
Time Triggered Scheduling Analysis for Real-Time
Applications on Multicore Platforms

Matthias Freier
Corporate Sector Research Schwieberdingen

Robert Bosch GmbH, Germany
Email: matthias.freier@de.bosch.com

Jian-Jia Chen
Department of Computer Science

TU Dortmund University, Germany
Email: jian-jia.chen@cs.uni-dortmund.de

Abstract—Scheduling of real-time applications for multicore
platforms has become an important research topic. For analyzing
the timing satisfactions of real-time tasks, most researches in
the literature assume independent tasks. However, industrial
applications are usually with fully tangled dependencies among
the tasks. Independence of the tasks provides a very nice
abstraction, whereas dependent structures due to the tangled
executions of the tasks are closer to the real systems.

This paper studies the scheduling policies and the schedulabil-
ity analysis based on independent tasks by hiding the execution
dependencies with additional timing parameters. Our scheduling
policy relates to the well-known periodic task model, but in
contrast, tasks are able to communicate with each other. A
feasible task set requires an analysis for each core and the
communication infrastructure, which can be performed indi-
vidually by decoupling computation from communication in a
distributed system. By using a Time-Triggered Constant Phase
(TTCP) scheduler, each task receives certain time-slots in the
hyper-period of the task set, which ensures a time-predictable
communication impact.

In this paper, we provide several algorithms to derive the time-
slot for each task. Further, we found a fast heuristic algorithm
to calculate the time-slot for each task, which is capable to
reach a core utilization of 90% by considering typical industrial
applications. Finally, experiments show the effectiveness of our
heuristic and the performance in different settings.

I. INTRODUCTION

The demand of more computing power for real-time systems
carries on the research of multicore scheduling in academia
and industries. In order to guarantee the schedulability of a
system with real-time tasks, most researches in the literature
assume independent tasks. Modeling the executions with inde-
pendent tasks is a nice abstraction, which greatly simplifies the
scheduling analysis. However, a typical industrial application
consists of tasks with fully tangled dependencies among each
other. Considering a distributed application, such dependencies
include communications between cores. Such communications
may require a lot of time, if the worst case (WC) is assumed.
An explicit model of communication is required to produce a
tight worst-case execution time (WCET) bound for each task
on a specific core. Without expressing communication, real-
time communication is more likely to become a bottleneck in
the schedulability analysis with an increasing number of cores.

This paper uses a system model based on hiding such
dependencies with an additional communication task set, i.e.,
a computational task set and a communication task are both
present for scheduling. The communication task set models

the dependencies among tasks. Each communication task has
a deadline to constrain the completion of its transmission.
A computational task set consists of periodic tasks, which
is a well-known task model for real-time applications [7].
For scheduling computational tasks, we use a time-triggered
constant phase (TTCP) scheduler, which helps to decouple the
schedulability analysis.

A TTCP scheduler executes a task in predefined time-
slots to guarantee a contention-free schedule for all tasks
mapped to a specific core, i.e. at most one task is non-
preemptively scheduled at any point in time. Such predefined
time-slots provide the knowledge of the starting and guaran-
teed completion time of task executions, which procures a
priori known communication impacts. A TTCP scheduler on
each core ensures time-predictable communication impacts,
which severely reduce the worst-case analytical effort in the
communication analysis. For decoupling the communication,
two time bounds specify the limits of the time-slots to preserve
time for the communication to other tasks. The concept of
fixing the starting times of the tasks has already been presented
by Marouf and Sorel [10]. In contrast to the method storing
the schedule in tables, the constant phase allows an efficient
implementation, because not all starting times of all jobs need
to be stored.

By using a TTCP scheduler, the essential step is to deter-
mine the starting times for each task for its time-slot. The
analysis of the schedulability with known starting time has
been proven [10]. In this paper, we provide and explore several
algorithms to derive the starting times for each task. We
develop a heuristic algorithm, named LPF-LBF, which can
calculate the time-slots in a fast and efficient way. Further, we
apply an Satisfiability Modulo Theories (SMT) solver, which
can calculate a feasible solution, if one exists. Experiments
show that our algorithm reach a core utilization above 90%
by considering typical industrial applications.

