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Resumen

En planificación automática, los planificadores independientes de dominio a menudo
escalan pobremente. Esto se debe a la explosión exponencial del esfuerzo nece-
sario para resolver una tarea de planificación según su tamaño incrementa. Uno de
las formas más populares de abordar este problema es dividiendo el problema de
planificación en varios problemas más pequeños.

Para separar la tarea en tareas más pequeñas, hay que encontrar métodos in-
dependientes de dominio capaces de derivar metas intermedias. En esta tesis se
estudiarán diferentes aproximaciones que generen y aprovechen metas interme-
dias, sin limitarnos a una mera subdivisión del problema original. Tres lı́neas de
investigación serán exploradas. La primera trata sobre regresión, primero encar-
ando sus limitaciones y después usándola tanto en búsqueda bidireccional como en
nuevas heurı́sticas basadas en metas intermedias. En la segunda lı́nea proponemos
muestrear aleatoriamente el espacio de búsqueda y usar las submetas muestreadas
aleatoriamente en un algoritmo basado en árboles aleatorios que balancea explo-
ración y explotación de forma efectiva. Finalmente, en la tercera lı́nea de investi-
gación estudiamos las propiedades del grafo de landmarks, el cual representa las
restricciones de precedencia entre submetas de la tarea. Como contribución, pro-
ponemos diferentes caracterizaciones del grafo de landmarks que mejoran su for-
mulación original proporcionando más información, tanto propiedades formales de
la tarea como ordenaciones de submetas más informadas aprovechables por plani-
ficadores que emplean landmarks.
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Abstract

In automated planning, domain-independent planners often scale poorly. This is
due to the exponential blow up of the effort necessary to solve a planning task as
its size increases. One of the most popular ways of addressing this problem is
splitting the planning problem into several smaller ones. Each subproblem is in
theory exponentially easier to solve than the original one, so planners that divide
the original task will tend to scale much better.

To divide the task into smaller ones, we need to find domain-independent meth-
ods to derive intermediate goals. In this thesis we will study different approaches
that generate and exploit intermediate goals, without limiting ourselves to simply
splitting the original problem. Three main lines of research will be pursued. The
first one deals with regression, first tackling its shortcomings and then using it both
in bidirectional search and as a way to derive novel heuristics based on intermedi-
ate goals. In the second one we propose sampling the search space randomly and
using the randomly-sampled subgoals in a tree-like algorithms that effectively bal-
ances exploration and exploitation. Finally, in the third one we study the properties
of the landmark graph, which represents precedence constraints among subgoals of
the task. As a contribution, we propose different characterizations of the landmark
graph that improve over its original formulation by providing more information,
both formal properties of the task and finer orderings of subgoals exploitable by
planners that already use landmarks.

xi



Chapter 1

Introduction

One of the main characteristics that defines humans as opposed to individuals of
other species is the capacity of abstraction and deliberation. This skill, intrinsic
to the human species, allows us to reason about the outcome of our actions and
the means that may be necessary to achieve a given goal. Modern examples of
such problems would be planning a weekend out or cooking a certain dish for
which some ingredients must be bought. Being such an important trait, it is only
natural that researchers in several fields would eventually turn their attention to the
understanding and replicating of this behavior, which ultimately led to the creation
of the area of Automated Planning (AP).

AP can be traced back to the late '50s, when electronic general-purpose com-
puters were still at their early stages of development. It was initially conceived as
a general area that included theorem proving and search among other computation
paradigms, thus representing a substantial part of what the proponents of the time
defined as Artificial Intelligence. In fact, one of the first planning systems ever
designed, the General Problem Solver (Newell et al., 1959), was intended to solve
any kind of problem that could be formally defined, which gives an idea of the
ambitious aim of the early conception of AP. Its scope was greatly reduced after-
wards, but AP still stands as one of the trademarks of the definition of Artificial
Intelligence.

Currently, AP can be defined as the task of finding a sequence of actions (com-
monly called plan) that achieves a particular set of goals from a given initial state.
Early on, problems in AP were often modeled as theorem proving problems, con-
sistent with the background of the researchers that worked in AP at that time (Mc-
carthy and Hayes, 1969). During the '70s STRIPS (STanfoRd Institute Problem
Solver) (Fikes and Nilsson, 1971) was developed as the deliberative component of
the software that controlled Shakey, an autonomous robot designed to accomplish
a broad range of tasks. As opposed to prior models, STRIPS received as an input a
planning task defined in terms of predicates, operators, initial state and goals. This
model quickly became very popular in the field due to its simplicity and how well
it represented the planning paradigm. In fact, this is so to the point that STRIPS is

1



CHAPTER 1. INTRODUCTION 2

commonly accepted as almost equivalent to classical planning, the simplest version
of AP, and is still very relevant in current research in the area.

The embrace of STRIPS by the community marked the beginning of modern
AP. From then on, the field developed in two ways: expressiveness and efficiency.
Regarding expressiveness, the need for more expressive representations originated
the development of both the Action Definition Language (ADL) (Pednault, 1989)
and the Planning Domain Definition Language (PDDL) (Fox and Long, 2003; Mc-
Dermott et al., 1998), built upon STRIPS and which allowed the representation of
conditional effects, quantification, numerical values, time, preferences, probabili-
ties and more throughout their versions. Currently few planners support all features
of PDDL, so most of the fundamental research in the area is done in classical plan-
ning; that is, a propositional representation of the problem with a few other features
like object types, action costs and conditional effects.

From the point of view of its theoretical complexity, AP is PSPACE-complete
for both the optimal and suboptimal case (Bylander, 1994). This means that in the
worst case the difficulty of the task increases exponentially as the task becomes
bigger. Thus, planning can be very hard, but it tells little about the performance of
planners on average. The most crucial point regarding AP is that it is normally con-
sidered a domain-independent process: the planner has no prior knowledge about
the task to solve and no other input is given to the system by humans. There-
fore, some problems which are easier than PSPACE-complete are actually hard for
current planners to solve when modeled in PDDL. Furthermore, the difference be-
tween solving a problem with an ad-hoc solver and with a planner is usually very
big, with ad-hoc solvers beating domain-independent planners by a great margin
in most cases. For instance, Blocksworld, a domain trivial for humans and ad-hoc
solvers alike and that is often used as a benchmark in AP, remains a hard problem
for planners despite its long history in the field. In fact, planners were not able to
solve problems with more that 10-15 blocks less than 20 years ago and currently it
is still a challenging domain in terms of how state-of-the-art planners scale as the
number of blocks increases.

Over the years, a broad number of approaches have been employed in AP:
partial-order planning (Penberthy and Weld, 1992; Younes and Simmons, 2003),
search in planning graphs (Blum and Furst, 1997), means-ends analysis (Veloso
et al., 1995), reachability heuristics (Bonet and Geffner, 2001), stochastic local
search (Gerevini and Serina, 2002), dynamic programing with SAT encodings of
the problems (Kautz et al., 2006),... A very promising approach is dividing the
problem in several sequential subproblems, also known as factored planning (Braf-
man, 2006). A similar approach is the use of techniques that exploit information
regarding facts that must be true at some point in the plan, usually in the form of
landmarks (Hoffmann et al., 2004). Factored planning is a very appealing tech-
nique since it reduces the depth of the search space, which may translate into an
exponential gain in performance; landmarks and other similar techniques have al-
ready proved to be very useful, as the International Planning Competitions have
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shown1. Nevertheless, depending on the domain these kind of approaches do not
always improve the efficiency of planners, as finding meaningful subgoals to par-
tition the problem or from which to derive heuristics may not be easy.

Due to the potential that finding critical subgoals can offer, in this thesis we
aim to further develop this line of research. For this we study how to generate and
exploit intermediate goals in a domain-independent way, although we do not limit
ourselves to subgoals. Throughout the thesis we analyze the shortcomings of sev-
eral techniques related with intermediate goals, and propose the use of algorithms
tangentially related to intermediate goals, like bidirectional search.

The main contributions are:

• analyzing alternative methods to find relevant subgoals, like regression, and
push the state of the art regarding these methods

• using alternative algorithms that randomly sample the space and work with
subproblems of the real problem

• further exploiting already known information in the landmark graph to en-
hance the search

These three lines of research are related in that all three have as the core of their
research domain-independent intermediate goals, and that they all employ several
properties of the planning task, like state invariants, to ensure the practicality of the
presented approaches.

This document is organized as follows: In Part I, we introduce the state of the
art, with a special emphasis on the works that constitute the basis of the thesis;
in Part II we state the major objectives of the thesis; in Part III we study how
regression may help the planning process both as backward search with modern
techniques and as a way of generating intermediate goals; in Part IV we analyze
the challenges of sampling implicit search spaces and propose ways of adapting
random sampling trees to automated planning; in Part V we study the caveats of
the landmark graph in its current form and propose two different characterizations
(compiling it into a SAT instance and formalizing it as an abstraction of the original
problem), along with different ways of exploiting the additional information they
offer.

1http://ipc.icaps-conference.org/
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Chapter 2

Background

This chapter is a review of background related to the main topics addressed in
this thesis. After a small introduction AP will be given and the formalizations
employed in the thesis described. Next, we present the most common modeling
languages used in AP, make an overview of the history of AP and analyze a set of
techniques used throughout different chapters of the thesis.

2.1 Introduction

General solvers are systems designed to find a solution to any problem described
in a high level modeling language. The necessary components of such a system
are:

• Conceptual Model: the common formulation of all the relevant problems

• Representative Language: the language used to model the problems belong-
ing to the conceptual model

• Algorithm: the set of techniques used by the solver to find a solution

AP is a prime example of general problem solving. In particular, all the prob-
lems in AP consist on choosing actions to create a plan such that a given set of
goals can be achieved by executing the actions of the plan from the initial state.
In most cases, some general assumptions are made for the sake of simplicity. The
following are the common assumptions made in the field in regards to common
planning tasks:

• Finite world: the world has a finite set of states

• Deterministic: applying an action in a given state leads to a single other state
in all cases

• Static: no external changes occur in the domain, all the changes come from
the execution of actions
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• Fully observable: all the information about the state of the world is known
(or can be inferred) by the planner at all times

Others models of planning exist: temporal planning allows actions with dif-
ferent durations, fluents encode numeric facts, probabilistic planning allows non-
deterministic actions, contingent planning implies partial observability, conformant
planning requires finding a safe plan in a non-observable environment, etc. In this
proposal, though, these models will not be taken into account.

The quality of a solution is inversely proportional to the cost of the plan. The
cost of a plan is the sum of the cost of the actions it is composed of. Although the
cost of an action may depend on the state it is executed at, we will assume that the
cost of the actions is fixed.

Taking into account this measure of quality, another possible distinction is be-
tween optimal planning and satisficing (suboptimal) planning. In the former, an
optimal plan (a least-cost plan) must be found, whereas in the latter any solution
plan is valid, although those with lower cost are preferred.

2.2 Formalization of AP

There exist several ways of formalizing a planning task. Although planning prob-
lem are usually encoded as transition systems, the formalization depends on the un-
derlying techniques used to solve or derive properties of the task. In general plan-
ning problems can be formalized as either search problems in the space of states or
search problems in the space of plans. Both types of formalizations have been used
by planners; however, state-space search in the form of heuristic search (Bonet
and Geffner, 2001) has obtained better results overall. In this thesis we will work
exclusively with state-space planning techniques.

Among state-space formalisms, we can make the distinction between proposi-
tional and multi-valued formalizations. Both kinds of formalizations will be used
throughout the thesis, so we describe them next. However, by default we will
employ a propositional formalization and assume that propositions and fluents are
equivalent unless otherwise stated.

2.2.1 Propositional Formalization

A propositional formalization of a planning task is defined as a tuple P=(S,A,I,G),
where S is a set of atomic propositions (also known as facts), A is the set of
grounded actions derived from the operators of the domain (described in the fol-
lowing section), I ⊆ S is the initial state, G ⊆ S the set of goal propositions. We
also define c(a) as the cost of applying action a ∈ A in any state s ⊆ S. Each ac-
tion a ∈ A is defined as a triple (pre(a), add(a), del(a)) (preconditions, add effects
and delete effects) where pre(a), add(a), del(a) ⊆ S.

Finding a solution to a planning problem P consists of generating a sequence of
actions (a1, a2, . . . , an) where ai ∈ A. The solution plan is related to a sequence



CHAPTER 2. BACKGROUND 7

of states (s0, s1, s2, . . . , sn) of the plan such that si ⊆ S, s0 = I , G ⊆ sn and si
results from executing the action ai in the state si−1, ∀i = 1..n. The cost of a plan

is defined by
n∑
i=1

c(ai).

An example is shown in Figure 2.1, which depicts Sussman’s anomaly, a well-
known task of the Blocksworld domain. This planning task consists in stacking
blocks on top of each other using a robotic arm. The initial state is the one shown
on the left and the goals are stacking A on top of B and B on top of C. S is formed
by propositions of the type (on X Y), (on-table X), (clear X), (holding X) and (arm-
empty). In this problem, G = (on A B) ∧ (on B C) and I = (on C A) ∧ (clear C) ∧
(on-table A) ∧ (on-table B) ∧ (clear B) ∧ (arm-empty). The actions of A are of the
form (stack X Y), (unstack X Y), (pick-up X) and (put-down X). The optimal plan is
(unstack C A), (put-down C), (pick-up B), (stack B C), (pick-up A) and (stack A B).
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Figure 2.1: Deterministic planning problem of the domain Blocksworld in which
blocks must be stacked using a robotic arm.

2.2.2 Multi-Valued Formalizations

The two most common multi-valued formalizations are SAS+ (Bäckström and
Nebel, 1995) and the Finite-Domain Representation proposed by Helmert (2006),
based on SAS+. In this work we will refer only to SAS+. A planning task in
SAS+ is defined as a tuple Π=(V ,s0,s?,O). V is a set of state variables, and ev-
ery variable v ∈ V has an associated extended domain D+

v = Dv ∪ {u} com-
posed of the regular domain of each variable, Dv, and the undefined value u
(used to denote when the value is unknown). The total state space is defined as
S+
V = D+

v0 × . . . ×D
+
vn and the value of a variable v ∈ V in a given state s, also

known as fluent, is defined as s[v]. Partial states are states in which at least a fluent
s[vi] = u. s0 is the initial state, defined over V such that s0[vi] 6= u ∀vi ∈ V
under full observability of states. s? is the (commonly partial) state that defines
the goals, defined over V such that s?[vi] ∈ D+

vn ∀vi ∈ V . O is a set of operators
(actions), where each operator is a tuple o = (pre(o), post(o), prev(o)), where
pre(o), post(o), prev(o) ∈ S+

v represent the pre-, post- and prevail-conditions re-
spectively. The preconditions of o ∈ O are fluents that must be true prior to the
application of o and become not true after its application; the postconditions of
o are fluents that are not true prior to the application of o and become true after
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its application; the prevail conditions of o are fluents that must be true before and
after the application of o. Therefore, an action o ∈ O is applicable in a state s if
∀vi ∈ V : (prev(o)[vi] = u∨prev(o)[vi] = s[vi])∧(pre(o)[vi] = u∨pre(o)[vi] =
s[vi]). The resulting state s′ from the application of o in s is equal to s except that
∀vi ∈ V s.t. post(o)[vi] 6= u : s′[vi] = post(o)[vi].

Analogous to the propositional formalization, a solution plan (a1, a2, . . . , an)
where ai ∈ O is related to a sequence of states (s0, s1, s2, . . . , sn) such that s? ⊆
sn and si results from executing the action ai in the state si−1, ∀i = 1..n. This
sequence of states is often referred to as the solution path.

Fluents in SAS+ are extrapolable to propositions in a propositional represen-
tation. For instance, regarding actions, preconditions in SAS+ are preconditions
deleted by the action, postconditions are positive effects and prevail conditions are
preconditions not deleted by the action. In this work we assume that every concept
described in terms of fluents is also relevant to propositions.

To illustrate how multi-valued formalizations work, let’s take a look at the ex-
ample shown in Figure 2.1. In this case we have the following variables: a variable
per block that indicates where the block is (upon which block it is placed or whether
it is on the table or whether the arm is holding it); a variable per block that indi-
cates whether it is clear or not; and an additional variable that represents whether
the arm is empty or not. For instance, for block A we have a variable va ∈ V such
that Dva = {(on A B), (on A C), (on-table A), (holding A)} plus a variable v′a ∈ V
such that Dv′a = {(clear A), 〈none of those〉}, in which 〈none of those〉 corresponds
to the negation of (clear A).

To know the details of how multi-valued formalizations are obtained we refer
the reader to the insightful paper by Malte Helmert (2006). However, some invari-
ants closely related to multi-valued formalizations will be throughly analyzed in
Section 2.5 because of their relevance for this thesis.

2.3 Modeling Languages

A planning modeling language is a notation that allows a syntactic representation of
a planning problem. The planning modeling languages are based on variants of first
order logic and describe the different features of the planning problem. Depending
on its expressiveness, a modeling language will be able to encode complex features
like time, real numbers and probabilities.

2.3.1 STRIPS

The STRIPS planner was initially developed by Richard Fikes and Nils Nilsson in
1971 at SRI International for its use by the robot “Shakey”. This planner received
the planning task as an input modeled in a language based on LISP, which was later
called STRIPS as well (Fikes and Nilsson, 1971). This model was particularly apt
for describing planning tasks and due to its popularity became the most popular
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model for subsequent planners and is still the base of most modern planning lan-
guages.

A major contribution made by STRIPS is adopting the Closed World Assump-
tion (Reiter, 1977) to handle the Frame Problem. The Frame Problem (McCarthy
and Hayes, 1969) is the problem of expressing a dynamical domain in logic with-
out explicitly specifying which literals are not affected by the definition of a state
or an action. The Closed World Assumption means that any formula not explic-
itly asserted in a state is taken to be false, which avoids the constant specification
of all negated atomic formulæ. For example, if I does not contain a proposition
p ∈ S, then p is false in the initial state. The STRIPS Assumption can be seen as
a reformulation of the Closed World Assumption regarding actions: it assumes that
actions only change a small part of the world and so, if a proposition p ∈ S is not
mentioned in the effects of an action a ∈ A (p 6∈ add(a) ∧ p 6∈ del(a)) and a is
applied in state s ⊆ S to obtain s′ ⊆ S, then p has the same value in s and s′.

The definition of a problem usually requires two inputs: the domain and the
problem itself. The domain describes the predicates of the problem (which are
usually instantiated to create the set of propositions S) and the operators of the
problem (which again are usually instantiated to create the set of actions A). In
Table 2.1 we show the operators of the domain Blocksworld in STRIPS:

Operator Preconditions Deletes Adds
stack(x,y) clear(y) clear(y) handempty

holding(x) holding(x) on(x,y)
unstack(x,y) handempty handempty clear(y)

on(x,y) on(x,y) holding(x)
clear(x)

pick-up(x) clear(x) clear(x) holding(x)
handempty handempty
ontable(x) ontable(x)

put-down(x) holding(x) holding(x) handempty
ontable(x)
clear(x)

Table 2.1: STRIPS definition of the Blocksworld domain.

The problem describes the objects of the problem, the propositions true in the
initial state I and the goal set of propositions G. Here we show the description of
the problem shown in Figure 2.1:

Objects: A B C
Init: (clear C) (clear B) (on C A)

(ontable A) (ontable B) (handempty)
Goal: (on A B) (on B C)
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The reason why domain and problems are split into two different inputs is
because often multiple problems may belong to the same domain. In this case
different problems may have a different number of blocks, a different initial state
and/or a different set of goals, but they all share the predicates and the operators
that define the actions. Hence, a domain may be described in terms of predicates
and operators once and used for an arbitrary number of problems.

2.3.2 ADL

The Action Description Language (ADL) (Pednault, 1989) is one of the first ex-
tension of STRIPS. There are two main contributions of ADL: the preconditions of
the actions and the goals can be expressed not just as conjunction of propositions
but also as disjunctions or quantified formulæ; and actions can have conditional
effects.

2.3.3 PDDL

The Planning Domain Definition Language (PDDL) (McDermott et al., 1998) was
created to standardize the way planning tasks are defined. The aim of this language
is to allow a fair comparison of planners, because with a common language a proper
benchmark usable by all the planners can be easily created. In fact, PDDL was
proposed as the language of the first International Planning Competition, whose
motivation is to compare state-of-the-art techniques and further encourage the de-
velopment of more efficient planners. Throughout the years there have been sev-
eral versions of PDDL, each of which added new language features to the ones
supported by previous versions:

• PDDL1.7 (IPC1 and IPC2): it supported STRIPS, ADL and types of objects.

• PDDL2.1 (IPC3): it added numeric variables which could be modified by
actions of the problem and also added a new type of action: durative ac-
tions. Durative actions have both discrete and continuous effects and allow
representing time in the planning task.

• PDDL2.2 (IPC4): it extended PDDL2.1 with derived predicates (also known
as axioms), which are propositions that become true when their antecedents
are made true. Furthermore, it introduced timed initial literals, propositions
that are initially false but that become true after a given amount of time
independently of the actions of the plan.

• PDDL3.0 (IPC5): it allowed the use of soft goals encoded as preferences
(among other things), which would yield a reward if they were true at the
end of the plan.
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Despite the broad expressiveness of the latest versions of PDDL, most plan-
ners work exclusively with what is commonly known as classical planning, that is,
STRIPS plus action costs, object types and the equality operator. Furthermore, sev-
eral works have proposed compiling the features of PDDL away by transforming
the task into a classical planning one, like compiling away soft goals with actions
that achieve those soft goals with no reward (Keyder and Geffner, 2009a), which
has deterred to some extent the popularization of the newest features of PDDL.

2.3.4 Other Versions of PDDL

Other variations of PDDL have been proposed to deal with the aforementioned
planning paradigms that drop some of the key assumptions normally made in plan-
ning. In particular, PDDL versions exist for probabilistic, contingent and con-
formant planning. A prime example of these variations is Probabilistic PDDL
(PPDDL) (Younes and Littman, 2004).

2.4 History

Since the inception of AP multiple algorithms have been employed to build domain-
independent planners. Most of these algorithms are search algorithms, which try
to find a path in an implicit directed graph that reaches a goal node from the ini-
tial node. There are two common elements in search that must be defined before
applying a search algorithm: the search space and the direction of the search.

As mentioned in Section 2.2, in AP the search space can be either a space of
states or a state of plans. In state spaces every node of the graph corresponds to
a state that represents the state in the world. Arcs represent transitions between
states, each of which is originated from an action of the model. In plan spaces,
though, the nodes are partially specified plans and the arcs correspond to plan re-
finement operations, which add or remove actions in the parent state.

In terms of direction of the search, three possibilities exist: the search can
be performed forward (also called progression), backward (also called regression)
and in both directions (also called bidirectional search). Each approach has distinct
advantages and disadvantages, part of which will be studied in the thesis.

Depending on the search space and the direction of the search, different search
algorithms and heuristics have shown to be more efficient than others. We include
here in chronological order some of the most representative planners in AP, fo-
cusing on those that represented a breakthrough in the state of the art at a given
time.

• STRIPS. This domain-independent planner performed backward chaining
in the state space without heuristics (Fikes and Nilsson, 1971). It ordered
the goals and tried to satisfy iteratively each goal independently of the oth-
ers. This planner set the trend for subsequent planners that used a simi-
lar approach but added domain-independent heuristics and machine learning
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techniques to their reasoning process, like PRODIGY (Veloso et al., 1995).
Newer planners like PRODIGY also supported ADL.

• UCPOP. The most representative partial-order planner (Penberthy and Weld,
1992). Developed in the early '90s, it performed search in the plan space
by detecting flaws such as conflicts (threats) between actions and repairing
them. It also supported ADL. Additionally, the plan returned as output was
a partially-ordered plan.

• Graphplan. It builds a graph that represents all possible parallel plans (plans
in which independent actions can be executed concurrently) up to a given
length n (Blum and Furst, 1997). Then, it either finds a solution of par-
allel length n or proves iteratively that there is no solution plan up to n
and increases n by one to continue the search. The plans returned are step-
optimal; that is, plans are optimal in the sense that there is no other plan with
fewer parallel steps. Actually equivalent to an Iterative Deepening Depth-
First Search algorithm in regression, it represented an impressive leap in
performance thanks to the constraints that are propagated forward along the
graph.

• SATPlan. It compiles iteratively the planning task into several SAT tasks
using the concept of parallel steps (Kautz et al., 2006). Inspired by Graph-
plan, it maps the problem into a SAT instance and uses a state-of-the-art SAT
solver to find a solution or prove that there was no solution up to the current
horizon.

• Heuristic Search Planner (HSP). HSP (Bonet and Geffner, 2001) searches
in the state space using Weighted A* (in which, given s ⊆ S, g(s) denotes
the cost of the current path from I to s, h(s) denotes the value of some
heuristic h in s, and f(h) = g(s) + h(s)) and hadd, a heuristic based on a
delete-relaxation of the problem (a version of the original planning task in
which all the delete effects of all the actions a ∈ A are ignored). hadd is
computed by iteratively adding the costs of achieving the preconditions of
the actions that achieve the goals. The precursor of most current successful
planners, it performs forward search (although backward search was also
implemented).

• Fast Forward (FF). Similar to HSP, FF introduced several new techniques
that increased its efficiency considerably (Hoffmann and Nebel, 2001). Ex-
amples of the contributions of FF are: Enforced Hill Climbing, a local search
algorithm based on regular Hill Climbing that searches exhaustively until a
node with better heuristic value than the last found best node is discovered,
in which case the search is continued discarding the expanded nodes; the
relaxed-plan heuristic, similar to hadd but it returns instead the number of
actions of a plan that solves the delete-relaxation version of the problem;
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and helpful actions, actions extracted from the relaxed plan that increase the
greediness of the search algorithm.

• Fast Downward. Also an evolution of HSP (Helmert, 2006), it is in fact
a planning framework that uses a multi-valued representation of the prob-
lem (Helmert, 2009) and implements a broad range of techniques. Among
the most successful ones we can find the landmark counting heuristic, the
causal graph heuristic and the use of multiple open queues to name a few.
Fast Downward will be the basis of most implementations in this thesis.

2.5 Constraints, Invariants and Other Common Concepts

In many real life problems there are restrictions that are obvious to humans but
that may not be trivial for machines to infer. For example, imagine a problem in
which a person can move from one room to another. In this case if a proposition
p’ represents that person is at the first room and another proposition p” represents
that person is at the second room, it is trivial for a human to deduce that p’ and
p” cannot be true at the same time. However since machines cannot derive any in-
formation from the semantics of the planning problem, an algorithm should derive
such restrictions.

These restrictions represent constraints in the planning model, as they may
reduce the valid domain of the variables of the problem. Many of these restrictions
must hold in every relevant path to the goal; in this case we call them invariants of
the problem.

Definition 1. (Invariant) An invariant of a problem is a logical function that must
hold in every solution of the problem.

The scope of some invariants can be more precise: i.e. a state invariant is a
logical function that must hold in every state along any solution path. For example,
the fact that p’ and p” cannot be true at the same time is a state invariant of the
form ¬(p′ ∧ p′′) because it must be true in every state that may appear in a solution
path of the problem.

During search, however, states that do not satisfy some invariants of the prob-
lem may be generated. These states cannot belong to a solution path and can be
safely discarded (or pruned). These states are often called spurious states.

Definition 2. (Spurious state) A state is spurious if it cannot appear in any solution
path of a problem.

This definition differs from the original definition of spurious state presented
by Bonet and Geffner (Bonet and Geffner, 2001) in that it does not depend on
the initial state, and hence by our definition spurious states can be reached by
applying a sequence of actions from I . This is so because in this thesis we consider
more general pruning methods that employ state invariants other than the ones
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proposed by Bonet and Geffner. Thus, the set of detectable spurious states under
this definition will be a superset of the detectable spurious states under Bonet and
Geffner’s definition.

Note that there is an additional alternative definition of spurious state in the
abstraction literature by Zilles and Holte (2010): if abs is an abstraction of P, then
an abstract state s’ is spurious if it is reachable from abs(I) but it does not exist any
state s” reachable from I in the original search space such that abs(s”)=s’. This
definition is tailored for abstract spaces, so we will use Definition 2 instead.

This concept can be generalized to any set of propositions, that is, any partial
state. For instance, due to the instantiation of the domain and the problem specifi-
cation, a planner may create actions whose set of preconditions is spurious because
it violates some invariant of the problem. Such actions are never applicable nor can
appear in a solution plan and are labeled as spurious actions.

In this section we will present several recurrent concepts related to constraints
and invariants in AP that will be used extensively in the development of the thesis.

2.5.1 Mutual Exclusivity between Propositions

As in the example previously shown, a common form of state invariant is when one
or more propositions cannot be true at the same time. This state invariant is known
as a relationship of mutual exclusivity between propositions.

Definition 3. (Mutex) A set of propositions M = {f1, . . . , fm} is a set of mutually
exclusive propositions of size m (mutex of size m) if there is no state s ⊆ S that
may belong to a solution path such that M ⊆ s.

The aforementioned example that stated that a person cannot be at two rooms
at the same time is in fact a mutex of size 2 (also known as a binary mutex),
but mutexes of greater size are also possible. An example of mutex of size 3 in
Blocksworld is a tower of three blocks that forms a cycle, i.e. M={(on A B), (on
B C), (on C A)}. An important remark is that no subset of two elements of M is a
mutex, which means that mutexes of greater size cannot be built parting from sets
of mutexes of smaller size.

The first method proposed to infer mutexes of size 2 was the constraint prop-
agation method of the planning graph (Blum and Furst, 1997). The mutexes ob-
tained are in fact more general in the sense that they included the concept of time
step: every nth proposition level of the planning graph has its own set of binary
mutexes, which means that there is no state no farther than n parallel steps away
from I that satisfies both propositions of the mutex. These mutexes are non-static
binary mutexes, as opposed to the static mutexes of Definition 31.

Nevertheless, Graphplan is also able to find static mutexes too. When propa-
gating the constraints, the planning graph is guaranteed to level off at some level.

1Throughout the thesis all the references to mutexes will be to static binary mutexes unless oth-
erwise specified.
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This happens when there are two consecutive proposition levels that contain the
same propositions and the same mutexes (which means that from that moment on
all the proposition levels will be identical). Mutexes that appear at this level are
guaranteed to hold in every state no matter how far away in terms of parallel steps
a state may be from I and are thus static.

The most common method to find mutexes is the hm heuristic (Bonet and
Geffner, 2001). hm performs a reachability analysis in Pm (Haslum, 2009), a
semi-relaxed version of the original problem in which atoms are actually sets of m
propositions. This way, if the value of hmax of an atom in Pm is infinite (which
means that it is unreachable in Pm) then we can conclude that that atom is a mutex
of size m. However, the time needed to compute hm grows exponentially with m,
so in most cases it is unpractical to compute mutexes of size greater than two (in
fact, increasing the size of m is a clear case of diminishing returns, as the bigger
the size of the mutex is the fewer spurious states will tend to contain it and thus the
less useful it is in a search algorithm to prune spurious states). h2 returns the same
static mutexes as Graphplan, although it can be implemented in a more efficient
way.

hm can be computed backwards - generally after having been computed for-
ward (Haslum, 2008). This is done by reversing the planning problem as proposed
by Massey (1999). This method finds the same static mutexes found by the re-
versed version of the planning graph based on Massey’s reversal proposed by Pet-
tersson (2005). Again, this means that the mutexes found by hm depend on the
direction of the reachability analysis2 and that alternating the computation of hm

forwards and backwards might lead to finding more mutexes.
Another method for finding binary mutexes is the monotonicity analysis gen-

erally employed to generate a multi-valued formalization of the problem (Helmert,
2009). This monotonicity analysis ensures that the number of propositions true
at the same time that belong to a set Ma = {p0, p1, . . . , pn} can never increase.
Hence, if the number of propositions ofMa true in the initial state is one (formally,
|Ma ∩ I| = 1), then all possible pairs of propositions of Ma are binary mutexes
(∀qm = {pi, pj} such that pi, pj ∈ Ma ∧ pi 6= pj , qm is a binary mutex). For
example, in a problem in which a person can move between three different rooms
A, B and C, the number of propositions true in the set Ma={(at A), (at B), (at C)}
can never increase, as whenever a person moves to a room he/she is not at the room
of origin anymore. Therefore, we can infer that {(at A), (at B)}, {(at A), (at C)}
and {(at B), (at C)} are mutexes, that is, a person cannot be at any two rooms at
the same time.

Computing the monotonicity analysis is in most cases much more efficient that
computing h2 because it works exclusively with the domain definition and the ini-
tial state. However, the set of mutexes found by the monotonicity analysis is a strict

2This is the reason why we avoided any mention of directionality and reachability in Definition 2
and Definition 3. This is in contrast to previous works in which spurious states are defined as states
unreachable from I because they contain mutexes computed forward, which is a subset of the cases
we will analyze in this thesis.
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subset of the set of mutexes found by h2.
A final remark regarding the computation of mutexes is that the representation

of the task must take into account negated propositions to obtain a more complete
set of mutexes. For example, if a propositional formalization is used and {p,¬p′}
such that p,¬p′ ∈ S is a mutex of the problem, unless ¬p′ is represented explicitly
this mutex will go undetected. Let’s see a more tangible example: the Matching-
Blocksworld domain is a version of the regular Blocksworld with more than one
arm in which arms and blocks have a polarity and blocks have a related predicate
(solid ?block) true in I for every block. When a block is put down on the table
or stacked on top of another block using an arm with the wrong polarity then the
block becomes non-solid, represented by ¬(solid ?block). Once a block becomes
non-solid no other block can be stacked on top of it, which means that some goals
may not achievable anymore. Intuitively, if for instance there are two blocks A
and B and (on A B) 6∈ I and (on A B) ∈ G, then {(on A B),¬(solid B)} is mutex.
If ¬(solid B) is not explicitly represented when computing the mutexes then the
mutex {(on A B),¬(solid B)} will not be found, which may have a very important
negative impact on the search.

2.5.2 Invariant Groups

Invariant groups are sets of propositions related to some invariant of the problem.
The aforementioned monotonicity analysis was devised to find “at-most-1” in-
variant groups for their use as variables of a multi-valued formalization (Helmert,
2009). These “at-most-1” invariant groups can be derived from any binary mutex
computation method: any set Ma = {f0, f1, . . . , fn} such that, if ∀pm = {fi, fj},
then fi, fj ∈ Ma ∧ fi 6= fj , and pm is mutex, is an “at-most-1” invariant group,
so a priori these invariant groups do not offer more information than taking into
account individual binary mutexes.

Nevertheless, “at-most-1” invariant groups can also be used to derive stronger
constraints. In particular, by performing a simple analysis of the effects of the
actions one can infer that an “at-most-1” invariant group is in fact an “exactly-
1” invariant group: check every action a ∈ A and, if every action a that adds
exactly one proposition p ∈ Ma also deletes exactly one proposition p′ ∈ Ma

and vice versa, then Ma is an “exactly-1” invariant group. Formally, Ma is an
“exactly-1” invariant group if Ma is an “at-most-1” invariant group and ∀a ∈ A :
|add(a) ∩Ma| = |del(a) ∩Ma|.

“exactly-1” invariant groups are strictly more constrained than “at-most-1”
invariant groups as one can infer an additional logical constraint from then: if
Ma = {f0, f1, . . . , fn} is an “exactly-1” invariant group then (f0 ∨ f1 ∨ . . .∨ fn)
is a state invariant of the problem. This constraint represents the lower bound of 1
that defines the “exactly-1” property of the invariant group.

Note that all the variables v ∈ V of multi-valued formalizations of problems
are “exactly-1” invariant groups, but not all the “exactly-1” invariant groups of the
problem need to be variables. Also note that in some problems there may not be
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“exactly-1” invariant groups or they may not be useful for their use as variables;
if this is the case, regular “at-most-1” invariant groups can be completed with an
additional fluent (represented in Fast Downward with the value 〈none of those〉 to
turn them into “exactly-1” invariant groups (Helmert, 2006)). When this is done,
no additional state invariant can be inferred, as the additional 〈none of those〉 fluent
represents the constraint ¬(f0∨f1∨. . .∨fn), which would make the state invariant
derived from the “exactly-1” invariant group evaluate to true in all cases.

