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1 Introduction

Most of the activities in financial institutions such as risk management, portfolio selection and asset

pricing require precise measures that summarize the relationships between risk factors. Among

these parameters, correlations and volatilities are of paramount importance as they provide, on

the one hand, insights on the links between assets and, on the other hand, necessary inputs for

various risk measures.

Realized correlations and volatilities are nonparametric estimators of the ex-post variation of

prices. In both the univariate and multivariate cases, the baseline estimators (simply obtained by

summing intraday squared returns or intraday product of returns) face numerous drawbacks.

First, empirical properties of asset prices suggest the existence of jumps. Jumps enable to

accommodate fat tails in the empirical density of returns and smiles in volatility surfaces of option

prices. Models for jumps can be of two types: either with finite amount of large jumps or with

infinite amount of small jumps. Jumps introduce an additional source of variation in prices which

is of interest for many purposes, but lead to biases in covariance measurements. Several estimators

are able to separate these sources of variations. For the univariate case, see e.g. bipower variation

(Barndorff-Nielsen and Shephard (2004b)), quantile-based realized variances (Christensen et al.

(2010b)), and MinRV and MedRV (Andersen et al. (2012)). In the multivariate case, bipower

covariations are proposed in Barndorff-Nielsen and Shephard (2004a), thresholds covariances in

Mancini and Gobbi (2012), outlyingness weighted covariances in Boudt et al. (2011b), and disen-

tangled covariances in Boudt et al. (2012).

Second, intraday prices are unreliably recorded, as they do not necessarily correspond to those

at which the underlying asset has been traded, as pointed out in Zhou (1996). This phenomenon,

labeled as market microstructure noise (noise henceforth), affects significantly the properties of

realized measures. Several solutions are provided in the literature both for realized variances and

covariances. They include, among others, sparse sampling (Andersen et al. (2001) and Bandi

and Russell (2008)), multi-scale estimators (Zhang et al. (2005) and Zhang (2006)), pre-averaging

techniques (Podolskij and Vetter (2009), Jacod et al. (2009), Christensen et al. (2010a) and Chris-

tensen et al. (2013)), realized kernels (Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al.

(2011)), pseudo-maximum likelihood techniques (Aı̈t-Sahalia et al. (2010)), and measures based

on the Kalman filter and the EM algorithm (Shephard and Xiu (2012) and Corsi et al. (2012)).

Third, and this is specific to the multivariate setup, while price series are non-synchronous and

discrete, the underlying theory of realized estimators is based on continuous stochastic processes.

As a result, most of the multivariate tools require synchronous data. Several estimators and

sampling methods have been proposed to cope with non-synchronous transactions.

This article investigates the properties of the class of disentangled estimators introduced by
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Boudt et al. (2012), i.e. realized covariances computed as the product of realized volatilities

and correlations. Though numerous estimators can be constructed on basis of combinations of

volatilities and correlations, we focus on estimators presenting robust properties with respect to

jumps. In other words, we consider finite activity jumps and build the covariance estimator on

basis of robust correlation and volatility estimators.

Our main contribution is to show that this class of estimators, if implemented properly, is

appropriate for covariation measurement. Indeed, the estimators are precise, simple to program,

computationally fast, and the estimated matrix is positive definite. Moreover, we underline the ro-

bustness of the estimator with respect to the three aforementioned issues related to high-frequency

data. First, we point out that the use of robust statistics for the correlations, such as Gaussian

ranks and Spearman ρ, provide jump-robust estimates. Second, we show that microstructure noise

does not generate biases when log-returns are pre-averaged. Finally, asynchronous trading does

not generate biases when log-returns are aligned using previous-tick interpolations.

The reason for disentangling covariances into correlations and volatilities is the optimal use of

the available information. Measuring separately volatilities and correlations allows to measure each

component using the largest amount of available information. Indeed, as returns only need to be

synchronized for correlations, volatilities are measured using the full sample of data. This approach

has potential advantages in terms of precision for the estimation. In fact, separating the estimation

of correlations and volatilities is not an uncommon practice in econometrics. In the parametric

MGARCH set up, Bollerslev (1990), Tse and Tsui (2000), and Engle (2002) propose equivalent

approaches with CCC and DCC models (see Bauwens et al. (2006) for an extensive review).

Halbleib and Voev (2011) propose a mixed approach, combining the DCC for the correlations and

the realized estimators for the volatilities.

We compare different combinations of estimators and study their properties in a Monte Carlo

exercise and with real data.

The Monte Carlo study is based on four different models that are frequently used in the liter-

ature. For testing our estimators in a realistic setting, these models are simulated along with dif-

ferent components to accommodate finite activity jumps, microstructure noise, and asynchronous

trading. We find out that the pre-averaged version of disentangled realized covariances computed

with Gaussian ranks and median-based realized volatilities provide the most precise results in case

of jumping assets and it competes closely with realized kernels in absence of jumps.

We empirically assess the goodness of disentangled realized covariances through an indirect

evaluation based on a minimum variance portfolio management exercise. Data represent the largest

companies traded on the NYSE. Competing estimators are also evaluated in the application. We

find that disentangled realized covariances can be used reliably with forecasting models such as

the HEAVY of Noureldin et al. (2012). Finally we underline different empirical implications from
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the use of different forecasting models.

Throughout the paper, we use the following notations, unless explicitly stated otherwise: i)

p denotes the dimension of the random vector of returns, which has a covariance matrix with

elements generically indexed by i and j, ii) t denotes time (measured in low frequency, typically a

day), iii) N is the number of high frequency observations (intraday observations if t is measured

in days) with index m (i.e. m = 0, ..., N), iv) every day is divided in K blocks or subsamples

indexed by q (i.e. q = 1, ...,K), and k is the number of observations in each block. The hierarchy

of frequency is therefore: 1 day composed by N intraday observations, divided in K blocks with

k observations within each block. Bold denotes vectors and matrices.

The rest of the paper is organized as follows. In Section 2 we first introduce the data gener-

ating process, notation, and the class of disentangled estimators. In Section 3, we define several

synchronization schemes. We report the results of a Monte Carlo study based on various models

in section 4. Section 5 presents the gains of the disentangled estimators in terms of returns on

investment. Section 6 concludes. Additional results are reported in the Appendix.

2 Jump-robust covariation measurement

We consider a p-dimensional random vector of no-arbitrage log-prices denoted {Xt}t≥0 and defined

on a filtered probability space (Ω,A, (At)t∈[0,1],P). We assume that the process is adapted to the

filtration (At)t∈[0,1] and that the vector of log-prices behaves as an Itō semimartingale with finite

activity jumps:

Xt =

∫ t

0

µudu +

∫ t

0

ΛudWu +
∑

0≤s≤t

Js. (1)

The process µu is locally element-wise bounded predictable, and the elements of Λu are adapted

cádlag processes such that Σu = ΛT
uΛu. The matrix Σu denotes the spot (or instantaneous)

covariance matrix of the process. The random vector Wu denotes a p-dimensional standard

Brownian motion and Js denotes the jumps magnitude. Jumps are driven by a finite activity

counting process Nt such that E[Nt] < ∞. The component
∫ t

0
µudu +

∫ t
0

ΛudWu in (1) is the

continuous part and denoted by Xc
t , so that

Xt = Xc
t +

∑
0≤s≤t

Js.

Since we are interested in robustness to large unexpected deviations in asset prices, we limit

to finite activity jumps driven by a Poisson process as described in (1), despite the fact that

infinite activity jumps processes are also considered in practice (e.g. Carr et al. (2002)). Further

4



work might integrate finite and infinite activity jumps, and test whether it is possible to separate

between large and small jumps in the price process using the statistics presented hereafter.

The period of interest is [0,1] (e.g. one day). We denote by πN an ordered set of times such

that 0 = t0 < t1 < ... < tm < ... < tN = 1 forming a partition (see definition 1 below) of

the period considered, and µ(πN ) is the mesh of the partition. In this setup, the πN -quadratic

variation process of {Xt}t≥0 is defined as the random process

QπN (Xt) =
N∑
m=1

(Xtm∧t −Xtm−1∧t)(Xtm∧t −Xtm−1∧t)
T . (2)

If QπN (Xt) converges in probability to a process {Vt}t∈[0,1] for any sequence partition πN over

the interval [0,1] such that µ(πN )→ 0 as N →∞, then we call {Vt}t∈[0,1] the quadratic variation,

and denote it by [X]t. Assuming X0 = 0, it is well known for Itō semimartingales that

[X]t = [X]ct +
∑

0≤s≤t

∆Js∆JTs , (3)

where [X]ct =
∫ t

0
Σudu is the ”path-by-path” continuous part of the quadratic variation (Protter

(2004)), which also corresponds to the quadratic variation of the continuous part Xc
t . The πN -

quadratic variation process QπN (Xt) can therefore be seen as a finite sample measure of risk

composed of two sources: risks related to the Brownian component and those related to the finite

activity jumps part.

