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Abstract

We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We
developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of
availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages
publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the
opportunity to review code. The internal structure of the framework allows an external developer to implement new
algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data
handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take
advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have
been published, the latter under a free software license (GNU General Public License) to allow modification if necessary.
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Introduction

Dynamic nuclear imaging studies have become a common

diagnostic technique in medicine, as they provide quantitative and

functional information on several tissues thanks to the use of

radiolabeled tracers with different in vivo behaviors [1–6]. In order

to obtain accurate kinetic parameters for compartmental models

[7], it is first necessary to generate precise time-activity curves

(TACs) both for the tissues being studied and for input functions,

such as the TACs of the myocardium and ventricles in the case of

a cardiac study. These curves can be obtained directly from the

image by manually drawing regions of interest (ROIs), although

this is a slow, time-consuming, subjective process [8–10]. In order

to avoid these problems, many automatic or semiautomatic

segmentation algorithms have been developed over the years.

These algorithms group together regions of the image with similar

kinetics in order to obtain mean activity curves and thus improve

the signal-to-noise ratio. Examples of these algorithms include

principal component analysis (PCA) [11], k-means clustering [9],

factor analysis [12–14], hierarchical clustering [15,16], leader-

follower clustering [17], segmentation based on TAC similarity

metrics [18], multiphase level set methods [19] and independent

component analysis (ICA) [20,21].

One of the problems affecting many algorithms is unavailability

of source code [22], not even in binary package form.

Consequently, interested researchers, who may not have a

technical background, are forced to re-implement the algorithms

in order to use them or perform comparisons with their own

methods. Algorithm reimplementation requires programming

knowledge and is open to errors.

As a preliminary test, the source code for 11 previously

published articles on new dynamic positron emission tomography

(PET) segmentation algorithms (all published after 2002) was

requested by e-mail, and all responses were gathered over a one-

month period. Four error messages were received, because the e-

mail address was no longer valid. One respondent stated that the

algorithm was patented and therefore no source code could be

provided, one claimed that the code was already obsolete, one

reported that the code had been developed by another person

and refused, and three e-mails went unanswered or were

answered once with no follow-up. One author sent the requested

code.

This paper presents jClustering, an open source tool and

framework developed to facilitate implementation of segmenta-

tion algorithms for dynamic molecular imaging, but that can be

potentially used for any dynamic medical imaging modality, such

as dynamic contrast-enhanced magnetic resonance studies. In

order to accomplish this purpose, the tool was written in Java, a

programming language that does not require any kind of use fee

and has an internal structure that lets the developer or researcher

concentrate on the specifics of the algorithm. Furthermore, it is

published under GNU GPL, a free software license, to allow

code reviews and modification by interested third parties.
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Materials and Methods

Programming languages and design considerations
As jClustering was designed to simplify the implementation of

new segmentation algorithms in dynamic nuclear medicine

studies, image handling (eg, loading, saving, displaying) was

separated as much as possible from segmentation. Therefore, it

was decided that this tool would be developed as an ImageJ plugin

[23]. ImageJ is an imaging processing platform developed by the

National Institutes of Health (Bethesda, Maryland, USA) with a

very active community of users and developers and many different

plugins and macros developed by this community [24]. It provides

an open and stable application programming interface (API) that

performs the background tasks and allows easy and reliable 4D

(3D plus time) image manipulation.

The tool presented here was developed using Java (Oracle

Corporation, Santa Clara, California, USA), as ImageJ is written

in this programming language. Developing with Java is free and

therefore fits with the objectives of the project.

Processing workflow overview
The process of generating cluster images by temporal similarity

involves the analysis of all the TACs in order to group them into

different classes, each with a mean activity curve, according to a

specific algorithm. These classes are then said to define different

regions in the subject according to variations in their kinetics.

The workflow implemented was kept as simple as possible and is

depicted in Figure 1. In short, each individual voxel TAC is passed

to the ClusteringTechnique module, which can re-use a ClusteringMetric

if the metric of a particular algorithm has already been used. This

ClusteringTechnique module groups together objects of the class Voxel

(which contains TAC data and spatial information) using the

Cluster class and adds all the formed Cluster objects to a native

ArrayList object. Then, the final ArrayList object is automatically

converted to an ImagePlus object for cluster visualization, since it is

a native ImageJ image object. In order to present the clusters

comprehensively, a pseudo-dynamic image containing n+1 frames

is used, with n being the total number of clusters formed. The nth

frame contains the visual information for the nth cluster, and the

last frame contains a simultaneous composition of all the clusters

for better spatial reference. This simplified workflow will be

expanded in the following section as the relevant classes are

discussed. The full public API can be found in File S1.