From this point on whenever the term “invariant group” is used, we will mean
“exactly-1” invariant group unless otherwise specified.

2.5.3 e-deletion

State invariants are not the only invariants of a planning problem. Certain proper-
ties of the actions, like the regular add and delete effects, are invariants that link
actions and partial states. This is so because they imply that after the execution of
the actions the resulting state must contain (and not contain) the added and deleted
propositions respectively. These add and delete invariants can be trivially obtained
from the definition of the domain, but more complex invariants can also be inferred.

An important notion for the thesis is e-deletion (Vidal and Geffner, 2005), an
invariant related to the regular delete effects of the actions of the problem. The
definition of e-deletion is as follows:

Definition 4. An action a ∈ A e-deletes a proposition p ∈ S if p must be false in
every state resulting from the execution of an ordered set of operators whose last
operator is a.

There are three cases that determine when a proposition p ∈ S is e-deleted by
an action a ∈ A:

• a deletes p;

• it has a set of preconditions mutex with p and does not add p;

• or it adds a set of propositions mutex with p;

e-deletion generalizes the regular delete effects in the sense that a given propo-
sition p can be e-deleted by an action even if it is not mentioned in the action.3

For example, in the Blocksworld domain the action (stack b c) e-deletes (on a b)
because it adds (clear b), which is mutex with (on a b). This can be inferred even
if (on a b) is not mentioned by (stack b c).

In multi-valued representations, deleting a fluent f means changing the value of
the variable v ∈ V it corresponds to, which is equivalent to adding a fluent mutex
with f. Hence, the first case is a particular instance of the third case in multi-valued
representations.

3Note that as per the PDDL specification regular deletes do not require the deleted proposition to
be true. This means that a delete effect may not actually delete a given proposition p ∈ S but just
ensure that after the execution of the action ¬p must hold.
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2.5.4 Reasonable Orders between Propositions

Prior to the search phase, some orders between propositions can be inferred. Such
orders are invariants if they are guaranteed to hold for every solution plan (in which
case they are often referred to as sound orders). Most orders have been proposed
in the context of landmarks (Hoffmann et al., 2004), which will be discussed at
length in Section 2.6. However, reasonable orders (Koehler and Hoffmann, 2000)
are relevant to all the propositions of the problem and will appear in relation to a
broad set of techniques in this thesis, so they are introduced here.

Definition 5. (Reasonable order) A proposition a ∈ S is reasonably ordered before
another proposition b ∈ S (a <r b) if, whenever b is achieved before a, any plan
must delete b on the way to achieving a, and re-achieve b after or at the same time
as a.

Previous works classify reasonable orders as unsound (Hoffmann et al., 2004),
as not every solution plan has to achieve a before b if b is ever achieved. Obedient-
reasonable orders (Hoffmann et al., 2004) are a special case of reasonable orders
that arise when all previously computed reasonable orders are assumed to hold,
although they will not be considered in this work.

Definition 5 does not describe how these orders are computed. Several ways of
extracting reasonable orders have been proposed; we refer the reader to the works
about the goal agenda (Koehler and Hoffmann, 2000) and landmarks (Hoffmann
et al., 2004) for a description of the methods. We advance though that as a contribu-
tion of the thesis we will propose both a more general description and computation
method in Section 3.5.3.

2.6 Landmarks and the Landmark Graph

Planning tasks define a single set of goals. However, in many planning problems
humans are able to recognize facts that must be achieved at some point of the
solution plan and decompose the problem accordingly. For example, if an agent
must go from A to B and the areas at which A and B are located are connected
by a bridge, standing at the bridge must be true at some point in every solution
plan. Hence, a human would most likely first find the way from A to the bridge
and then from the bridge to B. These facts are called landmarks in AP and are an
important line of research, exemplified for instance by the success of landmark-
based planners like LAMA (Richter and Westphal, 2010).

Landmarks were initially defined as disjunctive sets of propositions that had
to be made true at some time in every solution plan (Hoffmann et al., 2004), and
later on its definition was extended to include both action landmarks (Richter and
Westphal, 2010) and conjunctive sets of propositions (Keyder et al., 2010). Land-
marks were also formalized in a framework that relates them to abstractions and
critical paths (Helmert and Domshlak, 2009), giving them a stronger theoretical
background.
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Landmarks can be logical formulæ over either S (proposition landmark) or A
(action landmark). Next we define both kinds of landmarks.

Definition 6. (Proposition landmark) A proposition landmark is a logical formula
over either S such that at least one state along every solution path must satisfy it.

Definition 7. (Action landmark) An action landmark is a logical formula over A
(action landmark) such that every solution plan must satisfy it.

L is the set of discovered landmarks of the problem. The achiever of a propo-
sition landmark l ∈ S is an action a ∈ A such that l ∈ add(a). Informally, an
achiever is an action that makes a given landmark true, or adds it. A late achiever
a ∈ A is a regular achiever of a landmark l ∈ S with the special condition that,
in every plan executed from I , it is not possible for a to appear before l has been
achieved at least once by some other action a′ ∈ A.

Although finding the complete set of landmarks is PSPACE-complete (Hoff-
mann et al., 2004), current methods can efficiently compute a subset of the land-
marks using a delete-relaxation of the problem.4 Also and by definition all the
propositions in I and G are landmarks. Partial orders between proposition land-
marks can be obtained with these techniques too, which are used to build the land-
mark graph. The landmark graph is an important part of many of the techniques
that exploit landmarks, as the interactions and orders between landmarks are often
as important as the landmarks themselves. Orders between landmarks are rela-
tions between two proposition landmarks that represent the partial order in which
they must be achieved. The landmark graph is a directed graph composed by the
proposition landmarks of a problem and the orders between them (Hoffmann et al.,
2004). There are the following orders:

• Natural order: A proposition a is naturally ordered before b (a <nat b) if a
must be true at some time before b is achieved

• Necessary order: A proposition a is necessarily ordered before b (a <n b) if
a must be true one step before b is achieved

• Greedy-necessary order: A proposition a is greedy-necessarily ordered be-
fore b (a <gn b) if a must be true one step before b when b is first achieved

These orders are hierarchically related: necessary orders are greedy-necessary
orders, which in turn are natural orders, but not vice versa. Reasonable orders
between landmarks can also be established and are often included in the landmark
graph as an additional edge. There is a slight difference in the landmark literature
though: reasonable orders between landmarks are computed taking into account
only the first time the landmarks are achieved. This is motivated by the fact that
landmark computation methods can only ensure that landmarks are needed at least

4For a comprehensive review of the computation methods we refer the reader to Richter’s the-
sis (2010).
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once - as they are based on a delete-effect relaxation - even if they have to be
achieved more than once in every solution plan. Also note that, unlike a relaxed
planning graph, the landmark graph is not acyclic, as necessary and reasonable
orders can induce cycles.

To illustrate how landmarks and the landmark graph work we will include the
running example from Richter’s thesis (2010). Figure 2.2 shows a planning prob-
lem in a domain similar to Logistics in which there are also planes that can move
between locations with airport. In this problem a package must be carried from
location B to location E. Round locations are regular locations and square loca-
tions are those that have an airport. Edges represent roads that can be traversed
by trucks. Planes can move from any airport to any other airport. In this case an
optimal plan is: (move t D B), (load o t B), (move t B C), (unload o t C), (move p E
C), (load o p C), (move p C E), (unload o p E). Taking a quick look at the planning
task most humans will be able to realize that some propositions must be achieved
in every solution plan to solve the problem. For instance, the package is initially
at a location that is not connected by ground to the destination location, so a plane
must be used to carry the package and hence (in o p) must be true at some point.
Similarly, the initial location of the package is not an airport location, so a truck
must be used to carry it to some airport location - which means that (at t B), (in o
t), (at o C) and (at t C) are landmarks too.

A

B C

Do

t

E

p

Figure 2.2: Example of a planning task with landmarks.

The landmark graph that corresponds to the example is shown in Figure 2.3.
We have taken out the initial positions of the truck and the plane for simplicity.
Here we can see that the all the aforementioned propositions plus a few more that
we did not mention are indeed landmarks.

The edges that appear in the graph represent the orders between landmarks. All
represented orders are natural orders except for one reasonable order represented
by a dashed edge. In this example we can see that the orders of the landmark graph
induce a total order on when the landmarks must be achieved similar to the one
induced by the previously presented solution plan. This shows the potential of the
landmark graph, as a partitioning of the problem based on a total order extracted



CHAPTER 2. BACKGROUND 21

o-at-B

o-in-t

o-at-E
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Figure 2.3: Partial landmark graph of the previous task. Regular edges represent
natural orders, dashed edges represent reasonable orders.

from the landmark graph would be very helpful for the search in this case. Next
we present an overall summary of the most common approaches that exploit the
information provided by landmarks and the landmark graph.

2.6.1 Partitioning of the Problem using Disjunctive Landmarks

The first proposed way of using landmarks was partitioning the problem into sev-
eral smaller ones (Hoffmann et al., 2004). This has the advantage of potentially
obtaining an exponential gain by reducing the depth of the problem. It works by
taking the leaves (landmarks not preceded by other unachieved landmarks) of an
acyclic landmark graph and turning them into a disjunctive set of goals. When this
goal is achieved by using any regular planner, the landmark graph is updated and
the search begins from the last state with a new disjunctive goal until all landmarks
have been achieved.

Although this achieves important speedups in some cases, it also has some
shortcomings. First, the total order is guessed in a rather random way, as the search
will almost always achieve the closest landmark even if others belonging to the
disjunctive goal must come first. Second, this method must eliminate cycles from
the landmark graph, which may lead to an important loss of information. Third,
the increased greediness of the approach may lead to dead ends or may make the
algorithm commit to unpromising areas of the search space. Because of this this
approach has obtained worse results overall than just using the original goal set and
a state-of-the-art planner.

2.6.2 Landmark Counting Heuristics

Since all the landmarks in L must be achieved at some point, counting how many
(disjunctive) landmarks have not been achieved yet can be used as an estimation of
the distance to the goal. The first time this was proposed was as an unadmissible
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heuristic to be used in a forward heuristic planner, LAMA (Richter and Westphal,
2010), which proved to be very effective in combination with other techniques al-
ready implemented in Fast Downward. At every state LAMA keeps track of which
landmarks have not been achieved and which landmarks are required again, and
returns the cost of achieving those landmarks. Furthermore, it computes a relaxed
plan to the closest disjunctive set of unachieved - or required again - landmarks to
extract preferred operators.

An admissible version of LAMA’s heuristic was later proposed. The admissible
landmark counting heuristic hLA formulated by Karpas and Domshlak (2009) is an
admissible estimation of the distance to the goal computed by adding the cost of
achieving the propositional landmarks that are still needed using a cost-partitioning
scheme to ensure admissibility. There are two versions of hLA. The simplest
version splits uniformly the cost of every achiever amongst the landmarks that
they achieve (huniLA ), so the cost of each landmark is the minimum of those “split
costs”. The more complex version solves a Linear Programing problem per state
that yields the maximum cost of achieving the required landmarks by selecting
which achiever contributes to the cost of which landmark and by how much while
keeping the estimate admissible (hoptLA).

The value returned by hLA depends on which landmarks are true in a given state
s ∈ S and on which landmarks have already been achieved. The latter depends on
the path or paths that led from I to s, so this information must also be encoded.
This makes hLA a path-dependent heuristic, which means that hLA is inconsistent
and may yield different values for the same state s. Additionally, as the landmarks
are computed from a delete-relaxation of the problem, hLA is bounded by h+, the
cost of the optimal plan of the delete-relaxation of the problem.

A more recent heuristic based on the concept of landmarks is the landmark-cut
heuristic hlmcut (Helmert and Domshlak, 2009). Unlike the previous heuristics it is
not computed using propositional landmarks nor the landmark graph and requires
no previous precomputation. Instead it builds a justification graph similar to a
relaxed planning graph and iteratively computes cuts in the justification graph that
separate I from G. These cuts are disjunctive sets of actions, which are in fact
disjunctive action landmarks. Again, hlmcut is bounded by h+ for the same reason
as hLA.
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As presented in the introduction, this thesis consists of three main lines of
research from the point of view of classical planning. Although these three lines
of research correspond to the structure of the document, the main objectives of the
thesis mark the development and the flow of the study as a whole. Already stated in
the title and in the abstract, the main objective of this thesis is to study novel ways
of generating and exploiting intermediate goals for their use in classical planning.
For that, a series of smaller objectives must be set, objectives which will determine
the steps to be taken throughout the development of the thesis.

The first step is analyzing how to generate intermediate goals given a particular
technique, as it seems more logical to begin from a known technique and use it for
our purpose. In this case, regression is the technique of choice. However, regres-
sion has arguably fallen out of fashion in the planning community, which means
that the current state of the art in regression must be revised. Therefore, the very
first step of this thesis is to study of the viability of regression in planning, analyz-
ing the flaws of common regression techniques and proposing updated alternatives
that aim to bridge the gap between regression and other state-of-the-art approaches.

Once the major issues in regression are identified and solved, the next step is
employing regression to actually generate intermediate goals. The way regression
can be used for this is unclear, so we will consider several alternatives and propose
techniques that may seem promising in terms of efficiency. Most conclusions ex-
tracted from the prior study of regression will probably prove to be essential in this
phase.

After employing regression to generate intermediate goals, we want to extrap-
olate the generation of intermediate goals to a more general case. In particular, we
want to analyze the possibility of obtaining intermediate goals at random, choosing
states by sampling uniformly the search space instead of depending on regression.
There are several important problems with this that must be overcome, as the search
space of a planning task is implicit and there is no guarantee that a randomly sam-
ple state will belong to the search space. To ensure that the sampled state is useful
we analyze whether the lessons learnt in regression apply to the more general case
of random sampling, and, if they do not suffice, propose novel techniques to solve
this issue. Along with the study of the generation of random intermediate goals,
we will also propose search algorithms that exploit them to hopefully obtain better
results than current state-of-the-art search algorithms.

The last objective of the thesis is to employ the knowledge obtained from the
analysis of the generation of intermediate goals in the field of landmarks. Land-
marks are intermediate goals by definition, so we want to discover which of our
findings apply to them. These is a twofold task, as it aims to provide a better
understanding of landmarks and to find new landmark-based ways of generating
intermediate goals.

In summary, these are the objectives of the thesis in order:

• Analyze the shortcomings of regression and find ways of addressing them.
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• After ensuring that the use of regression is viable, propose techniques to
generate and exploit intermediate goals based on regression.

• Once we have a better understanding of how regression and intermediate
goals work together, generalize to random sampling of states.

• If we find that random sampling of states is a valid way of generating in-
termediate goals, propose a search algorithm able to benefit from them to
overcome some of the problems of current state-of-the-art search algorithms.

• Extrapolate the findings from random sampling to landmarks, and study
whereas they can be used to enhance the usability of landmarks.

In the conclusions we will check whether these objectives have been fulfilled,
pointing out our major discoveries and putting in context the theoretical and em-
pirical results obtained along the development of the thesis.



Part III

Regression, Invariants in
Symbolic Regression and

Backward Generated Goals

26



Chapter 3

Revisiting Regression in Planning

Heuristic search with reachability-based heuristics is arguably the most
successful paradigm in Automated Planning to date. In its earlier
stages of development, heuristic search was proposed as both forward
and backward search. Due to the inherent disadvantages of backward
search, during the last decade researchers focused mainly on forward
search, and backward search was abandoned for the most part as a
valid alternative. In the last years, important advancements regarding
both the theoretical understanding and the performance of heuristic
search have been achieved, applied mainly to forward search plan-
ners. Motivated by the advances in forward heuristic search we revisit
regression in planning with reachability-based heuristics, trying to ex-
trapolate to backward search current lines of research that were not as
well understood as they are now.

3.1 Introduction

Automated planning is the task of finding a sequence of actions that, from a given
initial state, reaches a set of goals. It is one of the oldest areas of research in AI,
but only relative recently domain-independent planners have been able to solve
non-trivial tasks. Heuristic search (Bonet and Geffner, 2001) has become one of
the most important paradigms in the area, as shown by the results of the most
recent International Planning Competitions (IPC)1 and the much higher number
of publications in AP about heuristic search compared to publications about other
successful approaches like local-search (Gerevini and Serina, 2002) or SAT-based
planning (Kautz et al., 2006; Rintanen, 2010).

Search can be done either advancing from the initial state towards a goal state,
called forward search or progression, or from a goal state to the initial state, called
backward search or regression. In heuristic search most works use combinatorial

1http://ipc.icaps-conference.org/
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domains as benchmarks. Combinatorial domains are in most cases trivially invert-
ible and have a single goal state. Examples of this kind of benchmarks are the
n-puzzle and the Rubik’s Cube. Therefore, often forward and backward search
are analogous and the same techniques and conclusions are relevant to both cases.
However, this is not true in AP. While the initial state is completely defined due
to the closed-world assumption, goals are defined as partial states. Thus, the value
of propositions (or variables in a multi-valued formalizations) not included in the
goal set are unknown and multiple goal states are possible. For example, in the
Blocksworld domain the goal set includes most of the time only propositions de-
rived from the predicate “on”, like (on a b) and (on b c), which means that the
value of other propositions, like (arm-empty) and (clear a), is unknown. As a
consequence, backward search reasons over sets of facts and not complete states,
making the search more akin to state-set search (Pang and Holte, 2011) than to
traditional heuristic search.

Due to these differences, backward search planners have several drawbacks.
The most important ones are:

• techniques developed for forward search may not be (trivially) applicable or
useful in regression;

• duplicate detection is more complex due to partial states; and

• spurious states may be generated.

In fact, early research on heuristic search in AP studied both forward and back-
ward search (Bonet and Geffner, 2001), but these drawbacks lead to a worse perfor-
mance of regression planners compared to progression planners. For this reason,
research on backward search in AP was discontinued in many cases.

Over the last decade important works shed light on both the formal properties
of forward search, like the relationship between different heuristics (Helmert and
Geffner, 2008; Helmert and Domshlak, 2009), and the empirical impact of widely
used techniques, like preferred operators and deferred heuristic evaluation (Richter
and Helmert, 2009). Nevertheless and despite the strong relationship between for-
ward and backward search, this has not been exploited to improve over the results
of previous backward search planners. In particular, some techniques that may
address the shortcomings of regression in satisficing planning, like preferred oper-
ators, seem to have potential. In this section we analyze how efficient techniques
commonly used in progression can be extrapolated to backward search. We define
some new concepts related with regression and propose several novel techniques
implemented in a new regression planner, based on Fast Downward (Helmert,
2006), called FDr (Fast Downward Regression). In particular, the concepts and
techniques are the following:

• formalization of regression in SAS+;

• disambiguation of states and action preconditions;
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• action pruning using e-deletion;

• improvements on the computation of the applicable actions;

• novel definition of reasonable orders;

• computation of reachability heuristics and preferred operators in regression;

• usage ofPm formulations of the planning task to infer more informed heuris-
tics in regression; and

• computation of strong precedences related to the context-enhanced additive
heuristic in regression.

Experimental results show that the techniques analyzed are in fact useful for
regression, leading to the development of a regression planner consistently more
efficient than its predecessors.

3.2 Planning Formalizations in Regression

Regression search in planning starts from the goals and applies the actions back-
wards to find a path from the set of goals G to the initial state I . The set of goals
G in a planning task constitutes a partial state, as the value of the propositions not
mentioned in the goals S \ G is unknown when a propositional formalization is
used. This also means that the closed world assumption cannot be enforced due to
the existence of undefined values.

Action preconditions are also partial definitions of the states in which the ac-
tions can be applied. Thus, states generated by regression are partial states too.
This is so because, if a ∈ A is an action of the problem, the value of the proposi-
tions eff(a) (that is, those propositions mentioned in the effects of the action) prior
to its execution may not be inferred. For instance, applying in regression an ac-
tion a ∈ A (move A B) such that pre(a) = {(at-agent A)} and eff(a) = {(at-agent
B),¬(at-agent A)}means that the value of {(at-agent B)} after applying a in regres-
sion is unknown, as its value is not defined in pre(a) and it was added by a. The
underlying reason is that {(at-agent B)}may have been in theory true or false prior
to the execution of a, because (at-agent B) ∈ eff(a) does not imply that ¬(at-agent
B) ∈ pre(a).

Our formal definition of a propositional planning task in regression is as fol-
lows: given a propositional planning task P=(S,A,I,G), the definition of P for re-
gression is a tuple P’=(S,A,I’,SG) where I’= G is the initial (partial) state; SG is the
set of goal states SG = {s | s ⊆ I}.

The set of actions A is the same as in progression, but their applicability is
redefined as follows: a ∈ A is applicable in a partial state s ⊆ S if it is relevant
(add(a) ∩ s 6= ∅) and consistent (del(a) ∩ s = ∅). An action relevant to a set of
propositions is also known as a supporter of the set of propositions. The resulting
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state sr ⊆ S obtained from regressing a in s is sr = (s \ add(a)) ∪ pre(a).
This can also be seen as a reversed action a′ in which add(a) is a set of disjunctive
preconditions of a′, del(a) are negative preconditions of a′ and pre(a) are the adds
of a′.

As picturing regression may be in some cases complicated, here we present a
very simple example. In Figure 3.1 we have a set of goal propositions and two
supporting actions.

Figure 3.1: Original goal G and and two actions a1, a2 ∈ A supporters of G.

After applying a1 we have a new state s′, in which the proposition added by
a1 does not appear but which contains the preconditions of a1. This is shown in
Figure 3.2.

Figure 3.2: Resulting state s′ ⊆ S obtained by applying a1 in G in regression.

Progression and regression in planning are not symmetric as each state in the
regression state space may represent a set of states of the progression state space.
Also, states reachable in progression may not be reachable in regression and vice
versa. Such states are always spurious.

A special case that occurs when reasoning with partial states is subsumption of
states:

Definition 8. (Subsumption of states) Given two states si, sj ⊆ S, si subsumes sj
(si v sj) if si ⊆ sj and g(si) <= g(sj), where g(si) and g(sj) are the best cost
among all the visited paths that lead to si and sj respectively.
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Subsumption of states changes how duplicate detection should be applied in
regression. In progression, a state sj ⊆ S can be pruned if a state si ⊆ S|si =
sj ∧ f(si) <= f(sj) has been already generated. This is easily detectable in
constant time if a structure such a hash table is used, as states in progression are
completely defined. In regression duplicate detection can be extended to the case
in which si v sj , because achieving si is strictly less costly than achieving sj .
However, si ⊆ sj , a necessary condition for si v sj , is not detectable using a hash
function. This means that complete duplicate detection is not possible by using
only a hash table, which can have an important negative impact in the performance
of the search.

3.2.1 Regression in SAS+

Although regression had been formally defined for propositional tasks, only one
work by Rintanen (2008) went beyond STRIPS in terms of formal definitions of
regression. Because of this, here we address the formal definition of regression in
SAS+.

Given the SAS+ formalization of a planning task in progression as Π=(V ,s0,S?,O),
a SAS+ task in regression is a tuple Π′=(V ,s′0,S′?,O), where s′0 = s? and S′? is the
set of partial states subsumed by s0, following the next definition of subsumption
in SAS+.

Definition 9. (Subsumption of states in SAS+) Given two SAS+ states si and sj ,
si subsumes sj (si v sj) if ∀v ∈ V , si[v] = sj [v] ∨ si[v] = u.

Applicability of actions in SAS+ also requires a new definition.

Definition 10. (Applicability of actions in SAS+) An action o ∈ O is applicable
in a partial state s in regression if ∀vi ∈ V : s[vi] 6= u, if post(o)[vi] 6= u
then s[vi] = post(o)[vi]; and if prev(o)[vi] 6= u then s[vi] = prev(o)[vi] (o is
consistent with s) and ∃vi ∈ V : s[vi] = post(o)[vi] ∧ s[vi] 6= u (o is relevant
to s). The resulting state s′ obtained from applying o in s in regression is equal
to s except that ∀vi ∈ V s.t. pre(o)[vi] 6= u : s′[vi] = pre(o)[vi] and ∀vi ∈
V s.t. prev(o)[vi] 6= u : s′[vi] = prev(o)[vi].

Note that applicability of actions in SAS+ is more restricted than in a propo-
sitional representation, as prevail preconditions must be taken into account when
checking the consistency of an action. In fact, the set of applicable actions in
regression in P ′ is a subset of the applicable actions in regression in Π′ for any
partial state. All the actions applicable in a propositional representation that are
not applicable in SAS+ lead to spurious states.

Theorem 1. Let P ′ be a planning task in a propositional formalization and Π′ its
SAS+ equivalent, s, s′ ⊆ S be partial states, and a ∈ A be an action in P ′ equiv-
alent to an operator o ∈ O in Π′. If for any given partial state s a is applicable in
regression but o is not, then the state s′ generated by applying a in regression in s
is spurious.
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Proof. Given a variable vi ∈ V , let s′[vi] = x : x ∈ Dvi be a fluent that cor-
responds to a proposition p ∈ P such that s′[vi] 6= s[vi], s′[vi] ∈ prev(o) and
p ∈ pre(a). Since s′[vi] 6= s[vi], o is not applicable in regression in s as per
Definition 10.

Assume that a is applicable in regression in s; then, the resulting state s′ will
contain both s′[vi] = p and s[vi]. As s′[vi] and s[vi] belong to the same variable
vi, s′[vi] and s[vi] are mutex. Therefore, s′ is spurious.

Partial states in SAS+ require the use of the undefined value u so the closed
world assumption is not dropped. SAS+ allows it by adding it to the domain of
all the variables v ∈ V in a preprocessing step. Hence, any SAS+ planner can
do regression with no changes in their search algorithm apart from modifying the
applicability and effects of actions. Identical partial states would be detected as
duplicates, but subsumption of states would not.

3.3 Regression and Backward Heuristic Search: HSPr

As stated in the introduction, the first heuristic search planner that worked in pro-
gression, HSP (Bonet and Geffner, 2001), had a version that searched in regression,
HSPr. HSPr uses a propositional formalization, a weighted A* algorithm and the
additive heuristic, hadd (Bonet and Geffner, 2001). hadd is the sum of the accu-
mulated cost of achieving every goal proposition in a delete-free version of the
problem. This heuristic is also the one that HSP uses, but there is a crucial dif-
ference: hadd is computed by doing a reachability analysis whose source is either
the initial state I (in regression) or the evaluated state (in progression) and which
computes the accumulated cost to every proposition p ∈ S that has been explored
during the computation of the heuristic. As HSP does progression, the source of
the reachability analysis changes every time a state is evaluated and thus the reach-
ability analysis must be computed per state. However, HSPr uses the initial state
I as the source of the reachability analysis, so it can avoid repeating the reacha-
bility analysis by caching hadd for all the propositions of the problem and evaluate
a state in a fraction of the time HSP needs. This speed up in the computation of
hadd is critical, as the bottleneck in heuristic search planners is most of the time the
computation of the heuristic (Liu et al., 2002).

The much higher rate of generation of states of HSPr is the main advantage of
HSPr over HSP, but HSPr had several important disadvantages too. To deal with
the frequent generation of spurious states in regression, HSPr uses mutexes found
with h2 to prune them. After a state s ⊆ S has been generated, HSPr checks if
it contains two propositions pi, pj ∈ S such that {pi, pj} are mutex and, if that is
the case, discards it. However, mutexes may not suffice to prune spurious states
in some domains, which may lead to an exponential increase in the number of
generated states in regression.

Second, when using a propositional representation, detection of duplicate states
requires modifications in the algorithm due to the presence of propositions whose
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value may be unknown. Furthermore, regular duplicate detection using hash func-
tions is unable to detect subsumption of states, which again may lead to an expo-
nential increase in the number of generated states.

Finally, additive schemes in the computation of the heuristic may cause in-
accuracies when variables that were undefined in the initial state in regression I ′

are assigned a value, suddenly adding their cost to the partial state. Actually this
is extensible to all the partial states: the cost of unknown propositions is not ac-
counted for when computing the heuristic, so hadd may differ greatly depending on
the number of unknown propositions. This causes anomalies in the behaviour of
the search algorithm, leading sometimes to the exploration of h plateaux.

For these reasons HSPr performed overall worse than HSP. These problems
combined with the success of some techniques introduced by other forward heuris-
tic planners, like Fast Forward and Fast Downward, made researchers abandon for
the most part backward search in planning.

3.4 Revisiting Regression in Planning

In this section we revisit some important concepts originally defined for forward
search, adapting them to their use in regression. Each of the subsections describes
the set of techniques, proposes a novel implementation in regression and defines
them formally if needed.

3.4.1 Invariant Groups and Disambiguation

In partial states, the value of some propositions may be unknown. Nevertheless, the
value of other known propositions may allow inferring whether a proposition p ∈ S
is true or false (or the value of a variable v ∈ V in a multi-valued representation).
We call this process disambiguation of a partial state.

Definition 11. (Disambiguation) Disambiguation is the process of reducing the
valid domain of the invariant groups of the problem given a set of known proposi-
tions and a set of constraints.

Disambiguation means solving a Constraint Satisfaction Problem (CSP) in
which the variables are the invariant groups of the problem, the domain of the
variables is the set of propositions that conform the invariant group and the con-
straints are the mutexes between propositions. The set of known propositions are
the propositions true in the partial state; these propositions satisfy the invariant
groups they appear in and may reduce the valid domain of the rest of the invariant
groups.

There are three relevant cases for any given invariant group θ for which there
was no previously known p ∈ S such that p ∈ θ:

• only one proposition p ∈ θ can be true in the partial state;
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• no proposition p ∈ θ can be true; and

• more than one proposition p ∈ θ can be true.

The first case means that p must be true in the state and so it can be added to
it to complete it. The second case means that the CSP has no solution and that the
partial state is thus spurious, as it violates the invariant that enforces that in every
non-spurious state exactly one proposition p′ ∈ θ must be true. The third case
means that no additional information can be inferred.

Let’s look at an example of a multi-valued planning task in which the only in-
variant groups are the variables in V . Given V = {v0, v1, v2} and Dv0 = {a, b, c},
if in a given partial state s : s[v0] = u, s[v1] is mutex with v0 = a and s[v2] is
mutex with v0 = b, then we can infer that s[v0] = c, because c is the only possible
value for v0 that satisfies the constraints. If additionally s[v1] or s[v2] are mutex
with s[v0] = c, then v0 has no possible value and the state is spurious.

Disambiguation of partial states fulfills two purposes: adding information to
partial states by reducing the number of unknown variables upon generation, and
pruning spurious states that are undetectable by using only binary static mutexes.
Having fewer unknown variables impacts the performance in two ways. The advan-
tages of having more complete partial states is that heuristics tend to be more accu-
rate, as the cost of fluents that otherwise would be ignored is accounted for (Domsh-
lak et al., 2012; Bonet, 2013), and that it reduces the number of cases in which there
is subsumption of expanded states thanks to cases in which si, sj ⊆ S, si v sj be-
fore disambiguation and si = sj after disambiguation.

To better understand which kind of spurious states that do not violate mutexes
may be generated in regression we will provide an example. Figure 3.3 shows an
example of pruning by disambiguation in the floortile domain.

Figure 3.3: Pruning a spurious state in floortile by disambiguation. The second
robot in the state at the right has no valid location because all cells are clear or
occupied.

Problems in floortile consist of two or more robots that have to paint the cells
of a grid. The initial state contains the locations where the robots are. The goal
contains the painted cells. It is possible to find a plan doing regression in which a
single robot traverses and paints the whole grid. This means that there may be a
partial state in which all the cells are either painted, clear or occupied by the first
robot. When disambiguating the state, we can see that there are no legal values for
the variables that represent the position of the other robots, as a robot cannot be at
a painted cell, a clear cell or a cell occupied by another robot. Such a state can be
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safely pruned even though binary mutexes with no disambiguation are ineffective
to detect this case in regression.

Disambiguation of Preconditions and Spurious Operators

Partial states are not the only set of propositions that may benefit from disambigua-
tion. In fact, Definition 11 refers to any set of propositions and not only to partial
states. The preconditions of any action o ∈ O are another case in which dis-
ambiguation may be beneficial. The main benefit is that more preconditions lead
to fewer unknown propositions (or variables) when generating partial states in re-
gression. From the point of view of the disambiguation process, this means that the
generated state will be partially disambiguated already. This reduces the time spent
disambiguating the state if disambiguation is done at every state during search and
allows obtaining some of the benefits of disambiguation of states if it is not made
on a per-state basis. An additional advantage of having more preconditions is that
heuristics may be more informed, as the model used to derive the heuristic (the
delete relaxation of the problem for hadd and the Linear Programming model for
hSEQ (Bonet, 2013), for example) would be more tightly constrained. A simple
example of disambiguation of preconditions is the operator (put-down A) in the
Blocksworld domain, which initially only has (holding A) as precondition. If dis-
ambiguation is performed during the preprocessing step, additional preconditions
such as ¬ (arm-empty) can be inferred.

Also, it is possible that during the grounding phase operators whose set of
preconditions is spurious are generated. For example, when Fast Downward parses
an operator with a negated fluent ¬f as precondition, it splits the operator into
several ones such that, if f ∈ Dv given v ∈ V , ∀f ′ ∈ Dv | f ′ 6= f there will be
an operator o ∈ O such that f ′ is a precondition of o. When FD splits the operator
it does not check whether the new set of preconditions is not spurious, so doing
disambiguation will allow to detect such cases. Operators with spurious sets of
preconditions are called spurious operators and can be safely pruned.

An important remark is that, even though spurious operators are never applica-
ble in progression, they may be applicable in regression (in which case they will
generate spurious states) and also may affect the value of the heuristics employed
by the planner. Hence, it is advisable to disambiguate operators in the preprocess-
ing step if only to discard such operators.

3.4.2 Enhanced Applicability in Regression and Decision Trees for
Successor Generation

Thanks to the caching of hadd, HSPr is able to evaluate states at a much faster
rate than HSP. However, many generated states are spurious and are pruned using
mutexes anyway, so often no performance gain is achieved. Consider for example
the Blocksworld domain: if there is a tower of blocks and (arm-empty) is true
in the partial state in regression, half of the actions of the domain are applicable
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because they add (arm-empty), whereas only one (stacking the upper block) leads
to a non-spurious state. The other applicable actions produce states that contain
mutexes. For example, if (on A B) and (on B C) are true and (stack B C) is applied
in regression, the generated state would contain the mutex {(on A B), (holding B)},
as (holding B) is a precondition of (stack B C).

This problem comes from the current definition of applicability of actions in
regression. In fact, the current definition makes planners knowingly generate spu-
rious states that will be pruned afterwards using mutexes. This is a waste of effort
that can be avoided using e-deletion instead of just regular deletes. The applica-
bility of an action in regression can be modified to reflect this by ensuring that the
action does not e-delete any fluent true in the partial state.

Definition 12. (Consistency using e-deletion) If e-del(a) is the set of fluents e-
deleted by action a, a is consistent with partial state s if e-del(a) ∩ s = ∅.

If the novel definition of consistency presented in Definition 12 is used, it is
guaranteed that no spurious state (detectable by using the same set of mutexes
employed to infer e-deletion) will be generated in regression.

Theorem 2. Let s ⊆ S be a partial state that does not violate any binary mutex.
Let a ∈ A an action consistent using e-deletion with s. Let s′ ⊆ S be the partial
state obtained by applying a in regression to s. Then, s′ does not violate any binary
mutex.

Proof. If s′ ⊆ S was obtained by applying a in regression to s, then s′\s = pre(a)
and so (s′ ∩ s) ∪ pre(a) = s′. As (s′ ∩ s) nor pre(a) violate any mutex, then a
mutex can only be violated if some p ∈ (s′ ∩ s) and some p′ ∈ pre(a) are mutex.
However, a is consistent using e-deletion with s and so (s′ ∩ s) ∪ pre(a) does not
violate any mutex, which means that s′ does not violate any mutex.

This way, using e-deletion for consistency avoids the generation of states that
violate mutexes altogether, which may translate in an important increase in ef-
ficiency - both because the spurious state is not generated and because there is
no need to check whether a mutex has been violated for both spurious and non-
spurious states.

