2) when the coupling matrix C is diffusive. This is a fundamental
result that allows several extensions of the analysis as the assumptions on
the model are changed.

Theorem 4.1 Assume that the coupling matrix C is diffusive. If there exist
a symmetric and positive definite matrix X ∈ Rn×n and a positive definite
matrix W ∈ Rn×n such that the LMI(

A+
1 + η2

2
In

)
X +X

(
A+

1 + η2

2
In

)>
+W +W> < 0 (4.8)

is satisfied, then the gain matrix K = WX−1 guarantees that the networks
(4.1) and (4.2) synchronize globally.

Proof. Consider the radially-unbounded Lyapunov function

V = e>P̃ e (4.9)

where P̃ is some positive definite matrix of dimension nN × nN . If V̇ < 0,
∀e 6= 0, then the system of differential equations (4.5) is asymptotically
stable around e(t) = 0 (irrespective of its initial condition). Therefore, it is
enough to show that (4.8) implies V̇ < 0 when the gain matrix is selected
as K = X−1W , and we proceed to prove the latter result.

The derivative V̇ can be easily obtained as

V̇ = e>P̃ ė+ ė>P̃ e. (4.10)

If we denote, for conciseness,

Y = IN ⊗ (A+K) , and (4.11)

Z = C ⊗ In, (4.12)

then substituting Eq. (4.5) into Eq. (4.10) yields

V̇ = e>
(
P̃ (Y + Z) + (Y + Z)> P̃

)
e+ e>P̃ f̄ + f̄>P̃ e.
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Moreover, according to Lemma 4.4, we may choose an arbitrary positive
definite matrix Q of dimension nN × nN to obtain the inequality

V̇ ≤
(
P̃ (Y + Z) + (Y + Z)> P̃

)
e+ e>P̃QP̃ e+ f̄>Q−1f̄

and, using the fact that ‖f̄‖ < η‖e‖ (that follows from f being Lipschitz
with constant η > 0), we arrive at

V̇ ≤ e>
(
P̃ (Y + Z) + (Y + Z)> P̃ + P̃QP̃ + η2Q−1

)
e. (4.13)

Since Q is positive definite but otherwise arbitrary, we can select Q = P̃−1

which, when substituted into (4.13), results in

V̇ ≤ e>
(
P̃

(
Y + Z +

1 + η2

2
InN

)
+

(
Y + Z +

1 + η2

2
InN

)>
P̃

)
e.

(4.14)
Let us write

• {µi; i = 1, . . . , n} for the eigenvalues of matrix A+K,

• {λj ; j = 1, . . . , N} for the eigenvalues of the coupling matrix C, and

• {ξ`; ` = 1, ..., nN} for the eigenvalues of Y + Z + 1+η2

2 InN .

On one hand, Lemma 3.1 enables us to obtain the eigenvalues of Y + Z in
terms of the eigenvalues of A + K and C. On the other hand, Lemma 4.1

yields the eigenvalues of Y +Z + 1+η2

2 InN given those of Y +Z. Combining
both results leads to

ξ` = µi + λj +
1 + η2

2
, ` ∈ {1, ..., nN}, (4.15)

where the subscript ` is a function of i and j, namely,

` = Ni+ j, with i = 0, . . . , n− 1, and j = 1, . . . , N.

The following argument brings the proof to a conclusion. Assume that
the inequality (4.8) holds true. If we pre- and post-multiply by X−1 then
we obtain the inequality

X−1

(
A+

1 + η2

2
In

)
+

(
A+

1 + η2

2
In

)>
X−1+X−1WX−1+X−1W>X−1 < 0.

(4.16)
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If we let K = WX−1 and denote P = X−1 (hence, P is symmetric and
positive definite), Eq. (4.16) can be rewritten as

P

(
A+

1 + η2

2
In +K

)
+

(
A+

1 + η2

2
In +K

)>
P < 0. (4.17)

Using Lemma 4.1, the eigenvalues of the matrix A+ 1+η2

2 In +K are shown

to have the form {µi + 1+η2

2 ; i = 1, ..., n}. Moreover, from Lemma 4.2, the

inequality (4.17) implies that the eigenvalues of A+ 1+η2

2 In +K must have
negative real parts, hence

Real

{
µi +

1 + η2

2

}
< 0, i = 1, ..., n. (4.18)

Since the coupling matrix C is diffusive, it follows from Lemma 4.3 that

Real {λj} ≤ 0, j = 1, ..., N, (4.19)

and Eqs. (4.15), (4.18) and (4.19) together imply that

Real {ξ`} < 0, ` = 1, ..., nN. (4.20)

However, Lemma 4.2 and Eq. (4.20) show that

P̃

(
Y + Z +

1 + η2

2
InN

)
+

(
Y + Z +

1 + η2

2
InN

)>
P̃ < 0, (4.21)

and combining (4.21) and (4.14) yields V̇ < 0, ∀e 6= 0, which concludes the
proof.
�
Let {αi; i = 1, ..., n} be the eigenvalues of matrix A and let a+ =

max1≤i≤nReal{αi} be the maximum over the real parts of these eigenvalues.
The following theorem shows that, in practice, it is possible to compute
very simple gain matrices that lead to global outer synchronization of the
networks.

