Heuristic Algorithm for Virtual Link Configuration
in AFDX Networks

YoungJun Cha and Ki-II Kim
Department of Informatics, Engineering Research Institute
Gyeongsang National University
Jinju, 660-701, Korea
Email: kikim@gnu.ac.kr

Abstract—As the AFDX networks have been increasingly
employed for airborne networks, much research works have been
conducted to support real-time service in a deterministic way.
However, since they assumed the preconfigured networks where
all involved parameters were already determined, the impact
of configuration algorithm is not well explored. To solve this
problem, in this paper, we focus on how to reduce the required
bandwidth by configuring virtual link which logically consists
of at least one or more application flows. To achieve this, new
heuristic algorithms have been proposed by applying well-known
greedy approach while taking essential constraints of AFDX
networks into account. To evaulate the performance of proposed
scheme, diverse case studies for airborne application flows are
concerned and their number of virtual links as well as required
bandwidth are compared.

Keywords—AFDX, Virtual Link, Configuration

I. INTRODUCTION

Recently, the airborne networks demand high transmis-
sion rate and real-time service due to increase in avion-
ics equipments such as diverse sensors and multimedia de-
vices. However, since existing avionics networks such as
ARNIC(Aeronautical Radio, Incorporated)-429, MIL-1553 can
not meet above requirements well, a new network technology,
AFDX (Avionics Full-Duplex Switched Ethernet), has been
proposed. AFDX networks are based on IEEE 802.3 Ethernet
due to its strong compatibility and popularity in communica-
tion technology. Moreover, this protocol is standardized as a
PART 7 in ARINC 664[1].

In the point of technology, since typical Ethernet is not de-
signed to support airborne networks which aim to provide de-
terministic service as well as real-time service, diverse new fea-
tures have been introduced in AFDX. These include functions
to support QoS (Quality of Service) such as admission control,
shaping and policing. In addition, scheduling and duplicated
transmission are another functions to meet requirement of
AFDX networks. These mentioned functions are provided by
new terminology, that is, VL (Virtual Link) between source and
destination. Through this VL, deterministic behaviors of flows
are guaranteed by two major parameters, BAG (Bandwidth
Allocation Gap) and MTU (Maximum Transfer Unit). So,
determining virtual link properties and configuring network
environments become one of great tasks.

But, despite of its importance and demand, a few re-
search works have been conducted in this area so impact of
configuration and relationship between parameters still need

REACTION 2014

to be explored. Especially, recent work for AFDX networks
has focused on the system analysis [2-8]. In their works, the
AFDX network analysis was accomplished by one of following
scheme, that is, queuing networks, network calculus, and
model checking. Throughout the analysis schemes, the impact
of parameters has been analyzed including end-to-end delays,
worst case latencies, and so on. But, as far as the authors know,
there is few research work to address configuration problem
with the exception of our previous works. In addition, the
authors proposed how to set the transmission parameters of
virtual links so as to minimize the reserved bandwidth while
transmitting the data within their maximum delivery times[7].
Rather, in our previous work, we derive algorithm how to
find the possible BAG and MTU pair for one VL in AFDX
networks timely[9]. Even though our proposed algorithm is
able to get feasible pairs for (BAG, MTU) to minimize the
bandwidth requirement, it does not address how to group
applications in one virtual link as well as the number of virtual
links. That is, we also assumed the preconfigured networks in
previous work like others.

To solve this problem, in this paper, we propose new
heuristic algorithms for virtual link configuration to reduce the
required bandwidth. The proposed algorithm has two different
operations according to metric for grouping and it is based
on greedy scheme while grouping. Basically, two VLs can
be merged into one VL if bandwidth requirement of the
merged VL is less than sum of two separate VLs. Otherwise,
a VL remains without merging. This procedure will continue
until there is no available VL left for merging. For this,
two different metrics, bandwidth and ratio for payload per
period are defined. Finally, two algorithms are evaluated by
the diverse scenarios and analyzed in the point of amount of
required bandwidth and number of VLs.

The rest of this paper is organized as follows. In section
II, we briefly present the AFDX networks and their important
properties. The new algorithms are described and explained by
example in section III. The experiment results are presented
in section IV. And then, conclusion and further work will be
given in section V.