Considering σi,ju as the i-th row and j-th column element of Σu, we have that σi,ju = ρi,ju σ
i
uσ

j
u,

where σiu and σju are the spot volatilities and ρi,ju is the spot correlation. Our object of interest is

the estimation of [X]c1 by estimating separately the elements ρi,ju , σiu and σju

[X]c,i,j1 =

∫ 1

0

ρi,ju σ
i
uσ

j
udu. (4)

In other words, we are interested in a jump robust estimator of the daily integrated covariation

by considering separately spot correlations and volatilities. As mentioned above, this approach

allows to use the full data sample for volatilities as no synchronization technique is required for

their estimation.

We now define more rigorously the partitions one might encounter:1

Definition 1 Let πNi := [0 = ti0 < ti1 < ... < tim < ... < tiNi−1 < tiNi = 1] be the partition on the

time interval [0, 1] for asset i. Likewise for asset j. We say that πNi and πNj are

1. synchronous and evenly spaced if Ni = Nj, πNi = πNj and tim−tim−1 = tjm−t
j
m−1 = 1

N .

2. synchronous and evenly spaced if Ni = Nj, πNi = πNj but time intervals between prices

are not deterministic.
1This definition is in terms of 2 assets, but it can be generalized to any dimension.
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3. asynchronous if πNi 6= πNj but we might have that πNi ∩ πNj 6= {0, 1}, i.e. there may

be common points in the two sets except the first and the last (both sets are partitions

of the same interval).

4. completely asynchronous if πNi 6= πNj and πNi ∩ πNj = {0, 1}.

Figure 1 provides a diagrammatic representation of the partitions. The upper two lines cor-

responds to a partition of type 1. The arrival times are regularly spaced and synchronized. The

next two lines represent the partition of type 2, in which arrival times are also synchronized but

irregularly spaced. The bottom half of the figure represents the partitions 3 and 4 in which obser-

vations are asynchronized, though in partition 3 there maybe sporadic common arrival times, an

event excluded in partition 4.

Figure 1: Diagrammatic representation of the four different partitions

Time 

Asset 1 

Asset 2 

Time 

Asset 1 

Asset 2 

Time 

Asset 1 

Asset 2 

Time 

Asset 1 

Asset 2 

The upper two lines corresponds to a partition of type 1. The arrival times are regularly spaced and synchronized.

The next two lines represent the partition of type 2, in which arrival times are also synchronized but irregularly

spaced. The bottom half of the figure represents the partitions 3 and 4 in which observations are asynchronized,

though in partition 3 there maybe sporadic common arrival times, an event excluded in partition 4.

In order to introduce the class of estimators in a clear way, we first assume that πNi and πNj

are of type 1. The time intervals are denoted as ∆N
mt = tm − tm−1 and equal to 1/N under type

1. Let ∆N
mX = Xm/N −X(m−1)/N = (Xi,m/N −Xi,(m−1)/N , Xj,m/N −Xj,(m−1)/N ) be the vector
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of synchronous log-returns computed over the period of interest.2 The returns scaled (by time)

are ∆N
mX∗ = (∆N

mt)
− 1

2 ∆N
mX =

√
N∆N

mX.3

We construct K non-overlapping smaller subsets (or blocks) of returns containing each k data

points, i.e. N = K × k.4 We denote by BkqX∗ = (∆N
mX∗)(q−1)k+1≤m≤qk the subset of scaled

returns contained in block q.

The class of Disentangled Realized Covariances (DRC) between assets i and j is

DRCi,j(K) =
1

K

K∑
q=1

ri,j(BkqX∗)vi(BkqX∗)vj(BkqX∗), (5)

where ri,j(BkqX∗), vi(BkqX∗) and vj(BkqX∗) denote respectively estimators of the correlation and

volatilities for assets i and j computed using the scaled returns contained in block q. The choice

of these estimators determine the properties of (5).

Indeed, many choices are available for ri,j(BkqX∗), vi(BkqX∗) and vj(BkqX∗). In this article we

select some and test them. The methodology we use is somewhat inductive. We begin by analyz-

ing the goodness of combinations of estimators for volatilities and correlations with Monte Carlo

simulations. Then, on basis of the finite sample results, we select the best estimator and com-

pare its performances with benchmark jump-robust estimators from the literature. Our approach

therefore extends Boudt et al. (2012) as several combinations are considered, different sampling

schemes are used, and noise is introduced.

We close this sub-section with three remarks. The first concerns consistency and the jump-

robust properties of the estimators. They are related to the idea that, in a small interval, log-

returns generated by the process in (1) can be well approximated by a Brownian motion with

constant covariance matrix: if (q − 1)k + 1 ≤ m ≤ qk then ∆N
mX ≈ Λ (q−1)k+1

N
∆N
mW where the

subindex (q−1)k+1
N corresponds to the starting time of block q (see e.g. Mykland and Zhang

(2009)). Since the approximated contiguous scaled returns located in block q display constant

spot covariance matrix and have distribution N(0,Σ (q−1)k+1
N

), consistent robust estimators under

Gaussianity enable to estimate the spot covariance matrix in each block. The average over blocks

provides an estimator of the integrated covariance matrix that intuitively maps to a Riemann sum

over time intervals.

Second, the finite activity jumps that we consider correspond to large unexpected movements.

In a small block, these jumps can be mapped intuitively to outliers in the statistical sense. Esti-

mators that are robust to outliers thus eliminate the effect of finite activity jumps.

Third, in the case of synchronous data (πNi and πNj are of types 1 or 2 in definition 1),

measuring volatilities and correlations separately has of course little interest since no efficiency

2Note that since partitions are of type 1, Xtm = Xm/N .
3For other types of partitions, ∆N

mt is a random quantity and can induce spurious random fluctuation effects.
4In some instances the last block may have a different amount of points depending on the initial amount of

observations and the amount of blocks.
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can be gained from disentangled estimation. Our class of estimator is best suited in the case of

partitions πNi and πNj that are of type 3 or 4, requiring a synchronization technique to estimate

the spot correlations within each block. We discuss this point more in detail later.

2.1 Estimation of the spot volatilities

In this section, we describe two jump-robust estimators of spot volatilities. They are derived from

two classes of integrated volatility estimators proposed by Christensen et al. (2010b) and Andersen

et al. (2012). We limit the analysis to these two classes as both are based on a blocking strategy,

and hence map easily into the class of disentangled realized covariances.

The estimator of integrated volatility proposed by Christensen et al. (2010b) is based on quan-

tiles and defined, for asset i, as

QRVi(λ,K) =
1

K

K∑
q=1

si(B
k
qX∗, λ)

ν(λ)
, (6)

where si(B
k
qX∗, λ) = g2

λk(BkqX∗)+g2
(1−λ)k+1(BkqX∗) and the function gk(x) = x(k) denotes the

k-th order statistics. The parameter λ is the probability level at which QRV is computed.5 The

term ν(λ) in (6) is a scaling factor given by ν(λ) = E[
∣∣U(λm)

∣∣2 +
∣∣U(m−λm+1)

∣∣2], where U(λm) is the

λm-th order statistics of a sample of m i.i.d. normal random variables (U1, ..., Um). This scaling

can be computed by simulation and ensures consistency of the estimator under Gaussianity.

The second class of estimators for integrated volatility is a generalization of those proposed by

Andersen et al. (2012), which, for asset i, are defined as

MinRVi
K =

1

ξMin(k)

K∑
q=1

min
(∣∣BkqX∗

∣∣)2 and

MedRVi
K =

1

ξMed(k)

K∑
q=1

med
(∣∣BkqX∗

∣∣)2 . (7)

The scalings ξMin(k) and ξMed(k) are such that the summands are consistent estimators of

the spot volatility in the corresponding block under the assumption that observations are i.i.d.

Gaussian. These constants are functions of the number of observations per block. Andersen

et al. (2012) consider k equal to 2 and 3 for MinRVi
N and MedRVi

N respectively, for which the

scalings have closed-form expressions. For other values of k, they may have to be computed by

simulations.6 If k = 1, the scaling is trivially equal to 1 for both estimators, which coincide

with the baseline realized variance estimator. If k → ∞, the scaling for MedRV converges to

5The information contained at more than one probability level can be exploited by considering QRV i
N (λ) =

αTQRV i
N

(λ), where α is a vector (summing to one) that has the same size as λ.
6Boudt et al. (2012) use k = 5 for the MedRV and a scaling of 1.624.
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2.198, while the scaling for MinRV increases exponentially to infinity.7 Because of this drawback,

combined with its sensitivity to zero returns (leading to a bias towards zero), we do not consider

the MinRV estimator. MedRV by contrast strikes a good balance between stability and jump

robustness.