II. RELATED WORK

The benefits for a deterministic communication model has
been shown several times [6], [11]. Schranzhofer et al. [11]
evaluate different resource access patterns to a common shared
resource and propose to separate the execution phase from the
communication read-write phases in order to reduce the com-
pletion time. We adopt this acquisition-execution-replication
(AER) model to our approach, in order to get a tight WCET.

REACTION 2014 48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kopetz et al. [6] propose a time-triggered protocol to get a
predictable and composable system. In this paper, we define
explicitly the time-triggered communication on the task level
to get a deterministic behavior. Due to these concepts, several
problems appear. A problem is to determine a time-triggered
non-preemptive schedule, capable to satisfy the real-time
constraints given by the application. Considering a multicore
platform, the design space becomes very large for assigning
the time-slots for the time-triggered scheduling. This large
design space lead to complexity problem, in which the trade-
off between optimality, runtime and accuracy challenge the
developer. Getting a flexible system, on-line adjustment of
the time-slots is a difficult issue despite the composability of
the system. In this paper, we focus on determining a feasible
schedule for a time-triggered scheduler.

A few papers are closely related to this paper. The pure
schedulability analysis of the TTCP scheduler is done by
Marouf and Sorel [10]. They use a similar task model and
analyze the schedulability under given starting times. However,
the problem of determining these starting times is an still open
question. Kermia and Sorel [5] published a heuristic as well
to determine the starting times, but unfortunately the heuristic
of the paper is not repeatable. Nevertheless, our heuristic does
not require to unroll the schedule till the hyper-period.

Biewer et al. [2] determine the starting times of a time
triggered system by an SMT solver. We use this SMT solver
to compare our heuristic against a solver based approach, but
it does not scale to larger problems and takes much more time
finding a solution. In this paper, we use an SMT solver and a
fast heuristic algorithm to determine the time-slots.

III. SYSTEM MODEL

This section presents dependent tasks and our scheduling
policy to decouple the tasks among each other. Further, we
assume a non-preemptive scheduler. An example demonstrates
the usage of our system model.

A. Computational and Communication Task Model

All tasks are mapped to a multicore platform with m-cores
for a given fixed mapping, and they are statically executed on
the assigned core. The mapping is not the focus of this paper.
Therefore, the approaches can also be used for heterogeneous
cores after the task mapping is done.

For modeling the computation, we assume a periodic task
set T = {τ1, τ2, . . . , τn}, which consists of n tasks consid-
ering their corresponding communications. Each task τi is
specified by a worst-case execution time (WCET) Ci, a period
Pτi and a relative deadline Dτi . Each task generates an
infinite number of jobs Ji,k of τi, in which Ji,k arrives at
ai,k = Pτi ·k,∀k ∈ Z+

0 . Each job starts executing at its starting
time si,k and should at least be completed at its absolute
deadline ai,k + Dτi , otherwise the job violates its real-time
constraint. By considering implicit deadlines Dτi = Pτi , two
jobs generated by one task cannot legally occur at the same
time. All tasks arrive synchronized at the same time t = 0
to release their first job Ji,1. The task model adopted in this

paper is strictly periodic, in which the inter-arrival time of two
consecutive jobs must be equal to Pτi .

For the communication between τi, we define a commu-
nication task set C = {κ1, κ2, . . . , κz}, which consists of z
communication tasks. A communication task κj is character-
ized by its period Pκj , its worst-case traversal time WCTTj , a
source task τSRCj for producing packets, a destination task
τDSTj for consuming packets, and a relative deadline Dκj .
Similar to computational tasks τi, each communication task
κj generates an infinite number of packets pj,l. A packet is
emitted by a source task τSRCj at its completion time and will
be transmitted through the communication infrastructure to the
destination task τDSTj . The time, when a packet is emitted is
the communication arrival time rj,l. Each packet pj,l transfers
a specified amount of data, which requires at most the worst-
case traversal time WCTTj . If the packet pj,l is not transmitted
completely within their absolute deadline rj,l +Dκj , then the
real-time constraint is violated. The corresponding period Pκj
is determined according to

Pκj = max(PτSRCj
, PτDSTj

), (1)

by using the higher period, unnecessary communications are
avoided, if the sender or receiver cannot process a packet. In
order to guarantee a transmission, we assume a constrained
relative deadlines Dκj ≤ Pκj .