II. AFDX NETWORKS

AFDX networks consists of end system and switching
system as shown in Figure 1. In AFDX networks, a LRU
sends a frame to other LRU connected by one or multiple
switches. The physical point-to-point link of existing ARNIC-
429 is replaced by the VL which is time division multiplexed at

28

LRU 2 v l "2 TAFDX switch ‘ LRU 3

MAC 1 O Jmacs MAC 2
®3 w2
o2 3
AFDX AFDX
port 2 port 1
¥ ' I '

An example of virtual links in an AFDX switch

Fig. 1.

the end system. Each VL is guaranteed as a specific maximum
bandwidth and end-to-end maximum latency for QoS (Quality
of Service). Actually, each VL can have maximum four sub-
VLs. Fig. 1 shows an AFDX networks with three VLs among
LRUs. These virtual links sharing physical links are scheduled
in AFDX network switches. Furthermore, multiple applications
transmit real-time messages throughout a common virtual link
if their source and destination units are the same. In the
example of Fig. 1, two application messages are shared in
the virtual link V' Ls.

To guarantee bandwidth, each VL is assigned a transmis-
sion time slot, BAG. A VL can transmit a frame within this
BAG. It confines the virtual links bandwidth by defining the
minimum gap time between two consecutive frames. Another
important parameter to affect the bandwidth is MTU. It is
defined as the maximum size of message to be transmitted
in each frame. Both latency and jitter are controlled by traffic
shaping function at the end system. The jitter allows the end
system flexibility when transmitting simultaneous frames from
different VLs. In AFDX, jitter is defined as the time between
the beginning of the BAG interval and the first bit of the frame
to be transmitted in the BAG. The maximum allowed jitter for
ADFX networks is limited to 500 us.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. System Model

Since we deal with real-time AFDX messages, a message
flow f; is defined by (I;, p;), where [; is the payload of the
message in bytes and p; is MTC (Message Transmit Cycle)
of the message in msec. That is, a message of I; bytes is
generated every p; time units and is delivered to the destination
application through AFDX networks.

In AFDX networks, a BAG is defined by a value of 2*
msec, where k = 0,1,...,7. As all BAGs are 2k msec, virtual
links are multiplexed in AFDX switches. The second parameter
is MTU of the message in bytes at each frame. Payloads of
applications in a virtual link are transmitted within maximum
MTU bytes in a single frame. If the size of a payload is greater
than the MTU, it is fragmented into multiple small frames.

REACTION 2014

Therefore, a virtual link V' L; is defined by (BAG;, MTU;,
F;) as follows.

e BAG;: bandwidth allocation gap or period of VL; in a
value of 2¥ msec where k =0,1,...,7.

e MTU,;: maximum transfer unit or message size of VL;
in bytes.

e Fi:asetof flow id in V L;, where the message flow
with flow id j is denoted as f; = (I;, p;).

For a given virtual link VL;, MTU and BAG are configured
so as to meet all the real-time requirements of message flows in
the link. If the payload of a message is greater than the MTU
size, it is transmitted in multiple fragmented packets. Since
all BAGs of VLs are harmonic, the schedulability analysis
is easily derived by utilization analysis. Thus, Eq. (1) tells
the message constraint of VL; with n; messages to guarantee

the real-time requirement of all message flows in the link as
defined in [1].

§- [L/MIu] 1 0

s Dy ~ BAG;

Let us assume that the system has N VLs on an AFDX
switch with B bandwidth in bps. Each VL, is configured with
(MTU;, BAG;), so that MTU, bytes are transmitted every BAG;
msec. Since the total bandwidth of VLs should not exceed the
network bandwidth, the following bandwidth constraint should
be met.

"\ MTU; + 67 3
8y ———x10°<B 2
; BAG, = @

The last constraint of virtual link scheduling is about jitter.
The maximum allowed jitter on each virtual link in the ARINC
664 specification requires 500 psec [?]. Thus, the following
equation tells the jitter constraint, where 40 usec is the typical
technological jitter in hardware level to transmit an Ethernet
frame. These three equations are defined and required as a
standard in [1].

87, (67 + MTU;)

4
0+ Iz

<500 3)

B. Problem Definition

When there are n flows represented by & = {f1, f2, ..., fn}
between end system and switch, our solution is to construct
F; in VL; while reducing the required bandwidth as compared
to the case that any specific algorithm is not given. To achieve
this goal, we propose two heuristic algorithms depending on
grouping metrics such as required bandwidth or flow property.
By the proposed algorithms, two or more flows are grouped in
one VL only if the required bandwidth for VL being merged
flows is less than sum of bandwidth of merging flows. The
detail procedures are described in Algorithm 1.