Based on QRVi(λ,K) and MedRVi
K , the estimators for the spot volatility vi(BkqX∗) we consider

are

QRVi
k,q(λ) =

s(BkqX∗, λ)

ν(λ)
and

MedRVi
k,q =

med
(∣∣BkqX∗

∣∣)2
ξMed(k)

.

(8)

And likewise for vj(BkqX∗).

2.2 Estimation of the spot correlations

The statistical literature on robust estimators for correlations is extensive (see e.g. Shevlyakov

and Smirnov (2011) and references therein). We measure spot correlations using benchmarks of

this literature (Kendall’s τ and Spearman’s ρ), as well as other alternatives – quadrant signs and

Gaussian ranks – that deliver good results in the realized literature (Boudt et al. (2012)).

To facilitate notations in this section, we denote Lq = (q − 1)k+ 1 and Uq = qk the lower and

upper bounds for the index of returns belonging to BkqX∗.

Kendall’s τ is based on the statistical and geometric properties of elliptical distributions. Heuris-

tically, it considers concordance of the combinations of observations by means of the signs.

Kendall’s τ between two random variables Xi and Xj is defined as

ρi,jτ = E(sign(Xi − X̃i)(Xj − X̃j)),

where (X̃i, X̃j) is an independent copy of (Xi, Xj). In our setup, the estimator for block q is

ri,jτ,q =
2

k(k − 1)

∑
Lq≤n<s≤Uq

sign((∆N
n X

∗
i −∆N

s X
∗
i )(∆N

n X
∗
j −∆N

s X
∗
j )).

The estimated Pearson correlation is obtained as ri,jq = sin
(
π
2 r
i,j
τ,q

)
. It is pairwise and does

not necessarily provide positive definite estimated matrices. However, if the sample size is at least

three times larger than the cross section, the resulting matrix is positive definite with probability

one (Boudt et al. (2011a)).

Spearman’s rho is based on the Pearson correlation between cumulative distribution functions.

If one defines Fi(x) = P (Xi ≤ x) (and likewise for Xj), the Spearman’s correlation is

ρi,jSp = ρi,j(Fi(Xi), Fj(Xj)).

7The constant 2.198 is the square of 1.483, which is the scaling factor of the median absolute deviation in an

i.i.d. Gaussian setup (Rousseeuw and Croux (1993)).
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The estimator for block q, denoted ri,jSp,q, is the sample Pearson correlation between ranks of

the vectors in BkqX∗. The estimated Pearson correlation between Xi and Xj is then ri,jq =

2sin
(
π
6 r
i,j
Sp,q

)
. The estimated matrix is positive definite with probability one if the sample size is

at least two times larger than the cross sectional size (Boudt et al. (2011a)).

Quadrant signs, or quadrant correlations are defined as

ρi,jQd = E(sign(X1 −median(X1))(X2 −median(X2))).

The estimator based on BkqX∗ is the sample average of the signs

ri,jQd,q =
1

k

Uq∑
n=Lq

sign((∆N
n X

∗
i −median(∆N

n X
∗
i ))(∆N

n X
∗
j −median(∆N

n X
∗
j ))).

The estimated Pearson correlations and the condition for positive definite estimated matrix are

the same as for the Kendall’s τ .

Gaussian ranks is a direct estimator of the Pearson correlation:

ri,jΦ,q =
1

ψk

Uq∑
n=Lq

Φ−1

(
rank(∆N

n X
∗
i )

k + 1

)
Φ−1

(
rank(∆N

n X
∗
j )

k + 1

)
,

where ψk =
∑k
n=1 Φ−1

(
n
k+1

)2

only depends on the amount of points k in block q, Φ−1(·) denotes

the quantile function of the standard normal distribution, and rank(∆N
n X

∗
i ) the rank of ∆N

n X
∗
i in

block q. Positive semi-definiteness is ensured as long as the sample size is greater than the cross

section.

2.3 Positive definiteness and number of blocks

The matrix version of (5) is

DRC(K) =
1

K

K∑
q=1

S(BkqX
∗)R(BkqX

∗)S(BkqX
∗), (9)

where R(·) denotes the jump robust estimator of the spot correlation matrix and S(·) is a diagonal

matrix containing jump robust estimates of the spot volatilities of each asset over block q. Positive

definiteness of DRC(K) depends on R(·) and S(·). If R(·) is positive definite, and if the diagonal

matrix S(·) has no zero entries, then S(·)R(·)S(·) and the average (9) are positive definite.

In practice, choices have to be made for the number of blocks K (and hence the number of

observations per block k), which, for a fixed sample size N , lead to the classical trade-off between

precision and bias. A smaller amount of blocks implies a larger amount of available observations

for the estimation. In the opposite, estimation based on a larger amount of blocks allows to
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decrease the sensitivity to zero-returns, reducing the chances of downward biases. Moreover, the

spot correlations and volatilities being time-varying, inference based on a small amount of blocks

is unlikely to capture accurately the dynamics, advocating the use of a larger number of blocks.

The amount of blocks per day should be an decreasing function of the cross section size p. In

higher dimensions, smaller amount of blocks should be used in order to preserve positive definite-

ness. Note that this points in favor of the estimation of R(·) on basis of Gaussian ranks, which

provide positive definite matrices as long as the amount of assets considered is smaller than the

sample size. On basis of simulated and real data, a reasonable user choice for frequently sampled

data is around 5 blocks.

3 Market Microstructure noise

Up to this point, we described the class of DRC estimators under the assumption that efficient

prices are observable and not contaminated by market microstructure noise. In practice, however,

observed prices do not always match with those that are exchanged on markets (see e.g. Zhou

(1996)). From a modeling viewpoint, noise is an additive component to log-prices that can be

written as Yt = Xt + ηt, where Xt denotes the efficient log-prices (1) and ηt denotes the market

microstructure noise. Generally, noise generates upward biases in standard realized volatilities and

is less impactful on covariance measures. We describe three techniques for decreasing the impact

of noise.

Sparse sampling consists of sampling prices on a sparse grid of time points, i.e. choosing a

value for ∆ in the interpolation scheme. At lower frequencies, the impact of noise is known to be

less relevant and the bias tends to vanish (Barndorff-Nielsen and Shephard (2007)). The resulting

estimator is computed using the synchronous low frequency data. Sparse sampling may reduce

significantly the number of available observations, which has two drawbacks: it limits the size

of the cross section for which the estimated matrix is positive definite, and the precision of the

estimates worsens.

Subsampling is introduced in the univariate case by Zhang et al. (2005) and Zhang (2006),

and studied in the multivariate setup by Zhang (2011) and Boudt and Zhang (2013) among oth-

ers. Instead of using contiguous non-overlapping blocks of returns, subsampling uses overlapping

subsamples containing returns sampled at a lower frequency. The successive estimates are then

averaged.

McAleer and Medeiros (2008) provide the following intuitive example. If one has noisy 1-

second returns and wishes to use subsampling with 5-minute returns, she can compute returns
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using log-prices recorded on the following grid of time coordinates [9:30-9:35], [9:35-9:40], [9:40-

9:45], ... , [15:55-16:00]. The remaining unused points are used to construct new series of returns.

For example, starting ten seconds later we have the new grid [9:30:10-9:35:10], [9:35:10-9:40:10],

[9:40:10-9:45:10], ... , [15 50:10-15:55:10]. The new series are used to replace blocks and estimate

the covariance.

We construct K overlapping sub-grids at a calendar frequency δ, i.e. we skip δ points in

πNi between two consecutive points of the new sub-grid. Returns are computed from prices

projected on the sparse grid of times using previous-tick interpolation. They are denoted by

∆N
m,qY

∗ =
√
N/δ

(
Y (q−1)+δm

N
−Y (q−1)+δ(m−1)

N

)
where q = 1, ...,K, m = 1, ..., b(N −q+1)/δc, and

b.c denotes the floor operator.8 We denote the new set of returns contained in subsample q by

BδqY
∗ = (∆N

m,qY
∗)1≤m≤b(N−q+1)/δc. The estimator is then computed as in (5) by replacing the

blocks by the new subsamples.

Sampling at lower frequencies allows to decrease the impact of noise on estimates and averag-

ing over the subsamples allows to increase the efficiency of the estimator. However, the cost of

subsampling is that the size of the cross section for which the estimator is positive definite will

be limited by the frequency of the subsamples. The reason is alike to sparse sampling since the

average is composed of covariance matrices based on low frequency data.

Pre-averaging is introduced by Podolskij and Vetter (2009) and studied by Jacod et al. (2009).

Multivariate extensions can be found in Christensen et al. (2010a) and Christensen et al. (2013).

It relies on the intuitive idea that if the noise ηt is i.i.d. with mean zero, then smoothing the

log-prices Yt may decrease the impact of microstructure noise and provide an approximation of

the true latent price Xt.

