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Abstract: One of the challenges of intelligent systems for education is to use low-level data collected in computer environments in the
form of events or interactions to infer information with high-level significance using artificial intelligence techniques, and present it
through visualizations in a meaningful and effective way. Among this information, emotional data is gaining track in by instructors in their
educational activities. Many benefits can be obtained if an intelligent systems can bring teachers with knowledge about their learner’s
emotions, learning causes, and learning relationships with emotions. In this paper, we propose and justify a set of visualizations for an
intelligent system to provide awareness about the emotions of the learners to the instructor based on the learners’ interactions in their
computers. We apply these learner’s affective visualizations in a programming course at University level with more than 300 students, and

analyze and interpret the student’s emotional results in connection with the learning process.
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1. Introduction

Learning analytics has emerged as a new powerful tool
(Campbell, Deblois, & Oblinger, 2007). Current technology-enabled
educational scenarios generate large amounts of data about the
interactions of learners with course material, tools and with other
learners. The collection of this data is the first of three stages that
compose the cycle of a learning analytics process (Clow, 2012).
Solutions for collecting this low level data from different distrib-
uted sources have been proposed such as the Contextualized
Attention Metadata approach (Wolpers, Najjar, Verbert, & Duval,
2007) where data is stored as XML. The information can also be
stored in other formats as RDF (Mufioz-Merino et al., 2010).

Low-level data is analyzed and processed in a second stage, with
the goal of inferring higher-level information that can be used to
improve the learning experience for both instructor and the
learner. Visualizations are an important artifact to represent this
information and can be of low or high level data (Soller, Martinez
Monés, Jermann, & Muehlenbrock, 2005). Students can use visual-
izations for self-reflection (Florian, Glahn, Drachsler, Specht, &
Fabregat, 2011) ( Govaerts, 2010), but visualizations for providing
awareness of students to teachers is also an important aspect, as
supported by the fact that the relationship stakeholders are more
interested for learning analytics is in teachers helping their stu-
dents (Drachsler & Greller, 2012).

The design and development of intelligent systems that are able

to transform from low-level educational data into information that

is meaningful for teachers using artificial intelligence techniques is

a challenge. This high level information requires a processing of the
low level data and includes the generation of visualizations that are
at the same time easy to understand by stakeholders but also
complete enough so that important details about the learning pro-
cess are not obscured.

An example of higher-level information valuable by instructors
is the emotion that a learner is feeling in a given moment. There is
evidence of the relationships of emotions and learning (Goleman,
1995; Klein, Moon, & Picard, 2002; Zakharov, 2007) and a conse-
quence is that teachers can use their students’ affective knowledge
for improving learning.

Therefore, it is common for educational practitioners to con-
sider the emotions of learners in order to intervene accordingly
(Baker et al., 2006; Zakharov, 2007). For instance, when a learner is
feeling frustrated the instructor might intervene with an expla-
nation of the topic being studied by the learner. Similarly, if a lear-
ner is enthusiastic the instructor might want to take advantage and
try to achieve more difficult learning challenges. These interven-
tions occur in the third stage of the learning analytics cycle.

In order to intervene, the instructor must be aware of the emo-
tional state of the learners at an individual and group level. It is a
challenge how to represent the emotional information and which
information to show in an intelligent system so that instructors
can intervene easily and with a complete and precise information
derived from low-level data. In this paper, we propose a set of



visualizations to provide awareness of the emotions inferred. These
high-level visualizations have been applied in a programming
course with 334 students, in the context of higher education, in a
second course of a degree at Universidad Carlos Il de Madrid.
We show how teachers can analyze and interpret the learner’s
emotional results in connection with the learning process based
on the visualizations given by the intelligent system.

The rest of this paper is structured as follows. Section 2 presents
a review of the literature related to the visualization of emotions in
learning scenarios, as well as other visualizations for learning ana-
lytics. In Section 3 we briefly explain the mechanisms to collect
data and to infer emotions based on the low-level data. Section 4
describes the proposed visualizations to provide awareness of
emotions and presents the results for learners of a programming
course, while Section 5 presents a discussion of the visualizations
as well as future work.