Theorem 4.2 Assume that the coupling matrix C is diffusive and choose a
real constant k satisfying the inequality

k >
1 + η2

2
+ a+. (4.22)

If the gain matrix is selected as K = −kIn then the networks (4.1) and (4.2)
synchronize globally.
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Proof. From Lemma 4.1, the eigenvalues of A + K = A − kIn have the
form µi = αi−k, i = 1, ..., n. Therefore, from the inequality (4.22) we easily
obtain that

Real

{
µi +

1 + η2

2

}
= Real{αi}+

1 + η2

2
−k ≤ a+ +

1 + η2

2
−k < 0. (4.23)

Combining (4.23) and (4.19) we arrive at (4.20) which, in turn, leads to the
inequality (4.21) and, as a consequence, V̇ < 0 ∀e 6= 0.
�
Theorems 4.1 and 4.2 still place the (common) assumption of diffusivity

on the coupling matrix C. However, a simple combination of the latter
results yields a sufficient condition for synchronization that is free of any
assumption on matrix C. Specifically, let c+ = max1≤j≤N Real{λj} be the
maximum over the real parts of the eigenvalues of the coupling matrix. The
following result establishes a sufficient condition for synchronization with
possibly non-diffusive matrix C.

Theorem 4.3 If there exist a symmetric positive definite matrix X and
positive definite matrix W such that the LMI(
A+

(
1 + η2

2
+ c+

)
In

)
X+X

(
A+

(
1 + η2

2
+ c+

)
In

)>
+W +W> < 0

(4.24)
is satisfied, then the gain matrix K = WX−1 yields global synchronization
of the networks (4.1) and (4.2).

Proof. Let ζj , 1 ≤ j ≤ n, be the eigenvalues of the matrix A + K +(
c+ + 1+η2

2

)
In. From Eq. (4.15), Lemma 4.1 and the definition of c+, it

follows that
max

1≤`≤nN
Real{ξ`} ≤ max

1≤j≤n
Real{ζj}.

Therefore, if max1≤j≤nReal{ζj} < 0 then max1≤`≤nN Real{ξ`} < 0 which,
in turn, implies V̇ < 0 ∀e 6= 0 and global synchronization.

Lemma 4.2 shows that max1≤j≤nReal{ζj} < 0 if, and only if,

P

(
A+K +

(
c+ +

1 + η2

2

)
In

)
+

(
A+K +

(
c+ +

1 + η2

2

)
In

)>
P < 0

(4.25)
for some positive definite matrix P . However, if the LMI (4.24) holds true
and we choose P = X−1 and W = KX (hence, K = WX−1), then (4.25)
follows immediately, which concludes the proof. �
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Remarkably, it is possible to apply Theorem 4.3 without explicitly
calculating the eigenvalues of matrix C. Note that the latter may be
a computationally heavy task in practice, since it can be expected that
N >> n. To avoid such calculation, we resort to the following auxiliary
lemma.

Lemma 4.5 (Gershgorin circle theorem) Let A be a complex n × n
matrix with entries aij, and let D (aii, ςi) be the closed disc centered at aii
with radius ςi =

∑
j 6=i |aij |. All eigenvalues of A lie in at least one of the

Gershgorian discs D (aii, ςj), 1 ≤ i ≤ n.

Proof. See [47].

Let c̄ = max1≤i≤N

∣∣∣cii +
∑

j 6=i |cij |
∣∣∣. The following corollary provides a

simpler way of applying Theorem 4.3 in practical setups.

Corollary 4.1 If there exist a symmetric positive definite matrix X and
positive definite matrix W such that the LMI(
A+

(
1 + η2

2
+ c̄

)
In

)
X +X

(
A+

(
1 + η2

2
+ c̄

)
In

)>
+W +W> < 0

(4.26)
is satisfied, then the gain matrix K = WX−1 yields global synchronization
of the networks (4.1) and (4.2).

Proof. From Lemma 4.5, it is seen that c+ ≤ c̄. The result is then
straightforward from Theorem 4.3.

�

4.4.2 Lower dimensional gain matrix

In many cases, the networks may not be coupled through the full dimensional
state signals xi(t) ∈ Rn, i = 1, ..., N . In control problems, in which the slave
system modeled by network (4.2) has to be steered by the master system
modeled by (4.1), this may be due to physical limitations of the actuators
that should apply the control signals. In other scenarios, there may be real-
world constraints in the manner the two systems modeled by the networks
(4.1) and (4.2) can interact.