We use pre-averaging in calendar time assuming prices are aligned on an homogeneous grid of

time. If ∆N
mY∗ denotes the m-th vector of noisy scaled returns, pre-averaged returns are defined

as

∆mỸ∗ =
1√
kNψ

kN−1∑
j=1

g

(
j

kN

)
∆N
m+jY

∗, for m = 0, ..., N − kN + 1, (10)

where g(.) is a kernel function, ψ = 1
kN

∑kN−1
j=1 g2

(
j
kN

)
and kN/

√
N = θ+o(N−1/4) are computed

following Christensen et al. (2010a). The scaling in front of the sum is necessary to avoid in-

sample biases in the estimates. We replace the returns used to construct the blocks in the previous

section by their pre-averaged counterpart and compute the estimator following equation (5), which

provides the pre-averaged version of the class of DRC. Pre-averaging of log-returns enables to keep

more points for the estimation. Consequently, precise estimates can be obtained and the dimension

8Note that if returns are sampled every second along a grid πNi of type 1, then K = δ.
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is not reduced as in the case of sparse sampling.

4 Synchronization schemes

We now assume that the partitions πN1
and πN2

(see definition 1) are of type 3 or 4, i.e. ob-

servations are asynchronous and assets may have different sample sizes. As in the synchronous

case every day there is an opening and a closing, and the day is evenly divided in K blocks. The

main difference with regularly spaced arrivals is that that the number of observations per block

is random. Once re-scaled, these observations can be used to estimate the volatilities, one by one

independently of each other. However, for the estimation of the correlations within each block,

observations for all assets need to be synchronized. What follows is the list of the synchronization

techniques that we use.

Interpolation is based on first choosing a fixed calendar sampling frequency. For example, it

is common in practice to use 5, 10 or 15 minutes returns, i.e. returns computed on basis of

prices sampled every 5, 10 and 15 minutes along the day. This is the multivariate extension of

sparse sampling (see Andersen et al. (2001)) and it provides homogenous time series (Dacorogna

et al. (2001)). The sampling frequency is chosen according to an optimality criterion, such as the

minimization of issues related to market microstructure noise and jumps. In any case, the choice of

the calendar sampling frequency is delicate and may significantly modify the statistical properties

of the estimators. On the one hand, sampling at higher frequencies entails a larger sample and

potentially more precise estimates. On the other hand, the impact of microstructure noise is

known to be more important at high frequencies and can generate biases in realized measures.

Asynchronous trading induces microstructure effects that can lead to downward bias in the

correlations among assets, such as the Epps effect (after Epps (1979)) that is illustrated in Figure

2. It shows the baseline realized correlations (of Andersen et al. (2003)) between Apple and the

SPDR S&P500 ETF on April 30 2012 and as a function of the sampling frequency. The corre-

lation increases with the sampling interval and reach a stable level for low sampling frequencies,

illustrating the Epps effect.

Once the frequency is chosen, homogeneous price vectors are constructed. If we denote by ∆t

the frequency at which we sample returns, the number of observations is bday length (seconds)/∆t(seconds)c.

Then, if one denotes by t0 the starting time of the day, the i-th observation is constructed as

Xti = Xtk where k = max(k̃|tk̃ ≤ t0 + i∆t) and tk ≤ t0 + i∆t ≤ tk+1. I.e. prices are constructed

by projecting the closest past observation to the i-th point of the time grid. This interpolation is

called previous tick.

Alternatively, one may opt for linear interpolation. The construction is similar to the previous
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Figure 2: This figure shows an example of microstructure effects induced by asynchronous trading on correlations

between SPY and APPL. The x-axis represents the calendar sampling frequency in seconds.

technique and the amount of points in the homogeneous vector is deterministic. If one denotes by

t0 the starting time of the day, the i-th observation is constructed as

Xti = Xtk +
t0 + i∆t− tk
tk+1 − tk

(Xtk+1
−Xtk), (11)

where k = max(k̃|tk̃ ≤ t0 + i∆t).

Refresh time. Barndorff-Nielsen et al. (2011) construct vectors of homogeneous high-frequency

prices by projecting asynchronous data on a grid of time coordinates similar to the one used by

Harris et al. (1995) and Martens (2004). The new grid of time coordinates has a random amount

of data depending on the relative trading intensity/liquidity of the assets considered. As a result,

the less liquid asset drives the construction of the grid. Refresh time can in fact being seen as a

previous-tick interpolation on a grid of time coordinates defined as follows.

Definition 2 Denote the trading times of an asset i as ti1, t
i
2, ... for i = 1, ..., p and let N t

i be the

amount of trades recorded up to time t (with N1
i = Ni). Then, the first refresh time is defined

as τ1 = max(t11, ..., t
p
1) and the subsequent refresh times as τj+1 = max(t1

N
τj
1 +1

, ..., tp
N
τj
p +1

).

The time τ1 designates the first moment at which all the assets are traded at least once, i.e. the

first time at which all prices were refreshed. Then, τ2 = max(t1
N
τ1
1 +1

, ..., tp
N
τ1
p +1

) and, from τ1, we

have that Nτ1
i ≥ 1 ∀i ∈ {1, 2, ..., p}. Moreover, if max(t11, ..., t

p
1) = ti1 then i is such that N

ti1
i = 1.

Thus, we have that Nτ1
i + 1 ≥ 2 ∀i ∈ {1, 2, ..., p} and min(Nτ1

1 + 1, ..., Nτ1
p + 1) = 2. Intuitively τ2

is the first time after τ1 at which all the assets are traded again. This can be recursively applied

for τ3, τ4, ... up to the end of the sample. The sample size after synchronization is random and
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large cross sections induce more complex computations and increase the risk of deleting a lot of

observations.

Refinements have been proposed in the literature. Fan et al. (2012) use a pairwise version

of refresh time (”pairwise-refresh” instead of ”all-refresh”). This approach has the advantages

of retaining more observations. However, it does not provide semi-positive definite matrices, as

pointed out by the authors. Hautsch et al. (2012) rank stocks according to their relative liquidity

and apply refresh-time to estimate high-dimensional realized kernels, coupled with blocking and

regularization techniques related to random matrix theory.

Hayashi and Yoshida (2005)’s scheme handles asynchronous data without projecting prices.

As a result, all prices are used in the computation of realized covariances. This scheme was first

used to compute realized covariances by aggregating returns recorded in overlapping time intervals.

The estimator of cumulative covariance between asset i and j is defined as follows:

RCi,j
HY =

Ni∑
m=1

Nj∑
n=1

∆Ni
i,mX∆

Nj
j,nX 1{(tim−1,t

i
m]∩(tjn−1,t

j
n]6=∅}, (12)

where 1{(tim−1,t
i
m]∩(tjn−1,t

j
n]6=∅} is an indicator function. The aggregation scheme can be used with

different versions of the cumulative covariance estimator as, for example, the thresholds realized

covariances of Mancini and Gobbi (2012). However, the class of DRC does not map naturally into

the construction of aggregated returns and hence we only apply it to the realized covariances of

Andersen et al. (2003) and the thresholds realized covariances of Mancini and Gobbi (2012). More

details are provided in the next section.

5 Monte Carlo Simulation

We assess the finite sample behavior of the combinations of realized volatilities, correlations and

synchronization techniques. We report the performances and compare the best combinations

with five competing estimators: the baseline realized covariance (RC henceforth) of Andersen

et al. (2003), realized bi-power covariation (BPC) of Barndorff-Nielsen and Shephard (2004a),

realized outlyingness weighted covariance (OWC) of Boudt et al. (2011b), the estimators based

on thresholds (TC) of Mancini and Gobbi (2012), and realized kernels (RK) of Barndorff-Nielsen

et al. (2011).

We implement these estimators them as suggested by the authors, which represents the current

state of the art. For instance, TC is estimated with a hreshold value rh,t = 9BPVt∆
0.98
t , following

Jacod and Todorov (2009), where BPVt is the bipower variation and ∆t refers to the time interval

between two successive returns. We implement OWC with hard rejection functions and a threshold

of 0.999, following the results of Boudt et al. (2011b). As for RK, we use refresh time and
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subsampled realized variances to compute the optimal bandwidth. When necessary more details

are given below.

In a nutshell, the conclusion of our study is that across the four simulated models (presented

below) with jumps, noise and asyncrhonous prices, pre-averaged DRC implemented with Gaussian

ranks provide the best results.

5.1 Data generating processes

We simulate 10000 trading days from four models that are often used in the literature: a Brownian

motion, the Heston model, a stochastic volatility with constant correlation, and a continuous

GARCH diffusion. Assuming that the market opens 252 days per year and 6.5 hours per day, a

trading day has 23400 seconds. This is the number of prices we generate per day (using the Euler

discretization scheme) which implies that 1 second corresponds to 1/(252 x 23400) units of time.