Algorithm 1 shows the configuration scheme based on
required bandwidth. To run this algorithm, a new set B
composed with required bandwidth for f; is defined. At

29

Algorithm 1 Grouping Algorithm with Required Bandwidth

1: B ={By, Bs,..., By} > B; = Required Bandwidth for f;
2: Found < True, if any f; is grouped with other flow
33 MIN <+

for i +— 1,n do
F; « {i}
(BAG;, MTU;) < Find_Feasible_ BAG_MTU(F;)
B; < Find_Feasible_Configuration(BAG;, MTU,)
end for

>R

9: for count <~ n —1,1 do

10: Sort B; in ascending order
11: [< argmin(B;)
B,eB
12: Found + False
132 for j«+ 2,|B|—1do
14: m < argmin (B;)
B,€B,i>j
15: (BAGy, MTUy) —
Find_Feasible BAG_MTU(F; |J F;»,)
16: B, < Find_Feasible_Configuration(BAG;, MTU,)
17: if (B < B;+ B, and B; < MIN) then
18: Ftemp — B U Fr,
19: Btemp — Bt
20: MIN + B;
21: Found < True
22: end if
23: end for
24: if (Found == True) then
25: Fy < Fremp
26: Bl — Btemp
27: B+ B -{Bn}
28: else
29: B <« B -{B;}
30: end if
31: end for

32: return F;

TABLE 1. THE EXAMPLE OF FLOW INFORMATION
Flow Id | Payload | MTC
f1 200 80
fa 180 65
f3 165 100
fa 140 10
fs 135 20
fe 120 40
f7 115 90
fs 100 55

initial phase represented by line 4 ~ §, each respective
flow is assigned to one VL. Also, two parameters, (BAG;,
MTU;) are computed by calling Find_Feasible_ BAG_MTU()
function introduced in our previous works[9]. After get-
ting feasible sets by calling above function, minimum re-
quired bandwidth for each VL is done by another func-
tion, Find_Feasible_Configuration(). This two functions are
slighted modified in our previous works.

REACTION 2014

TABLE II. STEPS FOR ALGORITHM 1
F; B; F; B;
1 33.375 1 33.375
2 30.875 2 30.875
3 29
Step 1 |4 207 Step 2 | 4 207
5 101 5 101
6 46.75 6 46.75
7 22.75 7,3 455
8 41.75 8 41.75
S B; 512.5 ST B;: 506.25
F; B; F; B;
1 33.375 1,8 6675
2 30.875 2 30.875
Step 3 74 207 Step 4 74 207
5 101 5 101
6 46.75 6 46.75
7,3 45.5 7,3 455
8 41.75
> B; 506.25 S B; 497.875
F; B;
1,8 66.75
2 30.875
Step 7 b———————
P 5 101
6 46.75
7,3, 4 232
ST B; 477.375

After initializing the variable, the main procedure for
grouping starts sorting the set of bandwidth for each VL in
ascending order. And then, we choose flow with the smallest
required bandwidth and keep this flow id to temporary variable.
Next, we choose the possible flow id for pair with a selected
one by comparing the required bandwidth. Two selected flows
can be possible to be grouped into one VL only if the required
bandwidth of VL which assumes two flows grouping in it is
less than sum of two current VLs bandwidth. If this condition
is true, we mark it and continue searching possible flow id to
minimize required bandwidth. This condition is represented by
line 17 ~ 22 in algorithm 1. By comparing the minimum value,
it is possible to find the best flow id to minimize the required
bandwidth. Finally, If we find the adequate two flow id to
minimize the required bandwidth, the grouped flow replace
the existing VL and update the required bandwidth for further
comparison. In this procedure, grouped flow id is excluded in
B set. Otherwise, if there is no possible flow to be grouped
with current flow, it occupies one VL and maintains it until
end of algorithm. This procedure is employed to exclude the
corresponding flow from B as shown in line 29. That is, the
proposed algorithm do not take this flow into account any more
for grouping. As a result, a flow can find the best pair for
grouping or remain one VL by this proposed algorithm. This
procedure will continues as much as total number of flows (n)
- 1 times since only one flow is determined. Table 2 illustrate
the example of operations of algorithm 1 when the example
flow information with different payload and MTC is given in

30

Table 1.