Relevant implemented classes and methods
ImagePlusHyp. The clustering algorithm reads the 3D

image temporal sequence as a set of individual TACs, each of

which corresponds to a single voxel.

ImageJ stores 4D images, called HyperStacks, as 3D images in

which the slice number is proportional to the number of slices and

frames combined (e.g., a HyperStack with 20 slices and 20 frames

will contain 400 slices); therefore, obtaining the temporal TAC

values for a given voxel involves inspecting the slices in the correct

Figure 1. Basic flow diagram. Flow diagram of the basic steps necessary to perform a clustering operation. In iterative algorithms, several loops of
the voxel assignation stage can be performed until convergence is reached.
doi:10.1371/journal.pone.0070797.g001
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order. To simplify this procedure, a wrapping class (ImagePlusHyp)

was created. This class serves as a proxy interface for the native

ImageJ classes ImagePlus and ImageStack, thus enabling them to be

handled efficiently for this TAC extraction task; the developer only

needs to provide the coordinates for the desired voxel using the

getTac(int x, int y, int slice) method, and the corresponding TAC will

be returned. Furthermore, this class provides an ImagePlusHypI-

terator object that implements an Iterator which returns, one by one,

all the voxels within the image for convenient use inside loops. The

voxel information is contained in a Voxel class that stores a

reference to the TAC data as a double[] and the x, y, and slice

coordinates (the slice coordinate can be thought of as a 1-based z

coordinate, or z+1), in case the spatial information is needed.

Cluster. The Cluster class represents a grouping of voxels

defined by a mean TAC known as a centroid. A Cluster may work in

two different ways: either an invariant centroid is generates upon

creation of the cluster and serves as a fixed reference or it is

modified as new voxels are added to the cluster. This behavior is

controlled by the constructor used: Cluster(), Cluster(double [] centroid,

int x, int y, int slice), and Centroid(Voxel v) create a Cluster object that

will modify the centroid with each new addition. Such an

approach is valid, given that a Cluster that is created from a single

voxel is not using the centroid from a previous Cluster and may

therefore be subject to change. Cluster(double [] centroid), on the

other hand, creates a Cluster with an immutable reference centroid

and computes a mean cluster TAC with each addition.

ClusteringTechnique. ClusteringTechnique is an abstract class

containing methods that must be implemented by extending

classes in order to perform the actual clustering. It is also the main

class, and often the only one that an external developer should

extend when implementing a new clustering algorithm.

Internally, the tool creates an instance of the chosen extending

class and initializes certain internal values so that the object is in a

consistent state, including a reference to a ClusteringMetric (if

needed), a reference to an initialized but empty ArrayList,Cluster.

that will contain the Cluster objects generated, and a reference to

the image data in the form of an ImagePlusHyp.

The only method that must be implemented is process(), which

must fill in the ArrayList,Cluster. object with the appropriate

Cluster objects. Should the algorithm require user input, the

makeConfig() method, which returns a JPanel, must also be

implemented, although user input is completely optional.

Although the Cluster objects will be automatically shown on

screen with the correct formatting, the developer may also show

additional images using the ImageJ native methods at this point, if

necessary. Also, a String[] object can be filled with additional

information; if present, this information will be saved along with

the TAC data in the same directory.

ClusteringMetric. In order to promote re-use of code, the

ClusteringMetric abstract class was implemented. Some clustering

algorithms, such as k-means, group voxels together according to a

specific distance, which may be the Euclidean distance, the

correlation or covariance scores between two given TACs, or more

elaborate metrics such as the Mahalanobis distance. Algorithms

such as k-means can benefit from sharing code in the form of a

ClusteringMetric, which computes the distance between two given

TACs and only needs to be implemented once.

The ClusteringMetric abstract class has only one method that must

be extended, namely, distance(double [] a, double [] b), which

computes the distance between these two arrays. As in the previous

class, if a configuration dialog is needed, the developer can

implement the makeConfig() method.

As some metrics (e.g., the Mahalanobis distance) may need to

process initial data (in this case, the covariance matrix for the

image), an init() method is provided; for this purpose, the

ClusteringMetric objects also contain a reference to enable access

to all the image data. This method is called once by the

ClusteringTechnique before any call to the distance() method and can

be used to initialize the necessary variables.

Figure 2 shows a diagram of the relationships between these

classes.