B. Model of Decoupling the Dependencies with a Time-
Triggered Constant Phase (TTCP) Scheduler

The problem has circular dependencies between computa-
tional analysis, which require the delays of κj , and commu-
nication analysis, which require the completion times of τi.
In order to solve these circular dependencies, at first, each
core is analyzed with a computational task set, and second,
we analyze of the communication based on the determined
parameters from the computational analysis. For getting two
task sets, we introduce additional parameters to limit the time-
slot assignment. Therefore, each computational task τi gets a
lower bound Blowi and an upper bound Bupi . A task is only
allowed to be executed between these two bounds. Moreover,
the starting time for the communication is not defined.

We propose a time-triggered constant phase (TTCP) sched-
uler to process the computational task set T on each core,
which defines the starting time for each task τi. The TTCP
approach was also conceptionally and implicitly presented in
[8]. For defining the starting times, a TTCP scheduler requires
additional timing parameters called phases. A phase Φτi of a
task τi defines the time shift si,k − ai,k between the arrival
time ai,k and the corresponding starting time si,k for each
job Ji,k. The main idea of the TTCP is, that the phase Φτi
is a constant parameter for all jobs of one task τi. The lower
bound Blowi and and upper bound Bupi limit the execution to
a certain time window Blowi ≤ Φτi ,Φτi + Ci < Bupi .

By defining the starting time of the computational tasks
and preserving time for the communication the analysis can
be performed step by step. So, each computational task τi gets
a phase Φτi , a lower bound Blowi and an upper bound Bupi
as additional parameters, see Figure 1.

REACTION 2014 49

time

arrival time ai,k

lower bound Blowi upper bound Bupi

phase Φτi WCET Ci

start time si,k

job Ji,k

deadline Dτi

ai,k+1 = ai,k + Pτi

Figure 1: Computational task parameters under a TTCP sched-
uler: τi = f(Ci, Dτi , Pτi ,Φτi , Blowi , Bupi)

Application with hardware information

T

WCET
Analyzer

C

Comp
Analyzer

Comm
Analyzer

&

Pτi , κ(τi), Blowi , Bupi
τSRCj ,
τDSTj ,
WCTTj
Dκj

Ci Φκj = f(Φτi)

Pκj = f(Pτi)

comp feasibility comm feasibility

feasible result

Figure 2: The design-framework between the computation and
communication analyzer. The computation is analyzed, before
the communication analysis is performed.

By using the calculated phases for computational task τi,
each phase Φκj for the communicational task κj can be
defined as

Φκj = ΦτSRCj
+ CτSRCj

, (2)

which can be used to set the communication arrival times rj,l.
A packet pj,l is periodically emitted at Φκj + l ·Pκj , ∀l ∈ Z+

0 ,
which is determined by its phase Φκj .

In the Design-Flow in Figure 2, all parameters for the
computational task set T and the communication task set
C can be extracted by the application. The WCET Ci can
be determined with a WCET analyzer, e.g., [4]. Each period
Pτi and the corresponding communication tasks assignments
κ(τi), which represent the task-to-task communications, can
directly be extracted from the application. Blowi and Bupi
are determined by the application developer to set additional
constraints for the phase assignment, e.g., a sensor triggered
at time t = 0 requires some time for measuring, before a
computational task can get the value for further processing.
The computational analyzer (Comp Analyzer) returns the
phases Φτi to schedule the computational tasks with a TTCP
scheduling policy. With the feasible set of Φτi , the communi-
cation phases Φκj can be calculated. The relative deadline Dκj

expresses the urgency of the communication from one task to
another and strongly depends on the application. For example
a communication from a less frequent to a more frequent
task gets a relaxed Dκj = Pκj and inverse communication
gets a tight Dκj ≈ (1.5 . . . 3) ·WCTT . The communication
analyzer (Comm Analyzer) checks the feasibility of the com-
munication task set C based on the relative communication
deadlines Dκj . In case of an negative feasibility result, fur-
ther adjustments can been made by changing the parameters
Blowi ,Bupi . If both analyzers return a feasible result the system
is feasible under our TTCP scheduling policy.