For the given flow, in the first step, required bandwidth for
each flow is computed at initialization phase. In Step 2, our
algorithm starts looking for possible grouping pair for flow 7
because its bandwidth is minimum among all flows. Since the
grouping condition is met by flow 3, two flows are merged into
one VL and flow 3 is no more possible pair for others. Next
step is for flow 2. However, since there is no flow to satisfy
grouping condition with flow 2, no grouping happens at Step 3
and corresponding VL is composed of that flow. At the Step 4,
flow 1 is grouped with flow 8 depending like above procedure.
This procedure continues until Step 7 is accomplished. Finally,
five VLs are created by our algorithm and around 7 percents
bandwidth for the case that all VLs is configured by one flow
is saved in our example.

Even though algorithm 1 is to find the possible config-
uration method to reduce bandwidth, its operation is mostly
dependent on the required bandwidth. However, since the
required bandwidth is computed by the Equation (1) ~ (3), it is
feasible to analyze the equations in order to reduce the required
bandwidth. Specially, in Equation (2), we can identify that both
great BAG and less MTU contributes to reduce bandwidth.
Since (MTU;/ BAG;) represents throughput for link, algorithm
2 takes throughput of end system represented by (;/p;) instead
of required bandwidth. Moreover, due to grouping pattern
starting from the smallest value to the largest value, the two
largest values are generally grouped in the last step. But, if
these two flows is grouped into one VL, the high bandwidth is
required due to fragmentation and simultaneous transmission
in a BAG. So, it can be possible that this increasing bandwidth
by two flows is greater than total reduced bandwidth obtained
by grouping the small bandwidth. Thus, it is necessary to group
the flow with the largest value at early step by changing the
order of operation. To implement above demand, new grouping
procedure introduces two functions at the same step. One is to
group with two flows with the smallest value and the other is
to accomplish grouping flow with the largest value and suitable
flow among remaining flows. This new heuristic algorithm is
explained below as Algorithm 2.

Algorithm 2 begins initialization phase like algorithm 1.
And then, it sorts new metric, BP;, in ascending order. And
then, two flows with the smallest B P; are chosen for grouping
as indicated in line 9 ~ 22. This procedure is the same as
algorithm 1. When the grouping is done with the smallest
value, related variables are updated. Upon updating, a flow
id with the largest value is chosen in line 24. Next step is to
chosen the suitable pair flow id with the smallest values in
BP set. If the grouping condition becomes true, two flows
are grouped. Through this algorithm, maximum four flows
are grouped into two VLs at one step. So, less steps are
demanded than one of algorithm 1. Table 3 shows the example
of grouping steps in algorithm 2 with the same flows in Table

Table III shows the detail steps for grouping by algorithm
2. At first, initialization procedures including B; computation
and assigning each flow to one VL is accomplished. Flow 7
and 3 are grouped in one VL and removed from BP. After
that, flow 4 with the largest value starts searching until finding
flow 8 which is the smallest value in current BP. Finally, all
procedures are done after flow 1 and 5 are merged into one

REACTION 2014

Algorithm 2 Grouping Algorithm with Flow Parameter of
Each Flow
1. BP ={BP,,BP,,..,BP,} 1> BP,; = ratio of payload
per period in f; and represented as I; /p;
2: B; = Required Bandwidth for f;

for i + 1,n do
(BAG;, MTU;) < Find_Feasible_ BAG_MTU(F;)
B; + Find_Feasible_Configuration(BAG;, MTU,)
end for

N kR

8: for count < log, |BP|,1 do
9: Sort BP; in ascending order
10: k < argmin(BPF;)

BP.eL
11: for j < 1,|L| —1 do
12: m < argmin (BEF)
BP,eBP,i>j

13: (BAGt, MTUt) —

Find_Feasible. BAG_MTU(Fy | Fi»,)
14: B, < Find_Feasible_Configuration(BAG;, MTU,)
15: if (B; < By + B,,) and (Found # True) then
16: Fy, + Fy U F.,
17: BP, + (BPy, + BP,,)/2
18: Bk — Bt
19: BP + BP —{BP,}
20: Found < True
21: end if
22: end for
23: Found + False
24: k < argmax(BP;)