In order to account for such limitations, we can substitute the
synchronizer signals ui = K(yi − xi) in network (4.2) by ūi = BK̄(yi − xi),
i = 1, ..., N , where B ∈ Rn×m is a given tall matrix, i.e., m < n, and
K̄ ∈ Rm×n is a short gain matrix, whose dimension is reduced with respect
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to the original matrix K ∈ Rn×n. As a result of this substitution, the error
dynamics of Eq. (4.5) becomes

ė =
(
IN ⊗ (A+BK̄) + C ⊗ In

)
e+ f̄ . (4.27)

It turns out that it is possible to carry out the same kind of global stability
analysis that led to Theorem 4.1 when the networks are coupled through
the lower-dimensional gain matrix K̄.

Theorem 4.4 Assume that the coupling matrix C is diffusive and B ∈
Rn×m, m ≤ n. If there exist W ∈ Rm×n and a symmetric and positive
definite matrix X ∈ Rn×n such that the LMI(

A+
1 + η2

2
In

)
X +X

(
A+

1 + η2

2
In

)>
+BW +W>B> < 0 (4.28)

is satisfied, then the gain matrix K̄ = WX−1 guarantees that the networks
(4.1) and (4.2) synchronize globally.

Proof. The proof is essentially the same as for Theorem 4.1. In particular,
we can work with exactly the same radially unbounded Lyapunov function V
and arrive at the inequality (4.14). Then we write {λj ; j = 1, ..., N} for the

eigenvalues of C, {ξ`; ` = 1, ..., nN} for the eigenvalues of Y + Z + 1+η2

2 InN
but introduce {µ̄i; i = 1, ..., n} for the eigenvalues of A + BK̄. Then, from
Lemmas 3.1 and 4.1 we obtain

ξ` = µ̄i + λj +
1 + η2

2
, ` ∈ {1, ..., nN}, (4.29)

where, ` = Ni + j, with i = 0, . . . , n − 1, and j = 1, . . . , N, which is
the straightforward counterpart of Eq. (4.15).

Finally, assume that (4.28) holds true. If we pre- and post-multiply by
X−1 in (4.28) and then let K̄ = WX−1 and P = X−1 we obtain

P

(
A+

1 + η2

2
In +BK̄

)
+

(
A+

1 + η2

2
In +BK̄

)>
P < 0. (4.30)

From (4.30), we can use Lemmas 4.1 and 4.2 in exactly the same way as in
the proof of Theorem 4.1 to show that Real{ξ`} < 0, ` = 1, ..., nN . The
latter inequality combined with Lemma 4.2 brings us to Eq. (4.21) again
which, combined with Eq. (4.14), yields V̇ < 0 ∀e 6= 0.
�
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Theorem 4.4 guarantees that, if the matrices W ∈ Rm×n and X > 0
exist, then global synchronization is attained with the reduced-dimension
gain matrix K̄ = WX−1. However, depending on the pair of matrices
(A,B) ∈ Rn×n × Rn×m, it may happen that no X > 0 and W exist that
satisfy the LMI (4.28). This difficulty can be removed if we assume the pair
of matrices (A,B) to be controllable [87].

Definition 4.1 The pair (A,B) ∈ Rn×n × Rn×m, m ≤ n, is controllable if
the n× nm real matrix

[
B,AB, · · · , A(n−1)B

]
has rank n.

If (A,B) is controllable, then we can select the eigenvalues of the sum A+BK̄
by adequately choosing K̄.

Lemma 4.6 A pair (A,B) ∈ Rn×n × Rn×m is controllable if, and only if,
for any valid3 choice U = {νi; i = 1, ..., n} there exists K̄U ∈ Rm×n such that
U is the set of eigenvalues of the sum matrix A+BK̄U .

Proof. See [87, pages 829-832].

Therefore, the pair (A,B) being controllable is actually a sufficient
condition for global synchronization of the networks (4.1) and (4.2).

Theorem 4.5 Assume that the coupling matrix C is diffusive and B ∈
Rm×n, m ≤ n, is such that the pair (A,B) is controllable. Then, there exists
K̄ ∈ Rm×n such that the networks (4.1) and (4.2) synchronize globally.

Proof. Recall that {µ̄i; i = 1, ..., n} denotes the set of eigenvalues of

A + BK̄. From Lemma 4.1, the eigenvalues of A + BK̄ + 1+η2

2 In have

the form νi = µi+
1+η2

2 , i = 1, ..., n. However, if (A,B) is controllable, then,

from Lemma 4.6, there exists K̄ such that Real{µi} < −1+η2

2 , and hence
Real{νi} < 0, for i = 1, ..., n.