The constant phase Φτi simplifies the scheduling problem

τ1

τ2

τ3

τ4

τ5τ6
Core 1

Core 2

Core 3

Core 4

Figure 3: Example system: The task graph, where each arrow
represent a communication task κj

τ1 τ1 τ1 τ1core1
t/ ms

τ2 τ2

τ3 τ3 τ3 τ3core2
t/ ms

τ4

τ5 τ5core3
t/ ms

τ6core4
t/ ms

0 10 20 30 40 50 60 70 80

bus
t/ ms

κ5 κ1

κ2
κ3

κ4
κ8 κ1 κ5 κ6

κ7
κ1

κ2
κ4 κ8 κ1 κ9

κ10

Figure 4: The complete schedule within one hyper-period
[0 . . . 80]ms for the example task sets.

significantly. The construction of an overlap-free schedule by
determining Φτi ensures a preemption- and contention-free
schedule on each core. The contention-free schedule never
has more than one job at any time to be scheduled, so that
the scheduling itself is trivial. Each job is scheduled, when
its starting time si,k = Φτi + k · Pτi ,∀k ∈ Z+

0 is reached.
By knowing the arrival times rj,l of the packets through the
TTCP scheduling of the tasks on each core, the analysis of
the communication can be done very tightly.

C. Example

Here, we provide an example. We consider a platform with 4
cores connected by a bus with fixed-priority arbitration, e.g.,
a CAN-bus. Our example contains a computational task set
T with 6 tasks and a communication task set C with 10
communication tasks.

The task partition is given, in which τ1 and τ2 are mapped
to the same core, so are τ3 and τ4. The 10 communicational
tasks model the inter-core communications for exchanging
data among the tasks, which is shown in Figure 3. All compu-
tational tasks are scheduled in a TTCP policy, following their
phases Φτi .The scheduling analysis can be performed without
unfolding the entire schedule in the hyper-period, but for this
small example the unfolded schedule is shown in Figure 4. The
knowledge of the release of each communication task results
in tight analysis of their worst-case traversal response times
(WCTRT), which are shown for this example in Figure 5.

D. Problem Definition

For a computational task set T and a communication task
set C, the problem is to

• define all phases Φτi of τi, ∀τi ∈ T,
• define all phases Φκj of κj , ∀κj ∈ C,

such that the resulting TTCP schedule is feasible, in which all
tasks τi and κj satisfy their real-time constraints.

REACTION 2014 50

The solution of this problem requires a feasibility test to
guarantee the feasibility of the computational task set T. Based
on this test, we construct a heuristic algorithm to determine the
phases Φτi . The feasibility test, the heuristic algorithm and an
SMT solver are presented in Sections V and VI, respectively.

IV. COMMUNICATION ANALYSIS

In this section, we describe the communication analysis,
which represents the communication analyzer from Figure 2.
The analysis has to find a feasible communication schedule,
such that each communication task κj ∈ C is able to
meet its deadline. As a precondition, each phase Φκj of the
communication task set is already calculated, so that the phase
Φτi of τi is also known. By knowing each relative deadline
Dκj of communication task κj , the feasibility is calculated by
verifying whether WCTRTj ≤ Dκj ,∀κj .

The worst-case traversal response time (WCTRTj) of κj is
defined as the time between the arrival of a communication
request and its fully transmission through the network in the
worst case. For this analysis, the decoupling into a computa-
tion and communication analysis generates a tighter bound to
the worst-case, because the arrival times according to Equation
(2) are known. However, the WCTRTj needs to be determined
by an upper bounded approximation.