In the sequel of this section we first show the models. The calibration is done following the

choices made in previous works (see Table 1). Next, results are divided in four sub-sections. We

start with the ideal world where assets trade synchronously and without noise (section 5.2). Then

we introduce asynchronicity (5.3), noise (5.4), and asynchronicity and noise (5.5).9

Table 1: Calibration choices
Model 1

σi ρ

i = 1 0.15 0.3

i = 2 0.45

Model 2 – Aı̈t-Sahalia et al. (2010)

µi κi λi σ̄2
i si θi ηi ρi ρ

i = 1 0.05 3 12 0.16 0.8 -5 0.8 -0.6 0.5

i = 2 0.03 2 36 0.09 0.5 -6 0.5 -0.75

Model 3 – Barndorff-Nielsen et al. (2011)

µi β0i β1i αi ρi

i = 1 0.03 -5/6 1/8 -1/40 0.5

i = 2 0.03 -5/6 1/8 -1/40 0.5

Model 4 – Voev and Lunde (2007) and Andersen and Bollerslev (1998)

ki θ2i ωi σ2
i,0 kx θx ωx ρ0

i = 1 0.35 0.636 0.296 0.64 0.03 0.64 0.118 0.5

i = 2 0.35 0.636 0.296 0.16

Model 1 is a Brownian motion with constant parameters:

dXit = σidWit, (13)

for i = 1, 2, and where Wit are Brownian motions (also denoted by Bit in the next models) and

< dW1t, dW2t >= ρdt. The initial log prices are X1,0 = log(100) and X2,0 = log(40).

9We show results for RK for the two cases with noise.
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Model 2 is the Heston model, in which correlations remain constant while volatilities change over

time and display jumps, as in Aı̈t-Sahalia et al. (2010) and Shephard and Xiu (2012). For i = 1, 2,

we simulate log-prices as

dXit = µidt+ σitdWit

dσ2
it = κi(σ̄

2
i − σ2

it)dt+ siσitdBit + σit−J
V ol
it dNit,

(14)

where < dWit, dBjt >= δijρidt (δij denotes the Kronecker delta), < dW1t, dW2t >= ρdt, and

κi > 0. The model is calibrated as in Aı̈t-Sahalia et al. (2010). For each new path we generate a

starting value for σ2
it0

from a Gamma distribution Γ(2κiσ̄
2
i /s

2
i , s

2
i /2κi), the jump size logJV olit is

distributed like N(θi, ηi), Nit is a Poisson Process with parameter λi, and initial log-prices are set

equal to X1,0 = log(100) and X2,0 = log(40).

Model 3 also has stochastic volatility and constant correlation. It follows the model on Barndorff-

Nielsen et al. (2011), used for assessing the finite sample properties of multivariate realized kernels.

For i = 1, 2, we simulate log-prices as

dXit = µidt+ dVit + dFit

dVit = ρiσitdBit

dFit =
√

1− ρ2
iσitdWt

σit = exp(βi0 + βi1ζit)

dζit = αiζitdt+ dBit,

(15)

where < dWt, dBjt >= 0, < dX1t, dX2t >=
√

1− ρ2
1

√
1− ρ2

2dt. We calibrate the model following

Barndorff-Nielsen et al. (2011).

Model 4 is a continuous GARCH diffusion. This is the only model allowing stochastic correlations

and volatilities. For i = 1, 2, we simulate log-prices as

dXit = σitdWit

dσ2
it = κi(θ

2
i − σ2

it)dt+ ωiσ
2
itdBit

dxt = κx(θx − xt)dt+ ωxxtdBxt

ρt = (e2xt − 1)/(e2xt + 1),

(16)

where < dWit, dBjt >= 0, < dW1t, dW2t >= ρtdt. We calibrate the parameters following Voev

and Lunde (2007) and Andersen and Bollerslev (1998).
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Jumps, noise, asynchronous trading, and accuracy measure. To allow for co-jumps we

simulate three independent compound Poisson processes. The two first correspond to the individ-

ual jump activity while the third process is common to both assets. We simulate jump arrivals

with Poisson processes, and jumps sizes with i.i.d. log-normally distributed random variables. The

expected amount of jumps per day corresponds to the parameter of the Poisson processes and are

set to 2 for the individual jump activities and 4 for the common jump process. I.e. assets are

expected to jump 6 times per day. Jumps sizes are simulated from i.i.d. N(0, ζ) where ζ = 0.7
252 .

We simulate noise as in Barndorff-Nielsen et al. (2008), i.e. we assume that ηit ∼ i.i.d. N(0, ω2
i )

where ω2
i = ξ2

√
N−1

∑N
m=1 σ

i,4
m/N and ξ2 = 0.01.

Non-synchronous trading is introduced using Bernoulli trials. This technique, based on Aı̈t-

Sahalia et al. (2010), selects randomly prices from a grid of evenly spaced transactions. One

difference in our scheme is that we simulate probability levels from a uniform distribution over

[0.25; 1]. It enables to cover various regimes of relative liquidity between assets and to test the

goodness of our estimators independently from a fixed trading intensity.

Last, to compare the finite sample performances of the estimators we use the root mean squared

relative errors (as in Boudt et al. (2011b)):

RMSE =

√√√√ 1

Tk

T∑
t=1

||vech(Estimt − ICt)./vech(ICt)||2, (17)

where Estimt denotes the estimator of the integrated covariance matrix for period t, ICt stands

for the integrated covariance matrix for period t, vech denotes the vector containing the k is the

number of lower diagonal elements of the inputted matrix, T is the amount of simulated periods

(days), ./ denotes the element wise division, and ||.|| is the Euclidian norm.

5.2 Synchronous prices & no noise

Table 2 reports the results. It is divided in four panels, corresponding to different intraday

sampling frequencies (30 seconds, and 1, 5, and 15 minutes). Each panel shows the RMSE for

eight estimators. The first four are the competitors (RC, BPC, TC and OWC) while the last

four are our combinations. For instance MedRV-Spear stands for the MedRV estimator for the

volatilities and Spearman’s ρ for the correlations. Column wise, the table is divided in the four

models, with and without jumps. In the interest of space the QRV estimators are not shown, as

MedRV is uniformly better (results are nevertheless reported in Table 7 of the Appendix).

Four are the main findings. First, not surprisingly, RC performs well without jumps but it is

very sensitive to them at high frequencies. The other estimators provide better performance in

presence of jumps, as they are robust to them. Second, in general the quality of the estimators
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decreases with the sampling frequency. Lower frequencies provide less precise estimates. On

average, the relative accuracy of the estimators for 1-, 5- and 15-minute returns compared to the

RMSE of estimators computed on basis of 30-second returns are of order close to
√

2,
√

10 and
√

30

respectively. Similar results are found by Boudt et al. (2011b). In fact, our model 3 corresponds

to their main model, except that the jump process is different.

Third, the threshold used for TC provides good results, as the performances of TC are close

to those of RC in absence of jumps and far better when jumps are added.10 Moreover, most

of the time OWC outperforms the other estimators, followed by TC for high frequencies. Our

combinations are generally less accurate than these two estimators and perform on average better

than the BPC. The goodness of our estimators will appear more clearly in case of asynchronous

trading.

Fourth, and as briefly mentioned above, combinations based on median operators for volatility

measures provide in general more accurate measures than those based on quantiles. Moreover,

quadrant correlations perform in a less convincing way than Gaussian ranks, Spearman’s ρ and

Kendall’s τ . In the sequel we only show results for the combination based on median measures

for volatilities and Spearman’s ρ and Gaussian ranks for correlations. We skip Kendall’s τ as it is

less computationally efficient that the others.

5.3 Asynchronous prices & no noise

We study the impact of asynchronous trading. Following Mancini and Gobbi (2012), RC and TC

are implemented with the pseudo-aggregation scheme proposed by Hayashi and Yoshida (2005);

we denote this estimator as HY-RC and HY-TC. For OWC and BPC, we follow Boudt et al.

(2011b) and use returns aligned on a 5-minute grid with previous-tick interpolation in order to

avoid microstructure effects related to asynchronous trading; we denote the estimators PT-BPC

and PT-OWC. Our estimators are computed with data synchronized using refresh time (denoted

RT), 30-seconds previous tick (denoted PT) and 30-seconds linear interpolation (denoted LI).

Results are in Table 3. We draw two conclusions. First, estimators based on the Hayashi-

Yoshida scheme are very good. The technique provides an efficient way to cumulate overlapping

log-returns. HY-TC is the most efficient way to estimate the integrated covariance matrix. LT-

OWC losses efficiency because of the lower sampling frequency. Nevertheless, at higher frequencies,

biases related with the Epps effect appear, as pointed out in Boudt et al. (2011b).