From Lemma 4.2, Real{νi} < 0 for i = 1, ..., n implies that there exists
some positive definite and symmetric P ∈ Rn×n such that

P

(
A+BK̄ +

1 + η2

2
In

)
+

(
A+BK̄ +

1 + η2

2
In

)>
P < 0. (4.31)

If we choose X = P−1 and W = K̄P−1 then it is seen that (4.31) is
equivalent to the LMI (4.28) in the statement of Theorem 4.4.

�
3The elements of U must either be real or appear in conjugate pairs in order to be valid

eigenvalues of a real matrix.
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Remark 4.1 A gain matrix K̄ ∈ Rm×n that guarantees synchronization can
be found by computing X > 0 and W that satisfy the LMI (4.28). Theorem
4.5 simply guarantees that X > 0 and W exist.

Remark 4.2 It is straightforward to extend Theorem 4.4, in the same
way as we have done with Theorem 4.1, to obtain results analogous to
Theorems 4.2 and 4.3 and Corollary 4.1 when the networks are linked
through the signals ūi(t) = BK̄(yi(t) − xi(t)) ∈ Rm, m < n. In particular,

if c̄ = max1≤i≤N

∣∣∣cii +
∑

i6=j |cij |
∣∣∣ and there exist X > 0 symmetric and

W ∈ Rm×n such that the LMI(
A+

(
1 + η2

2
+ c̄

)
In

)
X+X

(
A+

(
1 + η2

2
+ c̄

)
In

)>
+BW+W>B> < 0

(4.32)
is satisfied, then the gain matrix K̄ = WX−1 yields global synchronization
of the networks (4.1) and (4.2).

4.4.3 Robust synchronization

Very often, the fixed parameters of the networks, including the gain matrix
K, cannot be known exactly and the system dynamics may be subject to
external unknown perturbations. Such difficulties may typically arise from
modeling errors or, simply, from the impossibility to characterize a physical
or otherwise real-world system faithfully enough. For this reason, it is highly
desirable to determine whether a synchronization scheme can be robust,
i.e., whether global synchronization can be guaranteed despite such model
mismatches and/or perturbations.

In this section, we assume that the matrices A and K appearing in
Eqs. (4.1) and (4.2) are only available up to an unknown, bounded
but possibly time-varying, mismatch. Additionally, we further introduce
unknown additive perturbations that affect the slave network. The latter
disturbance can be arbitrary, but bounded as well.

To be precise, the master and response networks are modelled as

ẋi = (A+ ∆A)xi + f(xi) +

N∑
j=1

cijxj (4.33)

and

ẏi = (A+ ∆A) yi + f(yi) +

N∑
j=1

cijyj +B
(
K̄ + ∆K̄

)
(yi − xi) + di(yi − xi),

(4.34)

76



respectively, for i = 1, ..., N , where A ∈ Rn×n and K̄ ∈ Rn×m are
nominal (known) values, while ∆A(t) ∈ Rn×n and ∆K̄(t) ∈ Rm×n
are unknown perturbations of the nominal values, and di(t)(yi − xi) is
an additional disturbance of the i-th slave nodes, also unknown, with
di(t) ∈ R. Combining Eqs. (4.33) and (4.34), the dynamics of the overall
synchronization error e(t) ∈ RnN is shown to be governed by the differential
equation

ė = (IN ⊗ ((A+ ∆A) +B (K + ∆K)) + C ⊗ In) e+ f̄ +De, (4.35)

where

D =

 d1In
. . .

dNIn

 ∈ RnN×nN (4.36)

is a diagonal unknown disturbance matrix.
In order to study whether the perturbed networks (4.33) and (4.34)

synchronize globally, i.e., whether limt→∞ e(t) = 0, we constrain the
perturbations ∆A(t), K̄(t) and d(t) to be uniformly bounded from above
over time. In particular, we assume that there exist finite constants γ > 0,
κ > 0 and τ > 0 such that

‖∆A(t)‖ < γ, (4.37)

‖B∆K(t)‖ < κ and (4.38)

‖D‖ < τ. (4.39)

If these upper bounds hold, it is straightforward to obtain an analog of
Theorems 4.1 and 4.4 for the perturbed system of Eq. (4.35).