2. Related work

One of the shortcomings of several expert systems is the diffi-
culty for presenting powerful but at the same time easy to under-
stand visualizations for the stakeholders about the inferences that
are the result of certain processing of data. Research about how to
obtain easy to use and interpret visualizations for involved stake-
holders in these systems has been addressed in several works. In
this direction, an improved visualization method for self-
organizing map is proposed for making easier to understand the
related information (Shieh & Liao, 2012), or some techniques have
been applied for visualization of blogs (Tsai, 2011)

Visualizations related to the learning process are an important
issue. Different works presented useful visualizations for technol-
ogy enhanced learning that do not include emotions. These visual-
izations include resource accesses over time (Mazza & Milani,
2005), detailed information about the interactions with exercises
and hints (Khan Academy, 2012), activities on an LMS (Zhang,
Almeroth, Knight, Bulger, & Mayer, 2007), number and types of
events and items (Govaerts, Verbert, Duval, & Pardo, 2012; Leony,
Pardo, de la Fuente Valentin, Saanchez de Castro, & Delgado Kloos,
2012; Santos, Govaerts, Verbert, & Duval, 2012) or social interac-
tions (Schmitz et al., 2009).

Nevertheless, only few works have addressed the visualization
of emotions in a learning context. Most of the existing works rep-
resent emotions as a color palette that matches each emotional
state with a different color (Tian, Zhang, Li, Zheng, & Yang, 2011).
In addition, most works focus on the detection of emotions in texts
based on semantic analysis (Krcadinac, Jovanovic, & Devedzic,
2012). In this line, Skynesketch (Krcadinac et al., 2012) is a tool
integrated in Moodle that recognizes emotions from text and is
able to represent some emotions during time.

Our approach supports representations of emotions over time
as in (Krcadinac et al., 2012) but we recognize emotions based
on the sequence and user interactions with learning resources
instead of with text recognition. For this reason, our approach
enables the presence of other visualizations such as the learning
causes of emotions.

Furthermore, our approach gives new visual high level repre-
sentations for emotions, e.g. if learners are constant or change a
lot in their emotions, or emotional connections with final grades.

3. Data collection and emotion inference

In order to explain the visualizations presented later in this
paper, this section explains the raw data originally collected in a
learning activity and the methodology used to analyze and process
such data to infer emotions. The evaluation and accuracy of the

model to detect emotions described below are out of the context
of the paper, which focuses in the visualizations to provide aware-
ness of learners’ emotions.

The data described in this section has been collected in a C pro-
gramming course of a second year of an engineering degree. The
duration of the course was four months and data was recorded
during laboratory activities done in the university and when learn-
ers did homework on a provided environment.

3.1. Learning environment and data collection

Learners are provided with a virtual machine with all of the
tools they need during the term. The virtual machine is also config-
ured to record the interaction of learners with a set of applications.
Some tools are specific to the domain of the class (compiler, debug-
ger, memory profiler, command prompt and code versioning sys-
tem) while others are of generic use (text editor and web browser).

The interaction with the listed tools, including the time and
type of action performed by the learner, is stored in a file known
as log. Learners are asked to submit their work through a control
versioning system; along with their work the tool logs are sent
to the server following a piggyback approach.

Given that logs stored in the central server have different for-
mats according to the tool information they contain, they must
be normalized. Logs are parsed and inserted into a database that
follows the Contextualized Attention Metadata (CAM) format
(Wolpers et al., 2007). For more information of the data collection
process, Romero Zaldivar et al. provide further details in
(Romero-Zaldivar, Pardo, Burgos, & Delgado Kloos, 2012).

3.2. Inferring emotions from low-level data

Several models relate the occurrence of events to the appraisal
of emotions (Ding & Marchionini, 1997; Ortony, Clore, & Collins,
1990; Roseman & Evdokas, 2004; Scherer, 2000). A common char-
acteristic among the models is that events are classified as favor-
able or unfavorable towards the achievement of a goal. In our
setting, the goal of the learner is to complete a learning activity
successfully. This has been the main characteristic to define a mod-
el to translate event sequences to emotional states.

Given the need to detect patterns in a sequence of observations,
we are using Hidden Markov Models (HMM). HMMs have two sets
of elements: set of possible observations and a set of states. Three
arrays of probabilities define the behavior of the model: a vector of
probabilities for each state to be the initial one, a matrix of proba-
bilities for each state to generate each possible observation, and a
matrix of transitions between states.

Our model defines five states in the HMM: Working on task,
finding a problem, looking for solution, solving a problem, and
being distracted. The set of observations is defined by the actions
that the learner can perform in the virtual environment. Some
examples of the observations are compiling a program success-
fully, compiling a program unsuccessfully, editing a program, visit-
ing course material in the browser, and visiting web content other
than the course material.

