
Incremental Latency Analysis of Heterogeneous

Cyber-Physical Systems

Julien Delange and Peter Feiler

Carnegie Mellon Software Engineering Institute

4500 5th Avenue

Pittsburgh, PA15213

Email: {jdelange,phf}@sei.cmu.edu

Abstract—Cyber-Physical Systems, as used in automotive,
avionics, or aerospace domains, have critical real-time require-
ments. Time-related issues might have important impacts and, as
these systems are becoming extremely software-reliant, validate
and enforcing timing constraints is becoming difficult.

Current techniques are mainly focused on validating these
constraints late by using integration tests and tracing the system
execution. Such methods are time-consuming and labor-intensive
and, discovering timing issue late in the development process
might incur significant rework efforts.

In this paper, we propose an incremental model-based ap-
proach to analyze and validate timing requirements of cyber-
physical systems. We first capture the system functions, its related
latency requirements and validate the end-to-end latency at a
high level. This functional architecture is then refined into an
implementation deployed on an execution platform. As system
description is evolving, the latency analysis is being refined with
more precise values.

Such an approach provide latency analysis from a high
level specification without having to implement the system,
saving potential re-engineering efforts. It also helps engineers to
select appropriate execution platform components or change the
deployment strategy of system functions to ensure that latency
requirements will be met when implementing the system.

I. INTRODUCTION

Cyber-Physical Systems (CPS), used in domains such as
avionics, automotive or aerospace, must comply with strong
real-time requirements. A data arriving too early or too late can
have an significant impacts on system behavior (for example,
arrival of an acceleration or brake command in a self-driving
car). For that reason, validating end-to-end latency of data
flows is of particular importance.

A. Problem

Validating system latency is mostly done late, after im-
plementation and integration efforts, by analyzing the system
using various tests. Thus, fixing time-related issues requires to
update the system specification and modify the implementa-
tion, incurring potential rework costs (design and implemen-
tation changes).

Such an approach has important limitations. First of all, it
validates system latency at the end of the development process,
after design and implementation efforts. Second, it does not
provide any insight during the design process to select and
design an appropriate architecture that will enforce real-time

constraints. Finally, as timing issues must be fixed, discovering
them late incurs an important rework cost that can be more
than 1000 times more expensive as if it was addressed earlier
in the development process[1].

B. Approach

We propose an incremental approach to specify and vali-
date latency using architecture models. First, we capture the
functional aspects of the system and allow a latency budget
on the end-to-end data flows between connected components.
This first model does not contain any realization detail but
is sufficient to make preliminary verification (for example, if
the end-to-end latency of the data flow is correct according to
the latency specified on each functional components). Then,
this latency analysis is refined while the architecture is refined
and realization details are emerging. This approach can also
support the analysis of several implementation candidates,
supporting engineers to select the best architecture candidate
to meet their latency requirements.

This approach is supported by specifying the system ar-
chitecture with Architecture and Analysis Design Language
(AADL) [2] and analysis tools implemented within OS-
ATE [3], an Open-Source AADL toolsuite.

C. Related Work

Previous work already support latency analysis from ar-
chitecture models designed with AADL [4]. This existing
validation approach does not address the following aspects:

1) Incremental analysis: existing tools analyze one
system without considering its potential refinement
into different implementation alternatives.

2) Specific CPS execution environment: existing meth-
ods did not take into account many specific aspects of
Cyber-Physical Systems such as processor, operating
system, partitioning policy or communication pro-
tocols. The proposed methods supported partitioned
operating systems, heterogeneous networks as well as
traditional (integrated) systems.

Also, this analysis enforces that data flows latency is
validated accross the architecture. It can be associated with
AADL-related scheduling analysis tools (such as Cheddar or
AADL Inspector [5]) to check that other timing requirements
are also enforced in the model.

REACTION 2014 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29406313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. DATA FLOW SPECIFICATION WITH AADL

Our approach uses AADL to specify the system architec-
ture, its end-to-end flows as well as their latency requirements.
This section introduces the modeling language and details how
to define data flows between inter-connected components and
specify latency requirements.

A. The Architecture Analysis and Design Language

The Architecture Analysis and Design Language
(AADL) [2] is a modeling language standardized by
SAE International. It defines a notation for describing system
concerns and its interaction with its operating environment
(i.e. processors, bus, devices).