Theorem 4.6 Assume that the coupling matrix C is diffusive, B ∈ Rn×m
is given and the inequalities (4.37), (4.38) and (4.39) hold. If there exist
X ∈ Rn×n, positive definite and symmetric, and W ∈ Rm×n such that the
LMI (

A+
4 + γ2 + κ2 + η2 + τ2

2
In

)
X+

X

(
A+

4 + γ2 + κ2 + η2 + τ2

2
In

)>
+BW +W>B> < 0 (4.40)

is satisfied, then the gain matrix K̄ = WX−1 guarantees that the networks
(4.33) and (4.34) synchronize globally.
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Proof. Let us consider again the radially unbounded Lyapunov function of
Eq. (4.9). If we substitute (4.35) into Eq. (4.10) and then apply the bounds
(4.37)-(4.39), we readily obtain (by way of Lemma 4.4, exactly the same as
in the proof of Theorem 4.1)

V̇ < e>
(
P̃

(
Y + Z +

4 + η2 + γ2 + κ2 + τ2

2
InN

)
+

(
Y + Z +

4 + η2 + γ2 + κ2 + τ2

2
InN

)>
P̃

)
e, (4.41)

which is the counterpart of the inequality (4.14), the only difference being

the (larger) constant 4+η2+γ2+κ2+τ2

2 instead of 1+η2

2 obtained in the absence
of perturbations. It is now straightforward to follow the argument in the
proofs of Theorems 4.1 and 4.4 to complete the proof.
�

Remark 4.3 Theorem 4.6 can be extended in the same manner as
Theorems 4.1 and 4.4 to account for networks with non-diffusive coupling

matrix C. In particular, if c̄ = max1≤i≤N

∣∣∣cii +
∑

i6=j |cij |
∣∣∣ and there exist

X > 0 symmetric and W ∈ Rm×n such that the LMI

(
A+

(
4 + γ2 + κ2 + η2 + τ2

2
+ c̄

)
In

)
X+

X

(
A+

(
4 + γ2 + κ2 + η2 + τ2

2
+ c̄

)
In

)>
+BW +W>B> < 0 (4.42)

is satisfied, then the gain matrix K̄ = WX−1 yields global synchronization
of the networks (4.33) and (4.34).

Moreover, the existence of W and X that satisfy (4.42) (and, hence, the
existence of the gain matrix K̄ = WX−1) is guaranteed whenever the pair
(A,B) is controllable.

4.5 Numerical simulations

In this section we present computer simulation results that illustrates
the application of Theorem 4.6 in Section 4.4.3. In particular, we have
considered the coupling of two scale-free networks, with N = 10 nodes each
and the topology depicted in figure 4.1. The 10 × 10 coupling matrix that
determines the connectivity of the network is

78



�

�

�

�

�

�

�

�

	

�


Figure 4.1: Graphical representation of the topology determined by the
coupling matrix C in Eq (4.43). The links represented with thin solid
lines correspond to coefficients of the form cij = 1; those with dashed lines
correspond to coefficients of the form cij = 2; and the links with thick solid
lines correspond to coupling coefficients of the form cij = 3.

C =



−4 1 1 1 1 0 0 0 0 0
2 −2 0 0 0 0 0 0 0 0
3 0 −3 0 0 0 0 0 0 0
2 0 0 −2 0 0 0 0 0 0
0 0 0 0 −2 1 1 0 0 0
0 0 0 0 3 −3 0 0 0 0
0 0 0 0 0 0 −6 3 2 1
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 3 0 −3 0
0 0 0 0 0 0 2 0 0 −2


, (4.43)

79



which can be readily checked to be diffusive. Each node in the master
network corresponds to a classical 3-dimensional Lorenz system, i.e.,

 ẋi,1(t)
ẋi,2(t)
ẋi,3(t)

 =

(A+∆A)︷ ︸︸ ︷ −σ̃ σ̃ 0
ρ̃ −1 0

0 0 −β̃


xi(t)︷ ︸︸ ︷ xi,1 (t)
xi,2 (t)
xi,3 (t)

+

f(xi(t))︷ ︸︸ ︷ 0
−xi,1(t)xi,3(t)
xi,1(t)xi,2(t)

,
(4.44)

for i = 1, ..., N , where σ̃ = σ + ∆σ, ρ̃ = ρ + ∆ρ and β̃ = β + ∆β are
perturbed parameters, with nominal values (σ, ρ, β) = (10, 28, 2/3) and
bounded unknown perturbations −1 ≤ ∆σ,∆ρ,∆β ≤ 1. Therefore the
nominal system matrix A and perturbation matrix ∆A(t) can be written
as

A =

 −σ σ 0
ρ 0 0
0 0 β

 and ∆A(t) =

 −∆σ ∆σ 0
∆ρ 0 0
0 0 ∆β


respectively. It is relatively straightforward to compute an upper bound for
||∆A(t)||. Indeed, the maximum eigenvalues of ∆A(t)> can be calculated
directly to yield

∆2
σ +

1

2
∆2
ρ +

1

2

√(
4∆4

σ + ∆4
ρ

)
.