BP,eBP
25: for j < 2,|BP|—1do
26 m < argmin (BP;)
BP,eBP,i>j

27: (BAGt, MTUt) <

Find_Feasible BAG_MTU(Fy | Fin,)
28: B; < Find_Feasible_Configuration(BAG;, MTU,)
29: if (B; < By + B,,) and (Found # True) then
30: Fy, + F}, U F,,
31: BP; < (BP, + BP,,)/2
32: By < B;
33: BP + BP — {BP,}
34: Found < True
35: end if
36: end for
37: end for
38: return F;

31

TABLE III. STEPS FOR ALGORITHM 2

F; BP; B; F; BP; B;
1 250 33375 1 250 33375
2 277 30875 2 277 30875
3 165 29
Step1 | 41400 207 Sp2 | 281382 207
5 675 101 5 675 101
6 300 4675 6 300 4675
7 128 2275 7,3 293 455
8 182 4175
S B; 5125 S B; 4645
F, B BP;
1,5 925 1335
2 277 30875
Sp3 | B8 1382 207
6 300 4675
7,3 293 455
> B; 463.625

VL. As a result, around 9 percents of bandwidth is reduced as
compared to one in Step 1 in Table III.

IV. EXPERIMENT RESULTS

In this section, we provide the experiment results for pro-
posed scheme through diverse flows sets. In the experiments,
we assume eight message flows. The payload of a message is
randomly generated from 20 to 80 bytes. The MTC or period of
a message is randomly selected among five different intervals.
Five intervals range from 10 to 260 msec and the duration
of each interval is 50 msec. The network bandwidth is set
as 6Mbps. In order to model eight flows, three different data
sets are assume in Table 1. Each set has different rule for
payload and MTC where Fixed represented the same value
for parameter and Varied does changing one depending on
experiment setting explained above. Through these three sets,
we can identify the impact of each parameter and relationship
between them.

TABLE IV. PROPERTY OF EACH DATA SET
Payload MTC
Data Set 1 Varied Fixed
Data Set 2 Fixed Varied
Data Set 3 Varied Varied

For each data set, we generate 100 cases and measure the
average required bandwidth in each algorithm. The compara-
tive method is initialization scheme which each flow occupies
one VL as shown in initialization phase in our algorithm. We
compare the required bandwidth of each algorithm as well as
how many virtual links are made.

Fig. 2 shows the experiment result for required bandwidth
of each algorithm. The Y-axis in Fig. 2 represents the ratio for
required bandwidth as a base of required bandwidth computed
by algorithm 2. So, the ratio is computed by (3 Bi in
algorithm1 or initialization /) Bi in algorithm 2) and shown

REACTION 2014

600

@@ |nitialization
500 |- BN Algorithm1
B Algorithm2

400 |

200 -

Required Bandwidth

100 |

Data Set 1 Data Set 2

Type of Data Set

Data Set 3

Fig. 2. Comparison of ratio for required bandwidth as a base algorithm 2

Algorithm1
4T B Algorithm2

—

Data Set 1

Data Set 2 Data Set 3

Type of Data Set

Fig. 3. Comparison of average number of VLs

according to type of data set. In this figure, it is very easy
to identify the reduced bandwidth of the proposed scheme
rather than initialization algorithm. For all cases, two pro-
posed algorithms outperform comparative scheme. Moreover,
slight difference is observed between two proposed algorithms
when data set 1 and 2 are tested. This is because bandwidth
and throughput are very closely related to each other. Thus,
grouping results for given data set through two algorithms are
almost identical even though order of grouping flow is slightly
different. This mean that sub-VLs for one VL is the almost
identical without regard to algorithms which determines the
grouping order for each node.

Unlike mentioned two data sets, we can recognize the
difference between two algorithms for data set 3. According
to varied flow properties, different grouping order and number
of VLs are observed. Furthermore, algorithm 2 outperforms
algorithm 1 slightly. This difference is determined by whether
flow with the largest value is merged at early time or last
time. By this procedure, bandwidth difference among VLs in
algorithm 2 become smaller than algorithm 1. This means

32

that huge amount of bandwidth is not observed in algorithm
1. Specially, when data flow consists of extremely inclined
property, noticeable difference is observed in algorithm 1. This
case include the following example that two flows have the
largest difference but other six flows shows the almost the
similar property. On the other hand, for the case where all
flows is divided into two categories or all flows have the similar
property, the difference between two algorithm is not great.