The core language specifies several categories of compo-
nents with well-defined semantics. For each component the
modeler defines a component type to represent its external
interface, and one or more component implementations to
represent a blue print in terms of subcomponents. For example,
the task and communication architecture of the embedded
software is modeled with thread and process components
interconnected with port connections, shared data access

and remote service call. The hardware platform is modeled
as an interconnected set of processor, bus, and memory

components, with virtual processor representing partitions
and hierarchical schedulers, and virtual bus representing
virtual channels and protocol layers. A device component
represents a physical subsystem with both logical and physical
interfaces to the embedded software system and its hardware
platform. The system component is used to organize the
architecture into a multi-level hierarchy. Users model the
dynamics of the architecture in terms of operational modes
and different runtime configurations through the mode concept.
Users further characterize components through standardized
properties, e.g., by specifying the period, deadline, worst-case
execution time for threads.

The language is extensible; users may adapt it to their needs
using two mechanisms:

1) User-defined properties. New properties can be de-
fined by users to extend the characteristics of the
component. This is a convenient way to add specific
architecture criteria into the model (for example,
criticality of a subprogram or task)

2) Annex languages. Specialized languages [6] can
be attached to AADL components to augment the
component description and specify additional char-
acteristics and requirements (for example, specifying
the component behavior [6] by attaching a state-
machine). They are referred to as annex languages,
meaning that they are added as an additional piece
of the component. In this paper we will discuss the
Error Model Annex language.

AADL provides two views to represent models:

1) The graphical view outlines components hierarchy
and dependencies (bindings, connection, bus access,
etc.). While it does not provide all details, this
view is very useful when using the architecture for
communication and documentation purposes.

2) The textual view shows the complete model descrip-
tion, with component interfaces, properties and lan-
guages annexes. It is appropriate for users to capture
system internals details and for tools to process and
analyze the system architecture from models.

AADL
Code

Generation

Requirements

Validation

Security Analysis

Consistency

Validation

Performance

Analysis

Latency Analysis

Fig. 1. AADL Ecosystem for Software System Design and Implementation

The AADL model, annotated with properties and annex
language clauses is the basis for analysis of functional and
non-functional properties along multiple dimensions from the
same source, and for generating implementations, as shown in
figure 1. AADL has already been successfully used to validate
several quality attributes such as Security [7], [8], Performance
or Latency [4]. Supporting analysis functions have been devel-
oped in the Open Source AADL Tool Environment (OSATE)
[3], an AADL tool for architecture design and analysis.

B. Data Flows Definition

The AADL provides the appropriate semantics to define
data flows within the architecture. It distinguishes three types
of flows:

1) Flow specification specifies the externally visible
flow through the component interfaces within a com-
ponent type. A flow traversing a component is called
a flow path. A flow originating in a component is
called the flow source. A flow ending in a component
is called the flow sink.

2) Flow implementation specifies how the flow is real-
ized within a component implementation. It defines
how the flows is concretely implemented by detailing
how data is passed from one component incoming
interface, transfer it to the subcomponents through
connections and eventually send it through outgoing
interfaces.

3) End-to-end flow is a logical flow through a sequence
of components within a component implementa-
tion. It list all the elements of the flow, starting
from the starting point of the end-to-end flow (the
flow source), going through all the connections and
components where the data is transported and ending
in the component that use the data (flow sink).

The flow latency budget is specified by associating the
AADL property Latency to an AADL flow element (flow
specification or implementation) or an AADL end-to-end flow.
When being associated with a flow specification or implemen-
tation, it defines the budget allocated for this flow element.
When being associated with an end-to-end flow, it represents
the min/max latency expected from the data originating from
the source to its use by the flow sink.

REACTION 2014 22



III. LATENCY ANALYSIS

A. Latency Contributors

Architecture design impacts data flow latency. Many factors
must be taken into account. From an AADL perspective, they
are represented by AADL components and their associated
properties. Table I lists all contributors as AADL components,
the following paragraphs provide more detail about the mod-
eling rules that impact system latency.

For a software task (an AADL thread component) or
a hardware component (an AADLdevice component) we
consider the following timing characteristics: the execution
time (AADL property Compute_Execution_Time), the period
(rate at which the function is executed, specified with the
AADL property Period) and the deadline (time at which the
component must have finish its execution cycle, specified with
the AADL properti Deadline.

When components are being connected, the implementation
of the connection is an important latency contributor. We
distinguish three types of connections (illustrated in figure 2):

1) immediate: data is received as soon it is sent - there
is no additional delay.

2) delayed: data is received at the next execution period
of the receiver.

3) sampled: data is received as soon as it is dispatched,
according to the constraints of the execution environ-
ment (scheduling of the execution platform, bus or
protocol latency, etc.).