Hence, from the assumption −1 ≤ ∆σ,∆ρ,∆β ≤ 1 and Lemma 4.1, we

readily obtain that ||∆A(t)|| ≤ γ2 =
(
√

5+3)
2

4 . In general, looser bounds can
be obtained (in a simpler way, without explicity computing eigenvalues) via
the Gershgorian circle Theorem (Lemma 4.5).

The additive disturbance in Eq. (4.34) is modeled by assuming that
di(t)’s, i = 1, · · · , N , are unknown random numbers in the interval [−1, 1].

The Lipschitz constant for this example can be computed by taking the
numerical L2 norm of the Jacobian J = ∂f

∂x over the interval [0, 1000], which
yielded η = 53 in our simulation.

In order to interconnect the nodes in the master and slave networks,
we have selected the matrix B = [0, 1, 1]>. It is easy to check that this
choice makes the pair (A,B) controllable and, hence, we guarantee that the
networks can be synchronized (See Theorem 4.5 and Remark 4.1). Also,
since B has dimensions 3× 1, we establish only one signal channel between
each pair of nodes (and there is no actuation on yi,1, i = 1, · · · , N , since the
first entry of B is null. This should be compared with existing schemes in
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Figure 4.2: Time-varying perturbations of the parameters.

the literature. In [69], for instance, the same example is addressed but three
signal channels are used and parameters have to be exactly known (there
are no perturbations).

We have used the LMI toolbox of Matlab to solve the LMI of
Theorem 4.6. For B = [0, 1, 1]>, this yields a nominal gain matrix
K̄ = [−2.6,−0.027, 0.016] × 106. We note that the magnitude of the
gain coefficients is large. In particular, if this lead to any implementation
difficulties, it is possible to trade off between the number of signal channels
and gain amplitudes. For example, if we choose

B =

(
0 1 1
1 1 0

)>
,

then the nominal gain matrix can be found as

K̄ =

[
−3.5 3.6 −3.7
8.5 −8.8 8.8

]
× 103
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and, finally, choosing matrix B as

B3 =

 0 1 1
1 1 0
1 0 1


yields the nominal gain matrix

K̄ =

 63 −71 −71
−70 −63 71
−71 72 −65

 .
These three pairs of matrix B and associated matrix K̄ reveal that the more
channels in control signal transmission route (i.e., less rows in matrix B),
results to higher gains in elements of gain matrix. The results shown in this
section correspond all of them to the choice B1 = [0 1 1]>.

The unknown perturbations of the gain matrix is assumed to have the
form

∆K(t) =
(

0 ∆K1(t) ∆K2(t)
)
,

where −1 ≤ ∆K1(t),∆K2(t) ≤ 1. As a result the eigenvalues of B∆K(t)
are {0, 0,∆K1(t) + ∆K2(t)}, hence we can safely choose κ2 = 4 as an upper
bound in Eq (4.38).

Figure 4.2 displays the values of the perturbations ∆σ(t), ∆ρ(t), ∆β(t),
∆K1(t) and ∆K2(t) over time for our simulation (recall that di(t), i =
1, · · · , N), are random, with |di(t)| < 1 as well).

Finally, Figure 4.3 plots the norm of the synchronization error, ‖e(t)‖,
versus time. We observe how e(t) converges toward zero very quickly.

4.6 Summary and conclusions

We have addressed the problem of outer synchronization between two
networks of nonlinear (possibly chaotic) dynamical oscillators. Our
approach is based on a simple definition of the synchronization error and a
proper choice of a radially-unbounded Lyapunov function. Starting from
these two ingredients, we have provided sets of sufficient conditions for
the global synchronization of the networks, irrespective of their initial
condition. Although the first such result, Theorem 4.1, relies on relatively
restrictive assumptions (diffusive coupling matrix, perfectly known network
parameters), we have subsequently relaxed them to obtain sufficient
conditions that ensure global synchronization when the coupling matrix is
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Figure 4.3: Zero convergence of error vector norm described in Eq. (4.35).

non-diffusive, when the number of connections between the two networks is
reduced and when the network parameters are only known up to a bounded
perturbation. In all cases, the conditions for synchronization are expressed
in terms of the feasibility of an LMI whose dimension is independent of the
number of nodes in the networks. Such LMI’s are simple to solve using
standard software and the solutions can be used explicitly to design inter-
network connections that guarantee synchronization. To summarize, the
key contributions of the proposed approach compared to previous work are:
(a) to avoid linearizations and other approximations, hence ensuring that
synchronization is attained independently of the networks initial conditions,
(b) to avoid computations whose complexity depends on the network size
(i.e., the number of nodes), and (c) to derive synchronization schemes
that work with reduced-dimensional (even one-dimensional) signal channels
between pairs of nodes. We have also provided computer simulation results
that illustrate the application of the main theoretical findings in this chapter.
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Chapter 5

Summary and future
research

5.1 Summary

We have investigated the problem of robust synchronization between two
complex dynamical networks using rigorous mathematical arguments and
tools borrowed from diverse fields, such as control theory or matrix algebra.