The transition probabilities between states are different for
each emotion. For the visualizations we will focus on four emo-
tions: happiness, frustration, confusion and boredom. Although
the last two are classified usually as cognitive states, we include
them in the models given the option to map them with action pat-
terns. For example, a confused learner in our scenario tries to pro-
gram on a trial-and-error approach. A bored learner would most
likely do tasks unrelated to the learning activity such as browsing
web content other than course material. Then, we calculate the
probability for a sequence of observations to be generated by the
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Fig. 1. Timeline visualization of the emotion levels during a term.

model of each emotion and map that probability to a scale from
zero to one that indicates the level of the emotion in that moment.

4. Visualizations of emotions

In this section we present several visualizations with the main
objective of reflecting the emotional state of the learners, as indi-
viduals and as a group.

4.1. Time-based visualizations

The timeline visualization (Fig. 1) presents the fluctuations of
each emotion for a given learner whose identity has been kept pri-
vate. The X-axis represents the timeline, starting from date when
the learner generated her first event, until the date when the lear-
ner generated her last event. The Y-axis represents the level
detected for the emotion. As explained previously, the emotion
level in our model goes from zero to one.

E_motions of 1d5121031

In the example figure, the learner had a peek of confusion and
frustration by late September. In addition, the instructor can
observe that by early November there was a peek of boredom
detected in the learner; and the emotions kept in a controlled
range during the rest of the term.

In addition, the visualization annotates interesting points that
fall outside of a threshold, as well as the learning event that is
related to that emotional state. The method used to identify the
outstanding points is based on selecting those points higher than
the mean plus a standard deviation. In the example, the highest
peak occurs right after the learners had a problem to compile her
program.

Thus, an instructor is able to identify when a learner is experi-
encing an extraordinary emotion. The instructor is also able to
identify the event that caused the change of emotion in the model.
This data combined give the instructor a considerable amount of
intervention to act into the learning activity and assist the learner.

It is possible to superimpose the evolution of all students’
emotions over time in the plot (as in Fig. 1 but including all
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Fig. 2. Daily accumulative of events grouped by emotions.
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Fig. 3. Emotions of events by tool and type of emotion for two given learners.

students). Furthermore, the mean for the emotions of the class-
room can be included. This is very useful to detect e.g. students
with problems because are under the mean most of the time,
students with punctual problems in the time, or periods where
the emotion of most students are weak. In the latter case,
instructors can think in reviewing the learning activities during
this period, as they produced a specific emotion for most
students.

The visualization of daily accumulated events by their associ-
ated emotion is our other proposal of a time-based visualization. As
seen in Fig. 2, the visualization displays two aspects that are of
interest for the instructor: the daily activity of the learner, deduced
from the amount of events generated that day, and the emotion
that was associated to each of those events. In the exam-ple, the
learner was very active during the last week of October, but her
activity was practically null the first two weeks of December. The
color of confusion is not green as in the rest of the visualizations in
order to distinguish it better from the boredom bar.
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4.2. Context-based visualizations

The objective of this set of visualizations is to reflect the learn-
ing context in which the emotions were detected. This can help to
understand the learning causes of some emotions. The first pro-
posal in this set is the visualization of emotions by tool and type of
emotion (Fig. 3). This visualization shows the occurrences of events
generated by a specific learner when expressing a given emotion
and using a specific tool. With this type of graphic, instructors can
know which tools generated better affective states to their
students. In addition, comparing this type of graph with the mean
of the classroom can lead to introduce clusters of stu-dents
depending on the different effects generated by different tools.

In the example, the learner on the left felt confused, frustrated
and even got bored while using the memory profiler (Valgrind,
third from left to right). The compiler (GCC, first on the left) shows
a similar level of confusion and frustration but these are overcome
by the large amount of events associated to happiness. It is also

Grades vs. Emotions
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Fig. 4. Emotion, score and activity visualizations.
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Fig. 5. Visualization of tools that provoked emotion changes for two learners.

worth noticing that the level of boredom while using the text
editor (Kate, second from left to right) is relatively high compared
with other emotions; this likely means that the learner constantly
interrupted her programming task by accessing web content unre-
lated to the class.