Algorithms implemented
In order to provide an example of the capabilities of the

framework, several clustering algorithms and metrics were

implemented, as follows: k-means [25], k-means++ [26], leader-

follower [17], PCA [11], singular value decomposition (SVD) [25]

and ICA [20]. The metrics implemented, which can currently be

used by the k-means algorithm, are the Pearson correlation score, p-

norm (eg, p = 1 for Manhattan distance and p = 2 for Euclidean

distance), and Mahalanobis distance. The Pearson correlation

distance is computed as

r~
1

(n{1):sa
:sb

X
t

(a(t){a):(b(t){b) ð1Þ

where a(t) and b(t) are the two TACs, aand bare the mean values

for those TACs and sa and sbare the standard deviations. In order

to turn the correlation into a distance, the method returns

distance~ 1{r.

The generalized p-norm metric is defined as

distance~
X

t

a(t){b(t)j jp
 !1

p

ð2Þ

This metric has a configuration panel that allows the user to set

the value for the p parameter (defaults to 2.0, Euclidean distance).

Finally, the Mahalanobis distance is defined as

distance ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a{b)T S{1(a{b)

q
ð3Þ

where S is the covariance matrix for the image; to speed up

computation, this matrix is computed just once, using the init()

method.

Graphical User Interface (GUI)
A simple GUI was built. It contains three separate tabs: the

main configuration tab, the technique configuration tab, and the

metric configuration tab (the last two tabs may be empty if no

configuration is needed). The main configuration tab makes it

possible to select a directory in which to store a text file. This text

file stores the values of the TACs for every cluster so that they can

be used as input in subsequent analyses. jClustering can store this

text file in comma- or tab-separated values or in PMOD (PMOD

Technologies Ltd., Zurich, Switzerland) format.

ImageJ does not extract each frame duration from the image

metadata. This problem was solved by complementing the main

interface with a selection button to provide a file containing the

frame start and end times in a tab- or space-separated text file with

two columns and as many rows as frames. The resulting temporal

data, which are essential for kinetic analysis, are stored in the first

two columns of the resulting text file that contains the different

TACs and can then be entered into a kinetic analysis program

such as PMOD.

jClustering, an Open 4D Clustering Framework
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Input image formats
One of the advantages of developing tools for ImageJ is that the

package manages image I/O. jClustering is able to deal with any

image format that ImageJ can open, provided the contents are a

dynamic image, either 2D + time or 3D + time; upon opening a

file, the image data is internally assigned to an ImagePlus object that

is directly handled by jClustering classes. If the image is static, a

warning is shown. The test images used in this paper are stored in

either DICOM or Analyze format; in other tests, raw images have

been converted to an ImageJ HyperStack and processed.

Class autodetection
New ClusteringTechnique and ClusteringMetric child classes are

automatically detected if they belong to their corresponding

packages and are stored in the right directories (jclustering/techniques

and jclustering/metrics, respectively) and the necessary GUI elements

are updated accordingly. External developers are thus freed from

the added burden of having to modify the core jClustering files to

add their own classes.

Licensing
To ensure that third parties are able not only to extend but also

to modify and adapt this tool, a free license is the best option. In

this case, the source code is licensed using a GNU General Public

License (GPL).

Even though development started privately, once a stable

release could be provided, all the code was copied to a public git

repository available at [27] and all subsequent development was

public.

Installation
jClustering installation is straightforward, considering it has

been coded as a plugin for the ImageJ platform. Users need to

download the latest jClustering_.jar file from the download site

[28] and copy it to their plugins/directory in their local ImageJ

installation. Apache Commons Math and FastICA libraries are

also needed; they must be copied in the plugins/jars/directory in

their local ImageJ installation. A link to these libraries is provided

in the main jClustering page github page.

Once these files have been copied, jClustering can be run from

the main ImageJ menu under Plugins . Clustering.

The source code is provided as a Maven repository, which

allows developers to easily create their own projects and compile

jClustering into a.jar file.

Figure 2. Diagram of the main classes. Only the most relevant classes implemented are included in the diagram. Helper classes (eg, for GUI
building or mathematical libraries) are not shown.
doi:10.1371/journal.pone.0070797.g002

Figure 3. Main program window screenshot. This window allows
the user to select the ClusteringTechnique and set several options for
data output. The top tabs can be used if the ClusteringTechnique (and its
ClusteringMetric, where available) requires input for configuration. As
the image is loaded into the plugin upon execution, the original image
title is also shown to stress the fact that all the clustering operations will
be applied to that image.
doi:10.1371/journal.pone.0070797.g003
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Results

The main program window is shown in Figure 3. The different

configuration panels are accessible using the top tabs, thus

enabling all the necessary options to be presented in a single

window.

Figure 4 shows a segmentation of a dynamic PET study using a

k-means++ algorithm (k = 10) with Euclidean distance as a metric.

The image dimensions are 1286128647, 25 frames, and the total

time used in the segmentation is 20.15 seconds. Several principal

components from a PCA of this image are shown in Figure 5; a

total of 25 principal components were computed in 14.20 seconds.