There are two broad classes of networks, for which we have been able to
obtain analytical results. The first one corresponds to networks described by
differential equations of fractional-order (in Chapter 3), while the second one
includes networks that can be modeled by differential equations of integer
(ordinary) order (in Chapter 4). The analysis differs in the mathematical
arguments, their depth and scope. A detailed summary is provided below
for each scenario.

5.1.1 Networks of fractional-order oscillators

The problem of outer synchronization between two networks with fractional-
order dynamics is addressed in Chapter 3. All the theorems provided in this
chapter, like several other works related to the stability of fractional-order
dynamical systems, are based on Matignon’s stability theorem [80]. This
criterion checks the stability of a linear fractional-order system based on
the position of the eigenvalues of a system matrix. However, in the outer
synchronization problem, the global synchronization error (and, hence, the
system matrix of the error dynamics) is very large, and devising a scheme
that pushes the eigenvalues into a region thet ensures the stability of the

85



system can be a very tedious and practically impossible task. To tackle this
problem, we have proposed a method to synchronize the networks without
explicitly calculating the eigenvalues of the system matrix of the global
error. In particular, we have found a formula to make a connection between
the eigenvalues of the large system matrix with dimension nN × nN and
the system matrix of local errors between each pair of nodes, which is n
dimensional. Another important advantage in this method is the simple
structure of the synchronization scheme, which makes it convenient for
practical implementations. Several necessary and sufficient conditions have
been proposed to guarantee synchronization under different assumptions.

The assumptions that we impose on the structure of the coupling matrix
of the networks are relatively mild. In particular, for a first set of results, we
only assume that this is symmetric and diffusive. We have also introduced
a new set of conditions for outer synchronization given in terms of LMI’s.
Such conditions are often easier to check than eigenvalue positions. To be
specific, we have introduced different sets of LMI’s for different ranges of the
fractional order α, under the assumption of diffusive coupling. The approach
based on LMI’s is flexible enough to be extended to robust synchronization,
in which the parameters of the networks are only known up to bounded
perturbations. Finally, we have also investigated the generalized outer
synchronization of the networks. In particular, we have shown that it can
be attained with a very simple scheme, provided that the coupling matrix
is diffusive and irreducible.

Since integer-order differential equations are just a particular case
of fractional-order equations, our analysis is also valid for the outer
synchronization of networks with ordinary (integer order) dynamics.
However, the existence of several strong mathematical theorems to analyze
the integer-order dynamical systems, makes it possible to have better results
with an even simpler synchronizer design, as shown in Chapter 4.

5.1.2 Networks of integer-order oscillators

The problem statement in Chapter 4 is basically similar to Chapter 3,
but the governing dynamics of the nodes is ordinary (described by integer-
order differential equations). This apparently little change in the structure
of the networks makes the synchronization strategies completely different.
Rather than using a linearization of the error dynamics [69], we have used
the Lyapunov second stability method to guarantee the global convergence
toward zero of the error norm. In particular, we have provided sets of
sufficient conditions that ensure the global synchronization of the networks,
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irrespective of their initial condition.
The first theorem in Chapter 4 is the most restrictive one, since it

requires the coupling matrix to be diffusive and the network parameters to
be perfectly known. As well as in Chapter 3, the results provided in Chapter
4 are then extended to rely only on mild assumptions on the topology of
the networks. We have made this possible with a novel method, consisted
by suitable conversions among equal statements in the Lyapunov stability
theorem. The next improvement is assuming parameters with unknown
but bounded disturbances on their nominal values. Similar to Chapter
3, we have used the convexity property of LMI’s to achieve the robust
synchronization. Reducing the number of connections between the nodes
is the last improvement that we made in the primary theorems. We showed
that with the possibility of reducing the number of channels between nodes
from n (number of the states in each node) to m (1 ≤ m < n) can be
checked based on the system matrix in the linear part of the error system
dynamics in the nodes. The simulation results suggest existence of a trade
off between the number of the channels and the energy of the synchronizer
signal, though. In all cases, the conditions for synchronization are expressed
in terms of the feasibility of an LMI whose dimension is independent of the
number of nodes in the networks. Such LMI’s are simple to solve using
standard software and the solutions can be used explicitly to design inter-
network connections that guarantee synchronization.

5.2 Topics for future research

In this section some ideas for further extension on the results obtained in
Chapters 3 and 4 are proposed.