This novel definition of consistency has a drawback though: it imposes an ad-
ditional complexity when checking applicability, as a very high number of proposi-
tions may be e-deleted by an action compared to the number of regular deletes the
action may have. For example, a regular move operator e-deletes the moving agent
at every location other than the destination, which may be expensive to check. To
avoid this overhead during search, precomputed decision trees as successor gener-
ators (Helmert, 2006) can be used.

Fast Downward already uses decision trees based on partial-match tries (Rivest,
1974) to avoid checking the applicability of all the actions of the problem. In Fast
Downward, every inner node represents a variable v ∈ V and has an edge for
each d ∈ Dv plus the don’t care value. Each edge leads to another inner node
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representing the next variable or to a leaf node. Leaf nodes contain the sets of
actions that are applicable on that node.

When building the leaf (action) nodes, an action a is propagated at every inner
node down the edge that corresponds to v = d if v = d ∈ pre(a) ∨ v = d ∈
prev(a). Otherwise a is propagated down the don’t care edge. So, the path from
the root to a leaf node represents the preconditions of the corresponding action. Ev-
ery action occurs in at most one leaf node, so the number of leaf nodes is bounded
by the number of actions of the problem. When computing the applicable actions
of a state s, at every inner node the algorithm follows the don’t care edge and the
edge that corresponds to s[v]. The union of the sets of actions of the visited leaf
nodes is the set of applicable actions.

The main difference with the decision trees used by Fast Downward is that
in regression one must deal with disjunctive preconditions, negative preconditions
and unknown variables. This means that using variables from V in the inner nodes
is not possible, as it may be possible for an action to occur in several different leaf
nodes. Imagine for example an action that e-deletes a fluent f ∈ Dv | v ∈ V;
this means that that action should be propagated down every edge that corresponds
to every fluent f ′ ∈ Dv | f ′ 6= f , which corresponds with the negative case ¬f .
Losing this property means that there is no lower bound on the number of leaf
nodes, which could make the tree grow to an exponential size.

To avoid this, the inner nodes of the decision trees we build for regression
represent fluents instead of variables, similar to the propositional case. They have
three edges for the cases >, ⊥ and don’t care through which actions that add, e-
delete and do not change the variable of the fluent are respectively propagated. If
the fluent is unknown in a partial state, all the three children must be explored, as
opposed to just either > or ⊥ and don’t care (?). This combines the efficiency of
decision trees in progression and the greater expressiveness required in regression.

Figure 3.4 shows a simple example of a decision tree as successor generator.
As described before inner nodes have at most three edges for the cases >, ⊥ and
don’t care. However, if no action is propagated down some edge, that edge needs
not to be explored (in fact, in this example only p1 has the three edges). Note that
a single leaf node can have several actions, but no action can appear in more than
one leaf node.

p1

p2

a9, a10a8

> ⊥
p2

a7a6

> ⊥
p2

p3

a5a3, a4

> ⊥
p3

a2a1

> ⊥

> ⊥

>
⊥

?

Figure 3.4: Decision tree used as a successor generator.
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3.5 Reachability Heuristics in Regression

In this section, we describe how to compute recent state-of-the-art heuristics in
regression, exploiting advantages of regression like caching schemes. We use a
propositional formalization of the task as it is the de facto implementation even in
planners that use a multi-valued formalization, like Fast Downward.

3.5.1 Best Supporter Caching

Most forward planners, like FF and FD, use heuristics based on a delete-relaxation
of the problem. The most representative heuristics are hadd and the FF heuris-
tic (Hoffmann and Nebel, 2001) - also known as the relaxed plan heuristic. In fact,
there are multiple heuristics of this kind (Keyder and Geffner, 2009b), although the
implementation of HSP includes only hadd because that was the only reachability
heuristic developed at the time when the works on HSPr were published.

Formally, the relationship goes deeper. In fact, delete-relaxation and criti-
cal path heuristics like hm belong to the same family of heuristics (Helmert and
Domshlak, 2009). They differ mainly in the functions used to (1) select the best
supporter of propositions, (2) aggregate the supporters of preconditions (subgoals)
and goals, and (3) compute a cost estimation from a set of aggregated support-
ers (Fuentetaja et al., 2009).

The way these heuristics are computed is in fact very important for the back-
ward case. A point in common for these heuristics is that supporters and costs
are derived from a forward reachability analysis that depends exclusively on the
source partial state. If the source state does not change, all the necessary informa-
tion can be cached. This allows planners to compute these heuristics in regression
without performing additional reachability analysis, which greatly speeds up their
computation. This is exactly what HSPr does when caching costs to speed up the
computation of hadd, although there is no reason why caching should be limited to
the costs of the propositions of the problem.

As a contribution in the backward case we propose caching more information
to be able to compute any reachability heuristic without repeating the reachability
analysis every time a state is evaluated. In particular, we cache the best supporters
determined by Equation 3.12, which defines how to select the best supporter ap of
a proposition p among the set of actions A(p) that add p (assume that hmax(x, y)
is hmax of x ⊆ S computed from y ⊆ S).

ap ∈ argmin
a∈A(p)

(cost(a) + hmax(pre(a), I)) (3.1)

The cost of any proposition p′ ∈ pre(a) is recursively defined as:

cost(p′) =

{
0 if p′ ⊆ s0
cost(ap′ ) + hmax(pre(ap′ , I)) if p′ * s0

(3.2)

2Ties in Equation 3.1 are broken arbitrarily.
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Caching the best supporters allows computing the FF heuristic (Hoffmann and
Nebel, 2001), whose value is the cost of a plan that reaches a partial state from the
source state in a delete-free version of the problem. Being able to compute the FF
heuristic is important because hadd tends to overestimate the cost to the goal by a
significant margin in some domains, which makes the FF heuristic have a better
overall behavior (Keyder and Geffner, 2009b). Figure 3.5 shows the difference
between caching costs in HSPr and best supporter caching. In this problem an
agent must go from I to K to pick up a key and then carry it to G. hadd adds the
distance from I to K to the distance from I to G and to the cost of picking up the
key. This way, if the cost of all the actions is one, then hadd = 9. FF computes
a relaxed plan by tracing back from the fluents of the partial state to the initial
state using best supporters. Moving from I to K and G with no deletes requires 5
actions, so hFF = 6. In either case, if the partial state changes, no new reachability
analysis is needed; both heuristics can be computed with the cached information.

Figure 3.5: Caching costs (left) and best supporters (right); dashed arrows are part
of the relaxed plan.

In terms of computational cost, the cached version of the FF heuristic has a
complexity linear on the number of actions of the problem |A|, as opposed to the
regular FF heuristic in progression, which has a complexity polynomial on |A|.
Actually it is easy to see that FF in regression dominates FF in progression in terms
of time, as the progression computation requires the reachability analysis and the
plan retrieval, whereas the regression computation requires only the plan retrieval.

Preferred Operators in Regression

Being able to cache a broader range of information and to extract relaxed plans
has other advantages too. In particular, structural information other than the mere
numeric value derived from the computation of the heuristic may be interesting. We
propose the use of one of the most significant techniques in terms of its potential
to improve the efficiency of the search, preferred operators (Hoffmann and Nebel,
2001; Helmert, 2006; Richter and Helmert, 2009); note however that other similar
techniques, like look-aheads (Vidal, 2004b), are equally possible to implement
using caching schemes.

Preferred operators are an aggregated set of actions extracted from the heuristic
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computation. Originally they were proposed in the context of relaxed plans under
the name of helpful action (Hoffmann and Nebel, 2001), although they are also
computable for other reachability heuristics (Helmert, 2004; Keyder and Geffner,
2008; Helmert and Geffner, 2008). Preferred operators are a subset of the appli-
cable actions of the state that allows discriminating between successors. Possi-
ble ways of exploiting them are: pruning successors generated with non-preferred
operators (Hoffmann and Nebel, 2001); using multiple queues as open lists with
a boosting scheme (Röger and Helmert, 2010) to prefer the queues whose states
were generated with preferred operators; or weighting with a penalizing factor the
heuristic value of states generated with non-preferred operators (Lipovetzky and
Geffner, 2012).

In Fast Downwards’s implementation of the FF heuristic the set of preferred
operators is the subset of applicable actions that also appear in the relaxed plan.3

Taking this into account, we redefine preferred operators in regression as the appli-
cable actions in regression that appear in the relaxed plan. In the former example
depicted in Figure 3.5 moving to G from the left is the only preferred operator.

Although the definition in regression is almost identical to the forward case,
in practice there are some subtle differences that must be taken into account. Fol-
lowing the original relaxed plan graph definition of the FF heuristic, in progression
all the actions that appear at the first action level are applicable. The relaxed plan
must contain actions from this first level, so there must be at least some action that
is helpful. In regression however there is no guarantee that the actions that support
the goals are applicable, to the extent that in fact there may not be preferred op-
erators obtainable from the heuristic computation. This is due to the fact that best
supporters of the goals are relevant to the propositions they achieve by definition,
but they may not be consistent with the whole set of goals. A way of circumvent-
ing this is forcing that at least one or all the best supporters of the goals must be
applicable if possible, although this changes the value and the computational cost
of the heuristic.

Another important fact regarding preferred operators in regression is that, as
actions are applied farther away from the source of the reachability analysis, the
information they represent is less reliable because the loss of information from
the relaxation of the problem accumulates. Therefore, using preferred operators
in regression means trusting actions selected in the reachability analysis after the
problem has been thoroughly relaxed. This makes preferred operators in regression
less reliable or informed than their forward counterparts a priori, although the im-
pact of the difference between preferred operators in progression and in regression
can only be evaluated empirically.

3The original implementation in FF is slightly different: all the applicable actions that achieve
some proposition made true by the first time at the first level of the relaxed planning graph by some
action of the relaxed plan are helpful a.k.a. preferred.



CHAPTER 3. REVISITING REGRESSION IN PLANNING 41

3.5.2 Computing Heuristics in Pm

Reachability heuristics are usually computed by ignoring the delete effects of ac-
tions. These effects can be partially included by using the alternative version of
the problem Pm (Haslum, 2009). Pm is a redefinition of the planning task in which
every fluent in Pm is a set of fluents of size m. A key conclusion of Haslum’s
paper (Haslum, 2009) - to the extent that it is the title of the publication - is that
hmax in Pm is equivalent to hm in P1. An important observation though is that this
is not exclusive to hmax: any other reachability heuristic can be computed in Pm.
In fact, any general method based on a reachability analysis, like the computation
of landmarks (Hoffmann et al., 2004), is also computable on Pm (Keyder et al.,
2010).

Computing heuristics in Pm is exponential on m, so in practice it is not viable
to use them in progression, as it would require an expensive reachability analysis
per evaluated state. Nevertheless and as pointed out in this chapter, in regression
only one reachability analysis is needed, which makes their computation tractable
thanks to caching.

In order to generalize the reachability analysis, we propose a general definition
of best supporters in Pm that takes into account sets of propositions of sizem based
on Equation 3.1. Best supporters are now determined by Equation 3.3, that defines
the best supporter aP of a set of propositions P with size |P | ≤ m.

aP ∈ argmin
a∈A(P )

(cost(a) + hm(Reg(P, a), I)) (3.3)

A(P ) is the set of actions that generate at least a proposition in P without
deleting any other:

A(P ) = {a ∈ A | add(a) ∩ P 6= ∅ ∧ del(a) ∩ P = ∅} (3.4)

Reg(P, a) is the result of regressing P through a: Reg(P, a) = P \add(a)∪pre(a). The
cost of reaching the partial state s from the initial state I is defined as:

h(s, I) =
∑

a∈π(s,I)
cost(a) (3.5)

where

π(P, I) =


∅ if P ⊆ I
π(aP , P, I) if P * I, |P | ≤ m⋃
Pm ∈

(P
2

)π(Pm, I) if P * I, |P | > m
(3.6)

and
π(a, P, I) = {a} ∪ π(Reg(P, a), I) (3.7)

Caching best supporters in P2 allows to compute the FF heuristic per state in
P2 efficiently - we call this the FF2 heuristic. The complexity of the computation
of the relaxed plan is in fact the same as in P1, linear on |A|, so a priori FF2 incurs
in no overhead other than the initial reachability analysis in P2. Nevertheless, a
reachability analysis in P2 is already required to compute h2 to find mutexes of
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size two, which means that in practice best supporters for atom pairs can be cached
when h2 is computed with no overhead.

We compute the FF2 heuristic per state as follows: for the partial state s ⊆ S
we compute all atom pairs Pij | pi, pj ∈ s and pi 6= pj . The best supporter aPij
of each atom pair Pij is added to the relaxed plan and the atom pairs obtained
from Reg(Pij , aPij ) that are not true in I are added as open preconditions. This is
repeated until no open preconditions remain.

From a theoretical point of view, the FF2 heuristic and all the heuristics that can
be computed in P2 are closely related to the family of heuristics that consider semi-
relaxation via a set of conjunctions of propositions C (Keyder et al., 2012). The
heuristics computed in P2 can be considered a particular case of semi-relaxation in
which C is formed by all the pairwise combinations of the propositions in S. Tak-
ing this into account, and since caching schemes can apply to any kind of reacha-
bility analysis, it may be a good idea to extend C with conjunctions of propositions
of size bigger than two and cache the best supporters, although this is out of the
scope of this section.

3.5.3 Reasonable Orders, Contexts and Paths through Invariants

Reasonable orders between goal propositions were first proposed to create a goal
agenda (Koehler and Hoffmann, 2000) and later on extended to landmarks and
arbitrary pairs of facts (Hoffmann et al., 2004). As pointed out in Section 2.5.4 no
proper formal definition of reasonable orders is considered standard. Furthermore,
several computation methods have been proposed to find reasonable orders. This
makes difficult evaluating both the significance and the effectiveness of reasonable
orders. As an attempt to standardize the definition of reasonable orders and to
streamline their computation here we propose a more general definition that takes
into account e-deletion. This covers both the formal aspect of reasonable orders
and their implementation and allows us a simple and general way to extend the
definition to sets of facts.

Definition 13. (Reasonable Order) A proposition p is reasonably ordered before a
set of propositions Pr (p <r Pr) if all the supporters of p are e-deleters of some
proposition p′ ∈ Pr. Formally, p <r Pr if ∀a ∈ A | p ∈ add(a) : e-del(a)∩Pr 6= ∅.

Also it is easy to see that this novel definition of reasonable orders complies
with the formerly proposed Definition 5: if p <r p′ and p′ is true in the current
state, every path that achieves p must contain a supporter a ∈ A of p - which in
turn will be an e-deleter of p′ - which means that after the execution of a it is
guaranteed that p′ will be false. To adapt this definition to landmarks or to any
other case in which only the first time a pair of propositions is achieved is relevant
- see Section 2.6 -, it suffices to consider only first achievers instead of the whole
set of achievers as potential e-deleters.

Furthermore, all work on reasonable orders was done with progression in mind,
so the implications that reasonable orders may have in regression have not been ex-
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plored. Reasonable orders were deemed “unsound” in progression, because it is not
true that, if p <r p′, then p must be achieved first in every solution plan. Neverthe-
less, some sound information can be derived: if p <r p′ and both fluents must be
true until the end of the plan, then p′ must be achieved last. This is closely related
with the concept of aftermatch (Koehler and Hoffmann, 2000), that is, whether the
value of the involved propositions changes or must be kept untouched until the end
of the plan. In progression this can only be proved for top level goals. However,
in regression this holds for every p <r p′ if p and p′ are true in a partial state, as
partial states in regression can be treated as top level goals. The main implication
is that, as p′ must be achieved last, then in regression p′ must be supported first,
which means that reasonable orders are actually sound in regression. A straight-
forward way of exploiting reasonable orders in regression is that, if p <r p′ and
p, p′ are true in a partial state, then the supporters of p can be safely pruned.

Theorem 3. ∀p, p′ ∈ S, p <r p′ and p, p′ ∈ s ⊆ S, then ∀a ∈ A | p ∈ add(a) : a
can be safely pruned.

Proof. If p <r p′ then ∀a ∈ A | p ∈ add(a) : p′ ∈ e-del(a) following Defini-
tion 13. This way, ∀a ∈ A | p ∈ add(a) : a is not consistent and consequently not
applicable in regression in s following Definition 12.

Although this property of reasonable orders may look strong, if consistency
as defined in Definition 12 is used during search then no additional pruning is
obtained. Nevertheless, the soundness of reasonable orders in regression can be
exploited in other ways, like in Section 7.3.1 or as described next.

When computing heuristics, reasonable orders in regression allow us infer-
ring stronger precedence constraints. The context-enhanced additive heuristic,
hcea (Helmert and Geffner, 2008), is a generalization of hadd and the causal graph
heuristic hcg (Helmert, 2004) that considers additional information to get more ac-
curate values. In hcea several contexts or pivots are selected during the heuristic
computation and the cost of some goals is computed from a state that results from
achieving the pivots instead of from the evaluated state. Let’s see a small example:
if we go back to Figure 3.5 we can see the most informative context is agent-at=K.
This is so because the steps that must be taken to achieve agent-at=G must be
counted from K instead of from I, since the agent must go first to K to pick up the
key. In fact, if agent-at=K is chosen as context for hcea then hcea would add the
distance from I to K to the distance from K to G and to the cost of picking up the
key, yielding hadd = 7, the cost of the optimal solution.

Choosing the right context is still an open question though. Reasonable orders
were already proposed as a way of computing contexts (Cai et al., 2009), although
in progression they may be misleading because they do not have to be respected
in every solution plan. In regression though, if p <r p′ and p and p′ are true
at the same time, p′ must be supported after having achieved p. This hints from
which context p′ is achieved in most solution plans: p. This assumption does
not shed light on how to implement such a precedence constraint, so we propose
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a more systematic way: a likely context in the computation of hcea for a partial
state s ⊆ S may be the conflicting propositions that cause the e-deletion of any
p′ ∈ s by the best supporter of some other p ∈ s (Nguyen and Kambhampati,
2001). Going back again to the previous example in Figure 3.5, the best supporter
of have-key is pick-key(K). pick-key(K) has as precondition agent-at=K, which is
the cause of the e-deletion of agent-at=G because agent-at=K and agent-at=G are
mutex. This suggests that agent-at=K is indeed a useful context, even more so
considering that in a multi-valued representation agent-at=K and agent-at=G will
most likely belong to the same variable v ∈ V .

In order to exploit the precedence constraints derived from reasonable orders in
regression, an efficient computation of hcea is also needed. Anyway, best supporter
caching is also possible in hcea by caching supporters when traversing Domain
Transition Graphs (DTGs) in a similar way as hcg does with costs. The procedure
is as follows: assume that p ∈ s ⊆ S is a proposition true in the evaluated state
s, p′ ∈ S is a proposition conflicting with p and both propositions belong to the
same invariant group p, p′ ∈ θ. Then, uniform-cost search is performed in the
relaxed DTG defined by θ with p′ as the source until the optimal distance from p′

to every other proposition in θ is obtained. When uniform-cost search is performed,
whenever a proposition p′′ ∈ θ is expanded we cache the last operator of the path
that goes from p′ to p′′ as the best supporter.

The cached version of hcea for a state s ⊆ S is thus computed as follows:

• Get all the pairs of conflicting propositions {p, p′} | p ∈ s and p is mutex
with p′ by checking which propositions of s are e-deleted by the best sup-
porter of another proposition of s.

• For each conflicting pair in the same invariant group {p, p′} | p, p′ ∈ θ, if
uniform-cost search from p′ in the DTG derived from θ has not been per-
formed for some previous heuristic evaluation, perform it.

• For each conflicting pair {p, p′}, retrieve the relaxed plan from p′ to p.

• Once this is done, compute the cached hFF for a state s′ ⊆ S obtained by
substituting in s every proposition p ∈ s that has a conflict with the pivot p′

obtained from the conflict pair {p, p′}

• Return the union of the relaxed plan from the hFF computation with every
relaxed plan obtained from a conflict pair {p, p′}

If cached hcea is computed in the example shown in Figure 3.5 the procedure
would follow the subsequent steps:

• The conflicting pair {(agent-at=K),(agent-at=G)} is found by looking at
the best supporter of (have-key), which is pick-key(K). pick-key(K) e-deletes
(agent-at=G) because it has (agent-at=K) as precondition and (agent-at=K)
and (agent-at=G) are mutex.
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• Uniform-cost search in the DTG obtained from the invariant group that cor-
responds to (agent-at=K) and (agent-at=G) is done to cache the best sup-
porters from (agent-at=K).

• The relaxed plan RPDTG from (agent-at=K) to (agent-at=G) is retrieved.

• The alternative state that substitutes the goals by their contexts is computed:
{(agent-at=K),(have-key)} substitutes {(agent-at=G),(have-key)}.

• The relaxed plan RPFF for {(agent-at=K),(have-key)} from I is computed.

• Both relaxed plans are aggregated RPDTG ∪RPFF and returned.

As stated before hcea returns in this problem the optimal cost - in fact, the re-
laxed plan is an optimal solution plan of the problem. Note that this implementation
of hcea is not a faithful rendition of its version in progression: in this case the costs
derived from the reachability analysis are not added but rather aggregated as done
for hFF . This is done for two reasons: first, to avoid the overestimation of costs
caused by additive schemes; and second, to allow extracting preferred operators in
a more straightforward way.

3.6 Experimentation

The proposed techniques were implemented on top of Fast Downward into a new
planner called FDr (Fast Downward Regression). We used the benchmark suite
from IPC2011 and compared FDr against HSPr, Fast Downward (FD) with greedy
best-first search (GBFS), hFF and delayed evaluation and Mp (Rintanen, 2010).
Mp was included because it includes several modifications that make the SAT
solver prefer actions that support open goals and preconditions not unlike what
search algorithms in regression do. Four configurations were tested: FDrFF , FDradd,
FDrcea, FDr2, which use hFF , hadd, hcea and hFF in P2 respectively. FDr’s search
algorithm is GBFS with regular evaluation. Since the focus of the experimentation
is coverage, action costs were ignored. Results are shown in Table 3.1.

Using disambiguation to prune spurious operators reduces the number of ac-
tions in six domains: tidybot, woodworking, nomystery, scanalyzer, barman and
parking. The number of spurious operators pruned for these domains is not negli-
gible: the geometric mean of the percentage of pruned operators is around 85% in
nomystery and between 50% and 10% for the rest of the domains. Additionally, in
nomystery a few extra mutexes are found if h2 is recomputed without the pruned
operators and in tidybot some fluents are found to be unreachable.

Preferred operators were not used. Although promising a priori, they were not
helpful. This may seem counterintuitive, as the reduced branching factor and the
additional heuristic guidance should help, but in partial states they often commit
strongly to unpromising areas of the search space. This is due to the problems
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Domain FD FDrFF FDradd FDrcea FDr2 HSPr Mp
barman 18 0 0 0 0 0 6

elevators 18 16 16 10 0 20 17
floortile 3 20 20 20 20 18 20

nomystery 9 6 6 7 5 4 17
openstacks 20 0 0 0 1 0 0
parcprinter 11 12 12 12 20 11 20

parking 19 5 0 4 0 3 0
pegsol 20 14 11 15 11 10 20

scanalyzer 17 20 20 17 19 20 17
sokoban 19 3 2 3 2 3 2
tidybot 14 1 0 0 0 0 17

transport 0 5 0 2 0 0 0
visitall 4 5 17 3 7 5 0

woodworking 19 19 19 11 16 17 20
Total 191 126 128 104 101 111 156

Table 3.1: Coverage in the IPC11 benchmark.

already presented in Section 3.5.1. First, actions at the later levels of the reach-
ability analysis suffer from the accumulated relaxation of the problem and so are
less useful to guide the search. Second, there is no way of knowing how many
goal propositions will be supported by applicable actions, which means that the
number of preferred operators may vary and there may be states for which there
are no computable preferred operators. When enabled, FDrFF only solved one
more problem in woodworking while losing coverage in parcprinter, transport and
visitall. This is also the reason why for a fairer comparison FD in progression does
not use preferred operators either.

As seen in Table 3.1, FDrFF solves consistently more problems than HSPr and
is not far from Mp in coverage. FDr2 performed worse except on parcprinter, in
which it solved the whole set of problems, and floortile. The overhead of hcea does
not pay off, surpassing other heuristics only in two domains. No regression planner
was able to solve any instance in barman due to spurious states that could not be
detected (i.e. due to some imprecisions in the domain formulation h2 cannot detect
mutexes like a shaker being clean and containing an ingredient at the same time).
The regression planners fare worse than FD in total coverage, although this varies
among domains. FDr is superior to FD in floortile, as this domain contains a high
number of dead ends in progression that are difficult to detect. FDradd also solves
many more problems in visitall, a domain in which heuristics like FF are affected
by big plateaus. openstacks and sokoban are the opposite case: problems trivial for
FD are hard for all the regression planners. As hypothesized, Mp seems to behave
similarly to regression planners, with the exceptions of nomystery and tidybot.
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An ablation study was also done disabling disambiguation and decision trees
as successor generators. Eight fewer problems were solved using FDradd after
disabling disambiguation. The number of expansions increased by an order of
magnitude in parcprinter and woodworking, staying the same or very similar in
other domains. When disabling decision trees, five fewer problems were solved.
The impact was proportional to the number of grounded actions and the number
of effects of those actions, increasing search time by an order of magnitude in
domains like floortile and woodworking.

The IPC11 domains were criticized for being very sequential domains, which
hurts the parallel SAT encoding of Mp. Therefore, another informal experiment
was done in the STRIPS domains where Mp reportedly was considerably better
than Fast Downward (Rintanen, 2010): airport, storage and trucks. Table 3.2
shows the comparison between LAMA 2011 (Richter and Westphal, 2010), Fast
Downward with the FF heuristic, delayed evaluation and preferred operators (FD),
Mp, FDr and FDr2. Note that both LAMA and FD used preferred operators, which
usually have a noticeable positive impact on the search. Mp is the clear winner,
but FDr and FDr2 are still competitive with LAMA and Fast Downward in the
three domains. Again, this suggests that FDr is somewhere between Mp and Fast
Downward regarding how it behaves.

Domain Mp FDr FDr2 LAMA FD
airport(50) 50 32 26 31 34
storage(30) 30 25 20 19 20
trucks(30) 21 16 9 15 19

Total 91 73 45 65 73

Table 3.2: Coverage in selected domains. Number of instances in parenthesis.

3.7 Related Work

Although most planning benchmarks are not symmetrical, it is possible to reverse
a planning problem by following the method proposed by Massey (1999) and em-
ployed by Pettersson to build a reversed version of the planning graph (2005).
Massey’s method builds a reversed versionR(P ) of the original STRIPS P in poly-
nomial time and space such that any solution plan (a1, a2, . . . , an) in P is also a
valid plan in R(P ) and vice versa. The key aspect of this formulation is that for
every p ∈ S it allows p and ¬p to be true at the same time, and whenever the
value of p becomes unknown (for example, when it is added by an action but it
does not appear in the preconditions), both p and ¬p are made true. R(P ) can be
solved by any progression planner, although it shares the same drawbacks as doing
regression in P : spurious states, subsumption of partial states and less informative
heuristics. Besides, it does not exploit the advantages that regression has, like the
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caching of the reachability analysis. For instance, if FD was used to solve R(P )
it would have less accurate heuristics (because the source of reachability analysis
would be a partial state in which p and ¬p would be true for unknown propo-
sitions), it would generate preferred operators that would lead to spurious states
(in fact there might be cases in which all the preferred operators lead to spurious
states), it would recompute the reachability analysis every time a state is evaluated,
and so on. Therefore, for a proper analysis of the regression case it is advisable not
to employ R(P ) but rather adapt (or develop) specific techniques for regression.

Curiously enough, in the context of R(P ), in particular when computing h2

backwards, Haslum’s HSPf (Haslum, 2008) uses mutexes computed with h2 for-
ward to reduce the cases in which p and ¬p are both true, and even proposes the
use of invariant groups as an improvement. This is the same as disambiguation,
although with a less ambitious scope: it was proposed just to complement the set
of goal propositions instead of any arbitrary set of propositions in order to obtain
a more complete planning model, and did not inquire about the cases in which
disambiguation allows detecting spurious sets of actions.

Caching schemes for the reachability analysis are not a completely novel con-
cept either. GRT (Refanidis and Vlahavas, 2004) is a progression planner that
computes a variant of hadd with a backward reachability analysis. As the source
of the reachability analysis is the set of goal propositions and these do not change
during search then the costs are cached to avoid repeating the heaviest part of the
computation of the heuristic. The main drawback is that, as pointed out before, a
reachability analysis from the goals is much less accurate due to incomplete states
and proper consistency checks. The planner AltAlt (Nigenda et al., 2000) proposes
a caching scheme similar to FDr’s, in which the planning graph is kept in memory
to compute a more complex version of hadd that takes into account negative effects
and to extract actions likely to guide the search like preferred operators do.

3.8 Conclusions

In this chapter we analyzed several state-of-the-art techniques in forward search
and explored their potential in regression. Some novel definitions were also pro-
posed. We implemented a new regression planner, FDr, which performed consis-
tently better than its predecessor HSPr. Forward search planners still have the up-
per hand in most domains, although their behavior varies among domains. Overall
performance seems to depend greatly on the topology of the search space, which
means that one should not rule out regression in domain-independent planning.
This also implies that there may be a high synergy between FD and FDr, poten-
tially leading to a bidirectional planner better than the combination of the individ-
ual planners in a portfolio. The implementation of such a planner remains as future
work along with the use of other state-of-the-art techniques which are simple to
employ in regression, like landmarks (Richter and Westphal, 2010) and multiple
queues (Röger and Helmert, 2010).



Chapter 4

State Invariants in Symbolic
Search

Symbolic search allows saving large amounts of memory compared
to regular explicit-state search algorithms. This is crucial in optimal
settings, in which common search algorithms often exhaust the avail-
able memory. So far, the most successful uses of symbolic search
have been bidirectional blind search and the generation of abstrac-
tion heuristics like Pattern Databases. Despite its usefulness, several
common techniques in explicit-state search have not been employed in
symbolic search. In particular, mutexes and other constraining invari-
ants, techniques that have been proven essential when doing regres-
sion, are yet to be exploited in conjunction with Binary Decision Dia-
grams (BDDs). In this chapter we analyze the use of such constraints
in symbolic search and its combination with minimization techniques
common in BDD manipulation. Experimental results show a signifi-
cant increase in performance, considerably above the current state of
the art in optimal planning.

4.1 Introduction

In optimal planning, in which a plan of least cost must be found, the most popular
approach is using A∗ (Hart et al., 1968) combined with an admissible heuristic.
The main shortcoming of A∗ is its memory requirements. When using heuristics
in optimal search, all the nodes whose f-value is less than the cost of the optimal
solution must be expanded (unless they are pruned by an optimality-preserving
pruning technique). Hence, if the heuristic is not accurate enough, the number of
generated nodes may exceed what the main memory can store.

Several alternatives to A∗ have been proposed, like symbolic search, which
uses Binary Decision Diagrams (BDDs) (Bryant, 1986) to represent sets of states
instead of storing them individually. When using BDDs, a potentially exponential
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saving in memory may be obtained. This means that symbolic versions of common
search algorithms, like symbolic blind search and BDD-A∗ (Edelkamp and Reffel,
1998), are often able to solve problems that the explicit-state versions are unable
to solve due to memory problems.

The main uses of symbolic search have been so far regular bidirectional search
and the generation of abstraction heuristics (Edelkamp and Reffel, 1998; Torralba
et al., 2013b) for their use in both symbolic and explicit search algorithms. These
methods require performing regression on the goals of the problem. Regression in
planning is known to be less robust than progression due to the existence of multi-
ple goal states, the presence of partially-defined states and the impact that spurious
states have on the search (Bonet and Geffner, 2001). To alleviate this, constraints
obtained from state invariants of the problem such as binary static mutexes and
“exactly-1” invariant groups have been thoroughly employed (Bonet and Geffner,
2001; Haslum et al., 2007). Surprisingly enough, the use of these constraints has
not been extrapolated to symbolic search except for the monotonicity analysis re-
quired to transform the planning task into SAS+ (Kissmann and Edelkamp, 2011).
Although the size of a BDD does not have to be proportional to the number of
states it contains, there may exist a correlation, in which case constraints may help.

Also, the use of constraints is commonplace in BDD manipulation. Some
minimizing operations have been specifically designed to reduce the size of a
BDD when subject to a given constraint in the form of another BDD. The use
of these minimization operations may translate not only into smaller (and thus
more memory-efficient) BDDs but also in faster BDD manipulation, as the time
consumed by the logical operations performed over BDDs depends on their size.
Taking all this into account, in this work we study the impact of constraints such
as mutexes and invariant groups in symbolic search and symbolic abstractions and
how minimization of BDDs affects the performance of these techniques.

4.2 Symbolic Search and Binary Decision Diagrams

In symbolic search, originally proposed for model checking (McMillan, 1993), op-
erations are performed over sets of states instead of working with individual states.
The main motivation is taking advantage of succinct data structures to represent
sets of states through their characteristic functions. The characteristic function
returns true if and only if the state belongs to the set of states. The use of a char-
acteristic function also allows the planners to operate with set of states through
function transformations. For example, the union (∪) and intersection (∩) of sets
of states are derived from the disjunction (∨) and conjunction (∧) of their charac-
teristic functions, respectively. Also, the complement set (Xc) corresponds with
the negation (¬) of the characteristic function. For simplicity, in this chapter we
will make no distinction between a set of states and its characteristic function.

Decision Diagrams are popular data structures for symbolic search inspired
by the graphical representation of a logical function. A Binary Decision Diagram
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(BDD) is a directed acyclic graph with two terminal nodes (called sinks) labeled
with true and false. All the internal nodes are labeled with a binary variable v ∈ V
and have two outgoing edges that correspond to the cases in which v is true and
false respectively. When representing a multi-valued variable v ∈ V , dlog2 |Dv|e
binary variables are used instead. For any assignment of the variables on a path
from the root to a sink, the represented function will be evaluated to the value la-
beling the sink. A more general type of decision diagram is an Algebraic Decision
Diagram (ADD) (Bahar et al., 1997), which can have an arbitrary number of differ-
ent sink nodes. This allows evaluating the represented function to values different
from true and false.

Variables in a BDD are ordered. This has three advantages: first, the opera-
tions performed between BDDs with the same variable ordering are quadratic in
the worst case; second, for a given set of states, an ordered BDD guarantees unique-
ness; third, it allows a more succinct representation of the set thanks to reducing
operations. The reducing operations of BDDs are the deletion rule, in which nodes
with outgoing edges that lead to the same successor are removed, and the merging
rule, in which nodes labeled with the same variable are merged if their respective
successors are the same. Figure 4.1 shows how the size of a BDD can be decreased
using reducing operators. In this case, all the nodes labeled with v3 except for the
one down the path ¬v1 ∧ ¬v2 have the same successors, so they are merged. After
that, both the node labeled with v2 down the path v1 and the node labeled with v3
down the path ¬v1 ∧ ¬v2 have outgoing edges that lead to the same successor, so
they are removed.

v1

v2 v2

v3 v3 v3 v3

1 0

(a) Original BDD

v1

v2

v3

1 0

(b) Reduced BDD

Figure 4.1: Example of BDD reduction rules.

The size of a BDD is fully determined by the variable ordering. There can
be an exponential difference in size between two different variable orderings for
the same function (Bryant, 1986, 1992). However, finding the variable ordering
that minimizes the size of a BDD is co-NP-complete (Bryant, 1986). Also, the
variable ordering is fixed throughout the search, which means that a good ordering
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for the first layers may be inadequate for later layers. In this work we use the
Gamer’s strategy to select a variable ordering (Kissmann and Edelkamp, 2011)
in a preprocessing stage, which is empirically among the best static orderings for
planning (Kissmann and Hoffmann, 2013).

The set of operators O is represented using one or more Transition Relations
(TRs). A TR is a function defined over two sets of variables, one set x representing
the from-set and another set x′ representing the target-set. Any given TR represents
one or more operators o ∈ O with the same cost. To compute the successors of a
set of states Sg, the image operation is used. The definition of image is as follows:

image(Sg, TRi) = ∃x . Sg(x) ∧ TRi(x, x′)[x′ ↔ x]

Thus, image is carried out in three steps:

1. The conjunction with TRi(x, x′) filters preconditions on x and applies ef-
fects on x′.

2. The existential quantification of the predecessor variables x removes their
values relative to the predecessor states.