The connection type is specified in AADL using the
Timing property (legit values are immediate, delayed and
sampled). Unless the designers explicitly specifies a type, a
connection is considered sampled.

The deployment strategy is an important variability factor:
if communicating tasks are not located on the same processor,
this will require to analyze the time require to transfer the
data. In AADL, this can be analyzed by analyzing how
AADL thread and their associated process components are
associated AADL processor.

In Cyber-Physical Systems (and especially in avionics
architecture), tasks can also be deployed on different parti-
tions within the same processor. In AADL, this is captured
with processor and virtual processor components: a
processor component represents the partitioning operating
system and contains many virtual processor subcompo-
nents, each one representing partitions execution environment.
However, as partitioning operating systems enforce time iso-
lation across partition, it also incurs additional latency for
cross-partition latency, depending on the partitioning policy
(the number of time slots and their allocation to partitions).
This partitioning policy is specified using the AADL prop-
erty ARINC653::Schedule_Windows property on processor

components.

In addition, distributed tasks use a bus in order to trans-
fer data across processor, adding additional latency (the
time required to transfer the data over the bus). This char-
acteristics is also captured by AADL using the property
Transmission_Time on a bus component. It represents the
time to transfer a data on the bus, as well as the time required

to acquire the bus. Combining this property and the size of the
transfered data is enough to evaluate the latency incurred by
distributed connection.

Finally, connected tasks communicate using communi-
cation protocols (TCP, UDP, etc.) which might add po-
tential latency. To specify the use of a particular proto-
col, an AADL connection should then define the property
Required_Virtual_Bus_Class

Component Related properties
thread or
device

Period (rate at which the component do
something), Compute_Execution_Time

(how much time it takes to perform its
job), Deadline (when the job is supposed
to be completed)

bus Transmission_Time (time required to
transfer data between two communication
points)

virtual

bus

Latency (latency of a protocol)

processor ARINC653::Schedule_Window

(partitions scheduling)
connection Timing (type of connection),

Required_Virtual_Bus (protocol
used to implement the connection)

data Data_Size (to compute transmission
time)

TABLE I. AADL COMPONENTS THAT CONTRIBUTES TO SYSTEM

LATENCY WITH THEIR RELATED PROPERTIES

B. Support for Incremental Development and Architecture
Selection

Our approach supports different levels of abstraction of the
system architecture. It can be used at a very high description
level (i.e. system function without any implementation speci-
fied) to have latency estimates and will produce more accurate
results when the designers add implementation details.

The main benefits of this approach is that while the system
architecture is evolving with more details, the latency estimates
become closer to what engineers would expect at runtime.
The analysis can be continuously being generated at each
development iteration to analyze impact of changes.

This characteristic of our validation process enables an
early validation of latency concerns without having to specify
all system concerns in a single model. It can also support
architecture selection: engineers can then experience and try
different implementation choices (program a function using
hardware component - such as AADL device - or software -
AADL process or thread) deployment strategies (function
allocation over the processing resources) or configuration
mechanisms (use of a specific protocol via the use of AADL
virtual bus components), see the impact on the end-to-end
latency in order to take design decision before freezing the
architecture design.

C. End-to-End Flow Analysis

The end-to-end flow analysis consists of analyzing each
AADL end-to-end flow declared within each component and

REACTION 2014 23



Fig. 2. AADL Connection Type: sampling, immediate and delayed

check that the latency value is great than the latency of the sum
of each latency of the flow elements. This validation is done
for both the lower (minimum) and upper (maximum) range of
the latency value.

For each flow elements, the analysis tool behaves differ-
ently if the element is a component (e.g. a flow source or sink)
or a connection. If the element is a component, the analysis
calculates the Best and Worst Case Execution Time (BCET
and WCET).

Also, when two components are being connected, the
tool gets the connection latency. This value depends on the
connection type (immediate, sampled or delayed) and the de-
ployment policy (components collocated on the same processor
or distributed, etc.):

• When the components are colocated on the same
processor, the connection latency depends on the com-
ponents period and the connection type. An immediate
connection means that the receiver get the data as soon
as this is sent while a delayed connection will wait for
the next period.

• When being distributed, the connection latency de-
pends on the physical bus and the underlying protocol
to transport the data. In addition, as the receiver
component samples incoming data, it might receive
it at the beginning (best case) or the end (worst case)
of its period.