5.2.1 Synchronization without interconnection of all nodes

All through this work we have adhered to a scheme for outer synchronization
in which every node in one network is connected to its pair in the other
network. This assumption may be too restrictive to model some practical
systems. A natural extension of the present work, therefore, would involve
the modeling and analysis of outer synchronization between networks which
are inter-connected through a small subset of nodes only. From this point of
view, a problem of immediate interest is the analysis of synchronization
of two networks when (a) one of them has attained a state of inner
synchronization and (b) the inter-network coupling is carried out through
only one node.
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5.2.2 Delayed inter-network links

In a large-scale system like a complex network, practical constraints in the
links between nodes will often lead to time-delays. In particular, a delay in
the information flow from the master network to the slave network may be
mathematically reflected by modifying Eq. (4.2) as

ẏi(t) = Ayi(t) + f (yi(t)) +

N∑
j=1

cijLyj(t) + ui(t),

ui(t) = K (xi(t− τ), yi(t)) , (5.1)

where τ is a transmission delay, which can be considered fixed or time-
varying; known or unknown. Function K(·) defines the synchronization
signal, and it should be designed such that the synchronization error

e(t) = y(t)− x(t− τ)

converges towards 0 over time, i.e., lim
t→∞
‖e (t) ‖ = 0. In a more general case,

the delay τ can be considered as an unknown but bounded time-varying
term, hence schemes that are robust to such variations should be designed
as well.

5.2.3 Stochastic uncertainties

In this thesis, we have investigated the effect of the model uncertainties
that result from introducing unknown and time-varying, but bounded,
perturbations to the model parameters. It is also worth the effort to study
the effect of stochastic (noise-like) perturbations of the parameters.

Instead of deterministic fixed bounds, we then usually rely on
probabilistic properties of the perturbations. In particular, a “noisy” version
of the master and slave coupled networks can be defined as

ẋi(t) = Axi(t) + f (xi(t)) +

N∑
j=1

cijLxj(t),+g1i(x(t), t)dωi(t), (5.2)

and

ẏi(t) = Ayi(t) + f (yi(t)) +
N∑
j=1

cijLyj(t) + ui(t),+g2i(y(t), t)dω̃i(t) (5.3)

respectively, for i = 1, . . . , N , where ω(t) and ω̃(t) are independent standard
Wiener processes, and g : Rn× [0,∞)→ Rn is a continuous function of x(t)
that satisfies g(0, t) ≡ 0.
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5.2.4 Adaptive synchronization

Sometimes the parameters of the systems are initially unknown, or may
gradually change over time. The first case may appear when one has
a model for a dynamical system but its parameters cannot be directly
“observed” and have to be estimated some how. Slow changes in the
parameters of a dynamical system (i.e., impedance changes of a resistor
when its temperature increases) is an example of the second case. Adaptive
control is the method used by a controller which adapts to a system with
time-varying parameters which vary, or parameter parameters which are a
priori unknown. Adaptive control is different from robust control in that it
does not require a priori information about the bounds on these uncertain or
time-varying parameters; robust control guarantees that if the changes are
within given bounds the control law needs not be changed, while adaptive
control is concerned with how the control law itself evolves with time. The
structure of an adaptive controller for outer synchronization can be defined
as follows. The master and slave networks have the form

ẋi = Âxi + f̂ (xi) +
N∑
j=1

cijLxj , i = 1, . . . , N, (5.4)

and

ẏi = Âyi + f̂ (yi) +
N∑
j=1

cijLyj + ui, (5.5)

respectively, where Â and f̂(·) have the same definition as in Chapter 4,
except that they depend on a set of m unknown parameters {a1, a2, · · · , am}.
Then rather than designing a controller in the view of, e.g., Chapter 4,
we need to devise an update rule for the parameters, of the form âi(t) =
I (xi(t), yi(t), âi(t)) together with the synchronization signal

ui(t) = K (xi(t), yi(t), âi(t)) , i = 1, . . . ,m, (5.6)

where the âi(t)’s are the estimated values for the parameter ai(t) at time t.
The functions and K and I have to be designed jointly to ensure that the
new system of equations has a fixed point at xi(t) = yi(t) as t→∞.

5.3 Publications

The main results contained in Chapters 3 and 4 of this thesis have been
published in the references
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• M. M. Asheghan, J. Miguez, M. T. H. Beheshti, , M. S. Tavazoei,
Robust outer synchronization between two complex networks with
fractional order dynamics, Chaos, 21 (2011) 033121

• M. M. Asheghan, J. Miguez, Robust global synchronization of two
complex dynamical networks, Chaos, 23 (2013) 023108

respectively. Chaos, published by the American Institute of Physics (AIP)
is currently a top ranked journal in applied mathematics (8th out of 247
entries) and in mathematical physics (7th out of 55 entries), according to
the Journal Citation Report 2013, with an impact factor of 2.188.
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