3. [x′ ↔ x] denotes the swap of the two sets of variables, setting the value of
the successor states in x.

Similarly, regression uses the pre-image operator:

pre-image(Sg, TRi) = ∃x′ . Sg(x′) ∧ TRi(x, x′)[x↔ x′]

4.2.1 Encoding State Invariants as BDDs

Ever since the first application of heuristic backward search in domain-independent
planning, pruning spurious states has been considered essential (Bonet and Geffner,
2001). Binary mutexes allow pruning spurious states that otherwise would be con-
sidered for expansion during search. Expanding such states may lead to an expo-
nential decrease in performance, as none of the successors of a spurious state may
lead to the initial state by doing regression. The use of mutexes in explicit-state
search is straightforward: simply prune every state s such that fluents fi, fj ∈ s
are mutex. The use of invariant groups requires disambiguating the state as previ-
ously described.

Despite the impact that the use of state invariant has in explicit-state regression,
this technique has not been employed in symbolic search. Although it is obvious
that a per state application of mutexes in symbolic search is impossible, there are
alternatives. In particular, we propose creating a BDD that represents in a succinct
way all the states that would be pruned if state invariants were used. This BDD,
that we call the constraint BDD (cBDD), can be used to discard all the states that
have been generated using a TR in a similar way as it is done with the closed list
for duplicate detection purposes.
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cBDD is created as follows: every binary mutex is a conjunction of fluents
fi, fj |fi 6= fj such that, if fi, fj ∈ s in state s, then s is spurious. Hence, the set
of states that can be pruned using mutexes consists of those in which at least one
such conjunction of fluents is true. This way, the logical expression represented
by cBDD is the disjunction of all the mutexes found with h2 (represented by the
conjunction of both fluents).

Constraints derived from invariant groups are encoded in a similar way. Given
an invariant group θ = f1, . . . , fk, two types of constraints may be deduced: first,
the set of all the mutexes of the form fi ∧ fj if fi 6= fj ; second, the fact that at
least one fluent fi ∈ θ must be true in every non-spurious state. The first constraint
overlaps with the mutexes computed with h2, so it does not make sense to include
it in the cBDD . The latter however can be encoded as an additional constraint of
the form ¬(f1 ∨ f2 ∨ . . . ∨ fk) for every invariant group. Such a constraint can
be included in the constraint BDD, allowing to prune spurious states like the ones
pruned by disambiguation.

Formally, if M is the set of binary mutexes found by h2 and Ig the set of at-
least-one constraints, then:

cBDD =

 ∨
<fi,fj>∈M

fi ∧ fj

 ∨
 ∨
<f1,...,fk>∈Ig

¬f1 ∧ · · · ∧ ¬fk


Even though each individual constraint is efficiently representable, the size of

cBDD is exponential on the number of encoded constraints in the worst case.
This follows from the results provided by Edelkamp and Kissman (2011) on the
complexity of the representation of partial states in BDDs. To ensure that we
can represent cBDD , we set a limit on the number of nodes cBDD can con-
tain and, if that limit is surpassed, we divide cBDD into k BDDs: cBDD =
cBDD1∨cBDD2∨· · ·∨cBDDk such that every cBDDk is below the given limit.

The merging process is initialized with the BDDs that represent individual con-
straints. These BDDs are aggregated until they are larger than the given threshold.
The order in which these disjunctions are applied affects the efficiency of the pro-
cedure and the number of BDDs used to represent cBDD . To try to obtain BDDs
as small as possible, for each variable vi ∈ V we compute a BDD describing all
binary mutexes of fluents relative to both vi and vj with j > i. Then, we iteratively
merge the BDDs of mutex constraints related to each variable.

Spurious states determined by state invariants are pruned by computing the
difference Sg \ cBDD of a newly generated set of states Sg with the constraint
BDD cBDD . In terms of BDD manipulation this is done by computing the logical
conjunction of Sg with the negation of cBDD : Sg ∧¬cBDD . This operation is the
same as the one done in symbolic search with the BDD that represents the set of
closed states, used to prune duplicates. Extending the operation to the case where
we have more than one cBDD is straightforward: Sg∧¬cBDD1∧· · ·∧¬cBDDk.



CHAPTER 4. STATE INVARIANTS IN SYMBOLIC SEARCH 54

In the rest of the chapter we assume that cBDD is represented in a single BDD,
without loss of generality.

An important remark about the usefulness of pruning states with cBDD is nec-
essary, though. A priori, there is no correlation between the number of states that
a BDD represents and the size of the BDD. This means that there is no guaran-
tee that pruning spurious states will help in symbolic search, as opposed to the
explicit-state case. However, the representation of a state invariant in cBDD is in
most cases very succint and can be used to prune an exponential number of states.
Figure 4.2a exemplifies this case; to encode a binary mutex of the form ¬(v1 ∧ v2)
only a BDD with two inner nodes is needed. A single state usually requires more
nodes, so if that state is spurious because it violates ¬(v1 ∧ v2) then using cBDD
is more compact than representing the state itself.

Of course, when multiple states are involved estimating the increase in com-
pactness obtained by using cBDD is more complex. Still, it is plausible to assume
that a priori a similar phenomenon will occur. Let’s assume that a BDD Sg, shown
in Figure 4.2b, represents a set of states that contains spurious states that violate
¬(v1 ∧ v2). If that is the case, every state represented by any path that satisfies
v1 ∧ v2 could be safely pruned. In practice, this means that the subgraph whose
root is the node that corresponds to v3 at end of that path could be “removed”, with
a significant potential to reduce the size of Sg. If we look at Figure 4.2c, we can
see that computing the difference Sg \ cBDD has this exact effect, as evaluating v2
after following the path that satisfies v1 ∧ v2 leads directly to the false sink node.

v1

v2

1 0

(a) cBDD

v1

v2 v2

v3 v3

1 0

(b) Sg

v1

v2 v2

v3 v3

1 0

(c) Sg \ cBDD

Figure 4.2: Positive case when using cBDD .

Again, there is no guarantee that the resulting Sg \cBDD will be smaller: first,
computing Sg \ cBDD may increase the size of the BDD if the added constraints
make reference to variables in V that did not appear initially in Sg; second, as the
“removed” subgraph is not necessarily isolated – in the sense that it may overlap
with other subgraphs of Sg – the gain in compactness obtained from merging nodes
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of the “removed” subgraph with other nodes of Sg may be lost.
Another factor that might have negative impact is the variable ordering, when

the variables of cBDD are not close together, like in Figure 4.3a. In this case the
subgraph in S′g whose root corresponds to v3 must be split in two to represent that
it actually matters whether it is reached by a path containing v1 or ¬v1, as there is
a constraint relevant to v1.

v1

vn

1 0

(a) cBDD

v1

v2 v2

v3

1 0

(b) Sg

v1

v2 v2

v3 v3

vn

1 0

(c) Sg \ cBDD

Figure 4.3: Negative case when using cBDD .

Of course, when multiple constraints are involved, estimating the increase in
compactness obtained by using cBDD is more complex. Alternatives to the com-
putation of the difference Sg \ cBDD will be analyzed in Section 4.3.

4.2.2 Pruning Spurious Operators in Symbolic Search

The use of state invariants as a constraining technique is not limited to states gen-
erated in regression. As shown in Section 3.4.1, any partial state can be detected
as unreachable by disambiguating it, including action preconditions. An alterna-
tive to solving a CSP to prune spurious operators exists in symbolic settings. The
symbolic representation of partial states does not consider undefined values, so dis-
ambiguation is automatically resolved when removing spurious states from any set
of states (using cBDD , for example). Therefore, spurious operators may also be
found by encoding all the constraints as prevail conditions in the TRs. An operator
o ∈ O is detected as spurious if the conjunction TRo ∧ cBDD ∧ cBDD [x ↔ x′]
is empty.

4.2.3 Encoding Constraints in the TRs

State invariants allow pruning spurious states after they are generated. However,
more efficient alternatives that avoid the generation of spurious states exist. For



CHAPTER 4. STATE INVARIANTS IN SYMBOLIC SEARCH 56

instance, the use of e-deletion, another invariant of the problem, allows avoiding
the generation of spurious states in explicit-state search by modifying the definition
of applicability in regression, as proposed in Section 3.4.2. In this section we study
how to encode constraints in the TRs so that states that violate some constraint are
never generated, in the spirit of e-deletion.

First, we identify which constraints must be encoded in each operator o ∈ O.
This comes from the fact that, although replicating all the constraints in the TRs is
possible, this may lead to a great degree of redundancy. We show that, by assuming
that the set of states to be expanded does not contain spurious states, we can safely
consider only a subset of constraints in each TR while avoiding the generation of
spurious states. Therefore, we denote a constraint as relevant for an operator if it
may become violated after the application of the operator.

Definition 14. (Relevant Constraint) A constraint c is relevant for an operator o if
there exists a state s such that s satisfies c (s � c) and that the state that results
from applying o in s in regression (o(s)) does not satisfy c (o(s) 6� c).

This definition of relevant constraints allows us to define the constrained ver-
sion of an operator. To avoid the generation of spurious states, the relevant con-
straints must be encoded as negative preconditions. This ensures that the encoded
constraints are not violated after the pre-image computation, so that no state that
violates the constraints is generated during the symbolic exploration.

Definition 15. (Constrained Operator) Let o ∈ O be an operator and let Co be
the sets of constraints relevant with respect to o respectively.

Then the constrained operator oc derived from o becomes o with extra precon-
ditions pre(oc) = pre(o) ∧

∧
ci∈Co ci.

Using oc ∀o ∈ O suffices to guarantee that the successor set does not contain
spurious states as long as the source set of states does not contain spurious states.

Theorem 4. Let S ⊆ ¬cBDD be a state set that does not contain states detected
as spurious and oc the constrained version of an operator o ∈ O. Let S′ be the
resulting state set from applying oc in regression to S. Then S′ ⊆ ¬cBDD , that is,
does not contain states that can be detected as spurious.

Proof. Proof by contradiction. Suppose there is a state s′ ∈ S′ that violates some
constraint c. As c was satisfied by every state in S, by definition c is a relevant
constraint for o. Then c ∈ pre(oc), so o is not applicable on s′.

Propositions 1 and 2 show the sufficient and necessary conditions for mutexes
and invariant groups to be relevant. Essentially the relevant constraints are those
that contain fluents that may be added by o.

Proposition 1. (Relevant mutex) Let Mi be a mutex of size m, Mi = ¬(f1 ∧
f2 ∧ · · · ∧ fm). Let o ∈ O be a non-spurious operator and V ⊇ Vu(o) = {vi |
post(o)[vi] 6= u ∧ pre(o)[vi] = u}.
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Then Mi is relevant for operator o if for some fluent fi = 〈υi, x〉 ∈ Mi, either
(a) fi ∈ pre(o) or (b) υi ∈ Vu(o) ∧ post(o)[vi] 6= x.

Proof. Suppose thatMi is relevant for o, that is, it is satisfied in s′ = o(s). Suppose
that Mi is not satisfied in s. Then, for some fluent fi = 〈υi, x〉, fi 6∈ s′, fi ∈ s.
Therefore, s[υi] 6= s′[υi], which implies post(o)[vi] 6= u. Two cases are possible
with respect to the preconditions of o:

(a) pre(o)[υi] 6= u. As o must be applicable in s, pre(o)[υi] = x, so that
fi ∈ pre(o).

(b) pre(o)[υi] = u and υi ∈ Vu(o) immediately follows.

Proposition 2. (Relevant at least one invariant) Let minv be an at least one invari-
ant, minv = f1 ∨ f2 ∨ · · · ∨ fk.

Let o ∈ O be an operator and V ⊇ Vu(o) = {vi | post(o)[vi] 6= u ∧
pre(o)[vi] = u}.

Thenminv is relevant for o if for some fluent fi = 〈υi, x〉 ∈ minv , fi ∈ post(o)
and (a) ∃f ′ = 〈υi, y〉 ∈ pre(o), x 6= y or (b) υi ∈ Vu(o) ∧ post(o)[vi] 6= x.

Proof. Suppose thatminv is relevant for o in regression, i.e. is satisfied in s′ = o(s)
but not in s. Then, for some fluent fi = 〈υi, x〉 ∈ minv , fi 6∈ s, fi ∈ s′. Therefore,
s[υi] 6= s′[υi] = x, which implies post(o)[vi] = x 6= u. Two cases are possible
with respect to the preconditions of o:

(a) pre(o)[υi] 6= u. Then pre(o)[υi] = s[υi] 6= x, so that ∃f ′ = 〈υi, y〉 ∈
pre(o), x 6= y.

(b) pre(o)[υi] = u and υi ∈ Vu(o) immediately follows.

As aforementioned, for this property to hold we must ensure that the parent
BDD does not contain spurious states. In progression this is always the case, as s0
represents a single non-spurious state. On the other hand, s? may contain spurious
states, as s? is in most cases partially defined. In this case, to guarantee that s? does
not contain spurious states, we compute the difference s? \ cBDD to remove them
from the goal description. When constraints are encoded in the TRs, this difference
must be computed only once, before starting the search. This means that there will
be no further overhead because of the use of cBDD , with the additional advantage
that cBDD can be discarded afterwards to free memory.
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4.3 BDD Minimization

The main motivation for using a constraint BDD is to remove spurious states so the
BDDs that represent sets of states are smaller. However, computing the difference
with the cBDD does not guarantee that the resulting BDD will be smaller. Imagine
the following case: a planning task has a single fluent as goal, which means that
at the layer 0 in regression we have a BDD with a single inner node. If the mutex
BDD is used to prune unreachable states, the BDD resulting from the difference
of the original BDD with the mutex BDD will be considerably bigger, as it will
include additional information. It will represent fewer states, as the states that
contain the goal fluent and violate some mutex will be effectively pruned, but it
will also increase in size. This may be detrimental to the search, to the point that it
may not even be able to begin if s? \ cBDD is not tractably representable.

In symbolic search, the performance of the search algorithm is often heavily
linked to the size of the BDDs it works with. Both memory and time (in terms
of BDD manipulation) benefit from working with BDDs that succinctly repre-
sent a given boolean function. In the literature, mainly in works published by the
Model Checking community, several “don’t care” minimization algorithms have
been proposed (Coudert and Madre, 1990; McMillan, 1996; Hong et al., 1997).
“Don’t care” minimization aims to succinctly represent a given function when
only part of it is relevant. They receive a function BDD f and an additional con-
straint BDD c (also called restrict or care BDD), and aim to find a BDD g of
minimum size that represents f ’s function in an incompletely specified way, such
that g(s) = f(s) ∀s ∈ c.

A plausible way of exploiting “don’t care” minimization is to assume that f
corresponds to BDDs that represent sets of states and that c may be any BDD that
imposes some kind of restriction over f (Edelkamp and Helmert, 2000). In our
case, both the complement (that is, the negation) of the closed list BDD and cBDD
can correspond to the definition of c. Hence, using minimization algorithms instead
of the conjunction may prove useful, as it may be possible to obtain smaller BDDs.
The intuition behind the use of minimization algorithms is to allow representing
spurious states if this means that the BDDs will be smaller. These operations are
more expensive to compute than the conjunction, but if g is smaller the computation
of a subsequent image and pre-image operation (which are the most expensive
symbolic operations in most planning instances) may require less time.

Most BDD minimization algorithms are based on the concept of sibling substi-
tution. Sibling substitution consists in replacing a node by its sibling, so that both
become identical and their parent may be removed from the BDD, as illustrated in
Figure 4.4. Sibling substitution requires identifying which nodes are “don’t care”
nodes: “don’t care” nodes are all the nodes in f such that the path that leads to
them evaluates to false in c.

The following are the minimization algorithms considered in this work:

• constrain (Coudert and Madre, 1990): it performs sibling-substitution recur-
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Figure 4.4: Example of sibling substitution. If nodeA belongs to the don’t care set,
it can be substituted by B so their parent P is removed by BDD reduction rules.

sively, replacing nodes that correspond to don’t care values. If g is larger
than f , f is returned instead. A generalization of constrain was also pro-
posed under the name of generalized-cofactor (McMillan, 1996).

• restrict (Coudert and Madre, 1990): refinement of constrain that ensures
that, whenever a node did not originally appear in f , both branches of c that
stem from that node are merged. This guarantees that nodes that did not
originally appear in f will not appear in g, although g may still be bigger.

• leaf-identifying compaction (Hong et al., 2000): it has two phases. First, it
marks edges that can be redirected to a leaf node and edges whose pointed
nodes are to be preserved from sibling substitution. Then, the result is ob-
tained by redirecting edges to leaf nodes whenever possible and applying sib-
ling substitution on non-marked edges. Thanks to the edge-marking phase,
it ensures that g is smaller than f , as opposed to restrict and constrain.

• non-polluting-and: hybrid between regular conjunction and restrict. It per-
forms a conjunction but, like in the restrict operation, whenever a node did
not originally appear in f , both branches of c that stem from that node are
merged.

4.4 Constrained Symbolic Abstraction Heuristics

The use of regression is not limited to backward search. For instance, Pattern
Databases (PDBs) (Culberson and Schaeffer, 1998) perform regression over the
goals in an abstraction of the original problem to create a lookup table that is used
as a distance estimation in the original problem. PDBs in explicit-search that make
use of mutexes are known as Constrained PDBs (Haslum et al., 2007). Constrained
PDBs prune transitions that go through abstracted states that violate the constraints.
Thus, they may potentially prune spurious paths (solution plans in the abstract state
space that do not have a corresponding plan in the original problem) and strengthen
the derived heuristic. A symbolic version of PDBs for their use in symbolic search
has also been proposed (Edelkamp, 2002), so in this work we propose a constrained
version of symbolic PDBs.

Symbolic Constrained PDBs exploit constraints in regression either by encod-
ing them in a cBDD or by using constrained TRs, as we studied in the previous
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subsections. However, there are some subtleties related to the usage of constraints
in an abstract search space that make it different from backward search in the orig-
inal problem. PDBs ignore some variables of the problem. Hence, constraints that
refer to variables not in the pattern are never violated and cannot be taken into
account to prune abstract states. Haslum overcame this problem by individually
checking abstracted variables in the preconditions of the operators, so there would
not exist transitions corresponding to operators that could lead to spurious states in
regression. However, operators in symbolic search may be merged (Torralba et al.,
2013a), which makes individually checking them not possible.

Nevertheless, there are alternatives to Haslum’s method. In particular, the use
of e-deletion to modify the applicability of operators in regression, described in
Section 3.4.2, allows avoiding the generation of spurious states even when a subset
of the variables has been abstracted away. In Section 4.2.3 we proposed encod-
ing constraints in the preconditions of the TRs to avoid the generation of spurious
states in regression. For this, we assumed that the parent set of states did not con-
tain spurious states. In abstractions this cannot be ensured anymore, so we must
also encode the e-deleted fluents in the effects. These e-deleted fluents act like neg-
ative preconditions in regression, so operators that would generate spurious states
become non applicable. This way, encoding constraints in the preconditions of the
TRs and e-deleted fluents in the effects allows obtaining cPDBs more informed
than the ones obtained from TRs with constraints in the preconditions only and
from the difference with cBDD .

4.5 Experimentation

In this section we analyze the impact of using constraints and BDD minimization
in different settings, ranging from symbolic blind search to the generation of sym-
bolic abstraction heuristics. Our motivation is to check whether h2 mutexes and
invariant groups improve over the constraints inherent to the SAS+ formulation of
the problem and to see if more complex BDD manipulation pays off.

h2 was implemented on top of Fast Downward. For symbolic blind search
and symbolic A∗ (BDD-A*) with PDBs we use the Gamer planner (Kissmann and
Edelkamp, 2011). As each planner uses its own SAS+ variables, mutex fluents are
extrapolated to Gamer’s SAS+ encoding. All the experiments with Gamer use the
same variable ordering, which is optimized prior to the search.

Results with different methods to prune spurious states are reported, sharing
the same nomenclature in all the subsections. cBDD contains constraints from
both h2 mutexes and invariant groups. M∅ is the baseline version which does
not use cBDD . M& computes the conjunction with the negation of cBDD . The
four aforementioned BDD-minimization algorithms are used: don’t care minimiza-
tion(Mdcm ), restrict(Mres ), constrain(Mcon ) and non-polluting-and(Mnp&). Fi-
nally e-del is the version in which the TRs take into account mutex and invariant
group constraints instead of using cBDD . Results are reported with the regular
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set of operators (O) and with the set of operators after pruning spurious operators
found by disambiguating their preconditions (O−).

We run experiments on the benchmarks of the optimal track of the International
Planning Competition 20111. All our experiments were run and validated with the
IPC-2011 software on a single core of an Intel(R) Xeon(R) X3470 processor at
2.93GHz. The experimental setting is the same as in IPC-2011: 1800 seconds
per problem and 6GB of available memory. Time score and coverage follow the
same rules as in IPC-2011 too. BDD operations are implemented using Fabio
Somenzi’s CUDD2 2.5.0 library. For the image and pre-image computation we
used a disjunctive partition of the TRs, merging the TR of each operator up to a
maximum size of 100000 nodes. This method is simple and has proved to be more
efficient than other approaches (Torralba et al., 2013a). Similarly, if a single cBDD
surpasses 100000 nodes, it is also encoded as several smaller ones.

In Elevators and Transport neither additional h2 mutexes nor constraints from
invariant groups were found. In Floortile, Nomystery, Openstacks, Parcprinter,
Pegsol and Woodworking cBDD had fewer than 10000 nodes in all the problems.
More than one individual cBDD were needed in some instances of the following
domains (number of BDDs in the worst case between parentheses): Barman(2),
Parking(25), Scanalyzer(10), Sokoban(13), Tidybot(8) and Visitall(6). Overall nei-
ther the size of cBDD nor the time spent pruning unreachable states was signifi-
cant. Note that the size of cBDD also depends on the order of the variables: an
order more suitable to their representation might reduce their size.

When encoding the constraints in the TRs (e-del configuration), the sizes of
the TRs vary. In Barman, Tidybot and Visitall the TRs actually become smaller
in most instances. In Openstacks, Pegsol and Woodworking the size is roughly
the same (±10%). In Floortile the TRs grow by more than 50%, in Nomystery
and Parcprinter they become several times bigger and in Sokoban and specially in
Scanalyzer the number of individual TRs needed to encode the operators grows by
a significant amount. The worst case is Parking, in which the size of the TRs of
the individual operators blows up when the constraints are added and exceed the
available memory even before beginning the search. This is due to the high number
of mutexes that are found in this domain, as all variables in Parking interact heavily
with each other.

4.5.1 Symbolic Unidirectional Blind Search

First we start with the simplest case, backward blind search. We compare the
performance of symbolic backward search with and without constraints against
symbolic forward search. Table 4.1 shows the time score comparison of different
configurations of forward and backward blind search.

The impact of pruning spurious operators (O−) is small except in Tidybot and
sometimes does not compensate the time spent computing h2 if this is only done to

1http://www.plg.inf.uc3m.es/ipc2011-deterministic
2http://vlsi.colorado.edu/ fabio/CUDD
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BACKWARD FORWARD

M∅ M& Mdcm Mres Mcon Mnp& e-del M∅
O O− O O− O− O− O− O− O− O O−

Barman 0.00 0.00 5.69 5.98 1.13 1.58 1.64 5.91 9.29 7.35 7.47
Elevators 2.48 2.49 2.48 2.48 2.48 2.49 2.49 2.49 2.49 15.88 15.82
Floortile 5.06 5.18 13.25 13.60 10.02 11.89 12.60 13.41 13.39 0.71 0.73

Nomystery 10.46 10.96 10.21 10.95 10.48 10.61 10.41 10.94 11.04 9.63 9.33
Openstacks 15.30 14.68 16.19 15.97 7.59 10.75 11.47 15.85 15.95 19.77 18.22
Parcprinter 4.23 4.18 15.14 15.27 12.04 13.54 13.60 14.69 15.48 5.31 5.55

Parking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pegsol 0.00 0.00 2.07 1.92 0.85 0.85 0.85 1.92 2.20 16.74 16.38

Scanalyzer 8.72 8.48 8.38 8.43 3.08 3.65 3.62 8.45 9.00 8.49 8.20
Sokoban 0.27 0.27 16.48 16.68 11.15 12.35 14.50 16.12 16.64 15.87 14.96
Tidybot 0.00 1.00 2.71 6.65 0.87 0.93 0.87 4.74 6.80 10.05 13.92

Transport 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 6.00 5.85
Visitall 8.51 8.51 8.52 8.52 8.43 8.52 8.77 8.52 8.57 7.62 7.60

Woodworking 10.76 9.83 17.43 17.69 8.47 8.95 9.03 17.13 18.68 5.31 4.97
Total 67.58 67.37 120.34 125.92 78.40 87.89 91.64 121.96 131.32 128.73 128.99

COVERAGE 92 94 144 148 113 121 122 145 150 149 149

Table 4.1: Time score and total coverage of unidirectional blind search.

prune such operators (forward and backwardM∅). As expected, it benefits back-
ward search more than forward search, as spurious operators may be applicable in
regression. Additionally, in versions that already compute h2 for other purposes,
the score with O− stays roughly the same or improves, so operator pruning is al-
ways recommended in these cases.

Using constraints to prune spurious states improves the results by a very sig-
nificant margin, almost doubling the time score and solving 50% more problems
overall. In Barman, Sokoban, Tidybot and Pegsol almost no search was accom-
plished by backward search without mutexes, while pruning spurious states allows
backward search to solve some problems in those domains. For example, the maxi-
mum g-layer expanded backwards without mutexes in the first problem of Barman
is five, whereas with mutexes the optimal solution, whose cost is 90, is found. Also,
although computing cBDD requires some time and memory, it does not harm in
any domain.

The reported results include the use of invariant group constraints in all the
configurations that use constraints. When disabling the use of these constraints the
same coverage is obtained, although the time score worsens perceptibly in Sokoban
and slightly in Woodworking and Openstacks, losing six points overall with the
M& configuration.

BDD minimization is not useful in this setting. This is because reducing the
BDD that represents the set of predecessor states by including some spurious states
often means that the set of successor states is bigger. This has no impact in terms
of memory, as the set of successor states can be minimized afterwards in the same
way, but it affects negatively the time required to compute the pre-image (apart
from requiring more time than a regular conjunction with the cBDD). Overall
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and although in some cases a memory reduction of up to a third for some BDDs
is obtained, the extra time does not pay off. Thus, M& dominates all the BDD
minimization configurations in all domains.

Finally, encoding mutexes and invariant group constraints in the TRs instead
of using cBDD is the most efficient version. This is because e-del directly gener-
ates BDDs that do not contain spurious states, instead of generating a potentially
much bigger BDD with spurious states and intersecting it with cBDD afterwards.
Surprisingly, the size of the TRs does not affect the performance, which means that
the performance of pre-image seems to depend on the size of the resulting BDD
rather than on the size of the predecessor BDD and the TRs.

On a per domain comparison we can observe that the directionality of the do-
mains has a huge impact on the performance of the planner (Massey, 1999). This
hints that a bidirectional approach is probably more efficient than unidirectional
search, which is explored in the following subsection.

4.5.2 Symbolic Bidirectional Blind Search

After assessing the viability of constraints in isolation, we now use them in a state-
of-the-art symbolic bidirectional blind version of Gamer. Spurious operator prun-
ing is enabled in all the configurations. The only other modification with respect to
the version of Gamer used in (Torralba et al., 2013a) is that we dynamically check
the time and memory consumed per step. During a step, if it uses more than twice
the memory or time than the last step in the opposite direction, we interrupt it and
switch the direction of the search. This makesM∅ solve four fewer problems in
Tidybot (7 instead of 11), three of which are recovered thanks to spurious oper-
ator pruning. We exclude BDD-minimization methods because, as shown in the
unidirectional case, they are not useful in the symbolic blind search setting. Thus,
we only compare the baseline with the version that uses cBDD (M&) and the
one that uses TRs with constraints (e-del), both of them also with invariant group
constraints.

Table 4.2 shows that symbolic bidirectional blind search is able to improve
over both forward and backward search. As in the unidirectional version, a con-
sistent improvement is obtained when using constraints, increasing the coverage
from 172 problems to 199 with e-del. Nomystery is the only domain where ap-
plying mutexes actually makes the search slightly slower, although this does not
affect coverage. M& and e-del yield similar results in most domains (a difference
in score smaller than 0.5 points), although an increase in performance is obtained
by e-del in Barman, Parcprinter, Scanalyzer and Woodworking.

Overall the results of the bidirectional blind search version of Gamer with con-
strained TRs are remarkable, solving 14 more problems than the winner of IPC
2011, Fast Downward Stone Soup (Helmert et al., 2011).
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M∅ M& e-del
Barman 5.46 8 9.78 11 12.00 12

Elevators 18.13 19 18.17 19 17.92 19
Floortile 5.89 10 13.56 14 13.46 14

Nomystery 16.00 16 15.06 16 15.11 16
Openstacks 17.68 20 18.93 20 19.16 20
Parcprinter 5.79 8 14.09 15 15.37 16

Parking 0.00 0 0.00 0 0.00 0
Pegsol 14.65 17 18.42 19 18.38 19

Scanalyzer 8.52 9 8.28 9 9.00 9
Sokoban 13.63 19 18.49 19 18.21 19
Tidybot 8.98 10 15.53 16 15.33 16

Transport 8.67 9 8.83 9 8.67 9
Visitall 10.98 11 10.95 11 10.84 11

Woodworking 10.81 16 17.74 19 18.47 19
Total 145.17 172 187.83 197 191.94 199

Table 4.2: Time score and coverage of bidirectional blind search.

4.5.3 BDD-A∗ with PDBs

After observing the positive impact of constraints on symbolic blind search, we
analyze the case of symbolic abstraction heuristics, in which symbolic backward
search is performed in an abstracted state space. Our goal is testing whether the
constrained versions of symbolic abstraction heuristics return higher estimates than
the unconstrained versions. We performed experiments with BDD-A∗ guided by
symbolic PDBs. The choice of variables for the patterns is the same as the one pro-
posed by Kissmann and Edelkamp (2011). Table 4.3 shows the results. First, prun-
ing spurious operators allows solving four additional problems, one in Barman and
three in Tidybot. When using mutexes, the coverage goes up to 184 problems with
bothM& and e-del. The use of BDD-minimization operators performed slightly
worse thanM& and e-del, so we did not include them for conciseness. The time
score was also left out because BDD-A∗ spends half of the available time comput-
ing the PDBs, which skews the time score and makes it not as representative.

Comparing the results of Tables 4.1 and 4.3 we can see that constraints have a
smaller impact when using abstractions. PDB heuristics are only useful in Parking,
Sokoban and Tidybot, where an additional problem per domain is solved. Con-
straints helped more in cases in which backward blind search was not feasible at
all, as the number of problems in which a single step backward is not possible is
reduced when using them. Overall, bidirectional blind search performs almost as
good or better than BDD-A∗ with symbolic PDBs, as it can exploit the directional-
ity of the planning instances better.

We can conclude that the pruning power of constraints is reduced considerably
in abstracted spaces: the constraints in which abstracted variables appear are of no
use and the abstracted space is less constrained than the original one, so there is
less margin for improvement. Nevertheless the use of constraints never hurts and
is in all cases equal or better than the configuration with no mutexes, so there is no
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M∅ (O) M∅ (O−) M& e-del
Barman 6 7 8 8

Elevators 19 19 19 19
Floortile 12 12 14 14

Nomystery 14 14 14 14
Openstacks 20 20 20 20
Parcprinter 9 9 9 9

Parking 1 1 1 1
Pegsol 17 17 17 17

Scanalyzer 9 9 9 9
Sokoban 20 20 20 20
Tidybot 14 17 17 17

Transport 6 6 6 6
Visitall 11 11 11 11

Woodworking 19 19 19 19
Total 177 181 184 184

Table 4.3: Coverage of Symbolic PDBs + BDD-A∗.

reason why constraints should not be used.

4.6 Discussion

In this chapter we showed the relative pruning power of h2 mutexes in symbolic
search, proving that the constraints encoded in the SAS+ formulation do not suf-
fice to detect a significant amount of spurious states in many domains. Additional
constraining techniques were successfully employed, and the impact of BDD-
minimization operations that work with constraining BDDs was tested. Note that
h2 mutexes were implicitly used before (Jensen et al., 2006), although the reported
results did not show a significant increase in performance.

The results seem to contradict the assumption in planning that progression is
more robust than regression, at least in optimal symbolic search. Previous results
on both symbolic and explicit-state search suggested that forward search outper-
formed backward search in the IPC benchmarks. For example, in (Torralba et al.,
2013a) it is reported that the percentage of forward search performed by Gamer
with bidirectional blind search is greater than 90% for 6 out of 14 domains and
75% overall. Only in Floortile and Woodworking backward search was superior to
forward search. Another example is Patrik Haslum’s forward version of HSPr in
the IPC 20083, which was as good or better than the original backward version in
all the domains except Scanalyzer. However, the results shown in Table 4.1 change
this picture: when using h2 mutexes, the results of backward and forward sym-
bolic search are close, with a relatively high degree of variability between different
domains.

An important conclusion to be drawn is that symbolic search seems to work
3http://ipc.informatik.uni-freiburg.de/Results
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better in regression than explicit-state search. The underlying reason is subsump-
tion of states in regression. This occurs when the set of fluents that compose a par-
tial state is a subset of the set of fluents of a newly generated one. In this case the
latter should be reported as a duplicate of the former, which is seamlessly detected
when using a symbolic closed list but which is not trivially detected when using
a closed list in Disjunctive Normal Form, as it happens in explicit-state search.
Similarly, the detection of the collision of frontiers in bidirectional search is trivial
if the backward search is symbolic (the forward search can be either symbolic or
explicit-state), which tips the scales further in favor of symbolic search in regres-
sion.

Regarding the good performance of symbolic bidirectional blind search, the
impact of the directionality of the domains (Massey, 1999) explains why this con-
figuration fares so well, as a simple alternating strategy allows choosing the direc-
tion in which the problem may be more easily solved. We leave the implementation
of a bidirectional version of BDD-A∗ that uses constraints as future work. We also
plan on investigating whether variable orders derived from the constraints may be
more useful than the range of orderings tested in the literature (Kissmann and Hoff-
mann, 2013). Such orderings may provide a more concise representation of the set
of spurious states, which could overcome the drawbacks of using constraints in
domains like Parking, in which cBDD becomes too large to be manageable.



Chapter 5

Backwards Generated Goals

Heuristic search with reachability heuristics is arguably the most suc-
cessful approach in Automated Planning up to date. In addition to an
estimation of the distance to the goal, the relaxed plans obtained with
such heuristics provide the search with useful information, like pre-
ferred operators and look-ahead states. However, this information is
extracted only from the beginning of the relaxed plan. In this chapter,
we propose using information extracted from the last actions in the
relaxed plan to generate intermediate goals backwards. This allows
us to use information from previous computations of the heuristic and
reduce the depth of the search tree, both in the original space and in
the computation of the heuristic.

5.1 Introduction

The use of reachability heuristics along with a forward search algorithm has proved
to be one of the most effective approaches in Automated Planning, as seen in the
last International Planning Competitions. Most heuristics of this kind are based on
the relaxation of the delete effects of the actions. In particular, the FF heuristic
(also known as the relaxed plan heuristic) first used in Fast Forward (Hoffmann
and Nebel, 2001) still remains a very effective way of guiding a forward search in
the state space.

Apart from the heuristic numeric value obtained, the actions that compose the
relaxed plan offer additional information that can be exploited in the search pro-
cess. Helpful actions (Hoffmann and Nebel, 2001) can be used to prune unpromis-
ing successors or to discriminate between successors by assigning them to different
priority queues (Röger and Helmert, 2010); look-ahead states (Vidal, 2004b) are
an attempt to advance several steps at once in the search state by combining and
executing applicable actions of the relaxed plan; and macro-actions (Botea et al.,
2005) may be inferred online from the relaxed plan to redefine the domain and
reduce its depth.