• When being in a partitioned architecture, connection
latency between components located in different parti-
tions depend on the partitioning policy: the receiving
partition have to wait that inter-partitions communi-
cations buffers are flushed. As for now, our analysis
tool considers two different policies, as described in
section IV-D.

The rules used by the latency analysis tool are available
within the OSATE documentation[3]. It describes each case
and precisely indicates how it defines the latency for each
component and connection type.

IV. CASE-STUDY

We demonstrate our latency analysis method on a usual
architecture pattern in safety-critical systems. The system
consists of three main functions:

1) sensing: acquire raw data from devices, sensors, etc.
2) processing: receives the sensed data, process it (e.g.

filter, remove inconsistent values, convert it to a
particular format, etc.).

3) actuating: get the processed data and use it to control
a device (e.g. display information on a screen, adjust
speed of a motor).

The data flow originates in the sensing function, traverses
the processing and eventually ends in the actuating function.
This example assumes that the end-to-end flow from the
sensing function to the actuating function will be less than
100 ms.

Through this case-study, we will first establish a functional
architecture that defines the various functions, their latency
budgets as well as the end-to-end flows specification and
their latency requirements. Then, this preliminary architec-
ture is refined into a runtime architecture, replacing AADL
abstract components by a software implementation using
AADL process and thread components. This software im-
plementation is then integrated on two different deployment
alternatives:

1) distributed: each function is executed on separate
processors connected using a bus.

2) integrated: all functions are executed on the same
processor but isolated from each other using a parti-
tioning system.

This case-study will then highlight how deployment (dis-
tributed or integrated) and configuration (partitions scheduling
policy) impact the end-to-end latency. The next sections detail
the functional architecture and its refinement into the several
runtime architectures with different configuration alternatives.
Finally, interested readers can get the AADL model on the
official OSATE github repository [9].

REACTION 2014 24



A. Functional Architecture

We capture the functional specification of our system in an
AADL model with abstract components, as shown in figure
3. This model declares the flow of every component:

• The sensing function has a flow source with a
latency requirement between 3 ms and 4 ms.

• The processing function has two flow paths (one
for each incoming sensor value) with a latency re-
quirement between 4 ms and 5 ms.

• The actuating function has a flow sink with a
latency requirement between 5 ms and 7 ms.

Finally, the top-level system defines two end-to-end flows
from the sensing functions to the actuating function with a
latency budget lower than 30 ms. The end-to-end flow from
the first sensing function to the actuated is highlighted with
a line in figure 3.

Fig. 3. Functional Architecture

When running our analysis tools, it shows that the latency
budget allocated to each component is sufficient to enforce
the end-to-end latency requirements. As shown in table II,
the minimal total latency is 17 ms (as the minimal expected
is 20 ms) while the total max is 25 ms (30 ms expected).
This functional analysis is a high-level validation without
implementation details. Next sections discuss how deployment
consideration impact end-to-end flows latency and might break
requirements enforcement.

Component Min Latency Max Latency
Sensing 5 ms 7 ms
Processing 5 ms 8 ms
Actuating 7 ms 10 ms
Total 17 ms 25 ms

TABLE II. LATENCY FOR THE FUNCTIONAL ARCHITECTURE

B. Runtime Architecture

Each function is implemented in software components
by refining the AADL abstract components into AADL
process components containing threads. We also define the
flow implementation of the initial specification by specifying
data flows other the thread components.

The sensing function is realized by an AADL process

containing one periodic thread. The thread execution time
is a range between 1 ms and 2 ms.

The processing function is realized by two thread com-
ponents:

1) tf: receives the raw data from the sensing function,
filter them (removing inconsistent values) and send it
on the process outgoing interfaces. Its execution time
ranges from 2 ms to 3 ms.

2) ts: receives the data and produces some statistics
but does not contribute to the end-to-end flow. Its
execution time ranges from 3 ms to 4 ms.

Figure 4 shows the implementation of the processing
function with these internal components and connections. It
also highlight the internal data flow originating from the
component incoming interface datain1, traversing tf and
eventually ending on the outgoing interface dataout.

Fig. 4. Flow within the processing function

The actuating function is realized by one AADL process

containing two inter-connected thread components:

1) tc receives the data, collects the last received values
and send the commands to be display on its outgoing
interfaces. Its execution time ranges from 1 ms to 3
ms.

2) td receives and display the data. Its execution time
ranges from 1 ms to 2 ms.

Figure 5 shows the implementation of this function. The
line represents the data flow within this component, originating
from the incoming external interfaces and ending in the td

thread.