As a point of comparison, the learner on the right generated
many events associated to confusion while using the memory pro-
filer. The amount of events is even more than twice of those of the
compiler. This indicates that the learner is having issues in partic-
ular with the memory profiler tool, and the instructor could rein-
force topics related to the topic of memory management.

Another concept proposed as a context for emotions is the final
score that the learners obtained in the course. The emotion, score
and activity visualizations (Fig. 4) display the relation between
learners’ emotions, the amount of events they generated in the
learning scenario, and their final score in the course.

Unlike the previous visualizations, the score-related visualiza-
tions are not created upon the dataset of only one learner but upon
the whole class group. This allows a direct comparison of the
scores obtained by learners and their relation to the emotions that
each learner expressed the most during the term.

In the visualization on the left of Fig. 4, each circle or globe cor-
responds to the emotion of a learner, and a set of concentric globes
represents a learner. One different color is used for each different
type of emotion. The occupied area is proportional to the level of
the emotion. In some cases the circle is close to be of only one col-
or, which means that this was the predominant emotion for a user.
The position of the globe set on the X axis is defined by the final
grade that the learner obtained in the course. Learners pass the
course with a grade of 5.0, thus every learner on the left half of the
square failed to pass while the right half passed the class
successfully.

The Y axis is set according to the amount of events received
from the learning environment. The closest a learner is to the bot-
tom of the square, the less active she was during the learning activ-
ities of the class. Learners at the top of the square are outliers that
generated large amounts of events.

The separation between the ratios of the circles depends on the
average level for each emotion. The set of circles is sorted by size in
descendant order, meaning that those circles with a large cyan cir-
cle in the center have felt more confused in average than those
with a small cyan circle. One example that illustrates this differ-
ence is the two outliers at the top. The confusion area on the one
that failed to pass the course is rather larger than the one on the
right, who actually passed the course.

A second version of the globes visualization is included on the
right of Fig. 4. The same information is contained in this

representation but the number of events is not taken into account.
The X axis is still associated to the final score of the learner in the
course, and the size of the globes is also ruled by the average level
for the given emotion and the given learner.

There are two significant changes in this version. First, a learner
is not represented by concentric circles anymore but by a set of cir-
cles aligned vertically. The second difference is that he position at Y
axis is fixed according the reflected emotion.

From both of these last visualizations, it is interesting and also
expected to see learners with a high level of confusion to fail the
course. In general, it is also interesting that for most learners the
feeling of happiness was the highest one, disregarding whether
they passed the class at the end of not. In addition, happiness
and boredom are the predominant emotions for students with high
scores and few events.

4.3. Visualizations of change in emotion

The third type of visualizations is related to changes of emo-
tions during the learning activity. The visualization is this category
(see Fig. 5) is about the changes of emotions produced by each tool
that the learner used. The example shows this information for the
same learners of the Fig. 3. It is interesting to see that actually the
memory profiler (Valgrind) generated most of the changes into the
state of confusion, while the compiler (GCC) provoked changes to
the state of happiness.

The learner on the right shows a different pattern although with
some similarities. Compiler and web browser keep (firefox) on
causing the learner fall into the happiness emotion, but here the
web browser does not provoke to fall into the confusion state. In
addition and unlike the first learner, command prompt (bashcmd)
and text editor (Kate) are relevant tools for the learner to feel
confused.

An additional characteristic of interest for the instructor is the
constancy for each emotion expressed by the learner. The definition
of constancy used in this work is the standard deviation of each
emotion detected. An example of this visualization is provided in
Fig. 6, composed of four panels, one for each of the histograms of
the constancy level. The !green histogram corresponds to the con-
stancy level of confusion, and in this case it shows how many
learners are indeed consistent on their level of confusion. A similar
insight can be obtained from the boredom category, colored cyan.
However, frus-tration and happiness (red and blue, respectively)
indicate that the learner have fluctuated more than in the other
emotions.

! For interpretation of color in Fig. 6, the reader is referred to the web version of
this article.
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4.4. Visualizations of accumulated information

In this set we include four visualizations that represent the
emotions of the whole class during the term. The objective of this
kind of visualizations is to provide the instructor with a complete
overview of the emotions expressed by learners in her class. This
information is used to act on a specific learner but to analyze
aspects that affect the group (e.g. learning material, environment
and tools).

The first visualization is a pie graph of the average level of each
emotion for the whole group of learners. The example (Fig. 7)
shows that the average level is almost the same among the emo-
tions. Happiness level is slightly higher than the rest of emotions,
being the one frustration rather smaller.