The average number of VLs for respective data set are
compared in Fig. 3. Compared to reduced bandwidth, it shows
similar patterns because bandwidth is very closely related to
the number of VLs. However, two algorithms have the slight
difference for data set 3. Algorithm 1 demands the less number
of VL than algorithm 2. The number of VLs increases in
algorithm 2 because more VLs consisting of one flow id
are demanded. This implies that a few flow is feasible to
be grouped with flow that has the largest throughput. As a
summary, the number of VLs is mostly dependent on variation
of payload and MTC. If the variation between flows become
minimum, least number of VLs are required. But, since the
experiment is conducted for eight flows, it is very hard to see
the great difference in them.

V. CONCLUSION

In this paper, we proposed two heuristic algorithms to
configure the number of VL and sub-VLs in ADFX networks
when flow information is given. The proposed algorithms
are to reduce the required bandwidth and perform grouping
procedure by comparing the required bandwidth as well as
new defined metrics. Moreover, they need less bandwidth than
initialized configuration method without regard to metric and
grouping order in two algorithm. This reduced bandwidth can
be used to accommodate more flows in AFDX networks.

Related to this work, more extended experiments are
needed to evaluate the proposed scheme. It will include in-
creased number of flows and more data set. Also, we will
evaluate the how much time is taken for each algorithm.
Another work is to devise more optimal solution to reduce
bandwidth. One solution can be top down approach which
splits one VL to multiple ones to reduce bandwidth unlike
current bottom up approach.

ACKNOWLEDGMENT

This work was supported by Basic Science Research Pro-
gram (NRF-2013R1A1A2A10004587) through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education and the MSIP(Ministry of Science, ICT &
Future Planning), Korea, under the ”SW master’s course of
a hiring contract” support program (NIPA-2014-HB301-14-
1014) supervised by the NIPA(National IT Industry Promotion
Agency).

REFERENCES

[1] ARINC AIRCRAFT DATA NETWORK PART 7 AVIONICS FULL-
DUPLEX SWITCHED ETHERNET NETWORK ARINC SPECIFICA-
TION 664 P7. Sep 2009.

[2] J.J. Gutirrez, J. Carlos Palencia, M. G. Harbour, Holistic schedulability
analysis for multipacket messages in AFDX networks, Journal of Real-
Time Systems, vol. 50, no. 2, pp. 230-269, Mar. 2014.

REACTION 2014

[3]

(4]

[3]

(6]

(7]

[8]

[91

S. Wang, J. Shi, D. Sun, M. Tomovic, Time delay oriented reliability
analysis of Avionics Full Duplex Switched Ethernet, In Proc. of IEEE
Industrial Electronics and Applications (ICIEA), pp. 982 - 987, June.
2013.

S. Dong, Z. Xingxing, D. Lina, H. Qiong, The design and implementation
of the AFDX network simulation system, In Proc. of Multimedia
Technology (ICMT), pp. 1 - 4, Oct. 2010.

H. Charara, J. Scharbarg, J. Ermont, and C. Fraboul, Methods for
bounding end-to-end delays on an AFDX network, In Proc. Of 18th
Euromicro Conference on Real-time Systems, pp. 193-202, July 2006.

H. Bauer, J. Scharbarg, and C. Fraboul, Worst-case end-to-end delay
analysis of an avionics AFDX network, In Proc. of Design, Automation
& Test in Europe Conference & Exhibition, pp. 1220-1224, March 2010.
M. Tawk, X. Liu, L. Jian, G. Zhu, Optimal scheduling and delay analysis
for AFDX end-systems, SAE Technical Paper 2011-01-2751, 2011,

Y. Hua, X. Liu, Scheduling heterogeneous flows with delay-aware dedu-
plication for avionics applications, IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 9, pp. 1790-1802, Sept., 2012

D. H. An, HW. Jeon, K. H. Kim, K. I. Kim, A feasible configuration
of AFDX networks for real-time flows in avionics systems, in Proc.
of International Workshop on Real-Time and Distributed Computing in
Emerging Applications (REACTION-13), Vancouver, Canada, December
2013.

33