Fig. 5. Flow within the actuating function

This software architecture is then deployed on different
execution platform. Next paragraphs present two deployment
strategies with different configuration and discuss their impact
on system latency.

C. Distributed Deployment

The distributed deployment (as illustrated in figure 6) allo-
cates each AADL process to a dedicated AADL processor.
Inter-process connections are associated to an AADL bus.

REACTION 2014 25



These bus components require between 1 ms and 2 ms to
acquire the medium and between 1 us and 10 us to transfer
one byte.

In addition, inter-process communications use a dedicated
transfer protocol. It adds 1 ms to 2 ms to the total actual latency
(required to connect nodes, acknowledge data transfers, etc.).

Fig. 6. Distributed Deployment, functions executed on separate processors
connected over a bus

D. Integrated Deployment

The integrated deployment (as illustrated in figure 7) al-
locates each AADL process to an isolated partition (AADL
virtual processor component). All partitions are co-located
on the same physical processor. Such a deployment strategy
avoids the cost of adding more hardware component (processor
and buses), saving integration efforts and costs.

Fig. 7. Integrated Deployment, functions executed in isolated partitions

The processor scheduling policy defines four partition time
slots executed periodically at a major frame (MF) of 20 ms:

1) one of 3 ms dedicated to the first sensing function
2) another one of 3 ms for the second sensing function
3) one of 8 ms for the processing function
4) one of 6 ms for the actuating function

Partitioned systems have different policies to flush inter-
partitions communication. Initially, inter-partitions communi-
cations are realized and buffers are flushed after completing an
execution cycle. In other words, a data send during a cycle is
available to the other partitions after the major frame. This is
illustrated in figure 8: a data sent by sensor1 will be available to
the processing partition at the next execution cycle. This might

ProcessingSensor2Sensor1 Actuating

Time

3 ms 3 ms 8 ms 6 ms

Major

Frame

send value 1

recv value 1

inter-partitions

communications �ush

Fig. 8. Inter-Partitions Communications flushed at Major Frame

incur unexpected delays and enforcing latency requirements
can be challenging with such architectures.

On the other hand, other execution platforms provide an
optimization which consists of flushing inter-partitions com-
munications buffers during partitions switching. As shown in
figure 9, this reduces potential inter-partition delays: values
sent by a sensor is available immediately to the processing
partition.

ProcessingSensor2Sensor1 Actuating

Time

3 ms 3 ms 8 ms 6 ms

Major

Frame

send value 1

recv value 1

send value 2

recv value 2 recv value 3 recv value 4

send value 3 send value 4

Fig. 9. Inter-Partitions Communication flush after executing each partition

Component Min Latency Max Latency
Sensing 1 ms 2 ms
Connection 2 ms 24 ms
Processing 2 ms 3 ms
Connection 2 ms 24 ms
Actuating 2 ms 5 ms
Total 9 ms 58 ms

TABLE III. LATENCY FOR THE DISTRIBUTED ARCHITECTURE

E. Latency Analysis Results

We apply our latency analysis tool to evaluate the end-to-
end latency for each the distributed and integrated architectures
(considering also both inter-partitions communication policy).
We report the results related to the first end-to-end flow, from
the first sensing function to the actuating. Table III shows the
latency values for the distributed deployment while tables IV
and table V represent the one for the integrated configuration
(with different inter-communication policy: flushed at major-
frame or at partition switch).

In these different deployment and configuration settings,
the software components are the same, so, there is no variation
in their related latency (execution time). On the other hand,
inter-components communications incur an additional latency.
In the distributed deployment, it corresponds to the delay
required to sample and transfer data (1 ms bus and 1 ms
protocol latency in the best case and 2 ms bus and 2 ms
respectively for the worst case). As the components are being
distributed over several processors, the connection latency may
vary significantly: in the best case, the component receives new
data as soon it gets dispatched while in the worst case, the data
will be available at the next execution period (20 ms). That is

REACTION 2014 26



why in this example, the minimum latency estimate enforces
the requirements while the maximum is too high.

In the integrated deployment, the additional latency is
added by the inter-partition communications policy and the
partitions execution order.

From these results, we can see that part of distributed
configuration and one version of the integrated configuration
meet the end-to-end latency requirements. On the other hand,
the integrated configuration with the communications flushed
at major frame fails to meet the requirements, due to the addi-
tional delay required to flush inter-partitions communications
buffers.