The second visualization in this set shows the total amount
of events from each tool and associated to each emotion. It is

Happiness

Confusion

Boredom
Frustration

Fig. 7. Average levels of emotion for the group of learners.

interesting to see that happiness is the predominant emotion during
the observation of events. The command prompt is the tool mostly
used during the course and also the one that generated the most
events associated with happiness. As it could be foreseen, the tool
that learners used the most while feeling bored was the web
browser, giving that they used it to access external web content.

The next visualization is the average level of each emotion while
using each tool in the learning activity. While the highest level of
happiness is shown by the command prompt as in the pre-vious
visualization, there are other points worth to analyze. First, the
level of happiness is maintained at a medium point by most of the
tools, except memory profiler, development environment
(kdevelop) and debugger (gdb). Although this could mean these
tools had a negative impact on the learners’ happiness in general, it
should also be considered that the tools are also the least used
(refer to Fig. 8). Compare for example the happiness average
between the text editor (Kate, third from left to right) and the
development environment (seventh from left to right); although
learners do similar tasks on them, the text editor shows a consid-
erable higher average level of happiness. Thus, the comparison is
affected by the how much learners used each tool.

Another interesting fact shown in Fig. 9 is the high level of con-
fusion shared by tools like the LMS (moodle, first on the left) and the
web browser. This indicates that learners tried to solve their
programming errors by looking for explanations in the class mate-
rial, and also by looking for information in any other web site.

As expected, command prompt and compiler are the tools that
show the highest averages of confusion and frustration in learners.
This fact relies also on the model used to infer emotions since hav-
ing a problem while compiling a program is one of the events most
associated to those emotions.

The last visualization (Fig. 10) is built using the same informa-
tion than the previous one (i.e. the average level of each emotion
when using each tool, for all learners). The difference relies on
the information being presented in a radial format rather than lin-
ear. The learning tools are allocated around the circumference hav-
ing four angular bars each. The ratio of each bar within the
circumference is set by the average level of the associated emotion.
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5. Discussion and future work

We have presented ten types of visualizations to provide aware-
ness of the affective state of learners and we have applied them in
the context of education in a programming course. These visualiza-
tions are high level information that is derived as a result of a pro-
cessing from low level data of users’ interactions with different
technological educational tools. The visualizations are grouped in
four categories: time-based, context-based, emotional changes,
and accumulated information.

Time-based visualizations allow the instructor to analyze the
changes of each emotion during the term of the class. The instruc-
tor is then able to see any pattern in the emotional changes of the
learner and to know what caused the learner to change an emotion
abruptly. An interesting use of these visualizations is to analyze
academic and social activities that occurred when the changes of
emotions appear. For example, emotion of learners is expected to

change during the exam period of the university. Examples of
social activities that could affect the emotion that learners show
in class are relevant sport events or political announcements.

Context-based visualizations were presented as a way to ana-
lyze the effect of contextual elements onto a learner’s emotions.
Our proposals focused on two contextual elements: learning tools
and final grades. Other options to be considered could be learning
material in order to detect specific content that affects negatively
the learning experience. Another important part of context is lear-
ner location localization, since this could provide valuable informa-
tion about on how emotions are affected by doing a learning
activity at home instead of the university. These new elements
can also be analyzed in the context of changes of emotions and
allow solving questions like: Does the place where the learning
activity is done provoke a change of emotion? What place gener-
ates more frustration when a learner uses the compiler? Do learn-
ers get more bored at home than at the university?
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Future work includes the evaluation of the visualizations pro-
posed in this paper. We are planning two evaluations, one per-
formed by experts in the area of emotions in learning scenarios
and another one with instructors of the course represented in the
visualizations. The main purpose of the evaluation is to identify
those visualizations that better reflect the emotions of the learners,
thus helping the instructor to be aware of the emotional context of
her learning activities.

Another possible line of work is the implementation of these
visualizations into a system accessible to instructors through the
whole term. In this line, the chosen approach could be to imple-
ment several modules into Gradient Learning Analytics System
(LearnGLASS) (Leony et al., 2012).

Finally, we are also interested on designing new visualizations
by enhancing or by combining the ones proposed in this paper.
This approach could include also the exploration of including
dynamic or interactive elements into the visualizations. Thus, the
visualization could use movement to represent variations in emo-
tional information along dimensions such as time, person, learning
tool, and learner location.
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