Second, our estimators perform on average less efficiently than HY-TC. The 30-second linear

interpolation scheme leads to the best results among the different combinations for disentangled

realized covariances. Without jumps it performs less efficiently than HY-RC but better than

other estimators. In presence of jumps it performs better than all its competitors except for

10Note that TC is a truncated version of RC and should provide equivalent results in absence of jumps
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Table 2: Monte Carlo – Synchronous trading and no noise

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

30-second returns

RC 0.0819 24.0512 0.9457 9.4206 0.0542 3.9498 0.0622 3.3527

BPC 0.1004 1.6216 0.9431 1.5826 0.0622 0.3409 0.0729 0.3994

TC 0.0864 0.0849 0.9178 0.961 0.0602 0.0578 0.0675 0.0648

OWC 0.0843 0.0865 0.936 0.9697 0.0561 0.0563 0.0643 0.0647

Med-Ken 0.105 0.1128 0.9546 1.0082 0.0826 0.0844 0.0897 0.0919

Med-Spear 0.1051 0.1142 0.9539 1.0067 0.0829 0.0844 0.0899 0.0915

Med-Quad 0.1308 0.1343 0.9549 1.0083 0.0866 0.0879 0.0999 0.1007

Med-Gauss 0.1026 0.1372 0.9525 1.0066 0.082 0.0834 0.0883 0.0905

1-minute returns

RC 0.1161 24.0367 0.9539 9.4143 0.0761 3.9549 0.0889 3.3524

BPC 0.1403 2.2101 0.9528 1.9298 0.0871 0.4947 0.1027 0.556

TC 0.1203 0.1233 0.9236 0.9723 0.0832 0.0831 0.0938 0.0917

OWC 0.1199 0.1207 0.9425 0.9772 0.0792 0.0806 0.0918 0.0916

Med-Ken 0.1496 0.1694 0.9567 1.04 0.1165 0.1222 0.1247 0.1329

Med-Spear 0.1495 0.1726 0.9552 1.037 0.1169 0.1219 0.125 0.1318

Med-Quad 0.1837 0.1933 0.9585 1.0386 0.1215 0.1267 0.1384 0.1458

Med-Gauss 0.1461 0.2102 0.9526 1.0364 0.116 0.1208 0.1233 0.1306

5-minute returns

RC 0.2579 24.092 0.9735 9.473 0.1677 3.9575 0.1971 3.3675

BPC 0.3092 5.4849 0.9697 3.3473 0.1944 1.1282 0.2258 1.1754

TC 0.263 0.9183 0.9436 1.3712 0.1788 0.3001 0.2053 0.344

OWC 0.2693 0.2931 0.951 1.1137 0.1774 0.2116 0.2055 0.2399

Med-Ken 0.3404 0.5774 1.0411 1.3723 0.2528 0.3308 0.2769 0.3825

Med-Spear 0.3342 0.582 1.0345 1.356 0.2529 0.3256 0.2751 0.3708

Med-Quad 0.4015 0.5564 1.0443 1.3598 0.2641 0.3333 0.3045 0.3901

Med-Gauss 0.328 0.6369 1.0289 1.352 0.2519 0.3229 0.2737 0.3667

15-minute returns

RC 0.4426 24.0955 1.0246 9.3805 0.2914 3.9825 0.3345 3.4213

BPC 0.5215 9.391 1.0099 4.83 0.3334 1.7732 0.3801 1.7971

TC 0.4485 5.8392 0.9923 3.5511 0.3104 1.2296 0.3495 1.3368

OWC 0.4794 2.9862 0.9718 2.4035 0.3268 0.7733 0.3709 0.866

Med-Ken 0.5908 1.5248 1.2072 2.3365 0.4522 0.7293 0.4835 0.8947

Med-Spear 0.5824 1.5038 1.2025 2.3021 0.4514 0.7205 0.481 0.8744

Med-Quad 0.6884 1.3666 1.2375 2.323 0.467 0.7429 0.5233 0.9166

Med-Gauss 0.5714 1.6556 1.1929 2.3042 0.447 0.7135 0.4736 0.8711

Monte Carlo simulation results for eight estimators of the integrated covariance matrix under

four different models specified with and without jumps. The columns report the root mean

square errors (RMSE) computed as in (17) for 10000 draws of 23400 observations recorded

over one period of trading (6.5 hours). Prices are simulated simultaneously each second and

without noise. Every panel of the table contains the four competitors (RC, BPC, TC and

OWC), followed by the disentangled estimators, which are computed with 5 blocks (except for

15-minute returns for which only 1 block is used).

HY-TC. This result, though unfavorable for the class of disentangled realized measures, is logical.

Indeed, Hayashi-Yoshida scheme uses all the data points by aggregating returns which have been
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recorded on overlapping time periods. As mentioned previously, interpolation techniques project

prices on fixed grids and inevitably delete data points, just as refresh time and other generalized

synchronization schemes.

Table 3: Monte Carlo – Asynchronous trading and no noise

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

HY-RC 0.0299 17.0792 0.9344 6.8738 0.018 2.7555 0.0213 2.329

PT-BPC 0.3173 4.0546 0.9711 2.7144 0.191 0.8133 0.225 0.9235

HY-TC 0.0395 0.0344 0.9046 0.9257 0.0313 0.0285 0.0337 0.0303

PT-OWC 0.274 0.2915 0.9482 1.1003 0.176 0.2113 0.2022 0.247

PT-Spear 0.078 0.1006 0.9265 0.9452 0.0392 0.0411 0.0509 0.0491

LI-Spear 0.0723 0.0919 0.9315 0.9502 0.0279 0.0295 0.0419 0.0415

RT-Spear 0.0661 0.0684 0.9203 0.9381 0.0623 0.0624 0.064 0.0619

PT-Gauss 0.0759 0.136 0.9254 0.9455 0.0404 0.0435 0.051 0.0477

LI-Gauss 0.0695 0.1277 0.9303 0.9506 0.0283 0.0313 0.0411 0.04

RT-Gauss 0.0661 0.0749 0.9201 0.9381 0.0632 0.0635 0.0644 0.0618

Monte Carlo simulation results for eight estimators of the integrated covariance ma-

trix under four different models specified with and without jumps. The columns

report the root mean square errors (RMSE) computed as in (17) for 10000 draws

of 23400 observations recorded over one period of trading (6.5 hours). Prices are

simulated asynchronously and without noise. The abbreviations correspond to the

used synchronization technique (HY = Hayashi-Yoshida, PT = previous tick inter-

polation, LI = Linear interpolation, and RT = Refresh Time) followed by the name

of the estimator. Disentangled estimators are computed with 5 blocks.

5.4 Synchronous prices & noise

We now study the impact of noise with synchronous trading. Our estimators are computed with

sparse sampling (denoted by B at the end of the name; e.g. SpearB). sub-sampling (denoted by

S), and pre-averaging (denoted by P). We add to the comparison the realized kernels of Barndorff-

Nielsen et al. (2011) (denoted RK) and we skip results for 30 seconds, as it is well known to be

a too high frequency in the presence of noise (i.e. upward biases in th realized masures). Results

are in Table 4 and three are the main conclusions.

First, pre-averaging is the most efficient technique for dealing with microstructure noise, while

sparse sampling displays the worse results. Sub-sampling – implemented on 5-minute returns –

increases the efficiency of the estimates compared to sparse sampling, but provides higher RMSE

than pre-averaged estimators. However, as the sampling frequency decreases from 1 to 5 minute,

DRC estimators based on blocks become more efficient, revealing the goodness of a sparser grid of

time coordinates when prices are noisy. Additionally, results for 15 minutes-returns provide less

clear cut results and advocates the use of 5 minute returns when using sparse sampling.
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Table 4: Monte Carlo study - Synchronous trading

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

1-minute returns

RC 0.669 24.62 1.352 9.941 0.647 4.26 0.653 3.758

BPC 0.717 2.978 1.369 2.474 0.683 1.095 0.691 1.178

TC 0.648 0.668 1.314 1.347 0.626 0.654 0.632 0.655

OWC 0.661 0.666 1.337 1.355 0.638 0.656 0.644 0.658

SpearB 0.689 0.747 1.361 1.443 0.664 0.711 0.67 0.717

GaussB 0.686 0.769 1.359 1.447 0.663 0.71 0.669 0.717

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.15

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.337 0.951 9.612 0.076 3.977 0.088 3.383

5-minute returns

RC 0.323 24.423 1.033 9.659 0.224 3.931 0.251 3.462

BPC 0.378 5.636 1.028 3.397 0.244 1.193 0.278 1.297

TC 0.319 1.011 0.997 1.401 0.222 0.406 0.249 0.442

OWC 0.329 0.368 1.009 1.141 0.223 0.297 0.252 0.325

SpearB 0.411 0.709 1.106 1.425 0.315 0.439 0.343 0.487

GaussB 0.404 0.764 1.1 1.423 0.314 0.437 0.34 0.485

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.15

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.337 0.951 9.612 0.076 3.977 0.088 3.383

15-minute returns

RC 0.465 24.269 1.055 9.658 0.303 3.938 0.35 3.454

BPC 0.553 9.85 1.036 5.07 0.341 1.844 0.4 1.891

TC 0.468 6.195 1.021 3.758 0.319 1.406 0.363 1.401

OWC 0.501 3.273 0.997 2.402 0.331 0.802 0.382 0.906

SpearB 0.61 1.579 1.248 2.279 0.466 0.784 0.505 0.928

GaussB 0.596 1.733 1.24 2.283 0.462 0.777 0.497 0.926

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.15

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.337 0.951 9.612 0.076 3.977 0.088 3.383

Monte Carlo simulation results for eight estimators of the integrated covariance matrix under

four different models specified with and without jumps. The columns report the root mean

square errors (RMSE) computed as in (17) for 10000 draws of 23400 observations recorded

over one period of trading (6.5 hours). Prices are simulated simultaneously each second and

with noise. The abbreviations correspond to the the name of the estimator followed by the

noise reduction technique (B = sparse sampling, S = sub-sampling, and P = pre-averaging).