67
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A common aspect of these techniques is that they all take into account only
the first actions of the relaxed plan. This is reasonable, given that these techniques
require legal sequences of actions in the evaluated state, and relaxed plans have
a higher probability of including illegal or non-applicable actions the farther the
actions are from the evaluated state. However, this ignores potential additional
information the relaxed plan may contain.

In this work we propose a novel method to take advantage of information from
the last actions of the relaxed plan. The motivation behind this work is that the last
actions of the relaxed plan are often similar across different calls to the heuristic
function. This fact allows the planner to improve the search by: reusing informa-
tion from previous computations of the heuristic; or getting more accurate heuristic
estimations. The way of exploiting this observation is by generating intermediate
goals backwards by applying in regression actions from the last part of the relaxed
plan. This way, in subsequent computations of the heuristic the closest interme-
diate goal to the current state can be detected and the estimation of the distance
can be computed to the detected intermediate goal and not to the original goal. We
have called this approach the Backwards Generated Goals (BGG) heuristic.

BGGs provide additional information that can be used to reduce the number
of steps taken in the reachability heuristic. Also, this information can be used to
derive more accurate heuristic estimations for two reasons: first, BGGs will usually
be closer to the evaluated state than the original goal, and reachability heuristics
tend to be more accurate as the search gets closer to the goal because, if the relaxed
exploration requires fewer steps, there is less margin for error to accumulate. Also,
there exist the possibility of adding the estimation of the heuristic to the distance of
the detected BGG to the original goal if a more accurate estimation to the original
goal is required. Furthermore, the use of BGGs allows stopping the search earlier
when satisfying an intermediate goal, as the path to the original goal can be built
by tracing back the generation of the intermediate goal. This relies on a careful
generation of extra information together with the intermediate goal.

To ensure the validity of the backwards generated goals, actions must legally
support the reached goals. This is done by using concepts from regression like e-
deletion: considering delete effects when supporting goals and taking into account
static mutexes between the preconditions of the actions and the goal propositions
not satisfied by the supporting actions. Experimental evaluation of the techniques
presented here shows improvements in coverage and number of expanded nodes
over the regular FF heuristic. In particular, the approach seems to improve perfor-
mance substantially in traditionally hard domains to common reachability heuris-
tics.

5.2 Reachability Heuristics and the FF Heuristic

When using a heuristic search algorithm, the estimation of the distance to a goal
state is often obtained by solving the same problem, but after introducing some kind
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of relaxation. The relaxed plan heuristic originally made use of the planning graph
implemented by Graphplan (Blum and Furst, 1997). It builds a layered directed
graph alternating facts and actions until all goals appear at some level, not taking
into account mutexes between both actions and propositions and ignoring delete
effects. Figure 5.1 shows a relaxed planning graph in which circles are propositions
of S and squares are actions ofA. Propositions and actions are organized in vertical
layers. Edges that connect an action to propositions of the previous level mean that
those propositions are preconditions of the action. Edges that connect an action to
propositions of the next level mean that those propositions are adds of the action.
Edges that connect propositions between proposition layers are no-op actions, used
to propagate already achieved propositions forward. The propositions highlighted
in pink are the goals of G.

Figure 5.1: Illustration of a relaxed planning graph.

Once the graph has been generated and all the goals have been achieved at some
level, a plan is extracted by a backtrack-free search algorithm in which actions that
make the goals true are greedily selected. The supported goals are removed and
the preconditions of the actions are added to the goal set, until all the goals belong
to the initial state. The actions are chosen taking into account the level they first
appeared, choosing those with lower levels. The heuristic value returned is the
number of actions in the relaxed plan. As presented in Section 3.5, in most modern
planners the reachability analysis algorithm is implemented as uniform-cost search
rather than as a relaxed planning graph because it is more efficient and it allows a
more formal characterization of the algorithm and the heuristics. However, in this
chapter we will use the traditional relaxed planning graph nomenclature, as it will
help understanding how BGGs work.

While planning as heuristic search is the paradigm used by most successful
state-of-the-art planners, it has some disadvantages. Even though reachability
heuristics can be computed in polynomial time, they still require heavy compu-
tation. Besides, due to the complex interactions that often appear in planning prob-
lems, heuristics must be recomputed for every state from scratch. While this has
been addressed by earlier works (Refanidis and Vlahavas, 2004; Liu et al., 2002),
reducing the impact of this heavy computation required for heuristic evaluation still
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remains an open question.
One way to alleviate this is to extract additional information from the heuristic

computation. Reachability heuristics solve a relaxed version of the problem, and
thus yield a relaxed plan as a solution. The relaxed plan may contain actions in
common with a possible solution, which can favorably bias the search. Preferred
operators and look-ahead states are the most prominent examples of this kind of
techniques. In particular, helpful actions are sometimes more relevant than the ac-
curacy of the heuristic used (Richter and Helmert, 2009). Since these actions must
have the possibility of belonging to a real solution, they must be legal actions even
in the relaxed case. This is ensured by checking that the action is applicable in the
evaluated state in the case of helpful actions, and that none of the preconditions of
the actions that lead to the look-ahead state is deleted by another action. Therefore,
this limits the actions to those close to the evaluated state.

However, as shown in Section 3.2, it is possible to ensure the consistency of the
actions with the set of goals and thus guarantee their applicability in regression by
using e-deletion. This gives the opportunity to extract similar information from ac-
tions far from the beginning state. In forward state search, goals are static. Because
of this, in many cases the last actions that lead to the goal in the relaxed plan will be
the same for different evaluated states - in fact, they may even belong to a solution
plan -. Hence, generating sets of intermediate goals as done in backward search
using the information derived from the relaxed plan may allow reusing information
from relaxed plans obtained in the evaluation of previously evaluated nodes. This
can benefit the search in essentially in two ways: first, it may decrease the depth of
the search in both the heuristic computation and the forward state search; second,
it may capture additional information from constraints that may appear in areas of
the search space around the goal.

5.3 Intermediate Goals and Reachability Heuristics

A reachability analysis is actually a uniform-cost search in a delete relaxation of
P . There is an important observation about this: uniform-cost search exhibits a
wave-like behavior. Therefore, it not only gives an estimation of the distance to
a goal, but also estimates that the first reached goal is the closest to the state in
case multiple goal states are present. To better illustrate this, let us consider the
example shown in Figure 5.2. There is a grid in which some cells are labeled as
goal cells, and a key is needed to open a chest that contains the gold. There is only
one key, held by the agent in the initial state. An agent can only move to adjacent
(non-diagonal) cells, and there are dark cells. The key is lost when going through
dark cells. In this case, in the heuristic computation the first level of the relaxed
planning graph will check whether any of the cells at distance one is a goal cell; at
the second level, all the cells at distance 2 will be checked, and so on. The heuristic
computation will find the closest goal cell in the relaxed problem, independently
of how many goal cells exist in the grid, and will stop. The relaxed plan may be
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illegal (if for example there is a dark cell in the way to a goal cell, since the key
would be lost), but it still gives an estimation to the closest goal.

Figure 5.2: The agent is located in A and cells marked with G are goal cells. In the
heuristic computation, only two levels are expanded estimating that the goal cell to
the left and above the agent is the closest one.

In most domains the set of goal propositions does not describe a complete state
- an exception being the N-Puzzle domain, for instance - so the reachability analy-
sis already deals with multiple goal states implicitly. The set of goal propositions
G does not describe a complete state when the value of some proposition in the
instantiated problem is not defined. For example, if S={a,b} and G={a}, both
s1={a,b} and s2 = {a,¬b} are goal states. However, this fact does not change
the behavior of the heuristic, meaning that regular reachability heuristics effec-
tively take into account multiple potential goals. This interesting property can be
extended to the case in which there are different sets of goal propositions as well.

Taking advantage of this fact, the main contribution of this work is to generate
multiple intermediate goals that lead to the original goal. Actions known to lead to
the problem goals are used to generate the intermediate goals. To formally repre-
sent the existence of multiple set of goals a change on the definition of the problem
is needed: the goal is not G anymore but rather a set of sets of propositions G such
that initially G = {G}. At each call to the heuristic function, a new intermediate
goal set G′ is obtained so it can be added to the set of goals G. G′ is generated
by choosing an action a ∈ A from the relaxed plan that supports one of the goal
propositions g ∈ G such that G ∈ G. G′ is generated by applying a in G in regres-
sion as described in Section 3.2. This means that we remove the propositions in G
supported by a and add pre(a) to the aforementioned set of propositions. This new
set G′ is then added to G, a list of goals relevant to subsequent computations of the
heuristic.

Every BGG ∈ G stores the chosen action a ∈ A and the distance to the original
goalG for two purposes: allowing reconstructing a path by tracing back the chosen
actions; and obtaining the distance from the intermediate goal to the original goal,
that is, the cost of the intermediate goal. Optimality on this distance cannot be en-
sured, as there may be shorter paths from the intermediate goal to the original goal
G. Having several sets of goal propositions also changes the stopping criterion of
the reachability analysis: instead of stopping the expansion of the relaxed planning
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graph when all goal propositions g ∈ G appear in a given layer Pi ⊆ S, the expan-
sion stops at a propositional layer Pi when ∃Gj ∈ G such that Gj ⊆ Pi. Figure 5.3
shows how the aforementioned wave-like behavior of reachability heuristics al-
lows stopping the reachability analysis earlier if a BGG is satisfied. In this case the
circles around the evaluated state Si represent the layers of the relaxed planning
graph. As we can see, once the reachability analysis satisfies BGGj it stops even
if it has not reached G. The relaxed plan is then extracted by tracing back actions
from BGGj .

Figure 5.3: Computation and extraction of a relaxed plan from the evaluated state
Si to BGGj .

The implementation of this technique is closely related to how actions are
known to be applicable at a given level in the implementation of heuristic search
planners like FF and Fast Downward. The relationship is clear, as the preconditions
of any action a ∈ A form subgoals themselves. Each proposition p ∈ S maintains
a list of indexes of the sets of goals Gi ∈ G they appear in, that is, p points to Gi
if p ∈ Gi. Also, we define a counter that stores the number of unsatisfied propo-
sitions of each intermediate goal set Gi. Whenever a goal proposition p is first
achieved by an action in the relaxed planning graph, the counter of the goal sets
Gi ∈ G | p ∈ Gi is decreased by one. When the counter of any Gi reaches zero, it
is guaranteed that there is a relaxed plan that can reach Gi and so the reachability
analysis can stop.

A key difference with respect to the standard computation of the FF heuristic
however is that we require at least one action that reached the intermediate goal
set in the last action layer of the relaxed planning graph to be a legal support. The
concept of legal support is based on the application of the action in the search
space: it must be able to appear as the last action in a valid solution plan. This is
the same case presented in Section 3.5.1, in which in order to ensure that at least
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there will be one applicable preferred operator in regression one of the supporters
of the set of goal propositions must be consistent. Therefore, the conditions that
must be fulfilled to ensure that a supporting action a ∈ A of someGi ∈ G is a legal
support of Gi and is able to generate a new BGG G′ are:

• a is consistent with Gi following Definition 12; and

• the new set of goal propositions G′ must not have been previously generated
(G′ 6∈ G)

The first constraint is straightforward: an action a that is not consistent with
a set of goal propositions Gi can never be the last action of a plan, as it is not
applicable in regression in Gi. In fact, this constraint usually ensures that there
is a legal path from a given intermediate goal to the original goal, as it avoids the
generation of spurious sets of goal propositions detectable by the use of mutexes.1

It is also interesting to note that enforcing the consistency of at least one goal
supporter could also be done for the original FF heuristic. In this case at least one
legal supporter for a goal proposition g ∈ G would be required, which would turn
the FF heuristic into a semi-relaxed one using a quite plausible criterion.

The basic idea of the second constraint is that, whenever a duplicated goal is
generated, that goal was necessarily already supported in the relaxed graphplan at
an earlier lever. Then, if the heuristic computation did not stop at that earlier level
when supporting that already generated goal, it must be an unreachable goal at
that level as no legal action was found for it so far. This can be explained going
back to the leveled approach of the heuristic computation. Intermediate goals are
generated by taking away the supported propositions and adding the actions pre-
conditions. Preconditions must be satisfied at earlier levels than the propositions
the action supports. If the new set of propositions that includes the preconditions of
the action was already an intermediate goal, this means that this goal had already
been satisfied at earlier levels of the heuristic computation. This is so because the
already existing intermediate goal only differs from the reached goal in the precon-
ditions and effects of the action, and these preconditions belong to earlier levels.

5.3.1 Implementation Details

It is possible for a given set of goals Gi ∈ G to be legally supported in several
ways, which opens the possibility of generating several BGGs. However, in our
implementation we have chosen to generate a single BGG per evaluated state to
avoid having having an excessive number of BGGs. Hence, one action must be
selected. First, a goal proposition among those legally supported must be chosen.

1Note that it is in fact possible to generate spurious BGGs, just like any other set of propositions
generated in regression. Using disambiguation may help reduce the number of spurious BGGs in
some domains, although spurious BGGs undetectable by mutexes are not frequent and even if they
are spurious they may still help during the computation of the heuristic - they will never be satisfied
in the original search space.
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In the current implementation, propositions are heuristically chosen by the level
at which they first appear, preferring propositions farther from the initial state.
The intuition behind this decision is that these propositions seem more difficult
to satisfy and thus they are probably achieved in later stages of the solution plan.
This concept is loosely related to the way actions are heuristically chosen when
extracting the relaxed plan, although in a reversed way. Second, if the proposition
has several supporting actions, those appearing closer to the initial state are chosen
first, as their preconditions are deemed easier to achieve. The reachability analysis
is described in Algorithm 1, while Algorithm 2 describes the way a legal action is
sought and chosen to generate a new intermediate goal.

Algorithm 1: Heuristic Computation with Intermediate Goals.
Data: Current State s ⊆ S, G
Result: Intermediate Goal igoal
begin

SatisfiedPropositions←− s
while not leveledOut(G) do

NewlySatisfied←− ∅
foreach p ∈ SatisfiedPropositions do

foreach GoalReference ∈ p do
Unsatisfied←− Unsatisfied− 1
if Unsatisfied = 0 then

igoal←− LegalGoal(GoalReference)
if igoal 6= NULL then

return igoal

foreach ActionReference ∈ p do
Preconds←− Preconds-1
if Preconds = 0 then

add Effects to NewlySatisfied

SatisfiedPropositions←− NewlySatisfied

return NULL
end

As depicted in Algorithm 1, it is possible for the relaxed plan graph to level out
before a supporting action is found. This is due to the constraints on the legality
of the supporters. In this case, the goals are unreachable and the state is then
successfully detected as a dead end.

Intermediate goals also affect the forward search stopping criterion. Because
of the first constraint on the legality of the supporters, a path can be built from
any intermediate goal to G by tracing back the actions used in the intermediate
goal generation. Consequently, once the forward search satisfies a goal, be it an
intermediate one or G, the search stops and returns a valid plan. Stemming from
this fact, two different heuristic values can be extracted. Since intermediate goals
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Algorithm 2: LegalGoal Function.
Data: Intermediate Goal igoal
Result: New Intermediate Igoal igoal
begin

/* Propositions are sorted by the level they were satisfied in,
those at later levels first */

foreach Proposition ∈ igoal do
foreach SupportingAction ∈ Proposition do

newIgoal←− igoal
take out AddEffects from newIgoal
if SupportingAction deletes newIgoal then

continue
if IsMutex(Preconds, newIgoal) then

continue
add Preconds to newIgoal
if newIgoal already exists then

continue
return newIgoal;

return NULL;
end

store the distance to G gbgg, the value extracted in the heuristic computation may
be either the distance to the intermediate goal hbgg or hbgg + gbgg, in which hbgg
is the length of the relaxed plan extracted from that intermediate goal. If the main
objective is finding a solution regardless of its quality, hbgg is good enough, as the
forward state search only has to reach an intermediate goal to build a valid plan. If
plan quality is important, adding both values may give a more accurate estimation
than the regular FF heuristic thanks to delete effects being taken into account to
some degree along the path from the reached BGG to G. Just like the FF heuristic,
both cases can be extended to a metric different from plan length too, being cost
the most common one.

5.4 An Example of Backwards Goal Generation

To show how the process of backwards generating goals works, we will include
an example from a challenging domain. The domain is the Gold-Miner from the
learning track of the International Planning Competition held in 20082. This is a
domain similar to the aforementioned grid domain. The goal in this case is picking
up the gold, which appears at only one cell. On the grid there are rocks that block
the way, that can be either hard or soft. There is a laser and unlimited bombs which
can be used to clear the rocks. Soft rocks can be destroyed with either one, but
hard rocks require the laser. Besides, when using a bomb it is lost and another one

2IPC 2008 website: http://ipc.informatik.uni-freiburg.de/
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must be picked up from the pile of bombs if needed. The drawback of the laser is
that it deletes the gold proposition if used to clear up the way in the cell where the
gold is at, leading to a dead end. Figure 5.4 shows what a problem in Gold-Miner
looks like.

Figure 5.4: Example of a problem in Gold-Miner.

The difficulty of this domain lies in the fact that, since delete effects are ig-
nored, using the laser has no drawbacks when solving the relaxed problem. There-
fore, once the laser is picked up (which is often mandatory to clear the way through
a hard rock) picking up a bomb to destroy the last rock is almost never considered
in the relaxed plan. This is further aggravated if helpful actions are used, as the
action of picking the bomb up is never considered as helpful.

The first steps of the backwards generation are the following (assume that c1
and c2 are adjacent cells):

Goal: (holds-gold)

Step 1: (pick-gold c2) -> (holds-gold)
-New goal: (robot-at c2), (gold-at c2), (arm-empty)

Step 2: (move c1 c2) -> (robot-at c2)
-New goal: (robot-at c1), (clear c2), (arm-empty),

(gold-at c2)

Step 3: (fire-laser c1 c2) -> (clear c2)
;; deletes (gold-at c2)

(detonate-bomb c1 c2) -> (clear c2), (arm-empty)
-New goal: (robot-at c1), (holds-bomb), (gold-at c2)

The original goal isG1 ={(holds-gold)}. There is only one action that supports
it with no other effect, (pick-gold c2), so the proposition it satisfied is substituted
with its preconditions, generating a new set of goals, G2 ={(robot-at c2), (gold-
at c2), (arm-empty)}. After this step, there are two sets of goal propositions: the
original one, G1 and the new one, G2. In the second step, G2 is satisfied in an
earlier step when expanding the relaxed plan graph. Both (robot-at c2) and (arm-
empty) can be legally supported ((gold-at c2) is already true in the initial state). As
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it was explained before, ties among actions that legally support goal propositions
are broken choosing those that support propositions first satisfied at later levels.
Because of this, the action (move c1 c2) is the one chosen to generate an additional
intermediate set of goals, G3 ={(robot-at c1), (clear c2), (arm-empty), (gold-at
c2)}.

In the third step, G3 can be supported by several actions again. In particular,
to clear the way towards the goal the robot can either fire the laser or use a bomb.
Nevertheless, since delete effects are taken into account in the backwards goal
generation (consistency is a requisite of legal support), (fire-laser c1 c2) appears
as illegal and is discarded. Thus, (detonate-bomb c1 c2) is chosen instead. Using
(detonate-bomb c1 c2) generates G4 ={(robot-at c1), (holds-bomb), (gold-at c2)}
as a new BGG, which captures the hardest difficulty in the domain and allows
easily solving the problem - if G4 was given to a heuristic search planner using the
FF heuristic instead of the original goal, the instance would be most likely trivial,
as the proposition (holds-bomb) strongly bias the generation of the relaxed plan
and feeds the forward search with the correct helpful actions. Figure 5.5 illustrates
schematically this sequence.

Figure 5.5: Example of how BGGs are generated in Gold-Miner.

5.5 Experimentation

Both the FF heuristic and the technique presented in this work (which we called
BGG, Backwards Generated Goals) have been implemented on top of JavaFF (Coles
et al., 2008). Because of the characteristics of BGG, it has been implemented as a
forward state search algorithm with a dual queue (Röger and Helmert, 2010) as in
Fast Downward. One of the queues uses the BGG heuristic, while the other uses
the regular FF heuristic. The reason behind this is that, when computing the BGG
heuristic, extracting a relaxed plan from the original goal takes little additional ef-
fort – the reachability analysis is already done and the best supporters are already
computed for most propositions – and may be helpful for the cases in which the
BGG heuristic is strongly guided towards an unreachable intermediate goal.
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Greedy best-first search has been used as the search algorithm. Greedy best-
first search expands in every step the most promising node determined by the func-
tion f(n) = h(n) in which h(n) is the heuristic function of the node. The use of
intermediate goals requires some modifications, though. For every evaluated node,
an intermediate goal is obtained. States with bad heuristic values are less likely
to be on the path of a possible solution plan. Hence, they may yield intermediate
goals that may mislead the search. To avoid this, intermediate goals are associated
with the state along with its heuristic value in the open list instead of being added
to the goal list. When a state is expanded then its intermediate goal is added to the
list. This way, all the goals are generated from the best state at every iteration.

Helpful actions for the BGG heuristic are the union of the set of helpful actions
obtained using the BGG relaxed plan and the regular relaxed plan from the original
goal. Helpful action pruning has been enabled, but no restarts with the full set of
successors have been done for the cases in which the planner was not able to find
a solution with helpful action pruning under the time limit. This is done in order
to analyze the impact of the extra helpful actions provided by the more informed
relaxed plans from intermediate goals.

The focus of the experimentation is coverage (percentage of solved problems
out of the total number of problems) of the proposed technique. Consequently,
we have avoided some benchmark domains in which state-of-the-art planners are
able to solve most problems in little time. In particular, the selected domains were
Gold-Miner, Matching-BW, N-Puzzle and Sokoban from the learning track of IPC-
6 and Storage, Peg-Solitaire, Scananalyzer and Transportation from the determin-
istic track of the same competition. For the sake of completeness, two other older
domains were chosen as well, the well-known Driverlog domain from IPC-3 and
the Pipesworld domain from IPC-4.

Experiments have been done on a Dual Core Intel Pentium D at 3.40 Ghz run-
ning under Linux. The maximum available memory for the planner was set to 1GB,
and the time limit was 1800 seconds. The heuristic value of BGG is the distance
to the closest intermediate goal without adding the distance from that goal to the
original one. No parameter setting is necessary. Table 5.1 shows the results for
these domains in terms of percentage of solved problems. Geometric mean and
median of the ratio between states evaluated by BGG and FF are also displayed,
with values above one meaning that BGG evaluates fewer nodes.

Overall, the coverage improves for BGG, but there is a notable trend: the harder
a domain is, the greater the difference is between both techniques. Not taking into
account Gold-Miner, which has a very hard constraint close to the goal and hence
is the ideal case for BGG, domains in which BGG performs better have dead-ends
and strong order interactions (Matching-BW, Sokoban) whereas in those without
them there is no improvement. Regarding the number of evaluated nodes, BGG
shows a similar behavior. Also, as the size of the problem increases, BGG tends
to expand fewer nodes compared to the regular FF heuristic in spite of having a
higher branching factor because of the additional helpful actions. This means that
BGG is consistently more informed on the long run due to the increasing number
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Domain FF BGG Mean-S Median-S
Driverlog 70 80 0.89 0.84

Gold-Miner 50 100 5.59 4.27
Matching-BW 3 33 9.72 9.72

N-Puzzle 10 13 4.13 4.25
Peg-Solitaire 97 80 1.67 1.71
Pipesworld 28 22 0.94 0.62

Scananalyzer 33 67 1.47 1.09
Sokoban 13 17 5.52 7.22
Storage 53 60 1.91 0.49

Transportation 63 70 0.7 0.68
Average 42 57.5 3.25 3.09

Table 5.1: Comparison between the FF heuristic and the BGG heuristic in terms of
coverage (number of solved problems) and number of evaluated nodes (geometric
mean and median of the ratio of evaluated states by FF to evaluated states by FF).
Instances that were solved by both approaches expanding fewer than 100 nodes
have not been considered.

of intermediate goals.
To better understand the differences between both approaches, some features

of the domains that affect the performance of BGG can be analyzed. Matching-BW
has numerous dead-ends which can be pruned earlier thanks to the constraints on
the legality of the supporting actions; besides, towers of blocks impose order re-
strictions that can be found more easily using regression. Sokoban is characterized
by having tunnels, which are implicitly exploited by the backwards goal genera-
tion, leading to a significant decrease in the depth of the search. Storage and Scan-
analyzer have similar characteristics to Matching-BW, but in Storage the search
does not benefit from BGG as much as expected, probably because finding the cor-
rect goal ordering needs long sequences of actions in regression. N-Puzzle has no
particularities that BGG may benefit from, and so coverage is not improved, but for
those problems solved by both approaches BGG expands fewer nodes. Pipesworld,
Driverlog and Transportation are domains in which the FF heuristic is relatively
well informed, and hence the margin of improvement for BGG is small. Peg-
Solitaire seems to be a similar case to N-Puzzle, although in this domain coverage
decreases significantly for BGG.

Regarding quality, in those domains in which BGG improves the number of
evaluated nodes it tends to improve plan quality as well, as seen in Table 5.2. In
domains in which the number of evaluated nodes is similar, plan quality is worse
for BGG, although on average BGG still finds slightly better plans. Analyzing the
solution plans, it can be observed that the sequence of actions traced back from
the reached intermediate goal tends to be of better quality than the part derived
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from the nodes expanded in the forward search. Still, experimentation has been
done without adding the distance from the reached goal to the original one to the
heuristic value of the evaluated nodes, which may prove useful when aiming for
better quality plans.

Domain Mean-Q Median-Q Ratio-BGG
Driverlog 1.08 1.08 0.17

Gold-Miner 2.35 2.76 0.27
Matching-BW 1.26 1.26 0.24

N-Puzzle 1.25 1.25 0.01
Peg-Solitaire 0.98 1 0.32
Pipesworld 1.04 1.04 0.14

Scananalyzer 0.94 0.85 0.25
Sokoban 1.09 1.11 0.19
Storage 0.93 0.93 0.21

Transportation 0.99 1 0.04
Average 1.19 1.24 0.18

Table 5.2: Comparison between the FF heuristic and the BGG heuristic in terms of
quality. Again, geometric mean and median of the ratio between evaluated states
has been used. Ratio-BGG is the percentage of the length of the solution part that
belongs to the sequence of actions traced back from the reached intermediate goal.

Also, theoretically, the higher the average length of the part of the solution plan
traced back from the reached intermediate goals is, the more relevant the back-
wards generation of goals is. Therefore, this can be considered a measure of how
appropriate BGG is for some domains. Table 5.2 shows that this holds for most do-
mains with the exceptions of N-Puzzle and Transportation. On average, around a
fifth of the plan is retrieved from the reached intermediate goal. This also explains
why BGG expands fewer nodes: the search space that must be explored to find a
solution is potentially much smaller due to the reduced depth.

In terms of time, the increasing number of intermediate goals makes the heuris-
tic more expensive to compute. A priori, since the number of goals grows exponen-
tially, so should do the time needed to compute the heuristic. In practice, however,
the time needed increases linearly because intermediate goals tend to appear at
earlier levels as the search progresses and those at later levels are not checked. In
general, in those domains in which the number of expanded nodes decreases when
using BGG, it tends to find the solution in a similar time than when using the FF
heuristic; in domains in which BGG does not improve the number of nodes, plan-
ning time may increase up to an order of magnitude. Figure 5.6 shows the time
needed to compute the heuristic as the number of intermediate goals increases in
the eleventh problem of the Pipesworld domain. As it can be observed, the main
tendency shows that time increases linearly and only slightly, going from around
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Figure 5.6: Time needed to compute the heuristic in milliseconds as the number of
goals increase.

5 milliseconds at the beginning to around 25 milliseconds when 4000 intermediate
goals have been generated. Still, there are two important factors that make BGG
more costly in terms of time: first, the number and magnitude of outliers increase
as intermediate nodes are generated; and second, heuristic computation accounts
for most of the time spent by forward search heuristic planners, so even small
increases in time in the heuristic computation have a great impact on the overall
performance.

5.6 Related Work

As BGGs are generated in regression while using a forward search algorithm, a
clearly related concept is bidirectional search. In fact, BGGs are partial states
identical to those generated in regression; the difference is the generation method.
Whereas BGGs are generated from a relaxed plan computed in progression, partial
states are generated by a search algorithm and a specific heuristic in regression. The
use of BGGs to enrich the computation of reachability heuristics in progression
is akin to front-to-front heuristics, which estimate the distance from one search
frontier to the other instead of from a given state to its correspondent goal.

From a procedural point of view, another recent work on low-conflict relaxed
plans (Baier and Botea, 2009) shares important aspects with this approach. In their
work, they take into account delete effects and mutexes in the backwards process
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done to retrieve relaxed plans to obtain more accurate estimations. Furthermore,
they expand additional levels in the computation of the heuristic; the main differ-
ence with our approach is that in our work the additional expansion of levels is
systematic (until a legal support is found) whereas in their case they require a pre-
liminary estimation of the number of extra levels that may be useful to improve the
heuristic.

5.7 Conclusions and Future Work

The main contribution of this work consists on understanding the relationship be-
tween the last actions of the relaxed plans obtained in the computation of the
FF heuristic with potential solution plans, and how this idea can be used to im-
prove performance. We have presented a new approach that combines forward
state search and backwards goal generation with reachability heuristics and re-
laxed plans as the common core. BGG presents several advantages: it reduces
the depth in both the relaxed graph used in the heuristic computation and the state
space search; it detects constraints close to the goal, which also provides an ad-
vantage for the forward state search by generating more informed relaxed plans;
and it uses additional information, such as delete effects and mutexes, to enrich the
reachability analysis.

There are some disadvantages derived from the use of intermediate goals: the
heuristic must take into account an increasing number of goals, which is exponen-
tial in the worst case (although this effect has not been found in the experiments);
and the distance to an intermediate goal used as the heuristic value by the nodes in
the open list becomes obsolete as new intermediate goals are generated. Summa-
rizing the results of the experiments, it usually pays off to generate intermediate
goals during search. Out of the ten domains used, it improves the coverage in all
but two of them. Besides, it is competitive in terms of time and quality as well.
It also seems to work better in domains traditionally hard for regular reachabil-
ity heuristics, allowing planners to scale not only on size but also on the inherent
complexity of the domains.

On the other hand, there are some techniques that intuitively seem to be well
suited to the backwards generation of goals. Look-ahead techniques are a promi-
nent example; the twist in this case is to combine actions from the last part of the
relaxed plan to generate intermediate goals more than one step farther from the
reached goal. Another technique that offers a great potential is the combination of
this work with that of landmarks (Hoffmann et al., 2004).

It would also be interesting to analyze the potential links between backwards
goal generation and bidirectional/perimeter search (Dillenburg and Nelson, 1994).
As mentioned before, this approach can be seen as a sort of imbalanced bidirec-
tional algorithm in which the backwards search uses the last actions of the relaxed
plan as a guide and the forward search estimates the distance to the frontier of the
backwards search instead of to the original goal.
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Chapter 6

Adapting RRTs for Automated
Planning

Rapidly-exploring random trees (RRTs) are data structures and search
algorithms designed to be used in continuous path planning problems.
They are one of the most successful state-of-the-art techniques in mo-
tion planning, as they offer a great degree of flexibility and reliabil-
ity. However, their use in other fields in which search is a commonly
used approach has not been thoroughly analyzed. In this work we pro-
pose the use of RRTs as a search algorithm for automated planning.
We analyze the advantages and disadvantages that this approach has
over previously used search algorithms and the challenges of adapting
RRTs for implicit and discrete search spaces.

6.1 Introduction

Currently most of the state-of-the-art planners are based on the heuristic forward
search paradigm first employed by HSP (Bonet and Geffner, 2001). While this rep-
resented a huge leap in performance compared to previous approaches, this kind of
planners also suffers from some shortcomings. In particular, certain characteristics
of the search space of planning problems hinder their performance. Large plateaus
for h values, local minima in the search space and areas in which the heuristic func-
tion is misleading represent the main challenges for these planners. Furthermore,
most successful planners use techniques that increase the greediness of the search
process, which often exacerbates this problem. A couple of examples of these ap-
proaches are pruning techniques like helpful actions introduced by FF (Hoffmann
and Nebel, 2001) and greedy search algorithms like Enforced Hill Climbing (EHC)
used by FF and greedy best-first search used by HSP and Fast Downward (Helmert,
2006).

Motion planning is an area closely related to automated planning. Problems
in motion planning consist on finding a collision-free path that connects an initial
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configuration of geometric bodies to a final goal configuration. Some examples
of motion planning problems are robotics (Goerzen et al., 2010), animated sim-
ulations (Christie et al., 2005), drug design (Cortés et al., 2005) and manufactur-
ing (Da Xu et al., 2012) to name a few. A broad range of techniques have been used
in this area, although the current trend is to use algorithms that randomly sample
the search space due to their reliability, simplicity and consistent behavior. Prob-
abilistic roadmaps (PRMs) (Kavraki et al., 1996) and Rapidly-exploring Random
Trees (RRTs) (LaValle and Kuffner, 1999) are the most representative techniques
based on this approach.

Algorithms based on random sampling have two main uses: multi-query path
planning, in which several problems with different initial and goal configurations
must be solved in the same search space, and single-query path planning, in which
there is only a single problem to be solved for a given search space. In the case
of single-query path planning, RRT-Connect (Kuffner and LaValle, 2000), a varia-
tion of the traditional RRTs used in multi-query path planning, is one of the most
widely used algorithms. RRT-Connect builds a tree from the initial and the goal
configurations by iteratively extending towards sampled points while trying to join
the newly created branches with the goal or with a node belonging to the opposite
tree. This keeps a nice balance between exploitation and exploration and is often
more reliable than previous methods like potential fields, which tend to get stuck
in local minima.

Single-query motion planning and satisficing planning have many points in
common. However, bringing techniques from one area to the other is not straight-
forward. The main difference between the two areas are the defining characteristics
of the search space. In motion planning, the original search space of these prob-
lems is an euclidean explicit continuous space, whereas in automated planning the
search space is a multi-dimensional implicit discrete space. This has lead to both
areas being developed without much interaction despite the potential benefits of an
exchange of knowledge between the two communities.

In this work, we try to bridge the gap between the two areas by proposing the
use of an RRT in automated planning. The motivation is that RRTs may be able
to overcome some of the shortcomings that forward search planners have while
keeping most of their good properties. The major contributions of this work are the
following:

• We describe how to implement a search algorithm for domain-independent
planning based on RRTs.

• We propose a general and efficient way of employing domain-independent
reachability heuristics for their use as the distance estimator in the RRT.

• We present a method based on constraint satisfaction to sample implicit
search spaces uniformly.

• We perform experimentation over a broad set of domains analyzing the im-
pact of the different parameters that characterize the algorithm.
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This chapter is organized as follows: first, some background and an analysis
of previous works will be given; next, the advantages of using RRTs in automated
planning will be presented as well as a description of how to overcome some prob-
lems regarding their implementation; later, some experimentation will be done to
back up our claims; and, finally, some conclusions and future lines of research will
be added.

6.2 Background

In this section we will give some necessary background about RRTs. This includes
both the original definition of RRTs as a data structure and its subsequent evolution
as a single-query search algorithm in motion planning.

6.2.1 Rapidly-exploring Random Trees

RRTs (LaValle and Kuffner, 1999) were proposed as both a sampling algorithm
and a data structure designed to allow fast searches in high-dimensional spaces in
motion planning. RRTs are progressively built towards unexplored regions of the
space from an initial configuration. Configurations describe the position, orienta-
tion and velocity of the movable objects in motion planning, and are equivalent to
states in other search applications.

Figure 6.1: Progressive construction of an RRT.