These results highlight the impact of deployment and
configuration choices and how they can incur unexpected
resources overhead. In the case of the distributed deployment,
extra time is required to transport data over system nodes
(bus and protocol transfer time). In the case of the integrated
deployment, there is a cost related to time isolation (partitions
are executed during a fixed amount of time regardless the
execution time of their tasks) but also to the inter-partitions
communication policy.

Component Min Latency Max Latency
Sensing 1 ms 2 ms
Connection 25 ms 24 ms
Processing 2 ms 3 ms
Connection 26 ms 25 ms
Actuating 2 ms 5 ms
Total 56 ms 59 ms

TABLE IV. LATENCY FOR THE INTEGRATED ARCHITECTURE WITH

INTER-PARTITION COMMUNICATION FLUSHED AT MAJOR-FRAME

In this case-study, we see that having a fixed execution time
for each partition is not a problem as long as inter-partitions
communications are flushed when switching partitions. On the
other hand, flushing them at the major frame introduces too
much delay so that latency requirements could not be met.

These results show that beyond the functional system
description, designers must take into consideration all aspects
of the architecture, including specific runtime (communication
policy, buses, protocols, etc) concerns. Having them in a model
support system analysis and avoid potential rework costs when
being discovered late in the design process.

Component Min Latency Max Latency
Sensing 1 ms 2 ms
Connection 5 ms 4 ms
Processing 2 ms 3 ms
Connection 6 ms 5 ms
Actuating 2 ms 5 ms
Total 16 ms 19 ms

TABLE V. LATENCY FOR THE INTEGRATED ARCHITECTURE WITH

INTER-PARTITION COMMUNICATION FLUSHED AFTER EACH PARTITION

V. CONCLUSION

Analyze and evaluate end-to-end latency is of primary
importance for Cyber-Physical Systems. Unfortunately, such

verification are usually done at the end of the development pro-
cess, adding eventually a significant rework and reengineering
efforts.

In this article, we present an incremental model-based
approach to evaluate the end-to-end latency using system
specification, avoid potential expensive rework costs. It relies
on the Architecture Analysis and Design Language (AADL)
and can analyze an abstract functional architecture without ex-
ecution environment that can be later enriched with specialized
execution components (such as processor, buses, etc.). It also
offers the opportunity to experience and evaluate the impact of
different deployment strategies and configurations, supporting
design decision before implementing the system.

Our approach shows that, by using an appropriate level
of abstraction, model-based techniques find many potential
design defects without having to specify components internals.
The case-study demonstrates that, changing the scheduling and
deployment concerns impact the enforcement of an end-to-end
latency. As CPS are becoming more software-reliant and com-
plex, such issues become typical as well. Using model-based
analysis techniques, such as the one of this article discover
them early and avoid late rework and product postponement.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material has been approved for
public release and unlimited distribution. Carnegie Mellon c© is
registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM-0001652

REFERENCES

[1] National Institute of Standards and Technology (NIST), “The Economic
Impacts of Inadequate Infrastructure for Software Testing - http://www.
nist.gov/director/prog-ofc/report02-3.pdf,” Tech. Rep., 2002.

[2] SAE International, AS5506 - Architecture Analysis and Design Language

(AADL), 2012.

[3] Carnegie Mellon Software Engineering Institute, “Open Source AADL
Tool Environment - http://www.aadl.info,” Tech. Rep., 2006.

[4] P. Feiler and J. Hansson, “Flow latency analysis with the Architecture
Analysis and Design Language (AADL) - TN CMU/SEI-2007-TN-010,”
Carnegie Mellon Software Engineering Institute, Tech. Rep., December
2007.

[5] P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff,
A. Plantec, V. Nguyen-Hong, and H.-N. Tran, “The SMART Project:
Multi-Agent Scheduling Simulation of Real-time Architectures,” in
Proceedings of the ERTSS 2014 conference, Toulouse, France, Feb.
2014, pp. –. [Online]. Available: http://hal.univ-brest.fr/hal-00983724

[6] R. Frana, J.-P. Bodeveix, M. Filali, and J.-F. Rolland, “The AADL
behaviour annex – experiments and roadmap,” Engineering Complex

Computer Systems, pp. 377–382, July 2007.

[7] J. Hansson and A. Greenhouse, “Modeling and validating security
and confidentiality in system architectures,” Carnegie Mellon Software
Engineering Institute, Tech. Rep., 2008.

[8] P. Feiler, “Challenges in validating safety-critical embedded systems,” in
AEROTECH Congress. SAE, Nov 2009.

[9] Carnegie Mellon Software Engineering Institute, “AADL examples
repository,” https://github.com/osate/examples/.

REACTION 2014 27