Disentangled estimators are computed with 5 blocks, except for 15-minute returns for which

only 1 block is used.
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Second, for all approaches, the DRC estimator implemented with Gaussian ranks and Spear-

man’s ρ provide similar precision, except for model 1 for which Spearman’s ρ has smaller RMSE.

These results, jointly with the milder condition for positive definiteness, supports the use of Gaus-

sian ranks.

Third, when jumps are added, the pre-averaged DRC estimators provide uniformly more precise

estimates than the competitors. However, in absence of jumps, realized kernels provide slightly

more precise results. For 5-minute returns, the two subsampled combinations perform better than

most of the competitors except for OWC. Depending on the simulated model, one performs better

than the other. The competing estimators are described by their respective authors as the least

sensitive to noise when computed on basis of 5-minute returns. This statement is verified: the

RMSE’s are on average smaller for the middle panel.

5.5 Asynchronous prices & noise

Last, we analyze the goodness of the estimators with asynchronous and noisy observations. For

the competing estimators, we focus on 5-minutes frequency, as previous sub-sections showed that

this frequency gave the best results. Likewise, the DRC estimators are shown using pre-averaging

and subsampling, since sparse sampling gave the worst results in previous subsections.11

We synchronize using last tick interpolation at a frequency depending on the trading intensity

of the considered securities.12 Note that Hayashi and Yoshida was used for the RC and TC

estimators when data are clean of noise. However, if returns are noisy, HY becomes impracticable

and hence the authors advise to use last tick interpolation. Realized kernels are implemented

following Barndorff-Nielsen et al. (2011) with refresh time and subsampled realized variances to

compute to optimal bandwidth.

Results are shown in Table 5. As in the case of synchronous trading and noise, pre-averaging

provides better estimates than subsampling. In the absence of jumps, realized kernels provide the

best results, followed by the pre-averaged DRC. With jumps however the realized kernels provide

inaccurate measures. They are as sensitive as the baseline realized covariances to jumps.

Pre-averaged DRC strike hence a good balance between jump-robustness and precision and

form a serious alternative to other realized measures. Additionally, results are similar for DRC

based on Spearman rho and Gaussian ranks. When jumps occur, they perform slightly less effi-

ciently than OWC. Nevertheless, this drawback is compensated by a less demanding computational

effort.

11Pre-averaging is implemented on basis of the new grid of synchronous prices and subsampling is conducted

with 5-minute returns also sampled from the new grid.
12We compute the 75% quantile of time intervals between trades for each asset, take the minimum and stamp

the sampling frequency to the nearest second. The 75% quantile may be considered as a conservative choice but it

allows to keep under control effects of asynchronous trading causing downward biases in correlations.
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Table 5: Monte Carlo study – Asynchronous trading and noise

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

LT-RC 0.404 17.47 4.625 9.318 0.386 2.965 0.264 2.439

LT-BPC 0.455 4.366 5.082 6.808 0.407 1.119 0.291 1.015

LT-TC 0.395 0.912 4.567 5.413 0.374 0.56 0.26 0.424

LT-OWC 0.404 0.455 4.55 4.897 0.376 0.477 0.264 0.331

LT-SpearS 0.344 0.65 4.599 5.226 0.355 0.495 0.233 0.365

LT-GaussS 0.341 0.82 4.598 5.255 0.355 0.496 0.231 0.374

LT-SpearP 0.184 0.295 1.366 1.527 0.145 0.191 0.144 0.191

LT-GaussP 0.18 0.454 1.365 1.55 0.143 0.191 0.141 0.199

RK 0.154 17.434 1.030 7.030 0.112 2.827 0.108 2.387

Monte Carlo simulation results for six estimators of the integrated covariance matrix un-

der four different models specified with and without jumps. The columns report the root

mean square errors (RMSE) computed as in (17) for 10000 draws of 23400 observations

recorded over one period of trading (6.5 hours). Prices are simulated asynchronously

and with noise. The abbreviations correspond to the used synchronization technique,

followed by the name of the estimator, and the noise reduction technique. Disentangled

estimators are sub-sampled.

6 Empirical application

We now study the gains of our estimators from a financial perspective. We proceed with a long-

short portfolio management exercise using 52 large stocks traded on the NYSE from 2006 to

2012.

Volatility timing strategies are based on conditional covariance matrix of daily returns. Since

realized covariances are ex-post measures of the co-variation between assets, we use one-day ahead

forecasts of the covariance matrix Σt in the portfolio construction. The investor updates and

rebalances his portfolio every day on basis of the new information generated by markets. If we

consider a market composed of p assets that the investor can select in his portfolio, the optimal

p×1 vector of weights ωt for the portfolio allocation are computed by solving standard conditional

mean-variance criterion:

min
ωt

(
ωtΣtωt

)
subject to ω

′

t1 = 1. The solution ωt to this strategy is well known:

ωt =
Σ−1
t 1

1′Σ−1
t 1

.

We evaluate the performance of the portfolio on basis of five criteria: i) the annualized mean

returns, ii) the annualized standard deviation, iii) the annualized Sharp ratio, iv) the annualized

average turnover (given by TOt = |ωt − ωt−1|1p), and v) the cumulated performance in terms of

the return on investment.
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6.1 Models for conditional covariance matrices

The practical implementation of volatility timing strategies require conditional covariance matrix

measurement, i.e. the covariance matrix at time t+ 1 given information up to time t. We consider

a set of p stocks and denote the daily returns at t by rt and realized covariance measures on day

t as Vt. Investors believe that asset returns behave as:

rt = µt + Σ
1
2
t zt,

where zt ∼ i.i.d.N(0, Ip) and Ip denotes the identity matrix of size p. Moreover, µt = E[rt|At−1]

and Σt = V [rt|At−1]. We assume µt to be constant and estimate it with the sample mean. Three

models are considered for Σt. Two of them rely on realized covariances and one on daily returns

only. In other words, we compare investments conducted on basis of two different information sets:

ALFt and AHFt . ALFt denotes the low frequency information set generated by daily returns and

AHFt is the high frequency information set generated by daily returns and realized covariances.

More rigorously we have: ALFt = σ(χs, s ≤ t) where χs = {rs}, and AHFt = σ(χs, s ≤ t) where

χs = {rs, Vs}.

The low-frequency benchmark model is the DCC of Engle (2002) (DCC):

Σt = DtRtDt where

Rt = (Qt � 1p)
−1/2Qt(Qt � 1p)

−1/2 ,

Qt = (1− α− β)Q̄ + αut−1u
′
t−1 + βQt−1 ,

Dt = (Σt � Ip)
1/2, ui,t = zi,t/h

1/2
i,t , and h

1/2
i,t denotes the elements on the diagonal of Dt, i.e.

the univariate volatilities which are specified as GARCH(1,1) processes. Long memory is not

considered since only one step ahead forecasts are required.

We consider two models for the conditional covariance matrix based on high-frequency data.

First, we estimate a rolling window volatility model.13 The estimation procedure closely follows

De Pooter et al. (2008) and Fleming et al. (2003). This technique is based on the work of Foster

and Nelson (1996) and Andreou and Ghysels (2002). The daily conditional covariance matrix

based on high-frequency data is:

Σt = exp(−α)Σt−1 + αexp(−α)Vt−1.

Smaller values for the decay parameter α point to a less informative innovation process Vt−1, i.e.

the estimator is too noisy from a portfolio construction perspective, while a large value for α point

to more informative innovations (Bannouh et al. (2009)). Fleming et al. (2003) and De Pooter

13”Rolling window” is the name of the model, which is different to rolling unconditional estimation by moving a

window of observations.