For an a priori known communication impact, the analysis
can be done by evaluating the schedule in the hyper-period.
Thus, we iterate chronologically through time till the hyper-
period is reached and determine the communication schedule.
Hence, such approach provide a tight WCTRTj for each κj
inside the hyper-period. Due to the predictable and periodic
communication impact, the evaluation of one hyper-period is
sufficient to determine WCTRTj . Thus, we can simply assume,
that a suitable communication analyzer exists.

V. FEASIBILITY TEST FOR GIVEN Φτi ,∀τi ∈ T

In this section, we present an efficient algorithm to check the
feasibility of our task model (Section III-A), which is based on
the result from Marouf et al. [10]. In Theorem 1 the feasibility
of task model can be found by comparing all the tasks among
each other regarding to a time overlap.

Theorem 1. (from Marouf et al. [9]) A task set T can feasibly
be scheduled under a TTCP Scheduler if, and only if all pairs
of tasks τi and τj satisfy

Cj ≤ (Φτi − Φτj) mod gcdi,j ≤ gcdi,j − Ci, (3)

where gcdi,j is the greatest common divisor of the period of
task τi and τj and Φτi ≥ Φτj .

Proof: It is proved by [9].
For a better presentation, we rephrase Theorem 1 into

Corollary 1.

Corollary 1. For two periodic time-triggered constant phase
scheduled tasks τi and τj with known Φτi and Φτj , suppose
that Ψi = Φτi mod gcdi,j , Ψj = Φτj mod gcdi,j . These two

tasks are feasibly scheduled by TTCP if, and only if,

((Ψi ≥ Ψj)and(Ψi ≥ Ψj + Cj)and(Ψj ≥ Ψi + Ci − gcdi,j))
or((Ψi < Ψj)and(Ψj ≥ Ψi + Ci)and(Ψi ≥ Ψj + Cj − gcdi,j))

(4)
Proof: Based on Theorem 1, we show that the condi-

tions described in Equation (3) are equivalent to those in
Equation (4). Therefore, we define the phases by Φτi =
Ψi + k · gcdi,j and Φτj = Ψj + l · gcdi,j , k, l ∈ Z+

0 . The
middle part of Equation (3) can be expressed by

(Ψi + k · gcdi,j − (Ψj + l · gcdi,j)) mod gcdi,j (5)
=((k − l) · gcdi,j + (Ψi −Ψj)) mod gcdi,j . (6)

Considering Φτi ≥ Φτj from Theorem 1, when Ψi ≥ Ψj ,
Equation (6) is equal to Ψi − Ψj otherwise, Equation (6) is
equal to Ψi −Ψj + gcdi,j . Thus, we yield 2 different cases:

• case 1 (Ψi ≥ Ψj): Cj ≤ Ψi −Ψj ≤ gcdi,j − Ci, which
is equivalent to the first part of Equation (4).

• case 2 (Ψi < Ψj): Cj ≤ Ψi−Ψj +gcdi,j ≤ gcdi,j−Ci,
which is equivalent to the second part of Equation (4).

As a result, we know that either case 1 or case 2 hold.
Based on Corollary 1, it is easy to build an algorithm to get

the feasibility under given phases Φτi . If there is no conflict
of any two tasks, then the computational task set is feasible.
Otherwise, we can conclude infeasibility of the resulting TTCP
schedule. The additional parameters Dτi , Blowi and Bupi can
easily be checked by testing (Blowi ≤ Φτi) ∧ (Φτi + Ci ≤
Bupi ≤ Dτi ≤ Pτi).

VI. PHASE ASSIGNMENT ALGORITHM

In this section, the problem of calculating the parameters
Φτi = f(T) for a TTCP scheduler is discussed. Due to
the problem definition, a feasible set of Φτi needs to be
determined. Here, we present a heuristic algorithm, called
“lower periods first with lower bound first (LPF-LBF)”, to
calculate Φτi for all tasks τi ∈ T and an exhaustive approach
by using an Satisfiability Modulo Theories (SMT) solver.