Figure 6.1 shows how an RRT is grown from the initial configuration. At the
start, the algorithm creates a tree containing the initial configuration. At every step,
a random qrand configuration is chosen from all the configuration space and for that
configuration the nearest configuration already in the tree qnear is computed. For
this a definition of distance is required (in motion planning the euclidean distance is
usually chosen as the distance measure). When the nearest configuration is found,
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a local planner tries to join qnear with qrand with a limit distance ε. If qrand was

reached, it is added to the tree and connected with an edge to qnear. If qrand was

not reached, then the configuration qnew obtained at the end of the local search

is added to the tree in the same way as long as there was no collision with an

obstacle during search. In the search literature, the term local search refers to

search algorithms that do not keep track of all the states that they have visited. The

most representative algorithm of this kind is Hill Climbing, although many others

exist. Here, though, whenever we use the term local search we mean the process of

solving the subproblem needed to create a new branch of the tree. This operation is

called the Extend step, illustrated in Figure 6.2. This process is repeated until some

criteria is met, like a limit on the size of the tree. Algorithm 3 gives an outline of

the process.

Figure 6.2: Extend phase of an RRT.

Algorithm 3: Description of the building process of an RRT.

Data: Search space S, initial configuration qinit, limit ε, ending criteria end
Result: RRT tree
begin

tree ←− qinit
while ¬ end do

qrand ←− sampleSpace(S)
qnear ←− nearest(tree, qrand, S)
qnew ←− join(qnear, qrand, ε, S)
if reachable(qnew) then

addConfiguration(tree, qnear, qnew)

return tree
end

Once the RRT has been built, multiples queries can be issued. For each query,

the nearest configurations (node) of the tree to both the initial and the goal con-

figurations of the query are found. Then, the initial and final configurations are

joined to the tree to those nearest configurations using the local planner and a path

is retrieved by tracing back edges through the tree structure.

The key advantage of RRTs is that they are intrinsically biased towards re-

gions with a low density of configurations in their building process. This can be
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explained by looking at the Voronoi diagram at every step of the building process.
The Voronoi diagram is conformed by Voronoi regions; Voronoi regions associated
to a given node q of the tree are areas such that every point in the area is closer to q
than to any other node q′ of the RRT. The Voronoi region of a given node is larger
when the area around that node has not been explored. This way, the probabil-
ity of a configuration being sampled in an unexplored region is higher as larger
Voronoi regions will be more likely to contain the sampled configuration (Auren-
hammer, 1991). This has the advantage of naturally guiding the tree by extending
nodes at the edge of unexplored regions with a higher probability while just per-
forming uniform sampling. Besides, the characteristics of the Voronoi diagram are
an indicative of the adequateness of the tree. For example, a tree whose Voronoi
diagram is formed by regions of similar size covers uniformly the search space,
whereas large disparities in the size of the regions mean that the tree may have left
big areas of the search space unexplored. Apart from this, another notable char-
acteristic is that RRTs are probabilistically complete, as they will cover the whole
search space if the number of sampled configurations tends to infinity. Figure 6.3
shows the Voronoi diagrams of the RRTs previously shown in Figure 6.11.

Figure 6.3: Voronoi Diagram of an RRT.

6.2.2 RRT-Connect

After corroborating how successful RRTs were for multi-query motion planning
problems, researchers in motion planning realized that using multi-query RRTs was
often more efficient and robust than using specific single-query motion planning
algorithms even for a single query. Motivated by this fact and aiming to develop a
more suitable RRT-like algorithm for the single-query case, a variation for single-
query problems called RRT-Connect was proposed (Kuffner and LaValle, 2000).

1Both figures were taken from LaValle’s slides about RRTs
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The modifications introduced were the following:

• Two trees are grown at the same time by alternatively expanding them. The
initial configuration of the trees are the initial and the goal configuration
respectively.

• The trees are expanded not only towards randomly sampled configurations,
but also towards the nearest node of the opposite tree with a probability p.
Hence, with a probability p the closest distance among the m× n distances
between nodes from both trees is found and the node of the expanding tree
is expanded towards the node of the non-expanding tree. With a probability
1 − p a random configuration is sampled and the corresponding trees are
expanded as usual.

• The Expand phase is repeated several times until an obstacle is found. The
resulting nodes from the local searches limited by ε are added to the tree.
This is called the Connect phase.

Growing the trees from the initial and the goal configurations and, at times,
towards the opposite tree gives the algorithm its characteristic single-query be-
havior. The Connect phase was added after empirically testing that the additional
greediness that it introduced improved the performance in many cases. A common
variation is also trying to extend the tree towards the opposite tree after every qnew
is added when sampling randomly, extending from that qnew configuration towards
the opposite tree. This helps in cases in which both trees are stuck in regions of the
search space that are close as per the distance measure, but in which local searches
consistently fail due to obstacles.

6.3 Previous Work

Although RRTs have not been frequently used in areas other than motion planning,
there is previous work in which they have been employed for problems relevant to
automated planning. In particular, an adaptation of RRTs for discrete search spaces
and a planning search algorithm similar to RRT-Connect have been proposed.

6.3.1 RRTs in Discrete Search Spaces

Although RRTs were designed for continuous search spaces, researchers from
other areas proposed their implementation for search problems with discrete search
spaces (Morgan and Branicky, 2004). The main motivation of that work was adapt-
ing the RRTs to grid worlds and similar classical search problems.

Its authors analyzed the main challenges of adapting RRTs, in particular the
need of defining an alternative measure of distance to find the nearest node of the
tree to a sampled state and the issues related to adapting the local planner that must
substitute the Expand phase of the traditional RRTs. The proposed alternative to
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the widely used euclidean distance was an “ad-hoc” heuristic estimation of the cost
of reaching the sampled state from a given node of the tree. As for the local planner,
the limit ε that was used to limit the reach of the Expand phase was substituted by
a limit on the number of nodes expanded by the local planner. In this case, once
the limit ε was reached the node in the local search with the best heuristic estimate
towards the sampled space was chosen, and either only that node or all the nodes
on the path leading to it were added to the tree.

While the approach was successful for the proposed problems, there are two
main problems that make it impossible to adapt it to automated planning in a
straightforward way. First, the search spaces in the experimentation they performed
are explicit, whereas in automated planning the search space is implicit. This adds
an additional complexity to the sampling process that must be dealt with in some
way. Second, the heuristics for both the distance estimation and the local planners
were designed individually for every particular problem and thus are not useful in
the more general case of automated planning.

6.3.2 RRT-Plan

Directly related to automated planning, the planner RRT-Plan (Burfoot et al., 2006)
was proposed as a stochastic planning algorithm inspired by RRTs. In this case,
the EHC search phase of FF (Hoffmann and Nebel, 2001), a deterministic proposi-
tional planner, was used as the local planner. The building process of the RRT was
similar to the one proposed for discrete search spaces; that is, to impose a limit on
the number of nodes as ε and add the expanded node closest to the sampled state
to the tree. In this case, though, the tree was built only from the initial state due to
the difficulty of performing regression in automated planning.

The key aspects in this work are two: the computation of the distance necessary
to find the nearest node to the sampled or the goal state, and sampling in an implicit
search space. In RRTs one of the most critical points is the computation of the near-
est node in every Expand step, which may become prohibitively expensive as the
size of the tree grows with the search. The most frequently used distance estima-
tions in automated planning are the heuristics based on the reachability analysis in
the relaxed problem employed by forward search planners, like the hadd heuristic
used by HSP (Bonet and Geffner, 2001) or the relaxed plan heuristic introduced
by FF (Hoffmann and Nebel, 2001). The problem with these heuristics is that, al-
though computable in polynomial time, they are usually still relatively expensive
to compute, to the point that they usually constitute the bottleneck in satisficing
planning. To avoid recomputing the reachability analysis from every node in the
tree, every time a new local search towards a state is done, the authors propose
caching the cost of achieving every goal proposition from a node whenever that
node is added to the tree. This way, by adding the costs of the propositions that
form the sampled state, hadd can be obtained without needing to perform a reach-
ability analysis.

Regarding sampling, RRT-Plan does not sample the search state uniformly. In-
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stead, it chooses a subset of propositions s ⊆ S from the goal set such that s ⊆ G
and uses s as qrand. This is due to the fact that, although sampling a state by choos-
ing random propositions in automated planning is trivial, determining whether a
given sampled state belongs to the search space is PSPACE-complete, as it is as
hard, in terms of computational complexity, as solving the original problem itself.
This problem is avoided by the sampling technique of RRT-Plan in the sense that,
if the problem is solvable, G must be reachable. Hence, any of its possible subsets
is also reachable. In addition, RRT-Plan performs goal locking; i.e., when a goal
proposition p that was part of a given sampled state s ⊆ G | p ∈ s is achieved,
any subsequent searches from the added qnew node and its children nodes are not
allowed to delete p.

Whereas RRT-Plan effectively addresses the problem of sampling states in im-
plicit search spaces, this kind of sampling limits most of the advantages RRTs have
to offer. By choosing subsets of the goal set instead of sampling uniformly the
search space, the RRT does not tend to expand towards unexplored regions. Thus,
it loses the implicit balance between exploration and exploitation during search that
characterizes them. In fact, by choosing this method, RRT-Plan actually benefits
from random guesses over the order of the goals instead of exploiting the charac-
teristics of RRTs. As a side note, this could actually be seen as a method similar
to the goal agenda (Koehler and Hoffmann, 2000), albeit with random selection of
subsets and the possibility in this case to recover from wrong orderings.

6.4 Advantages of RRTs in Automated Planning

As mentioned in the introduction, during the last years there has been a big im-
provement in performance in the area of propositional planning. The most repre-
sentative approach among those that contributed to this improvement is the use of
forward heuristic search algorithms along with reachability heuristics and other as-
sociated techniques. However, heuristic search planners suffer from several prob-
lems that detract from their performance. These problems are related mainly to
the characteristics of the search space that most common planning domains have.
Search spaces in automated planning tend to have big plateaus in terms of the h
value. The high number of transpositions and the high branching factor that are
characteristic of many domains aggravate this fact. Heuristic search planners that
use best-first search algorithms are particularly affected by this, as they consider
total orders when generating new nodes and are mostly unable to detect symmetries
and transpositions during search. It has been shown that techniques that increase
the greediness of the search algorithm, like helpful actions from FF and look-ahead
states from YAHSP (Vidal, 2004b), tend to partially alleviate these problems. How-
ever, even though reachability heuristics have proved to be relatively reliable for
the most part, in some cases they can also be quite misguided. This increased
greediness can be disadvantageous at times.

Figure 6.4 shows a typical example of a best-first search algorithm getting
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stuck in an h plateau due to inaccuracies in the heuristic. In this example, the
euclidean distance used as heuristic ignores the obstacles. Because of this, the
search advances forward until the obstacle is found. Hence, the search algorithm
must explore the whole striped area before it can continue advancing towards the
goal. This highlights the imbalance between exploitation and exploration these
approaches have. This problem has been previously studied, and several methods
that tried to minimize its negative impact on search have been proposed (Röger and
Helmert, 2010; Linares López and Borrajo, 2010). However, this imbalance still
remains as one of the main shortcomings of best-first search algorithms. To par-
tially address this issue, we consider expanding nodes towards randomly sampled
states so a more diverse exploration of the search space is done. In this example,
a bias that would make the search advance towards qrand could avoid the basin
flooding phenomenon that greedier approaches suffer from.

Figure 6.4: Simple example of a best-first search algorithm greedily exploring an
h plateau due to the heuristic ignoring the obstacles. Advancing towards some
randomly sampled state like qrand can alleviate this problem.

RRTs incrementally grow a tree towards both randomly sampled states and the
goal. Therefore, they are less likely to suffer from the same problem as best-first
search algorithms. The main advantages that they have over other algorithms in
automated planning are the following:

• They keep a better balance between exploration and exploitation during search.

• Local searches minimize exploring plateaus, as the maximum size of the
search is bounded.

• They use considerably less memory, as only a relatively sparse tree must be
kept in memory.

• They can employ a broad range of techniques during local searches.

All in all, the alternation of random sampling and search towards the goal that
single-query RRTs have is their most characterizing aspect. Thanks to this, they
do not commit to a specific area of the search space and hence they tend to recover
better than best-first search from falling into local minima. In terms of memory, the
worst case is the same for best-first search algorithms and RRTs. However, RRTs
must keep in memory only the tree and the nodes from the current local search.
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Trees are typically much sparser than the area explored by best-first algorithms,
which makes them much more memory efficient on average. Memory is usually
not a problem in satisficing planning because of the time needed for the heuristic
computation, although in some instances it can be an important limiting factor.

6.5 Implementing the RRT for Automated Planning

Due to the differences in the search space, adapting RRTs from motion planning to
automated planning is not trivial. In this work we propose an implementation par-
tially based on RRTs for discrete search spaces and RRT-Plan with some changes
critical to their performance.

6.5.1 Sampling

The main reason why RRTs have not been considered for automated planning is
the difficulty of properly sampling the search space. The difficulty arises from the
fact that choosing propositions from S at random may lead to generating spurious
states. RRT-Plan circumvented this by substituting uniform sampling with subsets
of goal propositions. However, this negates some of the advantages that RRTs
have, as explained before.

Checking whether a state is spurious or not is as hard as solving the problem
itself, so an approximation must be used instead. Here we propose the use of state
invariants as constraints to reduce the chances of obtaining a spurious state when
uniformly sampling the search space. In particular, we propose the use of mu-
texes (already employed by evolutionary planners like DAEX (Bibai et al., 2010),
which decomposes the problem using sampling techniques) and “exactly-1” in-
variant groups.

Selecting Propositions

Sampling a state using state invariants as constraints is analogous to solving a Con-
straint Satisfaction Problem (CSP). A CSP is defined as a triple CSP=(V,D,C),
where V are the variables of the problem, D are the domains of the variables in
D and C are the constraints of the problem. In this CSP the “exactly-1” invariant
groups are the variables in V, the propositions of the “exactly-1” invariant groups
are the domain D of the variables in V and the binary mutexes of the problem
are the constraints of C. The objective is to choose a proposition p ∈ S from ev-
ery “exactly-1” invariant group I1 such that it is not mutex with any other chosen
proposition p′ ∈ S. This ensures that the complete sampled state s ∈ S satisfies
all “exactly-1” invariant groups and does not violate any binary mutex. This is in
fact conceptually close to the disambiguation process presented in Section 3.4.1.

Solving a CSP is NP-complete. Actually, for some planning instances solving
the CSP that represents the sampling process may be on average very time con-
suming if it is done naively. In our implementation we use forward checking (Har-
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alick and Elliott, 1980) to improve the performance of the backtracking procedure
needed for solving the CSP. The order of the variables (the order in which the
“exactly-1” invariant groups are selected to be satisfied) is static, although it may
vary between different sampling processes. “exactly-1” invariant groups with the
highest cardinality are chosen first, with ties broken randomly every time a new
state is sampled. Ordering of values of variables is chosen at random. This aims to
reproduce the behavior of the degree (most constraining variable) heuristic (Brélaz,
1979) while trying to obtain sampled states as diverse as possible.

Ensuring the Reachability of Goals

Even after using state invariants, it may happen that the goal is not reachable from
the sampled state. For example, a sampled state in the Sokoban domain may con-
tain a configuration of blocks such that some block cannot be moved anymore.
While this sampled state may not violate any state invariant, unless the unmovable
blocks are at a goal location the sampled state is a dead end, since the original goal
is not reachable. To address this problem, a regular reachability analysis can be
done from the sampled state. If some proposition p ∈ G is unreachable, then the
sampled state can be safely discarded. This is again an incomplete method, but in
cases such as the aforementioned one it is useful to detect spurious states.

6.5.2 Distance Estimation

One of the most expensive steps in an RRT is finding the closest node to a sampled
state. Besides, the usual distance estimation in automated planning, the heuristics
derived from a reachability analysis, are also computationally costly. RRT-Plan
solved this by caching the cost of achieving a goal proposition from every node of
the tree and using that information to compute hadd, just like HSPr does (Bonet
and Geffner, 2001) when searching backwards. Despite being an efficient solution,
this shares the same problem as HSPr: only hadd can be computed using that in-
formation. hadd tends to greatly overestimate the cost of achieving the goal set and
other heuristics of the same kind, like the FF heuristic, are on average more accu-
rate (Fuentetaja et al., 2009). Therefore, in our implementation, best supporters,
that is, actions that first achieve a given proposition in the reachability analysis, are
cached, as defined in Section 3.5.1. This allows to compute not only hadd but also
other heuristics like the FF heuristic (by tracing back the relaxed plan using the
cached best supporters). The time of computing the heuristic once the best sup-
porters are known is usually very small compared to the time needed to perform
the reachability analysis - linear in the size of the relaxed plan -, so this approach
allows to get more accurate (or diverse) heuristic estimates without incurring in a
significant overhead.
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6.5.3 Tree Construction

RRTs can be built in several ways. The combination of the Extend and Connect
phases, the possibility of greedily advancing towards the goal with a probability 1−
p instead of sampling with a probability p, the way new nodes are added (only the
closest node to the sampled state or all the nodes on the path to that state),. . . allow
for a broad range of different options. In this work, we have chosen to build the
tree in the following way:

• the tree is built from the initial state I;

• every node in the tree contains a state, a link to its parent, a plan that leads
from its parent to the state, and the cached best supporters for every propo-
sition q ∈ S so hFF can be computed efficiently;

• ε limits the number of expanded nodes in every local search;

• there is a probability p of advancing towards a sampled state and a probabil-
ity 1− p of advancing towards the goal from the closest node to the original
goal G. It may happen that the closest node to G was already expanded to-
wards G in an earlier iteration and the new generated node qnew from that
expansion is farther from the goal thanG; that is, hFF (qnew) > hFF (qnear).
Since planners are for the most part deterministic, it does not make sense to
repeat the search - it would lead to the same qnew -, so in fact the node se-
lected with a probability 1 − p is the closest node among those that have
never served as the origin of a local search towards the goal before;

• a single node is added to the tree after every local search, not all the nodes
along the solution path;

• when performing a local search, if a solution for the subproblem was not
found, the last expanded node is added to the tree (be it when expanding
towards a sampled state or the original goal G itself);

• after adding a new node qnew from the local search towards a sampled state,
a new local search from qnew to qgoal is performed.

No Connect phase is performed. This is because the Connect phase is probably
counter-productive if it is done towards sampled states - sampled states may be
completely irrelevant to the solution and the main benefit obtained from them is
the additional bias towards exploration anyway - and partially overlaps with the
expansions towards the goal with a probability 1− p.

This configuration is the basis of the planner presented in this work; we called
this planner Randomly-exploring Planning Tree (RPT). Algorithm 4 describes the
whole process.
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Algorithm 4: Search process of RPT.
Data: Search space S, limit ε, initial state qnew, goal qgoal
Result: Plan solution
begin

tree←− qinit
while ¬ goalReached() do

if p <random() then
qrand ←− sampleSpace(S)
qnear ←− nearest(tree,qrand,S)
qnew ←− join(qnear, qrand, ε,S)
addNode(tree,qnear, qnew)
qneargoal ←− qnew

else
qneargoal ←− nearest(tree,qgoal,S)

qnewgoal ←− join(qneargoal , qgoal, ε,S)
addNode(tree,qneargoal , qnewgoal)

solution←− traceBack(tree,qgoal)
return solution

end

6.5.4 Choice of the Local Planner

The choice of the planner used in the local search is subject to some restrictions.
First, after every Extend phase a new node to the tree is added even if a solution
for the subproblem could not be found. This means that the local planner must be
able to return an executable plan also when no solution was found, which rules out
some planning paradigms like partial-order planners (Younes and Simmons, 2003)
and SAT-based planners (Rintanen, 2010). Second, the tree is built forward, so
the local planner must return a forward-executable plan. Again, backward search
planners like HSPr (Bonet and Geffner, 2001) and FDr cannot be used for this
reason. Another important point is the preprocessing time. Since multiple local
searches may be done, it is desirable that the time spent by the local planner prior
to search is as short as possible. For example, the use of heuristics that require
a relatively long preprocessing time and depend on either the initial state or the
goals, like Pattern Databases (Culberson and Schaeffer, 1998), are discouraged.

In this work, the Fast Downward planning system (Helmert, 2006) was used
as the local planner. It was configured to use greedy best-first search with lazy
evaluation as its search algorithm. The heuristic is the FF heuristic (Hoffmann and
Nebel, 2001). Preferred operators obtained from the FF heuristic were enabled.
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6.6 Experimentation

In this section, we test the proposed approach against other state-of-the-art plan-
ners. The maximum available memory was set to 6GB and the time limit was
1800 seconds, as in the last International Planning Competition (IPC-2011). The
selected domains were all the domains from the deterministic track of the past
IPCs. In the cases in which a domain appeared in more than one competition, we
selected the instances from the hardest set. The criteria are the same as the ones
used by Rintanen (Rintanen, 2010). Additionally, we used the test problems from
the learning track of the 2008 and 2011 IPCs for those domains that were not used
in the deterministic track. The exception is the Sokoban domain; the definition of
the domain and the structure of the problems are significantly different from the
ones of the deterministic track, so we employed both versions. We call the version
from the learning track Sokoban-l. In this section, we will focus on the number of
problems solved (also known as coverage), so all actions will be treated as if they
had unary cost.

RPT was implemented on top of Fast Downward (Helmert, 2006). Since RRTs
are stochastic algorithms, all the experiments are done using the same seed for the
pseudorandom number generator so results would be reproducible. In particular,
we use the default seed ‘1’ for the rand function of the standard C++ library. The
computation of h2 was implemented in Fast Downward and the mutexes obtained
from the computation of h2 forward and backward. “exactly-1” invariant groups
were obtained from the monotonicity analysis done by the translator of Fast Down-
ward. To further exploit the state invariants, spurious actions were pruned by dis-
ambiguating their preconditions, as in Section 3.4.1. We set a limit of 300 seconds
for the h2 computation and the disambiguation of actions.

The planners we compare against are the local planner itself, that we call FD,
and the first phase of the LAMA planner (Richter and Westphal, 2010), the winner
of the IPCs held in 2008 and 2011. We used the last revision from Fast Down-
ward’s public repository for both planners.2 In fact, LAMA is the same as FD, but
also uses an additional landmark counting heuristic combined with the regular FF
heuristic. Preferred operators are obtained from the landmark heuristic too and the
final set of preferred operators is the union of the sets of preferred operators ob-
tained from both heuristics. Both heuristics are combined in an alternation queue.
This queue expands the best node as per the correspondent heuristic alternatively
at every node expansion.

There are two critical parameters that affect the behavior of RPT in our imple-
mentation: the limit on the number of expanded nodes in the local search ε and the
probability p of expanding towards a sampled state instead of towards the original
goal G. In the experimentation we tried six different combinations resulting from
combinations of ε and p. The values used for ε were ε = 10000, 100000. The
values used for p were p = 0.2, 0.5, 0.8. An additional configuration with an ar-

2As of December 2013, revision 3288.



CHAPTER 6. ADAPTING RRTS FOR AUTOMATED PLANNING 98

tificially low ε of 1000 nodes and p = 0.5 was also used to test the performance
of RPT when using very small local searches. By experimenting with different
versions we aim to understand which are the factors that can have an impact on the
performance of the algorithm.

6.6.1 Coverage

Table 6.1 shows the coverage of all the evaluated planners. It also shows the num-
ber of tree edges that the solution with the highest number of tree edges in that
domain has for all the RPT configurations (between brackets). Results show that
RPT is overall better than the base planner FD and competitive with the state-of-
the-art planner LAMA. Total coverage favors all the tested configurations of RPT
over both FD and LAMA except for the version with ε = 1000.

A more detailed comparison on a per domain basis shows that performance
depends in a significant number of cases on the domain. For instance, RPT is no-
tably better in Airport, Floortile, Sokoban-l and Storage, whereas FD and LAMA
are better in Barman and N-puzzle. The domains in which RPT performs better
are often those in which there are dead ends undetectable by reachability heuris-
tics, which cause FD and LAMA to explore big sterile plateaus. Note that Floor-
tile, Sokoban-l and Storage have a similar structure, as achieving the closest goal
proposition first often leads to a dead end; in this case the additional exploration
induced by the sampling method and the limit on the number of expanded nodes
by the local search ε prove to be very beneficial.

Some domains in which RPT is outperformed by LAMA are domains in which
state invariants do not suffice to avoid spurious states. Barman is the most notable
example, because the current definition allows some unintended things to happen
(such as a glass containing a drink and being clean at the same time), which re-
duces the number of mutexes found by invariant computation methods. Another
very relevant case is Visitall, in which FD is able to solve only 3 problems, LAMA
solves the whole set of problems and RPT is somewhere in the middle. The dif-
ference between FD and LAMA is explained by the heuristics they use: Visitall
is a domain designed to induce plateaus when the FF heuristic is used, but it is
otherwise easily solved with heuristics that employ additive schemes such as the
goal-counting and the landmark-counting heuristics. However, this does not ex-
plain why RPT behaves like it does. An important fact is that sampling in Visitall
is very problematic, as it is possible to sample a state in which a visited cell can be
surrounded by not-visited cells, which is unreachable from I . However, RPT still
solves more problems than FD, which shows that the possibility of recovering from
exploring plateaus that RPT has compensates the added difficulty of sampling the
search space adequately.

In a few domains RPT is also significantly helped by pruning spurious actions.
Floortile, Matching-bw and Tidybot are such domains. In a modified version of FD
that performs the same preprocessing as RPT, pruning spurious actions reduces the
difference in coverage in these domains by a large margin even if state invariants
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Planners: FD LAMA 10k 0.2 10k 0.5 10k 0.8 100k 0.2 100k 0.5 100k 0.8 1k 0.5
Airport(50) 35 32 46 [5] 46 [7] 46 [4] 40 [3] 44 [3] 45 [3] 46 [7]
Barman(20) 20 20 3 [2] 5 [2] 2 [2] 11 [11] 10 [21] 9 [13] 2 [10]
Blocks(35) 35 35 35 [1] 35 [1] 35 [1] 35 [1] 35 [1] 35 [1] 35 [5]
Depot(22) 18 21 19 [28] 20 [32] 20 [16] 18 [9] 19 [6] 19 [7] 19 [16]

Driverlog(20) 20 20 20 [5] 20 [13] 20 [10] 20 [5] 20 [7] 20 [6] 18 [8]
Elevators(20) 19 20 20 [10] 20 [9] 20 [4] 20 [5] 20 [5] 20 [4] 20 [71]
Floortile(20) 7 6 20 [22] 20 [12] 20 [4] 20 [2] 20 [2] 20 [1] 20 [53]
Freecell(80) 79 79 80 [5] 80 [2] 80 [2] 80 [2] 80 [2] 80 [3] 80 [6]

Gold-miner(30) 30 30 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1]
Grid(5) 5 5 5 [2] 5 [2] 5 [2] 5 [1] 5 [1] 5 [1] 5 [7]

Gripper(20) 20 20 20 [1] 20 [1] 20 [1] 20 [1] 20 [1] 20 [1] 20 [2]
Logistics(35) 34 35 35 [6] 35 [7] 35 [3] 34 [3] 34 [2] 34 [5] 34 [23]

Matching-bw(30) 20 25 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1]
Miconic(150) 150 150 150 [1] 150 [1] 150 [1] 150 [1] 150 [1] 150 [1] 150 [2]

Movie(30) 30 30 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1]
Mprime(35) 35 35 35 [1] 35 [1] 35 [1] 35 [1] 35 [1] 35 [1] 35 [1]
Mystery(20) 16 19 19 [2] 19 [2] 19 [2] 19 [2] 19 [2] 19 [2] 19 [2]

Nomystery(20) 9 13 12 [4] 10 [5] 11 [4] 10 [4] 11 [4] 11 [4] 13 [9]
N-puzzle(30) 28 30 20 [5] 20 [4] 20 [9] 25 [4] 25 [4] 25 [9] 11 [38]

Openstacks(20) 20 20 20 [4] 20 [3] 20 [2] 20 [1] 20 [1] 20 [1] 20 [4]
Parcprinter(20) 20 20 20 [1] 20 [1] 20 [1] 20 [1] 20 [1] 20 [1] 20 [2]

Parking(20) 20 20 20 [4] 20 [4] 20 [5] 20 [2] 20 [2] 20 [2] 20 [7]
Pathways-noneg(30) 30 30 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [5]

Pegsol(20) 20 20 20 [3] 20 [3] 20 [2] 20 [2] 20 [3] 20 [2] 20 [4]
Pipesworld-no-t(50) 43 44 44 [29] 43 [4] 43 [4] 44 [5] 44 [5] 44 [5] 45 [9]

Pipesworld-t(50) 39 41 40 [27] 41 [7] 41 [10] 41 [6] 41 [6] 41 [7] 41 [7]
PSR-small(50) 50 50 50 [1] 50 [1] 50 [1] 50 [1] 50 [1] 50 [1] 50 [8]

Rovers(40) 40 40 40 [1] 40 [1] 40 [1] 40 [1] 40 [1] 40 [1] 40 [8]
Satellite(36) 36 36 36 [4] 36 [4] 35 [2] 36 [1] 36 [1] 36 [1] 36 [14]

Scanalyzer(20) 19 20 19 [2] 20 [3] 20 [3] 20 [2] 20 [2] 19 [2] 19 [5]
Sokoban(20) 19 17 13 [11] 14 [12] 15 [12] 17 [6] 15 [5] 17 [4] 12 [33]

Sokoban-l(30) 24 21 30 [5] 30 [5] 30 [5] 30 [4] 30 [3] 30 [4] 30 [15]
Spanner(30) 0 0 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Storage(30) 20 19 25 [9] 25 [10] 26 [10] 25 [10] 23 [6] 26 [5] 27 [22]
Tidybot(20) 13 14 18 [5] 18 [4] 18 [3] 17 [3] 17 [3] 18 [5] 18 [6]

Tpp(30) 30 30 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [1] 30 [6]
Transport(20) 11 17 12 [13] 14 [8] 14 [10] 11 [3] 12 [3] 10 [5] 12 [11]

Trucks-strips(30) 19 18 22 [7] 23 [7] 22 [9] 23 [5] 22 [3] 24 [4] 22 [10]
Visitall(20) 3 20 13 [519] 13 [587] 10 [203] 12 [137] 10 [97] 8 [42] 2 [52]

Woodworking(20) 20 20 20 [6] 20 [5] 20 [4] 20 [2] 20 [2] 20 [2] 20 [37]
Zenotravel(20) 20 20 20 [1] 20 [1] 20 [3] 20 [1] 20 [1] 20 [1] 20 [1]

Total 1125 1162 1171 1177 1172 1176 1179 1179 1151

Table 6.1: Comparison between FD, LAMA and the different configurations of
RPT. Numbers in parentheses represent the total number of problems in the do-
main. Numbers in brackets represent the number of tree edges that the solution
with the highest number of tree edges in that domain has.
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are not exploited explicitly by FD during search.

6.6.2 Parameters of RPT

In this work we experiment with the two parameters of RPT ε and p to analyze
their impact. Higher values of ε mean that the local searches are larger, whereas p
determines the balance between exploration and exploitation. Prior to the experi-
mentation we expected to have very different results depending on the parameters
of RPT; however, Table 6.1 shows that in reality the differences are not that big,
even when using a very small ε. Although different configurations of RPT have
different coverage, their overall behavior compared to FD and LAMA is consis-
tent. Also, there is no overall winner configuration, with different values of ε and
p being more appropriate in some domains than in others. The configuration with
ε = 1000 has worse coverage due to the excessively small local searches, but it still
obtains the best coverage in a significant number of domains and is not dominated
by any configuration.

The exception to the consistent behavior of the different configurations is the
Barman domain. As mentioned before, sampling in this domain is more compli-
cated due to the frequent generation of spurious states. Because of this, larger
values of ε and smaller values of p are preferable, since they reduce the sampling
tendency of RPT and allow reproducing a behavior closer to FD’s and LAMA’s.

There are two reasons that explain this behavior. First, most domains from the
benchmarks do not contain dead ends, which means that RPT can reach the goals
from any node in the tree. If this is the case, as long as some progress is made by
expanding towards the goals, RPT will eventually solve the problem despite how
irrelevant the sampled states may be. Second, after every Extend phase towards a
sampled state there is another Extend phase towards G, which means that even for
very high values of p some effort is still made to advance towards the goals.

6.6.3 Tree Size

Table 6.1 also shows the number of tree edges that the solution with the highest
number of tree edges in that domain has. This information is important because
it is representative of the size of the tree in the cases in which it is able to scale
up to bigger problems. The most obvious conclusion is that RPTs are significantly
smaller than the RRTs used in motion planning, as the local searches are com-
putationally much costlier in automated planning. However, in some domains in
which the heuristic evaluation is not as costly, like Visitall, RPT is able to solve
problems by building trees with hundreds of edges. A notable case is the reported
587 edges that RPT 10k 0.5 has to trace back to recover the solution of the hardest
instance that it is able to solve in Visitall. Actually, several solution plans returned
by RPT in Visitall have well over 10000 actions, which highlights the robustness
and scalability of RPT.
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Another relevant fact is that in many cases problems are solved with a single
extension even with ε = 10000. For example, a total of 946 problems were solved
by RPT 10k 0.5 with a single extension out of the 1177 that it can solve overall.
This is due to two reasons: first, many of the domains come from old IPCs and thus
are relatively easily solved by current state-of-the-art planners; second, most prob-
lems in planning are solved either very quickly or not at all due to the exponential
blow up of the requirements in time and space as the size of the problems increase,
which is also reflected by the size of the tree. As expected, the exception to this
is the configuration with ε = 1000, which almost consistently has significantly
bigger trees than the rest of the configurations.

6.6.4 Sampling

As described in Section 6.5.1, sampling a state in an implicit search space requires
solving a CSP. This CSP tends to be very small and the time spent solving it is on
average negligible. Some exceptional cases occur though, when sampling a state
takes a considerable amount of time. In two problems of Airport, two problems
of Tidybot and in the whole set of Barman problems sampling requires more than
one second. In particular, for the first four cases it requires 699.55s (problem 46
of Airport), 21.88s (problem 47 of Airport), 152.53s (problem 19 of Tidybot) and
301.75s (problem 20 of Tidybot). In the Barman domain times range from 0.8s to
not being able to sample a state under the time limit of 1800 seconds. However, in
all these cases the problem is not the time required to solve the CSP, but rather that
G is unreachable from the sampled states - which is detected by the reachability
analysis from the sampled state. For example, in problem 46 of Airport more than
18000 states had to be sampled before a state from which G could be reached was
found, which explains the long time spent sampling.

To ascertain that the heuristics proposed to solve the CSP are indeed neces-
sary, we did some informal experimentation without them. After disabling forward
checking and using a random ordering of the “exactly-1” invariant groups, in some
domains solving the CSP was just not possible. For example, in many instances
of Sokoban the backtracking algorithm was not able to sample a random state un-
der the time limit of 1800 seconds. Such cases tend to occur in domains in which
there are “exactly-1” invariant groups highly constrained by mutexes and other
“exactly-1” invariant groups.

As an additional note regarding the importance of the use of constraints in sam-
pling, we refer the reader to (Alcázar et al., 2011), in which a previous version of
this work was presented. In that previous version only mutexes from the mono-
tonicity analysis were used to avoid sampling spurious states. This caused RPT to
display a much worse behavior than the planners it was compared with in several
domains, hurting significantly the overall coverage of all the analyzed versions of
RPT.
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6.6.5 Other Measurements

Although memory is usually not a bottleneck in satisficing planning, it is interesting
to test whether the claims about the efficiency in terms of memory of RPT are true.
In the experimentation we measured the memory necessary to store the tree and the
auxiliary structures that allow a faster computation of the heuristic from the nodes
of the tree. In all the problems, the amount of memory is smaller than the memory
necessary to ground the problem and to compute h2. This means that the memory
needed during search by RPT is in practice determined by ε. As a final note and
to confirm this fact, during the experimentation FD and LAMA run out of memory
before running out of time in 40 and 25 problems respectively, whereas this never
happened with RPT.

Regarding quality, the plans returned by RPT were consistently longer than
the ones returned by FD and LAMA whenever more than one edge was needed
to trace back the solution in RPT. Such is the case in both versions of Sokoban,
in Visitall and in N-puzzle. For example, and using the quality score from the last
IPC, RPT 10k 0.5’s quality score is 8 points lower than FD’s in Sokoban and very
similar in Sokoban-l despite it being able to solve 6 problems more in the latter
domain. This was to be expected though, as the added exploration and the uniform
sampling often cause RPT to take detours on its way to a goal state. The same case
was observed with time. Besides, the preprocessing made by RPT can in some
cases be longer than the time spent by FD and LAMA during search, which further
skews the time score in favor of the latter.