25



et al. (2008) point out that statistically optimal parameters do not lead to optimal financial

performances. Indeed, estimating α via maximum likelihood does not provide the portfolio with

the best risk-return trade-off. This is why Boudt et al. (2012) consider two optimality criteria:

maximum likelihood and minimum volatility of the investment. Yet, to be fair with the other two

models, we use maximum likelihood.

The second model with high frequency data is the HEAVY of Noureldin et al. (2012). Their

model is specified as the BEKK of Engle and Kroner (1995) but lagged values of the cross products

of returns which are replaced by lagged values of the realized covariances:

Σt = Ω + BΣt−1B
′ + AVt−1A

′

Realized covariances are modeled as E[Vt|AHFt−1] = Mt for which Mt is again specified as a BEKK:

Mt = ΩM + DMt−1D
′ + GVt−1G

′.

Various specifications can be adopted to limit the amount of parameters. We study the scalar-

BEKK specification whose properties are illustrated in the empirical study of Noureldin et al.

(2012). The Wishart distribution is assumed and estimation is done by maximum likelihood.

6.2 Results

The investment universe is composed of 52 large stocks traded on the NYSE. Data consists of

trades and prices.14 The data covers the period from October 2006 to April 2012 for a total of

1403 observations. The database is cleaned as in Barndorff-Nielsen et al. (2009).

Results of the minimum variance portfolio are in Table 6 and Figure 3. This table summarizes

the performance for portfolios constructed on basis of the rolling window model, the HEAVY

model and the DCCE . Results for the DCCE are reported under the results of the HEAVY

model. Mean return (denoted Mean) and standard deviation (denoted Std. dev.) are annualized,

while turnover (denoted TO) is daily. The fifth performance measure is displayed in the figure.

It is shows the cumulated performance for the same estimators as in the table in terms of return

on investment of one monetary unit invested in October 2006. All the performances based on

realized measures are located in the shaded area (delimited by the minimum and the maximum

daily performances). Other lines illustrate performances on the same period for the strategy based

on the DDCE (solid line), and the performance of the Spider S&P 500 ETF (SPY; dashed). The

solid black line, denoted DRC-GR in the figures, represents the performance of the portfolio based

on the disentangled realized covariances with Gaussian ranks.

14Tickers: AA, ABT, AES, AKS, AMD, BMY, BSX, C, CAG, CBS, COH, CSX, CVX, D, DIS, DNR, EMC,

EXC, FCX, GE, GIS, GLW, HAL, HPQ, HST, IRM, JCP, JPM, KEY, KO, MO, MRK, MS, NBR, NEM, ORCL,

PFE, PG, RF, S, SLB, T, TJX, USB, VLO, VZ, WFC, WMT, WU, WY, XRX, SPY.
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Table 6: Minimum variance portfolio - Performance measures

Model Rolling Window HEAVY

Performance measure Mean Sdt dev. Sharp TO α Mean Sdt dev. Sharp TO

RC 9.25% 12.63% 0.732 0.12 0.037 12.16% 12.18% 0.998 0.29

BPC 7.83% 12.99% 0.603 0.11 0.034 12.64% 12.24% 1.032 0.24

TC 7.97% 12.93% 0.616 0.09 0.030 12.84% 12.24% 1.049 0.34

OWC 9.36% 13.04% 0.718 0.09 0.029 12.05% 12.31% 0.979 0.36

RK 8.19% 12.86% 0.637 0.11 0.036 9.79% 12.38% 0.791 0.36

SpearS 6.83% 13.44% 0.508 0.07 0.024 13.17% 12.43% 1.059 0.51

GaussS 6.35% 13.42% 0.473 0.07 0.024 13.33% 12.44% 1.072 0.53

SpearP 7.59% 13.50% 0.562 0.07 0.020 12.82% 12.48% 1.028 0.42

GaussP 6.44% 13.55% 0.475 0.07 0.020 12.97% 12.49% 1.038 0.43

DCCE - - - - - 6.59% 13.38% 0.493 0.54

This table summarizes the performance for portfolios constructed on basis of the rolling window model,

the HEAVY model and the DCCE . Results for the DCCE are reported under the results of the HEAVY

model. Standard deviation and mean return have been annualized while turnover has been kept on daily

basis.

The strategy based on the HEAVY model is more profitable (mean returns) than based on the

rolling window model. It is also less risky (of the order of 12.4%). Compared with the average

S&P 500 VIX over the sample period (24.66%), the volatility of the portfolio using the HEAVY

model is unusually low. Moreover, on average, the Sharp ratios are higher than for the rolling

window model. These results are not surprising since the HEAVY model has a richer specification

than the rolling window. Nevertheless, it has to be noted that the portfolios constructed on basis

of the HEAVY model are less stable as the turnover is higher. The DCC behaves worse that

the other models. The average return is lower while the annualized volatility remain similar to

other strategies. This performance may be due to the fact that the DCCE is based on a poorer

information set. The return on investment (see figure) confirms that investing on basis of the

HEAVY model is preferable to the rolling window and the DCCE .

7 Conclusion

We study the properties of the class of disentangled estimators of the integrated covariance ma-

trix of Itō semimartingales in an extensive Monte Carlo study. We cover different scenarios when

efficient prices are observable or contaminated by noise, with and without jumps, and with syn-

chronous or non-synchronous trading. We show that if one selects the right combinations of

estimators and robustification techniques, disentangled realized covariances prove to be as precise

as other measures, jump robust, simpler, robust to noise, positive definite, and computationally

efficient.

Our main conclusion is that if observations are non-synchronous and noisy (as it is the case
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Figure 3: This figure displays the cumulated performance for the different estimators in terms of return on

investment of one monetary unit invested in October 2006. All the performances are located in the shaded area

delimited by the minimum and the maximum daily performance. Other lines illustrate performances on the same

period for the strategy based on the DDC and the performance of a S&P 500 ETF. The solid black line represents

the performance of the portfolio based on the Gaussian ranks disentangled realized covariances.

of multivariate high frequency data), the subsampled version of disentangled estimators based

on Gaussian ranks (for the correlations) and median deviations (for the volatilities) is the most

appropriate metrics in terms of root mean square error. This result dovetails with Boudt et al.

(2012).

Moreover, this finding is confirmed by an empirical analysis based on a cross-section of stocks

traded on the NYSE. Performances from a minimum variance portfolio strategy based on our

favorite estimator provide the highest mean return, lower volatility, highest Sharp ratio, and
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highest return on investment.
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Appendix: supplementary Monte Carlo results

Table 7: Monte Carlo study – Synchronous trading no noise – results for IQR

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

30-second returns

IQR-Ken 0.109 0.1163 0.982 1.0393 0.0869 0.0922 0.0937 0.0999

IQR-Spear 0.1089 0.117 0.9812 1.0377 0.0869 0.0917 0.0936 0.0991

IQR-Quad 0.1349 0.1398 0.9822 1.0392 0.0903 0.0951 0.1035 0.1074

IQR-Gauss 0.106 0.136 0.9797 1.0377 0.0856 0.0902 0.0915 0.0982

1-minute returns

IQR-Ken 0.1598 0.1791 1.0299 1.1177 0.1269 0.1451 0.1365 0.1558

IQR-Spear 0.1589 0.1806 1.0282 1.1143 0.1265 0.1436 0.136 0.1535

IQR-Quad 0.1943 0.2082 1.0315 1.1156 0.1307 0.1484 0.1493 0.1659

IQR-Gauss 0.1544 0.211 1.0254 1.1137 0.1245 0.1411 0.133 0.1523

5-minute returns

IQR-Ken 0.4638 1.3962 1.3923 1.9616 0.3736 0.597 0.3956 0.6597

IQR-Spear 0.4512 1.3938 1.3823 1.9362 0.3674 0.5848 0.3872 0.6406

IQR-Quad 0.5217 1.3892 1.3905 1.9412 0.3735 0.59 0.4112 0.6503

IQR-Gauss 0.4399 1.4264 1.3742 1.9301 0.3619 0.5782 0.3808 0.6343

15-minute returns

IQR-Ken 0.6592 2.5402 1.4241 3.0661 0.5033 0.9738 0.5385 1.1775

IQR-Spear 0.6483 2.5177 1.4176 3.0217 0.501 0.9614 0.5338 1.152

IQR-Quad 0.7714 2.3952 1.4551 3.0383 0.5176 0.986 0.5828 1.1927

IQR-Gauss 0.6341 2.6534 1.4063 3.0236 0.4945 0.9525 0.5233 1.1477

Monte Carlo estimation results for 4 quantile-based volatility estimators of the integrated co-

variance matrix under four different models specified with and without jumps. The columns

report the root mean square errors (RMSE) as computed in (17) for 4000 draws of 23400 obser-

vations each corresponding to a situation of one day of 6.5 hours of trading and prices recorded

simultaneously each seconds.
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