A. Heuristic LPF-LBF

Our greedy algorithm sorts the tasks according to their
period Pτ1 ≤ Pτ2 ≤ . . . ≤ Pτn , in which the first task τ1 has
the lowest period. If the tasks have the same period, then
the tasks with the lower bound Blowi are ordered first. The
algorithm searches greedily for gaps in the schedule without
reassigning a phase, shown in Algorithm 1.

After sorting the task set, the algorithm iterates over all
tasks and assigns the phases Φτi step by step. For calculating
a feasible Φτi , a hypothetical phase Ψi is assumed.

A feasibility test against all other tasks is necessary to
ensure, that the hypothetical phase Ψi is valid. If Ψi is invalid,
then the resulting conflict indicates the calculation of the next
potential free time slot for Ψi, in which perhaps no conflict
occurs. In case Ψi exceeds its own period Pτi , this algorithm
cannot find a feasible solution for phase assignment in a TTCP
scheduler. Corollary 1 defines the feasibility test. A tighter
condition due to infeasibility is given by the upper bound Bupi .
Considering an all-over chronological search through the time

REACTION 2014 51

Algorithm 1 Algorithm LPF-LBF

Input: computational task set T, τi ∈ f(Ci, Pτi , Blowi , Bupi);
Output: all phases Φτi ;

1: Sort τi according RM, same periods according lower Blowi first;
2: for i = 1, · · · , n stepped by 1 do
3: Ψi ← Blowi ; t ← false;
4: while Ψi < Pτi and t = false do
5: t ← true;
6: if Bupi − Ci < Ψi then
7: return “not feasible”;
8: for j = 1, · · · , (i− 1) stepped by 1 do
9: Calculate the gcdi,j of Pτj , Pτi ;

10: Ψ′
i ← Ψi mod gcdi,j ;

11: Ψ′
j ← Ψj mod gcdi,j ;

12: if (Ψ′
j < Ψ′

i) then
13: if (Ψ′

i < Ψ′
j+Cj) then

14: Ψi ← Ψi + Ψ′
j + Cj −Ψ′

i; t ← false;
15: else if (Ψ′

j+gcdi,j < Ψ′
i+Ci) then

16: Ψi ← Ψi + Ψ′
j + gcdi,j + Cj −Ψ′

i; t ← false;
17: else
18: if (Ψ′

j < Ψ′
i+Ci) then

19: Ψi ← Ψi + Ψ′
j + Cj −Ψ′

i; t ← false;
20: else if (Ψ′

i+gcdi,j < Ψ′
j+Cj) then

21: Ψi ← Ψi + Ψ′
j + Cj − (Ψ′

i + gcdi,j); t ← false;
22: Φτi ← Ψi;
23: return all phases Φτi and task set is “feasible”;

of Ψi, if Ψi + Ci > Bupi is true, this task τi indicates the
problem to an infeasible task set.

B. Satisfiability Modulo Theories solver

The phase assignment problem can be solved by a Satisfia-
bility Modulo Theories (SMT) solver, like [3]. Therefore, we
formulate the phase assignment problem as an SMT problem,
consisting of a set of logical and linear expressions. The SMT
solver returns one valid parameter setting, which satisfies the
problem, if a feasible parameter setting exists.

There are two possibilities to formulate the SMT setting. On
one hand, the problem can be defined based on the task level
by using all equations including the modulo operation from the
feasibility test (Equation 4). On the other hand, we can unfold
all jobs in the hyper-period and formulate the SMT setting on
a job-level. Our experimental results show that formulating the
problem in the task-level indeed requires more runtime in the
SMT solver than the job-level formulation. Therefore, all the
results in Section VII-B are based on the job-level formulation.
Due to space limitation the detailed SMT setting formulation
is not shown in this paper.

VII. EXPERIMENTS

In this section, several experiments are presented to show
the effectiveness of the TTCP scheduling approach and our
proposed heuristic.