6.7 Related Work

Stochastic search has also been employed by other planners. A prominent example
is LPG (Gerevini and Serina, 2002), a planner inspired by random walk search
algorithms. LPG searches in the space of plans employing a structure known as the
action graph, choosing neighbor graphs based on a parametrized heuristic function.
The main relation between LPG and RPT is that LPG tries to balance exploration
and exploitation by performing random restarts. These restarts help LPG to avoid
exploring plateaus and local minima.

Random exploration has also been proposed in the context of forward-chaining
planning. This includes the use of Monte-Carlo Random Walks to select a promis-
ing action sequence (Nakhost and Müller, 2009), local search combined with ran-
dom walks (Xie et al., 2012) and the triggering of random walks when the planner
detects that it has fallen into a heuristic plateau (Lu et al., 2011).

Lastly, inspired by real-time versions of RRTs (Bruce and Veloso, 2006), an
RRT-like algorithm that stochastically interleaves search and plan reuse has been
proposed in (Borrajo and Veloso, 2012). In this case, the increased exploration
comes from employing information from past plans instead of from sampled states.
This includes reusing both plans and goals from previous searches.
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6.8 Conclusions and Future Work

In this work, we have analyzed how to adapt RRTs for their use in automated plan-
ning. Previous work has been studied and the challenges that the implementation
of RRTs in contexts other than motion planning posed have been presented. In the
experimentation we have shown that this approach has much potential, being able
to outperform the state of the art. Besides, we have identified the major flaws of
this approach, which may allow to obtain better results in the future.

The main challenge of the use of RRTs in automated planning, the design of an
algorithm able to sample an implicit search space uniformly, has been thoroughly
studied. This novel problem has been tackled by exploiting state invariants of
the problem extensively and formulating it as a CSP. The results show that, in
domains in which current methods can find most relevant invariants, sampling is
both efficient and useful.

Another of the drawbacks of RRTs, the estimation of the closest node, has also
been analyzed. Here we employ a more general definition of caching of reacha-
bility heuristics, inspired by recent work on regression in automated planning. We
have also examined the characteristics of the local planners that can be used along
with RPT. We identified their requirements and defined the limit ε of the local
search in terms of state-space planning.

In the experimental evaluation we have run tests over a broad set of bench-
marks. We focused on both overall and per domain coverage, with an special
emphasis on the defining features of the domains that may affect the performance
of RPT in comparison with other state-of-the-art planners. Other measures have
been presented, including some specific to RRT-like algorithms like tree size and
sampling performance.

After this analysis, several lines of research remain open. First, some ap-
proaches like growing two trees at the same time in a bidirectional manner and
the implementation of a proper Connect phase are still unexplored. Besides, there
is abundant research currently done on RRTs related to avoiding pathological cases
and introducing biases that allow a more advantageous sampling. These techniques
can also be studied for their use in automated planning so the overall performance
is improved.

From a planning perspective, techniques like caching the heuristic value of ex-
plored states to avoid recomputation when they are expanded several times (Richter
et al., 2010) may prove interesting for this kind of algorithms. Another interesting
possibility is the usage of portfolios of search algorithms or portfolios of heuris-
tics combined with RRTs in order to compensate the flaws of both best-first search
algorithms and RRTs.

As a last remark, another possible future line of research includes adapting this
algorithm for a dynamic setting in which interleaving of planning and execution is
necessary. This approach looks promising for domains in which exogenous events
and partial information may force the planner to replan in numerous occasions.
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Chapter 7

A SAT Compilation of the
Landmark Graph

Landmarks are subgoals formed by sets of propositions that must be
achieved at some point in a planning task. These landmarks have
some ordering relations between them that form what is known as
the landmark graph. Previous works have used information from this
graph with several purposes; however, few have addressed some of
the shortcomings of the current representation of the graph, like land-
marks having to be true at several time steps. In this work we propose
a SAT encoding of the landmark graph whose solution represents a
more informative version of the original graph.

7.1 Introduction

Landmarks are disjunctive sets of propositions of which at least one component
must be achieved or executed at least once in every solution plan to a problem (Hoff-
mann et al., 2004). Currently, landmarks are a very prominent line of research in
automated planning, as the success of landmark-based planners like LAMA (Richter
and Westphal, 2010) shows. Most approaches have focused on using landmarks to
partition the problem (Hoffmann et al., 2004; Sebastia et al., 2006) or to derive
heuristics used in forward search planners (Richter and Westphal, 2010; Karpas
and Domshlak, 2009; Helmert and Domshlak, 2009).

Finding the complete set of landmarks or even just proving that a proposition is
actually a landmark is PSPACE-complete (Hoffmann et al., 2004). However, cur-
rent methods can efficiently compute a subset of the landmarks of the task based
on a delete-relaxation representation of the problem. A set of partial orders be-
tween propositions can be computed with similar techniques too, which applied to
landmarks are used to build the landmark graph. The landmark graph is the base
of many of the techniques that employ landmarks, as the order in which landmarks
should be achieved is often as important as finding the landmarks themselves.
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Even though the landmark graph provides important information, it still has
several shortcomings. First, the partial orderings may not be enough to come up
with a reasonable total order, which is critical for things such as partitioning the
problem into smaller subproblems. Second, landmarks appear only once, even
when it is clear that they must be achieved several times. For instance, when a
landmark l ∈ L is a causal precondition of other landmarks l′, l′′ ∈ L that are
mutex between them, l is likely to be reachieved several times. A representative
landmark that must be achieved several times for this reason is (arm-empty) in the
well-known Blocksworld domain; (arm-empty) appears only once in the landmark
graph despite being necessary before every possible (holding x - block), which in
turn is mutex with any other possible (holding y - block). Third, the exploitation of
the cycles and the unsound reasonable orders in the landmark graph is still unclear.
In fact, most techniques that use landmarks are designed to be applied to acyclic
graphs, so cycles are usually removed discarding unsound edges first before any
kind of search begins.

An important remark is that the concept of time in a total order setting is ab-
sent in the landmark graph. In order to introduce time, landmarks must be able
to appear as needed at different time steps. For this, they must be labeled with
some sort of time stamp. The planning graph (Blum and Furst, 1997) that is often
used to represent the planning task does specifically this: every proposition and
action is represented several times by nodes labeled with the level they appear at.
Hence, landmarks can be represented as several nodes, one per different possible
time step, forming a time-stamped planning graph. There is a similar relation-
ship between the orderings in the landmark graph and the different edges of the
planning graph too: orderings are constraints that represent causal relationships of
precedence between landmarks, and edges in the planning graph are constraints of
either causality between actions and propositions or mutual exclusivity.

One of the most popular ways of exploiting the information contained in the
planning graph is encoding it into a SAT problem (Kautz and Selman, 1999). Using
a SAT solver to find a solution to the encoding allows to find a corresponding solu-
tion plan to the problem or to prove that there is none for a given number of parallel
time steps. The encoding consists of creating a variable per node in the planning
graph and a clause per edge of the planning graph. Given the similarity between
the planning graph and the time-stamped landmark graph, this can also be done for
the latter. This allows obtaining an enhanced version of the landmark graph that
can represent landmarks being required at different time steps and that describes a
more consistent total order than the one represented by the original graph. In ad-
dition, mutexes will be introduced explicitly as another way of enforcing temporal
constraints.

In this work we propose a SAT compilation for the landmark graph. First,
previous related work will be analyzed making emphasis on how the information
of landmark graph has been exploited. The process of encoding the landmark
graph into a SAT problem will be described next, going into detail for every feature
relevant to the compilation. Some experimentation will be done to demonstrate the
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viability of the approach and finally some conclusions will be drawn and a few
remarks on future lines of research will be presented.

7.2 Related Work

In this section a series of relevant previous works that have dealt with the landmark
graph will be discussed.

7.2.1 Partitioning using Disjunctive Landmarks

Already presented in Section 2.6.1, splitting the original problem into several smaller
ones was the original purpose of the landmark graph. Still, we want to make em-
phasis on how using the landmark graph as is may be detrimental to the search pro-
cess because of its shortcomings. Take for example the classic Sussman anomaly
in the Blocksworld domain, whose initial state and goal configuration are shown in
Figure 7.1.

A
C

B

B
A

C
B

Figure 7.1: Initial state and goal configuration of Sussman’s anomaly.

We will follow partially the example shown in Karpaz and Richter’s tutorial on
landmarks1 to highlight how a wrong total order can be deduced from the landmark
graph. Figure 7.2 shows the initial state and the landmark graph of the problem.
Greyed landmarks are landmarks that have been achieved at some point, so land-
marks true in I are greyed from the beginning.

Following the method presented in Section 2.6.1, at the first step we have the
disjunctive goal {(clr-A) ∨ (hld-B)}. As there is no indication of which proposition
should be achieved first, the planner may choose to achieve (hld-B) to satisfy the
goal by applying (pick-up B). If the process is repeated, the new disjunctive goal
would be {(clr-A) ∨ (on-B-C)}. Hence, if (on-B-C) is achieved by applying (stack
B C) we have the state depicted in Figure 7.3.

As we can see in Figure 7.3, there are still several unachieved landmarks. How-
ever, in order to achieve them the proposition (on B C), which is a goal of the
problem, must be deleted. The following disjunctive goal is {(clr-A)}, which is

1Landmarks - Definitions, Discovery Methods and Uses. Presented at ICAPS 2010:
http://www.icaps10.upf.edu/
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Figure 7.2: Initial state and landmark graph the Sussman anomaly.
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hld-A
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Figure 7.3: Intermediate state and state of the landmark graph in the Sussman
anomaly.

achieved by unstacking B and C. Again, only with this information the planner
does not know whether it should reachieve (on B C); this means that a possible
plan would be (unstack B C), (put-down C), (unstack A B), (put-down B), which
results in the state depicted in Figure 7.4.

The only unachieved landmarks are now (hld-A) and (on A B). However, if we
achieve them we will find that even if (on A B) is true and there are no unachieved
landmarks - in the sense that all landmarks have been achieved at least once -,
(on B C) is not true. In this case (on A B) should be deleted and then reachieved
after achieving (on B C). All in all in this case following the orderings of the land-
mark graph and breaking ties randomly may mean wasting a lot of effort, which
illustrates how partitioning the problem using the landmark graph may do in some
instances more harm than good.

7.2.2 Landmark Layering

A more elaborated way of partitioning the problem is computing layers of conjunc-
tive landmarks, as done in the planning system STELLA (Sebastia et al., 2006). In
this case the motivation is the same, but mutexes are taken into account along with
the orders to build sets of conjunctive goals. Basically layers are built delaying
landmarks that are mutex with other landmarks depending on whether their causal



CHAPTER 7. A SAT COMPILATION OF THE LANDMARK GRAPH 109

A B C

ot-A on-C-A clr-C h-e ot-B clr-B

clr-A hld-B

hld-A

on-B-C on-A-B

Figure 7.4: Subsequent intermediate state and state of the landmark graph in the
Sussman anomaly.

preconditions have been achieved or not. Besides, cycles are dealt with by breaking
them and assuming that one landmark must be achieved twice, determining which
one and at which time using some heuristic procedures.

This method is more informed, but it is not without disadvantages. First, its
computation is substantially more complex, to the point that in some instances the
planner may time out even before beginning the search. Besides, it is an empirical
approach based on a series of intuitions, which makes its generalization complex.

7.2.3 Temporal Landmarks

With the extensions that appeared in PDDL2.1 (Fox and Long, 2003) time can
also be characterized in a planning task. This lead to research on the discovery
of temporal landmarks (Sebastia et al., 2007). In this case a temporal planning
graph is built after computing the regular STRIPS landmarks and new temporal
landmarks are found for a given horizon. The most interesting point is that in the
same process both types of landmarks get ”activated” at some point taking into
account mutexes and orders. This gives an intuition of when the landmarks (both
temporal and STRIPS) may be needed for the first time and even allows proving
that there is no solution for a given horizon if some landmark could not be activated
in time.

In this work the novel concept of landmarks required at some time step is intro-
duced. However, landmarks still appear as required only once, cycles and unsound
orderings are ignored and the whole computation of the activation times depends
on a given horizon that is chosen by hand and whose viability is unknown a priori.

7.2.4 Landmarks in a CSP to prove Solvability

With the deadline constraints introduced in PDDL3.0 (Gerevini et al., 2009) a hard
constraint on the horizon of the planning task can be imposed. A different way of
using the landmarks was proposed to detect unsolvable problems due to these time
constraints (Marzal et al., 2008). In this case the landmark graph was encoded as a
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Constraint Satisfaction Problem (CSP), in which the landmarks were the variables,
the time steps where the landmarks might be needed for the first time the domain
of the variables and the orders, mutexes and deadlines the constraints. Thus, if the
CSP had no solution, the problem was deemed as unsolvable.

In this case a more general approach is taken. Even though the goal is prov-
ing unsolvability, probably the most interesting part is the new landmark graph
obtained from a solution assignment.

7.3 A SAT Compilation of the Landmark Graph

The planning graph and the landmark graph are two conceptually close concepts.
In fact, the planning graph is the core of some landmark discovery methods (Key-
der et al., 2010). However, the relationship between the two has not been studied
specifically. Landmarks are sets of propositions and actions, so they can be rep-
resented in the planning graph as well. The main difference is that landmarks do
not contain information regarding time, as opposed to the time-stamped nodes that
represent actions and propositions in the planning graph. Hence, the critical point
is finding when landmarks are required - and/or how many times - when carrying
them over to the planning graph.

Another related concept are the constraints that constitute the edges in both
graphs. These edges are causal relationships between the nodes of the graph that
encode time constraints. Since time steps are not represented in the landmark
graph, its edges are of a more general nature. However, they share most of their
properties and can be exploited in similar ways. Following this intuition, it is inter-
esting to analyze whether some of these commonalities allow applying techniques
used in the planning graph to the landmark graph.

An interesting approach commonly employed in automated planning is the en-
coding of the planning graph as a boolean satisfiability (SAT) problem. This is
done by planners like Blackbox (Kautz and Selman, 1999) and SATPlan (Kautz
et al., 2006), which use a SAT solver to find an assignment that corresponds to a
valid solution plan. Despite being a relatively old concept, these planners still rep-
resent the state of the art in parallel-length optimal planning and are competitive
in satisficing planning, as they effectively take advantage of the techniques devel-
oped by the SAT community (Rintanen, 2010). The classical way of translating the
planning graph into a SAT instance involves encoding every proposition and action
at every level as a variable, and every constraint as a clause. Since the number of
parallel steps that the optimal solution has is unknown, the initial number of levels
is set to the minimum required for the goal propositions to appear with no mutex
relationships between them.2 Then, the planning graph is converted into a SAT
problem and solved using a SAT solver. If no solution is found, the planning graph

2Remember that mutexes in the planning graph are dynamic and depend on the level as described
in Section 2.5.
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is extended by one level and the process is repeated until a solution is finally found
or the planning graph levels off, also known as the “ramp-up” method.

Inspired by this approach a SAT compilation of the landmark graph is pro-
posed. In this case, the variables represent the proposition landmarks at every time
step, and the clauses their respective ordering constraints. Additionally long dis-
tance mutexes (londex) constraints (Chen et al., 2007), which are a generalization
of static binary mutexes, are added to the problem. Static binary mutexes indicate
that two propositions p, p′ ∈ S cannot be true at the same time; londexes however
give a lower bound on the number of parallel steps that must appear between two
states s, s′ ⊆ S such that p ∈ s and p′ ∈ s′. The reason behind the use of mutexes
and londexes is that the landmark graph does not contain explicit information re-
garding mutual exclusion, which represents a loss of information with respect to
the planning graph. The computation of hmax from the initial state for every land-
mark is also required. Landmarks should not be encoded as variables for levels at
which they cannot appear, as a minimum number of parallel steps is needed before
some propositions can be achieved. This can be found by computing hmax and
corresponds to the first level at which the landmarks appear in the planning graph.

The same method as with SAT-based planners is used. Once the landmark
graph has been built, a SAT compilation for a given number of time steps is com-
puted. Then, a SAT solver is used to find a solution assignment, and, if none is
found, the horizon is increased. An important difference is that the “ramp-up”
method in combination with the SAT encoding of the landmark graph is not com-
plete, as it cannot prove unsolvability. This is because the SAT compilation of the
landmark graph encodes the same constraints independently of the number of lev-
els, whereas the constraints of the planning graph are different per level. Hence,
whereas the planning graph can level off and thus prove that a problem is unsolv-
able, the SAT compilation of the landmark graph cannot.

7.3.1 Clause Encoding

Clauses can be divided in three types: existential clauses, ordering clauses and
londex clauses. In these clauses, ini represents the time step at which a given
proposition p ∈ S can be true for the first time, found by computing hmax(p). n
is the number of time steps - or horizon - the landmark graph takes into account.
Existential clauses represent the fact that the landmarks must be true at some time
at least once. They have the following form:

• Existential clauses: Every landmark a ∈ L must be true at at least one time
step (aini ∨ ... ∨ an)

In the particular case of propositions that appear in either I or G these clauses
are not necessary, as they always appear at least in the first and last level respec-
tively. The variables that represent these landmarks must be introduced in the prob-
lem though, as they may be necessary at different time steps. This way, ∀p ∈ I
then pini and ∀p′ ∈ G then p′n.
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Ordering clauses represent the edges of the landmark graph. There is a different
clause per type of sound ordering:

• Natural orders (a <nat b): a ∈ L must be true at some time step before
b ∈ L is true (aini ∨ . . . ∨ at−1 ∨ ¬bt)

• Necessary orders (a <n b): Either a ∈ L or b ∈ L must be true at the time
step before b is true (at−1 ∨ bt−1 ∨ ¬bt)

• Greedy-necessary orders (a <gn b): Either a ∈ L must be true at the time
step before b ∈ L or b must be true at some time step before b is true (at−1 ∨
bini ∨ . . . ∨ bt−1 ∨ ¬bt)

For every landmark order a < b several clauses are needed. In particular, the
number of clauses needed depends on the number of levels at which b can be true,
from bini to bn.

Necessary orderings are worth of mention, as they can induce cycles in the
landmark graph. In this case, though, cycles are not undesirable, as they are
resolved implicitly when finding a solution assignment. This allows to find im-
portant structural information in the planning graph, such as loops or a producer-
consumer relationships between propositions. For instance, in the aforementioned
Blocksworld domain necessary orders allow to discover that (arm-empty) is re-
quired at every other time step, as it is necessarily ordered before every (holding x
- block) proposition.

Reasonable orders behave differently from the rest of the edge constraints. Rea-
sonable orders do not have to be respected in every solution plan in progression,
but they must be respected in regression, as proved in Section 3.5.3. In particular,
reasonable orders are known to hold among goal propositions (Koehler and Hoff-
mann, 2000), although this is not limited to them. This means that if a, b ∈ S and
a <r b, the last time a is made true must come before the last time b is made true.
When doing regression, this means that b must be supported first whenever both a
and b are true if both must be true until the final state, that is, if they comply with
the definition of aftermatch (Koehler and Hoffmann, 2000). In terms of defining
a constraint, this means that, if a and b are true at some level t, both remain true
until the end of the problem and a is reasonably ordered before b, then at−1 must
be true. The only case in which this is not true is when there exists an action that
adds both propositions at the same time, but in that case current methods would
not report a reasonable order between them (Richter and Westphal, 2010). Their
representation as a SAT clause in the encoding of a landmark graph with n time
steps is the following:

• Reasonable orderings: If a, b ∈ S, a <r b and at ∧ bt, a must be true at the
time step before that level if they remain true until n (at−1 ∨ ¬at ∨ ¬bt ∨
¬at+i ∨ ... ∨ ¬an ∨ ¬bt+i ∨ ... ∨ ¬bn)
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Before defining londex clauses, some clarifications must be done. Londexes are
a generalization of mutexes that introduce a relation of mutual exclusivity among
several time steps. For example, (holding a) and (holding b) in the Blocksworld
domain would form a londex of distance 2, as at least 2 time steps are needed to
achieve one of the propositions from a state in which the other is true. Seen as a
constraint, this means that both propositions cannot be true neither at the same time
step nor at consecutive time steps. A fact that is not mentioned in the definition of
londex is that londex are not necessarily symmetrical, in the sense that if a ∈ S
and b ∈ S are mutex the distance to achieve b from a state s ⊆ S in which a ∈ s
may not be the same as the distance to achieve a from a state s′ ⊆ S in which
b ∈ s′. For example, in an instance of the Sokoban domain with a single block
and in which the grid is a n×n one with no obstacles, a proposition that represents
the block being at some corner of the grid and another one that represents the
block being somewhere at the center are mutex. However, the minimum number of
actions to move the block from the center to the corner is finite, whereas moving
the block from the corner to the center is not possible at all (in which case the
distance would be considered as infinite). The clauses derived from the londex
must take into account this fact, so they are based on a lower bound of the distance
between mutex propositions rather than on a single londex constraint:

• Distance between londexes: if a, b ∈ S, a cannot be true at a time step t’ if b
is true at t such that t− distance(a, b) > t′ ≤ t (¬at−(distance−1) ∨ ¬bt) ∧
... ∧ (¬at ∨ ¬bt)

7.3.2 Disjunctive and Conjuctive Sets of Landmarks and Action Land-
marks

Landmark discovery methods are not limited to single proposition landmarks. Dis-
junctive and conjuctive sets of landmark propositions and action landmarks may
be found too. Regarding action landmarks, it is easy to see that their preconditions
and effects are proposition landmarks themselves. Therefore, actions can be easily
encoded with an additional variable with constraints over those landmarks. These
constraints can be represented by clauses equivalent to those used when encoding
the planning graph as a SAT problem. Two differences exist: first, there are no ac-
tion levels in the landmark graph, so we must assume that either the preconditions
or the effects are true at the same time step than the action; second, preconditions
and added propositions are necessarily landmarks, but deleted propositions may
not be, so constraints with deleted propositions are generated only if those propo-
sitions are landmarks. If that is the case, regular mutex clauses between the action
and the deleted propositions would be used. These are the clauses generated if we
assume that actions occur at the same time as their effects become true:

• Existential action clauses: Every action landmark a ∈ Amust be true at least
at one time step (aini ∨ ... ∨ an)
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• Precondition clauses: Precondition p ∈ pre(a) must be true one time step
before action a is true (pt−1 ∨ ¬at)

• Add clauses: Added proposition p ∈ add(a) must be true at the same time
step than action a whenever a is true (pt ∨ ¬at)

• e-delete clauses: e-deleted proposition p ∈ del(a) must be false if it is a
landmark - p ∈ L - at the same time step than action a whenever a is true
(¬pt ∨ ¬at)

The sets of conjunctive and disjunctive propositions that conform conjunctive
and disjunctive landmarks can be represented with auxiliary variables. Existential,
natural and greedy-necessary ordering clauses are built for these auxiliary variables
- as these are derived from the landmark computation method -, whereas necessary
and reasonable orderings and londex clauses are built for the propositions that com-
pose the set. Auxiliary variables are represented in the following way:

• Disjunctive landmarks: If ld ∈ L is a disjunctive landmark, at least one
proposition pi ∈ ld must be true whenever ld is true (p0t ∨ ... ∨ pnt ∨ ¬ldt)

• Conjunctive landmarks: If lc ∈ L is a conjunctive landmark, every proposi-
tion pi ∈ lc must be true whenever lc is true (p0t ∨ ¬lct) ∧ ... ∧ (pnt ∨ ¬lct)

7.4 Exploiting the Solution of the SAT Encoding

As described before, the SAT encoding is iteratively generated by increasing its
horizon from an initial value. A SAT solver is used for every resulting SAT instance
until a solution assignment is found. First of all, it should be noted that the solution
may not be unique, there may be several solutions for the same landmark graph
encoding; second, if there is a solution for an encoding with a given number of
levels n, there will be solutions for every encoding with a number of levels greater
than n. This means that the obtained graph is not sound in the sense that the total
order obtained does not have to be respected by every solution plan. Besides,
in the case of disjunctive landmarks the propositions that appear as true are not
necessarily those that support the disjunctive set for every solution plan.

By solving the problem, a time-stamped landmark graph is obtained. This as-
signment can be exploited in several ways. The first relevant conclusion is that the
number of levels of the graph is a lower bound on the parallel length of the original
problem. When regular SAT-based planners that employ the ramp-up method are
used this does not represent a great advantage, as their running time is dominated
by proving that there is no solution at the level n-1 when the optimal solution has n
levels. However, for other approaches that are based on guesses over the minimal
parallel length of the problem (Xing et al., 2006; Rintanen, 2010) this can be used
to reduce the range of horizons considered.
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Another advantage of the time-stamped landmark graph is that a plausible
guess over the time steps at which a landmark may be necessary is obtained. This
allows the construction of a roadmap that can be used to guide the search. Closely
related with this idea is the aforementioned partitioning done by STELLA of the
problem by using layers of conjunctive landmarks described in Section 7.2.2, al-
though in this case the layers can be built just by choosing the landmarks that
appear as true at every particular level with no additional computation.

An important difference with the original graph is that here landmarks may
appear as true several times. This can mean two things: first, a landmark must not
only be achieved but also may be kept as true across different levels; second, it is
often the case that a landmark l ∈ L appears as true at non-consecutive time steps
ti, tj and there is another landmark l′ ∈ L mutex with l which appears as true at
some level t′ such that ti < t′ < tj . If this can be proven for every solution plan
this means that l must be achieved, deleted and then achieved again. In conjunction
with landmark-based heuristics this would allow to obtain more informative values;
in particular, admissible landmark-based heuristics would keep their admissibility
while not being limited by the upper bound that h+ imposes to admissible delete-
effect relaxation heuristics.

7.4.1 An Example of Time-Stamped Landmark Graph

In Figure 7.2 the landmark graph of the Sussman’s anomaly is shown. Although the
graph contains the most relevant propositions and orderings, it gives little insight
on what the structure of the task may be like. In particular, the cycles induced
by the necessary orders on (arm-empty) - which represent the concept of the arm
as a common resource in Blocksworld - are absent. This is so because common
techniques that exploit the landmark graph require it to be acyclic.

Table 7.1 represents the output of the encoding process. LAMA (Richter and
Westphal, 2010) was used to generate the landmark graph, in particular with us-
ing Zhu and Givan’s method (2003). Changes were done to its algorithm to allow
the computation of necessary orders, as LAMA does not compute them. Besides,
cycles in the landmark graph were not removed. The table shows at which levels
landmarks must be true to satisfy the constraints. The opposite is not true; a land-
mark does not have to be false when it appears as not required. That a landmark
must be false may be useful in some cases, although this is trivially computable
using the original constraints along with the solution.

This solution is a good example of how some of the shortcomings of the land-
mark graph can be overcome by employing the proposed method. First, the number
of levels is the minimum required; second, landmarks like (arm-empty) required at
several levels are detected; third, the positions at which landmarks appear as needed
offer a great deal of information with regards to possible solutions. In this notable
case, the optimal solution plan always respects the required landmarks at the exact
times; seen the other way around, the only sequence of actions that would comply
with the solution of the compilation of the landmark graph is the optimal plan.
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Level: 0 1 2 3 4 5 6
(arm-empty) x - x - x - -

(on a b) - - - - - - x
(on b c) - - - - x x x
(on c a) x - - - - - -
(clear a) - x x x x - -
(clear b) x - x - - x -
(clear c) x - x x - - -

(on-table a) x - - - - - -
(on-table b) x - - - - - -
(holding a) - - - - - x -
(holding b) - - - x - - -
(holding c) - x - - - - -

Table 7.1: Output of the solution of the SAT problem generated from the landmark
graph.

7.5 Experimentation

Although this work is centered around an alternative method of exploiting the
information contained in the landmark graph as a departure point for novel ap-
proaches, an experimental part has been added for the sake of completeness. In
this experiments the landmark layering approach used by STELLA (described in
Section 7.2.2) has been emulated in the following way:

• The landmark graph is compiled into a SAT problem.

• A solution for the resulting SAT encoding is found using the “ramp-up”
method employed by conventional SAT solvers.

• The problem is partitioned by creating a series of ordered subgoals. Subgoals
are sets of conjunctive landmarks that appear as needed in a given layer of
the new time-stamped landmark graph. These subgoals are ordered by the
level they were extracted from.

• A base planner is used to solve the different subproblems. The initial state I
for every subproblem is the final state s ⊇ G from the previous one. The final
solution is the concatenation of the solution plans of all the subproblems.

The base planner is Fast-Downward (Helmert, 2006) with greedy best-first
search as the search algorithm, the FF heuristic and preferred operators with boost-
ing enabled. Experiments have been done on a Dual Core Intel Pentium D at 3.40
Ghz running under Linux. The maximum available memory for the planner was set
to 1GB, and the time limit was 1800 seconds. Only non-disjunctive propositional
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landmarks were used in the encoding of the landmark graph. No parameter setting
was necessary.

Experiments were done using the same domains that were used when STELLA
was compared to other planners: Blocksworld, Miconic, Freecell, Logistics, De-
pots, Driverlog, Satellite and Zenotravel from the second and the third international
planning competitions. Mutexes were computed using the invariant discovery pro-
cess of Fast-Downward. Since this method is unable to detect important mutexes
in some domains, two domains were left out: Depots and Freecell. Elevators was
also left out because single propositional landmarks in this domain do not offer
additional information.

Regarding coverage (number of problems solved), the base planner and the
partitioning approach were able to solve the same instances. This is due to the fact
that the base planner is able to solve all the instances - using a less efficient base
planner, as done by STELLA, could be interesting to see if there is a significant
improvement -. Therefore, we will focus on quality and number of expanded nodes
to compare both approaches.

Table 7.2 shows the comparison between the base (Base) planner and the parti-
tioning approach (Part) in terms of evaluated states (-S) and solution quality (-Q) in
the Blocksworld domain. Instances that were solved by both approaches expand-
ing fewer than 100 nodes were left out, as they are deemed too easy to contribute
with relevant information. Results show that in many cases partitioning leads to
an increase in quality. Instances in which the partitioning approach finds shorter
plans usually require fewer nodes expansions for this approach as well. The oppo-
site phenomenon can be observed too: when the base planner finds shorter plans
the number of states is also smaller. In this case, the differences are greater, which
explains why the average number of expanded states by the partitioning problem is
considerably bigger.

In the other domains the results are not so conclusive. The geometric mean of
the number of evaluated nodes and the plan length was computed for every domain
and the ratio (the mean of the base planner divided by the mean of partitioning
approach) displayed. Table 7.3 shows these results. On average the number of
expanded nodes is greater, whereas quality remains the same. This is explained by
two factors: first, the base planner is already very competitive and so there is little
margin for improvement; and second the usage of preferred operators with the FF
heuristic already guides the search towards unachieved landmarks, which overlaps
with the usage of the landmark graph. A partitioning scheme with a planner based
on other paradigms, like LPG (Gerevini and Serina, 2002) and VHPOP (Younes
and Simmons, 2003), would probably yield more positive results.

7.6 Conclusions and Future Work

In this work an alternative representation of the landmark graph has been proposed.
We have discussed the shortcomings of the original landmark graph and analyzed
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Problem: Base-S Part-S Base-Q Part-Q
Prob-9-0 145 112 72 28
Prob-9-1 141 108 60 28
Prob-9-2 73 104 44 26

Prob-10-0 228 136 60 34
Prob-10-1 148 128 60 32
Prob-10-2 145 136 52 34
Prob-11-0 98 2994 54 72
Prob-11-1 327 628 104 64
Prob-11-2 150 3038 72 62
Prob-12-0 269 30836 74 125
Prob-12-1 131 248 102 52
Prob-13-0 678 284 108 68
Prob-13-1 391 674744 108 120
Prob-14-0 238 5968 88 140
Prob-14-1 268 390732 94 342
Prob-15-0 1504 11052 184 144
Prob-15-1 498 604 124 114
Prob-16-1 455 514 102 96
Prob-16-2 2006 29034 160 118
Prob-17-0 2424 190 280 48

Geometric Mean 299.91 1419.31 87.32 68.30

Table 7.2: Comparison between the base planner and the partitioning approach in
terms of evaluated states (columns ”Base-S” and ”Part-S”) and solution quality as
plan length (columns ”Base-Q” and ”Part-Q”).

previous related work that has exploited the information it represents. The points
in common between the planning graph and the landmark graph have been brought
up and a parallelism between the SAT encoding of the constraints of both graphs
has been presented. Finally, we have described the SAT encoding of the landmark
graph and analyzed its characteristics.

We have also proposed several ways of exploiting the new landmark graph that
can lead to future lines of research. Some of the information obtained after solving
the SAT problem generated by the landmark graph, like the minimum number of
levels, can be straightforwardly used with current techniques. The structure of the
graph itself can also be exploited, as it has been done in the experimentation section
or in alternative ways, for example by using it as the seed for local search planners
like LPG. Also the fact that landmarks can appear several times may lead to more
accurate landmark-based heuristics for forward search planners both in satisfying
and optimal search. Finally, generalizing the SAT encoding of the landmark graph
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Problem: Mean States Mean Quality
Driverlog 0.89 1.06
Logistics 0.8 0.87
Satellite 0.45 1.01

Zenotravel 0.54 1

Table 7.3: Comparison between the base planner and the partitioning approach for
the rest of the evaluated IPC-2 and IPC-3 domains

for temporal and numeric domains by transforming it into a constraint satisfaction
problem (CSP) is also a promising continuation of this work.



Chapter 8

Generalization of the Landmark
Graph as a Planning Problem

Landmarks are logical formulæ over sets of propositions or actions
that must be satisfied at some point in a planning task. The landmark
graph, a proposed representation of the set of landmarks and their in-
teractions, is built using the landmarks of the task and ordering rela-
tions between them. A formalization of the landmark graph in terms
of a planning task has not been proposed yet, which makes it difficult
to determine the significance of the landmark graph with respect to the
original planning problem. In this work we propose a generalization
of the landmark graph as an abstraction of the original problem and
analyze its characteristics.

8.1 Introduction

As analyzed in Chapter 7, landmarks are one of the most important lines of research
in automated planning. Nevertheless, the landmark graph still has some limitations
in its current form. First, an informative total order may not be straightforwardly
deduced from the set of partial orders, which is critical in applications like factored
planning; second, landmarks may have to be achieved several times in every solu-
tion plan, which is not taken into account due to the lack of negative interactions
between landmarks other than the causal orders (Hoffmann et al., 2004); third, the
exploitation of the cycles in the graph is still unclear and so current techniques
usually just remove them. Furthermore, although the landmark graph has been ex-
ploited empirically, a more thorough theoretical analysis that may relate it to the
original planning task has not been performed yet.

To address these shortcomings, in this work a generalization of the landmark
graph as a planning problem is proposed. The main motivation is creating an auto-
matic landmark-based abstraction whose solution can capture the causal structure
of the problem in a more accurate way than the landmark graph. The idea presented
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in this work is using the landmarks to build the set of propositions of the problem
and transforming the achievers of those landmarks into the actions of the abstrac-
tion, adding information from landmark orders and mutexes. This abstraction is
a planning task itself, so it can be solved just like any other planning problem.
Besides, it has several properties of its own that can be helpful when solving the
original task.

8.2 Generalization of the Landmark Graph as a Planning
Problem

In this section, the process of generating a new problem from the original problem
using the information of the landmark graph is described.

8.2.1 Definition of the New Problem Pabs

Here, we consider only single proposition landmarks; other cases will be analyzed
in a Section 8.2.5. Given P = (S,A, I,G), the generalization of the landmark
graph as a planning problem is a tuple Pabs = (Sabs, Aabs, Iabs, Gabs) where Sabs
is a set of propositions derived from the discovered proposition landmarks, Aabs is
a set of grounded actions derived from the achievers of the propositions contained
in Sabs, Iabs ⊆ Sabs is the value of Sabs in the initial state and Gabs ⊆ Sabs the set
of goal propositions.