Figure 6 shows a simple segmentation of a dynamic human MRI

study with gadolinium as a contrast agent using a grayscale LUT.

The image dimensions are 1286128628, 40 frames, and the total

processing time is 10.47 seconds.

Discussion

Although several papers have been published on automatic or

semiautomatic dynamic imaging segmentation, very few include or

even make available the source code of the algorithms developed.

It can be difficult or even impossible to obtain the source code

from the authors, as the contact address is no longer valid, the

original code has been lost, or the author refuses to deliver it.

Obviating the need to trace an author would leave the researcher

free to focus on the solution to the problem and not on avoidable

distractions. Occasionally, the source code can be obtained, only

to discover that it has been implemented in a programming

language that requires a fee for use. The development and

publishing of an open platform that addresses this particular

drawback makes sense not only from the point of view of offering a

standard tool for free development, but also because it encourages

code sharing and publication, which creates numerous advantages

[22,29], including the possibility of receiving code reviews from

third parties that can disclose previously undetected bugs.

Furthermore, publication of the source code for a new

algorithm would help researchers to compare methods without

having to re-implement each one using hard copy, which is a slow

and error-prone process that could require further programming

expertise. It would be better if algorithms could be executed in a

common segmentation platform such as the one presented here.

jClustering addresses these issues by providing a free and open

clustering framework for effortless implementation of new

clustering algorithms (see File S2 for a simple example). As

image-handling is delegated to ImageJ, new functionalities can be

implemented using the remaining structure.

jClustering works in the Windows, Linux, and Macintosh

operating systems. It does not use machine-dependent code or

libraries and runs on the same platforms as ImageJ.

In this paper, jClustering is presented using dynamic studies in the

context of nuclear medicine. However, Figure 5 (a successfully

segmented dynamic perfusion brain study using magnetic reso-

nance imaging) illustrates how this tool can be used with any kind

of temporal image sequence.

jClustering is subject to a series of limitations. For instance, it

cannot perform fuzzy clustering, in which every voxel is assigned a

probability of belonging to a given cluster. All the segmentations

performed with the current structure and class hierarchy associate

Figure 4. k-means++ result example. Clustering results for a 13NH3 pig study using a k-means++ algorithm (k = 10). The myocardium, the right
ventricle, the left ventricle, and the lungs are clearly delineated. The activity curves for some relevant regions (right ventricle, left ventricle, and
myocardium; right panel) are plotted from the text file stored by jClustering after segmentation. The left image shows the last frame of the pseudo-
dynamic structure generated to display the results. The value of each voxel in this image contains the cluster number that contains said voxel. Each
frame before the last one displays only the voxels that belong to that cluster number.
doi:10.1371/journal.pone.0070797.g004

Figure 5. PCA result example showing additional images. Three
principal components resulting from applying PCA to the same study as
the one used to generate Figure 4. They have been chosen to represent
the myocardium (left), blood pool (center) and right ventricle (right).
These images are shown during the process() method execution, prior
to displaying the final clusters.
doi:10.1371/journal.pone.0070797.g005
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a voxel with a region in a deterministic way, although it would be

possible to implement the necessary changes to allow fuzzy

clustering to work within this framework. This first approach

allows some of the most common clustering algorithms, such as k-

means, to be implemented. This drawback is in part mitigated

with the possibility of generating additional information, both in

image and text form, during the clustering operation (see Figure 5,

for example).

Furthermore, jClustering cannot obtain the temporal information

from the image metadata, which is a fundamental parameter for

kinetic analysis. These data must be extracted from the image

header, if present, by the user and stored in a text file.

jClustering works for ImageJ versions posterior to 1.46r, although

it is not ready for the new ImageJ2 branch, which is expected to

finish beta testing in June 2014. We decided to use the regular

ImageJ distribution, which is currently the most widely used, has a

stable application programming interface (API), and will be

maintained for years to come.

The current version (1.2.2 at the time of writing) provides a

stable API and already contains implementations of k-means, k-

means++, leader-follower, ICA, PCA and SVD applied to image

segmentation, although more methods should and will be added;

hence the development of jClustering, a common platform for

processing of clusters in dynamic medical imaging.

Conclusion

jClustering is an open framework for the implementation of

dynamic imaging segmentation algorithms. It uses ImageJ capabil-

ities to open, save, and display images, leaving the developer with

the task of implementing new algorithms. Its source code has been

made public under a free software license (GNU GPL) and is

available, along with documentation and a link to binary releases,

at [27].

Supporting Information

File S1 Public API for jClustering version 1.2.2.
(ZIP)

File S2 Example of simple ClusteringTechnique class.
(DOCX)
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