A. Application information and experimental setup

We assume a hard real-time application, like a control
application, with a high demand of computational power,
wherefore a multicore platform is required. The applications
we focused on, are characterized by a large amount of tasks,
i.e. 100–1000 tasks, in which there is no heavy task with

WCTRT / ms

5
10
15
20
25
30

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10
TTCP-FP-nP FP-N-nP TDMA-nP

Figure 5: WCTRT for the motivative example: The analysis for
the WCTRT in comparison of different non-preemptive (nP)
versions of communication arbitration policies.

high utilization. Due to the large amount of tasks, a lot of
preemption would occur, if the system allows preemption.
So our applications is scheduled in a non-preemptive manner.
Moreover, we generate a number of synthetic task sets T and
C, which use real application characteristics to get reliable
results and to test our approach under different conditions.
The periods Pτi are harmonic, because industrial applications
tend to use harmonic periods. For comparison, we use a Rate-
Monotonic non-preemptive (RMnP) version, like [1].

All experiments were performed on an Intel i5-2520M
processor with 2.5GHz and 8GB RAM. For the SMT solver,
we use the Z3 solver (version 4.3.2.0) [3] with a 10 min
timeout, i.e. after this time the solution is neither feasible nor
infeasible. The time out results are shown as gray areas in the
plots. It is worth to be mention, that for larger task sets the
SMT solver failed, because of its memory requirement. For
such cases only the heuristic can provide a solution, but this
is not included in our presentation, due to space limitation.

B. Experimental results

1) WCTRT for the motivative example: We demonstrate
the reduction of the WCTRT for the time-triggered approach,
which indicate an increased predictability of the system.
Figure 5 illustrates the WCTRT for all communication tasks
κj from our example (Figure 3). The priority based com-
munication arbiter uses the index j as the priority of the
communication tasks κj where κ1 has the highest priority.

We compare our proposed TTCP scheduler, which releases
communication task with fixed-priority arbitration (TTCP-FP),
against a time division multiple access arbitration (TDMA) and
a fixed-priority arbitration (FP-N). If the starting times of the
communication tasks are unknown, a simultaneous release is
assumed in order to bound the worst-case. In Figure 5, we
calculated the WCTRT from our motivative example.

2) Dynamic scheduling approach: In order to evaluate our
heuristic algorithm LPF-LBF, we compare it against a Rate-
Monotonic non-preemptive (RMnP) scheduler. The RMnP
feasibility test is implemented according to [1]. Figure 6
shows the comparison, in which the simulator generates 100
computational task sets, assigns the priorities or phases and
plots the feasibility ratio. Our heuristic can reach a utilization
of above 90%, which is close the SMT solver approach.

If there are only small task with low utilization, RMnP is
nearly Rate-Monotonic preemptive, which gets a very high

REACTION 2014 52

F e
as

ib
le

so
lu

tio
ns

/%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100��

Core utilisation

LPF-LBF
� RMnP

SMT solver

Figure 6: Dynamic scheduling approach: Our heuristic ap-
proach against Rate Monotonic non-Preemptive (RMnP).

Fe
as

ib
le

so
lu

tio
ns

/%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Bus utilisation

TTCP
RMnP

Figure 7: Communication enhancement: Different bus utiliza-
tions by constraining Dκj .

utilisation rate URMnP ≈ 100%. The LPF-LBF algorithm per-
forms very well and is capable to reach utilization above 90%,
which reaches almost the same maximal utilization as RMnP.

3) Communication enhancement: Another experiment fo-
cuses to the network analysis. Similar to our motivational ex-
ample, we consider a 4-core platform with 250 computational
tasks and 500 communication tasks randomly mapped to each
other. Figure 7 presents a feasibility ratio for the system, in
which we explore different bus utilizations. Each of the four
cores has a utilisation of 50% in this experiment. The bus
is scheduled with a non-preemptive fixed-priority arbitration,
e.g. a CAN bus, in which the communication arrival time rj,l
is calculated with different approaches. Figure 7 shows that
TTCP reaches a higher maximum utilization of the bus. In
contrast to RMnP, the a priori knowledge of the arrival times
of the communication tasks facilitates a tighter communication
analysis, which increase the feasibility ratio of the bus in the
experiment. As otherwise, the worst case has to be considered
with bursty behavior.