The set of propositions Sabs contains two propositions per landmark l ∈ L,
one proposition labsindicating whether the landmark is true and another propo-
sition achieved(labs) indicating whether the landmark labs has been previously
achieved.1 All the propositions of the original problem that are not landmarks are
discarded, that is, S \ L are not taken into account in Pabs. The set of actions
Aabs are the actions in A that are landmark achievers, that is, at least one landmark
proposition appears in its add effects. Formally, if a ∈ A and add(a)∩L 6= ∅, then
a is used to derive new actions in Aabs. A priori, a single new action per achiever
in A is created. However, due to the possibility of having disjunctive preconditions
in the new actions, some actions in Aabs may be split into several ones. The de-
tails of how to create the new actions of Aabs are presented in subsequent sections.
All the actions in A that do not add at least one landmark proposition are ignored.
The goal propositions Gabs are the goal propositions G of the original problem,
since a goal proposition is a landmark by definition. Additionally, the propositions
that encode whether the original goal propositions have been achieved can also be

1A more concise representation using multi-valued state variables could be obtained in two ways:
first, the variables could take the values of true, false or false but previously achieved instead of
using two different variables to avoid redundancy, although this can lead to actions with disjunctive
preconditions; second, landmarks belonging to the same variable in the original problem or that are
otherwise mutually exclusive could be grouped in a single variable to indicate whether they are true
or not.
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added to Gabs, since a proposition being true necessarily implies that it has been
achieved.

Pabs is a regular planning task, so it has all the properties of a regular planning
problem. Besides, Pabs is an abstraction of the original problem P . The function α
that maps a state s ⊆ S to α(s) ⊆ Sabs consists of determining which landmarks
are true or have been previously achieved in s. Note that this depends not only on s
but also on the path that led from I to s, so the information about which landmarks
have already been achieved must be stored in a similar fashion as when computing
hLA. The transitions are defined by the relationship betweenAabs andA, described
in the following subsections.

8.2.2 Preconditions of the New Actions

Actions in Aabs are applicable when the landmarks appearing in their precondi-
tions have the required value. Three different cases define the preconditions of the
actions:

• Preconditions derived from the orders between the landmarks.

• Preconditions of the achievers in the original problem that are landmarks.

• Preconditions obtained from actions labeled as late achievers.

The orderings of the landmark graph encode the causal relationships between
the landmarks. To represent this in Pabs, new preconditions are added to the actions
inAabs. These preconditions enforce the partial orders between landmarks without
hindering the computation of a valid total order. Each type of order implies a
different set of new preconditions:

• Natural order: Every achiever a ∈ A of a given landmark l has a precondi-
tion for every natural order which represents that the landmarks naturally or-
dered before l must have been previously achieved. Formally, if l ∈ add(a),
∀l′ <nat l : achieved(l′) ∈ pre(a).

• Necessary order: Every achiever a ∈ A of a given landmark l has a precon-
dition for every necessary order which represents that the landmarks neces-
sarily ordered before l must be true. Formally, if l ∈ add(a), ∀l′ <n l : l′ ∈
pre(a).

• Greedy-necessary order: Every achiever a ∈ A of a given landmark l has
a precondition for every greedy-necessary order which represents that the
landmarks greedy necessarily ordered before l must be true or that l has been
previously achieved. Formally, if l ∈ add(a), ∀l′ <nat l : (achieved(l) ∨
l′) ∈ pre(a).

Greedy-necessary orders add a disjunctive precondition. Most planners do not
support disjunctive preconditions, so actions with disjunctive preconditions must
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be split into several actions. In theory this can lead to having 2n new actions
per action, where n is the number of disjunctive preconditions. However, due
to the dominance that often appears between actions (described in a subsequent
subsection), the actual number of new actions is at most 2n

′
actions, where n′

is the number of landmarks with greedy-necessary orders achieved by the action.
Although still exponential, in practice it seldom happens that an action achieves
more than 2 such landmarks, which explains why there is no exponential blow-ups
of the size of Pabs in the current benchmarks.

Preconditions can also be derived from the landmark preconditions of the ac-
tions in A: occurrences of landmarks in the actions in A must be considered when
generating the actions in Aabs. This means that the preconditions of the original
actions in A must also appear in the actions in Aabs if they are landmarks: if a ∈ A
was used to create a′ ∈ Aabs, then pre(a) ∩ L ⊆ pre(a′). This overlaps with the
preconditions obtained from greedy-necessary orders and strictly dominates those
obtained from necessary orders, hence making the computation of the latter not
necessary. This is so is because both types of orders are computed from common
preconditions of the achievers of the landmark, already taken into account this way.

Additionally, there are two kinds of achievers (as described in Section 2.6):
first achievers, which can achieve some landmark when it has never been achieved
before, and late achievers, which can achieve a landmark only if it has been already
achieved at some time before. Hence, a late achiever a′ ∈ Aabs derived from
action a ∈ A has an additional precondition achieved(l) ∈ pre(a′) per landmark
l ∈ add(a) ∩ L if a is a late achiever of l.

8.2.3 Effects of the New Actions

Effects of the original achievers and e-deletion determine the effects of the new ac-
tions. First, the add effects of the actions in A that are landmarks can be straight-
forwardly encoded in the new actions belonging to Aabs. Thus, every landmark
proposition added by an action in A appears also as an add effect in the actions
created from it in Aabs, whereas non-landmark propositions added by the action
are ignored. Similarly, for every regular add effect of a landmark l, an add of
achieved(l) must be included. In summary, if a ∈ A was used to derive a′ ∈ Aabs
and landmark l ∈ add(a) ∩ L then l ∧ achieved(l) ∈ add(a′).

Second, negative effects are linked to the notion of e-delete presented in Sec-
tion 2.5.3. Every landmark that is e-deleted by an action a ∈ A is added to the new
action inAabs as a delete effect. There is an exception to this rule, though: if an ac-
tion a ∈ A e-deletes p because it has a precondition mutex with p and does not add
p (second condition of e-deletion) and that precondition is a landmark, it means
that the new action in Aabs is only applicable iff p is false as long as e-deleted flu-
ents are encoded as negative effects in all the actions of Aabs. In this case p will be
always false after the execution of the new action in Aabs, which means there is no
need to explicitly delete it.
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8.2.4 Dominance Between the New Actions

Due to the abstraction of non-landmark propositions and the splitting of disjunctive
preconditions, it is possible to have actions in Aabs that are equivalent to or dom-
inated by other actions. In particular, an action with the same effects and with a
cost greater than or equal to another action needs not to be included inAabs as long
as its preconditions are a superset of the preconditions of the dominating action.
Formally, a ∈ Aabs dominates a′ ∈ Aabs if a 6= a′∧add(a) = add(a′)∧del(a) =
del(a′) ∧ pre(a) ⊆ pre(a′) ∧ cost(a) ≤ cost(a′). The pruning of dominated ac-
tions can be done after generating all the actions to avoid redundancy and obtain a
smaller instance of Pabs.

To illustrate this, a small example will be given. In most transportation do-
mains, such as Logistics, there is an action that involves an agent moving to a
location. If an agent ai being at some location locj , that is, (at ai locj), is a land-
mark and ai being at every adjacent location to locj is not a landmark, then all the
different move actions will have the same preconditions and effects. In this case,
keeping all the actions does not add information to Pabs and only the one with
minimum cost (or a random one among those with minimum cost) is kept.

Dominance between actions also explains why splitting actions when using
greedy-necessary orders leads to having fewer additional actions than expected.
For example, let’s assume that an action a ∈ A adds a landmark l ∈ S which
is greedy-necessarily ordered after n landmark propositions pi ∈ S. This means
that the new action a′ ∈ Aabs will have n disjunctive preconditions of the form
{achieved(l) ∨ pi}. If a′ is split into two new actions for every disjunctive pre-
condition, a total of 2n new actions will be created. However, every time an action
is split, either achieved(l) or pi will be added to the preconditions; if achieved(l)
is added and it is already present, no new action is needed, and if pi is added and
achieved(l) is already a precondition, it will be forcibly dominated by another ac-
tion with achieved(l) as precondition. In the end, only 2 actions are generated per
added landmark with greedy-necessary orders, one with achieved(l) as additional
precondition and another one with p1 ∧ ... ∧ pn as additional preconditions.

8.2.5 Conjunctive Landmarks, Disjunctive Landmarks and Action Land-
marks

Landmarks are not restricted to the single proposition case. When generalizing the
landmark graph this has to be taken into account. Particular cases are treated in the
following way:

• Action landmarks: They can be safely ignored, as their preconditions and
effects are landmarks themselves. A possible optimization is allowing only
the action landmark as achiever if the landmarks derived from the effects of
the action are not ordered after any landmark other than the preconditions of
the action landmark.
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• Conjunctive landmarks: All the propositions that form the set can be treated
as independent landmarks. The achievers of landmarks ordered after a con-
junctive landmark will have all the propositions in the set as preconditions.
Formally, if lc, l′ ∈ L, lc is a conjunctive landmark and lc < l′, then
∀a ∈ Aabs such that l′ ∈ eff(a) then lc must be encoded in pre(a) accord-
ingly depending on the type of landmark order lc < l′.

• Disjunctive landmarks: All the propositions that form the set can be treated
as independent landmarks. Only one of the propositions that form the set
must have the required value for an action a ∈ Aabs that has the disjunctive
landmark as precondition to be applicable. This is done by splitting every
such action into several actions, one per proposition in the set, and including
that proposition as precondition. This can lead to an exponential number
of actions, so a more efficient way of dealing with disjunctive landmarks
could improve the compactness of the problem. Formally, if ld, l′ ∈ L, ld
is a disjunctive landmark and ld < l′, ∀a ∈ Aabs such that l′ ∈ eff(a) a
must be split in |ld| actions and ∀li ∈ ld then li must be encoded in pre(ai)
accordingly depending on the type of landmark order ld < l′.

8.3 Properties of the New Problem

Due to its relationship with the original problem P , Pabs has several additional
characteristics. In this section we present them as a series of theorems.

Theorem 5. All the propositions in Sabs are landmarks in Pabs, unless they were
generated from a disjunctive landmark of L. If this is the case, they will be part
of a disjunctive landmark if a landmark discovery method that can find disjunctive
landmarks of size equal or greater than the original disjunctive landmarks in L is
used in Pabs.

Proof. All the landmarks in L must be achieved at some point in S. If an artificial
proposition per landmark l ∈ L of the form achieved(l) is introduced such that
∀a ∈ A and l ∈ add(a) then achieved(l) ∈ add(a). As all the landmarks in L must
be added, all the propositions of the form achieved(l) will be true in every goal state
and thus can be added to G. Since Gabs = G, then the propositions of the form
achieved(l) can be part of Gabs. As the propositions of the form achieved(l) are
only made true whenever its correspondent l ∈ Sabs is made true, then ∀l ∈ Sabs l
is a landmark.

Theorem 6. The optimal cost to the goal in the new problem h∗abs is an admissible
estimation of the cost to the goal in the original problem h∗, since Pabs is an
abstraction of P .

Proof. Pabs is a projection of P except for the added propositions of the type
achieved(l) for l ∈ L. If a problem β′ is a projection of β, then h∗β′ ≤ h∗β . Hence,
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the only source of inadmissibility can be the propositions of the type achieved(l).
However, these propositions are added to enforce the orders of the landmark graph.
These orders are respected by any optimal solution of β, so the presence of these
propositions cannot make that h∗β′ > h∗β .

Theorem 7. h∗abs, when being used as a heuristic in a forward search algorithm,
is not necessarily a consistent estimation of h∗, as Iabs depends on the path that
led to the current state in P . That is, h∗abs as an admissible estimation of the cost
to the goal is a path-dependent heuristic.

For the proof, we refer the reader to (Karpas and Domshlak, 2009).

Theorem 8. h∗abs dominates the admissible landmark counting heuristic hLA (Karpas
and Domshlak, 2009) and is not bounded by h+, the optimal cost of the delete-
relaxation version of the original problem.

Proof. On one hand, if S = L ⊂ Sabs, then h∗abs = h∗ and h∗abs ≥ h+ ≥ hLA.
In that case, if some landmark l ∈ L must be deleted and then reachieved with an
action a ∈ A | const(a) > 0, then h∗abs > h+; on the other hand, if Pabs is relaxed
by removing orders and deletes, then h∗abs ≥ hoptLA, as Pabs then becomes a hitting
set problem with respect to L, problem of which hoptLA is the continuous relaxation.
There is no further relaxation other than projecting landmarks away that may make
h∗abs lower, so hLA is a lower bound of h∗abs if all the landmarks are considered
when building Pabs.

Theorem 9. The optimal cost of the delete-relaxation version of the new problem
h+abs still dominates hLA, even with optimal cost partitioning (hoptLA).

Proof. Landmark preconditions of the achievers add additional constraints that
may make the cost of the optimal plan go beyond hLA’s value. An example
is shown in the delete-free problem appearing in Figure 8.1: if I = {l} and
G = {l′, l′′}, hLA would assume a cost of 1 for both l′ and l′′ for a total cost
of 2; h+abs however takes into account that to achieve l′ with a cost of 1 l′′ must be
achieved first, so h+abs would yield a value of 3.

Theorem 10. The optimal cost of the delete-relaxation version of the new problem
h+abs is dominated by the optimal cost of the delete-relaxation version of the original
problem h+.

Proof. The proof is analogous to that of Theorem 6.

8.4 Example

In this section we show an example of how Pabs is constructed. The example is
taken from a variation of the Logistics domain, in which case trucks can only carry
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Figure 8.1: Example in which h+abs yields a higher value than hLA.

one package at a time, encoded by the predicate (empty ?t - truck). The initial state
is shown in Figure 8.2. There is a single truck that can move through a graph of
different locations. The truck is initially at location A, where there is an arbitrary
number of packages. The packages can be loaded into the truck if the truck is
empty and dropped at another location. The goal is carrying all the packages to the
goal location G. The single proposition landmarks of this problem are:

A

B

C

D

E

F

G

p1
p2

pn

goal

Figure 8.2: Initial state of the modified Logistics instance.

• The truck at the initial location: (at truck A)

• The truck at the final location: (at truck G)

• The truck empty: (empty truck)

• Every package pi at the initial location: (at pi A)

• Every package pi in the truck: (in pi truck)

• Every package pi at the final location: (at pi G)

The actions would be the following (note that every time a landmark is made
true, the proposition that encodes whether it has been achieved before is uncondi-
tionally made true as well):

• Move the truck to the initial location A: pre={achieved(at truck A)}, add={(at
truck A)}, del={(at truck G)}

• Move the truck to the final location G: pre={achieved(at truck A)}, add={(at
truck G)}, del={(at truck A)}
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• Load a package pi at the initial location A: pre={(at truck A),(at pi A),(empty
truck)}, add={(in pi truck)}, del={(at pi A),(empty truck)}

• Load a package pi at the final location G: pre={(at truck G),(at pi G),(empty
truck)}, add={(in pi truck)}, del={(at pi G),(empty truck)}

• Drop a package pi at the initial location A: pre={(at truck A),(in pi truck)},
add={(at pi A),(empty truck)}, del={(in pi truck)}

• Drop a package pi at the final location G: pre={(at truck G),(in pi truck)},
add={(at pi G),(empty truck)}, del={(in pi truck)}

In this example all the preconditions are taken from the landmark preconditions
of the original actions in A with the exception of the move actions. Similarly,
apart from the move actions all the actions in Aabs can only be generated from a
single action in A. The move action that achieves (at truck A) can be generated
from two actions in A; however, both actions have the same preconditions and
effects, so one arbitrarily dominates the other, which explains why there is only
one action in Aabs that achieves (at truck A). This action has achieved(at truck A)
as precondition because the original actions in A are late achievers of (at truck
A). No other precondition appears, as no precondition of the original actions is
a landmark and (at truck A) is not ordered after any other landmark. The same
dominance occurs with the action that achieves (at truck G), although in this case
the precondition is generated from the natural orders existing between (at truck A)
and (at truck G). As a side note, every landmark of the form achieved(s) that is true
in Iabs is a static fact, so it can be safely discarded, as with achieved(at truck A) in
the example.

To better understand the resulting abstraction Pabs, Figure 8.3 shows a scheme
of what Pabs would look like. As we can see all non-landmarks locations have been
abstracted away and the actions that move the truck in Aabs behave as shortcuts
through the abstracted location graph.

A
G

p1
p2

pn

goal

Figure 8.3: Graphical scheme of the resulting abstraction Pabs.

The key feature that regular delete-relaxation approaches do not capture in this
case is achieving and deleting (at truck A) and (at truck G) alternatively. In this
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case, if n encodes the number of packages, the cost of the optimal solution in the
original problem is h∗ = 8(n− 1) + 5 and in the abstraction is h∗abs = 4(n− 1) + 3.
On the other hand, the value of both h+ and hlmcut (Helmert and Domshlak, 2009)
in the original problem is h+ = hlmcut = 2n+ 3 and the value of the admissible
landmark heuristic with optimal cost partitioning hoptLA is in both the original and
the delete-relaxation problem hoptLA = 2n+ 1.

8.5 Potential Applications of Pabs
Although beyond the scope of this work, it is interesting to analyze the possible
applications of Pabs in regards to task solving. Pabs is a planning problem itself and
so it is PSPACE-complete in the general case (Bylander, 1994), which means that
in many cases solving it (optimally or otherwise) may not be tractable. However,
Pabs is in most cases smaller than P , so if a planner is not able to solve Pabs it is
highly unlikely that it would be able to solve P .

One of the first applications of landmarks, factored planning (Hoffmann et al.,
2004), seems to be a technique that would greatly benefit from this approach. As
opposed to using the first layer of unachieved or required again landmarks as a
disjunctive intermediate goal as described in Section 2.6.1, suboptimally solving
Pabs can be used to obtain a total order of single landmarks, which can be used as
subgoals to partition P . Apart from being able to exploit cycles between landmarks
and offering a finer partitioning, this approach has also the advantage of not being
subject to arbitrary decisions when dealing with disjunctive subgoals - for instance,
when partitioning the Sussman’s anomaly with a disjunctive goals as depicted in
Figure 7.2, Figure 7.3 and Figure 7.4 -.

Inspired by the potential of the serialization of the landmark graph, the recent
planner PROBE (Lipovetzky and Geffner, 2011) builds probes that try to achieve
the goal with little to no search by estimating a total order of the landmarks and
trying to achieve them following that order in a greedy way. However, the way the
probes are built is not based on any theoretical scheme and it has the additional
problem of not allowing actions that delete a landmark to be used if that landmark
is a goal or is still needed - which is often the case when cycles between landmarks
appear -. Solving Pabs suboptimally yields a total order that may be more infor-
mative and that may capture stronger interactions between landmarks, producing a
more informative probe.

The use of Pabs to derive heuristics for P has already been mentioned. Never-
theless, solving Pabs at every state to obtain the heuristic estimate would be imprac-
tical in most cases, so more synergistic techniques are required. Since Pabs is an
abstraction of P , hierarchical search algorithms like Hierarchical A* (Holte et al.,
1996) can be an interesting alternative. When using HA*, Pabs is solved from Iabs
to obtain a heuristic estimate and the expanded nodes are kept hoping that subse-
quent queries can be cached, which allows obtaining h(s) with no search in Pabs.
If cache hits happen often enough, there will be a trade-off between the time spent
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solving Pabs and the time saved from computing h(s), which may result in an in-
creased efficiency. Furthermore, Pabs can be solved both optimally, superseding
the admissible hLA, or suboptimally, superseding LAMA’s heuristic (Richter and
Westphal, 2010).

Lastly, the total order obtained from solving Pabs can also be used in com-
bination with other search paradigms. For instance, local search planners like
LPG (Gerevini and Serina, 2002) are often ill-suited to solving highly sequential
domains, particularly if they involve cycles. In this case, the solution to Pabs can
be used as a seed so a skeleton of the plan is provided and the local search only has
to fill the “gaps” between the landmarks.

8.6 Experimentation

As any other landmark-based technique, Pabs is highly dependent on the number
and relevance of the landmarks found with current methods. For instance, in some
domains only a few landmarks other than the propositions true in I and the goals
in G are found, in which case landmark-based techniques perform poorly. Further-
more, one of the main advantages of Pabs over most ways of exploiting landmarks
resides in the fact that it is able to account for negative interactions such as delete
effects and mutexes. In particular, Pabs appears to capture the structure of the prob-
lem best when cycles are a key part of the domain. If such negative interactions are
not representative of the planning task, using Pabs may not be more advantageous
than using already existing landmark techniques. Because of this, the performance
of any technique based on Pabs will depend on the number of landmarks and the
features of the domain they represent.

Because of the aforementioned reasons, three different cases arise in problems
with meaningful landmarks:

• Almost all the propositions are landmarks: the abstraction is very similar to
the original problem and thus it is hard to obtain a balanced trade-off between
the information it provides and the difficulty of solving Pabs. In this case
directly solving P is the simplest alternative, though solving Pabs may not
be necessarily worse, since the information obtained from Pabs might allow
solving P with almost no search.

• There are few necessary orders and/or landmark preconditions of the achiev-
ers: when solving the abstraction the landmarks do not need to be reachieved,
so only a rather arbitrary total order of the landmark graph is obtained.
Hence, in most cases the cost of the solution is equal or only slightly higher
than hLA with optimal cost partitioning. Besides, partitions of P derived
from the obtained total order will not offer much more information than the
regular landmark partitioning using disjunctive subgoals.

• There are fairly numerous necessary orders and/or landmark preconditions
of the achievers: in these cases an informative plan is obtained with a cost
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higher than hLA while still being solvable. As described before this is often
the case when resources or similarly “consumed” landmarks enforce cycles
in the landmark graph, cases in which other techniques often do not fare that
well.

Knowing this, it may be relatively simple to predict whether Pabs will be useful
in the actual resolution of the planning task or not. This work is mainly theoret-
ical, and hence Pabs was not used to the efficiency of a given planner. Neverthe-
less, in order to assess its usefulness in practice, some experimentation has been
done. First, Pabs was generated in a broad range of domains from the Interna-
tional Planning Competition so the relative size of Pabs compared to P could be
estimated. The planner used to ground the instances in both cases was Fast Down-
ward (Helmert, 2006), and the chosen measure of size is the number of actions and
fluents of each instance after preprocessing, that is, the cardinalities of A, Aabs, S
and Sabs in every instance. The reason why the number of actions was chosen is
because it gives an idea of the size of the tasks and because generating Pabs of-
ten requires action splitting, whose impact can be measured by counting the final
number of actions. The number of propositions |Sabs| can be known a priori just
by computing the landmarks of P , although a significant subset of the propositions
derived from the landmarks of P may be static in Pabs, which means that |Sabs|
is often smaller than twice the number of landmarks. Table 8.1 shows the sum of
the cardinalities of A, Aabs, S and Sabs of every instance in each domain. All the
orders were used and dominance between actions was enabled. Only propositional
landmarks were used, since disjunctive landmarks may lead to an exponential in-
crease in the number of actions.

Results show that the relative cardinality of Aabs varies greatly from domain to
domain. On one hand, in Pegsol |Aabs| has the same value as |A|; on the other, in
some transportation domains like Transport or Zenotravel |Aabs| is comparatively
rather small because of the small number of single proposition landmarks found
in those domains. This is confirmed by the small value of Sabs in those domains,
in which |Aabs| is significantly smaller than |A|. There are no domains in which
|Aabs| > |A|, although in two domains (Miconic or Openstacks) |Sabs| > |S|
because of the additional propositions added to represent when a landmark has
been achieved.

Additionally, the geometric mean of the ratio between h∗abs and hlmcut/hoptLA/huniLA

is shown for every domain. Only instances in which Pabs could be solved optimally
under a time limit of 300 seconds were included. A ratio between h∗abs and hoptLA

close to 1.00 means that using Pabs probably has little potential in those domains;
a higher ratio, as in Barman, Blocks, Pegsol, Pipesworld (both versions) and PSR-
small means that using Pabs may be promising. Also, note that disjunctive land-
marks were not used; if disjunctive landmarks had been used, the ratio could have
been higher as well in domains with symmetric resources, like Gripper and Logis-
tics. The comparison with hlmcut shows that although hlmcut is on average closer
to h∗, it varies substantially from domain to domain.



CHAPTER 8. LANDMARK GRAPH AS A PLANNING PROBLEM 132

Domain |A| |Aabs| |S| |Sabs| hlmcut hoptLA huniLA

Airport (50) 144963 125067 157592 46706 0.92 1.00 1.00
Barman-opt11 (20) 13264 11004 4604 1200 0.64 1.97 2.50

Blocks (35) 7490 7434 4826 2549 1.44 1.44 1.44
Depot (22) 68894 51392 9423 1934 0.46 1.00 1.00

Driverlog (20) 53494 5926 6007 542 0.46 1.00 1.00
Elevators-opt08 (30) 18520 7574 3360 607 0.51 1.07 1.07
Elevators-opt11 (20) 11450 4619 2097 571 0.50 1.09 1.09
Floortile-opt11 (20) 9188 6036 3578 1008 0.76 1.06 1.06

Freecell (80) 1071066 663857 23419 13286 2.42 1.03 1.03
Grid (5) 38808 18010 3373 185 0.88 1.01 1.01

Gripper (20) 3720 1880 2380 960 0.52 1.00 1.00
Logistics00 (28) 6972 2380 3429 2409 1.09 1.09 1.09
Logistics98 (35) 501186 13491 82687 3203 1.09 1.09 1.09
Miconic (150) 189100 125128 13950 19964 1.03 1.03 1.03
Mprime (35) 567960 2977 17796 139 0.32 1.00 1.00
Mystery (30) 217800 3634 13066 164 0.36 1.01 1.01

Nomystery-opt11 (20) 72522 59865 4434 1008 1.15 1.09 1.09
Openstacks (30) 213470 212544 10634 11593 1.69 1.00 1.00

Parcprinter-opt08 (30) 9066 2933 6139 4159 0.91 1.00 1.00
Parcprinter-opt11 (20) 5096 1732 3993 2591 0.91 1.00 1.00
Pathways-noneg (30) 40595 7126 13119 2596 0.40 1.00 1.00

Pegsol-opt08 (30) 5346 5346 2920 2003 1.00 1.41 1.41
Pipesworld-notankage (50) 187388 73935 44594 1649 1.03 1.21 1.21
Pipesworld-tankage (50) 1135917 742542 28027 1649 1.06 1.20 1.20

PSR-small (50) 14546 11751 2158 572 1.65 1.65 1.65
Rovers (40) 231653 45064 29324 2705 0.51 1.04 1.04
Satellite (36) 3709130 34163 30479 6192 0.55 1.01 1.01

Scanalyzer-opt08 (30) 1145836 733474 4680 1691 1.05 1.07 1.23
Scanalyzer-opt11 (20) 631288 420820 3088 1010 1.05 1.07 1.18
Sokoban-opt08 (30) 12674 5657 8518 1129 0.59 1.05 1.09
Sokoban-opt11 (20) 7166 3332 5306 706 0.56 1.08 1.11
Tidybot-opt11 (20) 384018 114737 11476 662 0.59 1.09 1.09

Tpp (30) 281351 59833 18807 1564 0.57 1.02 1.02
Transport-opt08 (30) 105888 4200 6800 390 0.02 1.00 1.00
Transport-opt11 (20) 35216 2360 2886 250 0.02 1.00 1.00

Trucks (30) 442262 33896 6964 2065 0.76 1.04 1.04
Visitall-opt11 (20) 3520 2688 2516 2259 1.25 1.00 1.00

Woodworking-opt08 (30) 27835 22058 5677 2729 0.87 1.02 1.03
Woodworking-opt11 (20) 18175 14267 3805 1837 0.90 1.03 1.04

Zenotravel (20) 140433 9138 4518 428 0.45 1.01 1.01

Table 8.1: Comparison between P and Pabs: task size and heuristics.
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8.7 Related Work

Using landmarks in factored planning (Hoffmann et al., 2004) was the first attempt
to exploit the information contained in the landmark graph. However, it did not
consider the fact that landmarks can be deleted nor the negative interactions be-
tween them. A subsequent work that employed mutexes to build layers of conjunc-
tive landmarks addressed the latter (Keyder et al., 2010). Although more informed
than the original partitioning in disjunctive subgoals, computing the new layer was
sometimes too inefficient, apart from offering no insight in terms of the formal
properties of the problem.

Another work exploited inconsistencies between landmarks and local interac-
tions between achievers and other landmarks to compute the minimum number of
states required to satisfy given sets of landmarks (Porteous and Cresswell, 2002),
which in turn could be used to obtain a lower bound on the number of times a
landmark must be achieved. This information captures the fact that in a sequential
plan landmarks may have to be deleted even if they are needed again later and can
be used in a cost-partition scheme to derive admissible heuristics with properties
similar to the ones mentioned in this work. However, this approach is difficult to
define formally due to its procedural nature and offers potentially less information
than the generalization of the landmark graph.

Finally, encoding achieved landmarks as goals to enrich abstractions was also
proposed (Domshlak et al., 2012). The scope of application of this work was more
limited though, and a projection of the enriched problem is less informative than
Pabs because it does not consider orders nor e-deletion.

8.8 Conclusions and Future Work

In this work a generalization of the landmark graph as a planning problem has been
presented. So far, the main contribution of the discussed approach is a theoretical
one, although several ways of exploiting the obtained abstraction have been pro-
posed. This generalization bridges the gap towards the integration of landmarks
in a common framework along with abstractions and heuristics in automated plan-
ning. Furthermore, the formal properties that relate it to the original problem have
been analyzed.

It remains an open question whether there are additional ways of exploiting or
improving the abstraction. On the one hand, it is unclear whether some characteris-
tics of the abstraction, like symmetries or solvability features, can be extrapolated
to the original problem. On the other hand, the costs encoded in the generaliza-
tion could be improved by using cost-partitioning schemes such as the ones used
in additive admissible heuristics. For example, the costs of the actions could be
substituted by lower bounds on the cost of achieving a given landmark. This is
actually already possible in a simple way: if, through the path to a landmark, there
are no positive interactions, the cost of the achieved landmark can be substituted
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by the cost of the path from the closest landmark to the achieved landmark. This is
trivial when using actions whose preconditions and effects affect a single invariant,
like the move operator in the example presented in this work. In this case, the cost
of the move actions can be the cost of getting to the achieved landmark from the
closest landmark, which interestingly enough would make that h∗abs = h∗. Other
approaches could extend to more general cases, so this line of research may be an
interesting follow up of this work.
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In this thesis we have successfully analyzed the main challenges presented in
the introduction and in the objectives. First, we have studied the current state of
regression in planning and addressed some of its major drawbacks. In particular,
we have focused on applying modern techniques developed for progression to re-
gression. Moreover, taking advantage of the better understanding about classical
planning that we have, we also gave some theoretical insights about aspects that
were not clear in regression, like reasonable orders and the use of caching schemes
for a broad range of reachability heuristics (among which there are very recent de-
velopments, like semi-relaxed heuristics). This part of the thesis has lead to the
implementation of FDr, a backward search planner more efficient than its prede-
cessor HSPr. This opens the possibility of employing backward search planners to
create a potentially very efficient planner, more likely as part of a portfolio or by
integrating backward search in a bidirectional planner.

Additionally, the improvement obtained by the use of the proposed techniques
has been carried over to symbolic search. We have shown how to exploit con-
straints popular in explicit-state search in a symbolic setting. Apart from the the-
oretical significance of this fact, constraints in symbolic search have been used to
develop a new generation of symbolic planners whose results are beyond the state
of the art in optimal planning. This is of uttermost importance, as until recently
symbolic regression was not considered a competitive paradigm by most members
of the community.

Following the main motivation of the thesis, a novel way of employing re-
gression along with relaxed plans has allowed us to develop a subgoal generating
technique, BGG, that can be exploited in several ways, i.e. as a front-to-front for-
ward heuristic. This has been possible thanks to the study of the conditions in
which regression is viable.

After proving that regression was an effective way of generating intermediate
goals, we studied the complex problem of sampling in implicit search spaces. The
use of the states invariants relevant in regression is key, as otherwise the odds of
sampling a spurious state are very high in most domains. By formulating the sam-
pling problem as a CSP, the constraints obtained from the states invariants allow
planners to avoid spurious states in most of the domains of the current planning
benchmarks. The implementation of an algorithm that accurately samples at ran-
dom the search space opens the possibility of employing a broad range of stochastic
algorithms. In particular, Rapidly-exploring Random Trees seemed to have poten-
tial, so we have implemented them as part of a satisficing planner, RPT. After
describing the implementation details, we performed some experimentation with
RPT that shows that it is very competitive with the state of the art. Notably, it sur-
passes in some domains the performance of LAMA, a very efficient forward search
planners that uses a broad range of enhancing techniques.

Finally, we used the knowledge derived from studying both regression and ran-
dom sampling in the context of landmarks. The main contribution was to exploit
invariants to obtain more informed versions of the landmark graph. The first is a
SAT compilation of the landmark graph, akin to a scheduling problem that models
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time steps and state invariants as constraints. The SAT compilation gives not only
a guess of the time steps at which a landmark may be necessary (which may used
to derive conjunctive intermediate goals and a total order of the landmarks), but
also provides sound information of theoretical relevance, like a lower bound on the
number of parallel time steps required to solve the problem.

The other alternative characterization of the landmark graph is its formulation
as an abstraction of the original problem. This abstraction encodes more informa-
tion than a mere projection of the original problem and establishes interesting links
between the landmark graph and some landmark-based heuristics. This abstrac-
tion can also be employed to compute a finer total order of the landmarks or as an
admissible heuristic estimate.

The published papers that constitute the core of this thesis are the following:

• “Using Backwards Generated Goals for Heuristic Planning” (Alcázar et al.,
2010)

• “A SAT Compilation of the Landmark Graph” (Alcázar and Veloso, 2011)

• “Adapting a Rapidly-Exploring Random Tree for Automated Planning”
(Alcázar et al., 2011)

• “Generalization of the Landmark Graph as a Planning Problem” (Alcázar,
2013)

• “Constrained Symbolic Search: On Mutexes, BDD Minimization and More”
(Torralba and Alcázar, 2013)

• “Revisiting Regression in Planning” (Alcázar et al., 2013)

• “Automated Context-aware Composition of Advanced Telecom Services for
Environmental Early Warnings” (Ordonez et al., 2014)
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Tran, V. (2005). A path planning approach for computing large-amplitude mo-
tions of flexible molecules. Bioinformatics, 21(suppl 1):i116–i125.

Coudert, O. and Madre, J. C. (1990). A unified framework for the formal verifi-
cation of sequential circuits. In International Conference on Computer-Aided
Design (ICCAD), pages 126–129.

Culberson, J. C. and Schaeffer, J. (1998). Pattern databases. Comput. Intell.,
14(3):318–334.

Da Xu, L., Wang, C., Bi, Z., and Yu, J. (2012). Autoassem: an automated assembly
planning system for complex products. Industrial Informatics, IEEE Transac-
tions on, 8(3):669–678.

Dillenburg, J. F. and Nelson, P. C. (1994). Perimeter search. Artificial Intelligence,
65(1):165–178.

Domshlak, C., Katz, M., and Lefler, S. (2012). Landmark-enhanced abstraction
heuristics. Artificial Intelligence, 189:48–68.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In
Conference on Artificial Intelligence Planning Systems (AIPS), pages 274–283.

Edelkamp, S. and Helmert, M. (2000). On the implementation of MIPS. In In
Proceedings of Workshop on DecisionTheoretic Planning, Artificial Intelligence
Planning and Scheduling (AIPS.

Edelkamp, S. and Kissmann, P. (2011). On the complexity of BDDs for state
space search: A case study in connect four. In AAAI Conference on Artificial
Intelligence.

Edelkamp, S. and Reffel, F. (1998). OBDDs in heuristic search. In German Con-
ference on Artificial Intelligence (KI), pages 81–92.



BIBLIOGRAPHY 141

Fikes, R. and Nilsson, N. (1971). STRIPS: a new approach to the application of
theorem proving to problem solving. In Proceedings of the 2nd international
joint conference on Artificial intelligence, pages 608–620, San Francisco, CA,
USA.

Fox, M. and Long, D. (2003). Pddl2.1: An extension to pddl for expressing tem-
poral planning domains. J. Artif. Intell. Res. (JAIR), 20:61–124.

Fuentetaja, R., Borrajo, D., and Linares López, C. (2009). A unified view of cost-
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