4) Runtime measurements: In this experiment, we measure
the time to find a solution for a certain task set with the
SMT solver and the LPF-LBF heuristic. We generate 50
task sets with 75% utilization with harmonic non-heavy tasks
and messure the runtime of getting the phase assignment.
The algorithm terminates sometimes earlier, if the task set
is infeasible. Note that, the runtime also depends on the
overall utilization of the task set, because particularly the SMT
solver requires much more time, if the solution space is small.
Considering a larger hyper-period or an increasing number of
task, the SMT solver requires more resources and, hence, it
is incapable to derive a solution. With such conditions, our
heuristic algorithm may still provide a solution using moderate
resources. Figure 8 shows that in general the heuristic is
approximately 3 magnitudes (103) faster, than the SMT solver.

Furthermore, a similar experiment shows, that LPF-LBF

R
un

tim
e

10 16 25 40 63 100 158 251

100µs
1ms

10ms
100ms

1s
10s

100s time out border of 10 min

number of tasks

LPF-LBF
SMT solver

Figure 8: Runtime measurements: We measure the run time
of the phase assignment using our heuristic or an SMT solver
for different sizes of task sets.

runs approximately 5s for large computational task sets with
1000 tasks and U = 75%.

VIII. CONCLUSION

This paper describes a system model, which is capable to
handle a fully tangled application on a multicore platform. Our
approach is to decouple of the dependencies among tasks into
two independent task sets, which is closer to real systems. This
paper presents a scheduling policy, named TTCP scheduler,
to schedule such applications. The phase assignment plays a
critical part getting a feasible task scheduled under a TTCP
scheduler. We provide a heuristic algorithm which is capable
to find a feasible solution for a high utilized task set with
typical industrial characteristics. Several experiments reveal
the effectiveness and the limits of different approaches. Our
heuristic algorithm LPF-LBF is very fast, reaching a high
utilization of above 90% utilization. An SMT solver find a
solution of our problem, if one exists, but it takes a lot of
time and resources to perform the analysis. Our measurements
show, that the SMT solver takes approximately 3 magnitudes
more time (103) in comparison to our heuristic.

REFERENCES

[1] M. Bertogna, G. Buttazzo, and G. Yao. Improving feasibility of fixed
priority tasks using non-preemptive regions. In RTSS’11, pages 251–260,
Washington, DC, USA, 2011.

[2] A. Biewer, J. Gladigau, and C. Haubelt. Towards tight interaction of
asp and smt solving for system-level decision making. In Architecture
of Computing Systems (ARCS), pages 1–7, Feb 2014.

[3] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[4] C. Ferdinand. AbsInt Angewandte Informatik GmbH. aiT: worst-case
execution time analyzers. http://www.absint.com/ait, 2012.

[5] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-preemptive
dependent periodic tasks onto multiprocessor. In ISCA PDCS, 2007.

[6] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[8] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems. In ASP-DAC’12, pages 665–670, 2012.

[9] M. Marouf, L. George, and Y. Sorel. Schedulability analysis for a
combination of non-preemptive strict periodic tasks and preemptive
sporadic tasks. In ETFA’12, pages 1–8, Sept 2012.

[10] M. Marouf and Y. Sorel. Schedulability conditions for non-preemptive
hard real-time tasks with strict period. In RTNS’10, France, 2010.

[11] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Worst-case response time analysis of resource access models in multi-
core systems. In DAC ’10, pages 332–337, NY, USA, 2010. ACM.

REACTION 2014 53

	Papers_Proceedings.pdf
	Papers_Proceedings.pdf
	07_Orig_7_Camera_Ready_Paper.pdf
	07_Orig_7_Camera_Ready_Paper.pdf
	I. Introduction
	II. The MAST System Model
	III. GEN4MAST Architecture
	IV. The Generation Phase
	A. System Generation
	1) Basic architecture
	2) Timing characteristics

	B. Execution scripts generation

	V. The Execution Phase
	VI. The Results Processing Phase
	VII. Evaluation of GEN4MAST’s Generation Methods
	VIII. Conclusions and Future Work
	References

