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Abstract: The extreme phenomena of dynamic cavitation is studied both theoretically and numerically for two families of strain hardening
materials. Though analytical results are limited to the steady, self-similar expansion state, the numerical approach facilitates investigation
of the transient response, including evaluation of the time required to approach the steady-state limit. While recent studies show that
shock waves may appear in hypervelocity cavity expansion fields, the present study suggests a numerical model which can capture the
appearance and evolution of these shock waves. That model is validated by comparison with theoretical results at the steady-state limit,
thus facilitating future investigation of the dynamic response for materials with more complicated constitutive behavior, for which
theoretical re-sults are limited. The constitutive sensitivities are also examined, showing that the specific hardening response of the

material has little effect on the cavitation response.
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1. Introduction

Cavitation instability arises when an embedded cavity, within
the solid, expands spontaneously upon application of constant
load, subjected either at the cavity wall or in the remote field. That
critical level of load, to induce cavitation, is the quasistatic cavita-
tion pressure. If the applied load is higher than that critical level
then dynamic cavitation will evolve implying that the cavity ex-
pands with finite velocity. If the applied load is lower than that
critical level then the solid will find a new configuration of static
equilibrium.

Over the years, cavitation phenomena has been widely accepted
as a basic mode of failure in solids. Following the early study by
Bishop et al. [1], which suggested that the resisting pressure in the
indentation process is the spherical quasistatic cavitation pressure,
extensive research has been devoted to the relation between
cavitation phenomena and other material instabilities, including
penetration and perforation phenomena and fracture initiation.
Cavitation has been experimentally observed in a variety of mate-
rials ranging from ductile metals [2], to biological soft tissue [3].
Though most available research on cavitation phenomena focuses
on quasistatic fields (see an extensive review by Horgan and
Polignone [4] for hyperelastic solids and by Cohen et al. [5] for
elastoplastic solids), it is understood that high velocity penetration
processes are related to dynamic cavitation [6].

Available theoretical studies on dynamic spherical cavity
expansion [7—12] focus on hardening and non-hardening elasto-
plastic solids and pressure sensitive materials. In those studies the
theoretical formulation of the field response bypasses the transient
behavior by assuming a self-similar expansion. While most studies
on dynamic cavity expansion are limited to moderate velocities, it
was recently shown, in Refs. [11,12], that at hypervelocities plastic
shock waves may appear. Therein the dynamic response is fully
accounted for by exposure of a singularity in the governing field
equations and application of Hugoniot jump conditions. Ortiz and
Molinari [13] studied the strain rate effects in dynamic spherical
cavity expansion for incompressible hardening elastoplastic solids,
thus accounting for the transient response but without the
appearance of shock waves.

It is conceivable that the appearance of shock waves in the
material response can have a dramatic effect on the resistance of
the solid to penetration, and it is therefore essential to obtain an in
depth understanding on the evolution of these shock waves. Hence,
the present study attempts at a computational model of dynamic
cavitation which agrees with the theoretical models at the steady-
state limit and is able to predict the transient behavior, including
the time required for appearance of the theoretical steady-state
response. Once that model is verified it can be extended to
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account for more complicated material response for which theo-
retical predictions do not exist, including strain rate effects and
thermo-mechanical coupling.

In the present study a computational model is developed and
compared with results obtained according to the theoretical
framework for dynamic spherical cavity expansion proposed in
Refs. [8,10,11]. First, a work hardening material response is
considered, similar to that in Cohen et al. [11], then the model is
extended for a family of strain induced martensitic transformation
(SIMT) materials for which theoretical modeling is limited. While
the first hardening mechanism accounts for strengthening of the
material by dislocations accumulation, the second one is equivalent
to a dynamic composite effect due to the progressive trans-
formation of austenite (softer phase) to martensite (harder phase)
upon deformation. This is a characteristic of multiphase TRIP steels
and metastable austenitic grades, that are widely used for energy
absorption in crash or blast protection applications [14—18]. It has
to be noted that the behavior of solids showing martensitic trans-
formation at high strain rates has been recently analyzed in
perforation [19] and dynamic necking [20,21] problems. These
works identified loading conditions and characteristics of trans-
formation kinetics for which martensitic transformation delays
plastic localization and boosts the energy absorption capacity of the
material. However, little is known about the role played by
martensitic transformation in development of cavitation
instabilities.

The hardening response of metal alloys plays an important role
in their application to protective structures due to increased energy
absorbing capabilities. On that note, appearance of plastic shock
waves is also necessarily involved with dissipation due to entropy
rise manifested by a jump in temperature across the shock [22,23].
Hence, better understanding of the role of shock waves in the dy-
namic material response, and the related constitutive sensitivities,
can lead to development of more efficient protective materials in
the future.

Rosenberg and Dekel [24] presented a 2D numerical investiga-
tion of the dynamic cavitation response of perfectly plastic mate-
rials in the context of long-rod penetration mechanics. In the
present work we extend that numerical framework to more
complicated material response and at hypervelocities to observe
the appearance of plastic shock waves. An essential feature of the
present study is in understanding the transient response, or
namely, the time required to approach the steady field. Since
steady cavitation fields are being applied in prediction of
penetration and perforation [24,25], it is important to understand
the relevant time scales. If the penetration process is much faster
than the time required for steady cavity expansion to appear then
steady cavita-tion fields are not sufficient in underlying the
physical phenomena.

As described in Section 2, the constitutive model is based on the
standard principle of Huber—Mises plasticity accounting for finite
strains and two different strain hardening mechanisms: work
hardening and martensitic transformation hardening. Work hard-
ening materials are defined by a simple Ludwik hardening law,
whereas transformation hardening materials are described as in
Zaera et al. [21]. In Section 3 we shortly recapitulate the analytical
investigation of the steady cavitation fields for arbitrary hardening
response, with earlier reference to Durban and Fleck [8] and Masri
and Durban [10]. The appearance of shock wave discontinuity and
application of jump conditions at the shock is accounted for as in
Cohen et al. [11] and Cohen and Durban [12]. The numerical model
is presented in Section 4, followed by analysis and results in Sec-
tions 5 and 6. Section 5 focuses on the evolution of the steady field
and shock wave propagation, and Section 6 examines the consti-
tutive sensitivities. Section 7 outlines the main outcomes of this
study.

2. Constitutive model

As stated before, to obtain a better understanding of the
constitutive sensitivity of dynamic cavitation, we consider two
different strain hardening mechanisms: work hardening and
martensitic transformation hardening. The main hypothesis of the
constitutive models used in the present analysis centers on the
standard principles of Huber—Mises plasticity: hypoelastic
behavior, additive decomposition of the rate of deformation tensor,
isotropic hardening, associated flow rule and plastic power
equivalence
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where ¢V is an objective derivative of the Cauchy stress tensor, d, d®
and dP are the total, elastic, and plastic rate of deformation tensors
respectively, C is the Hooke tensor for isotropic elasticity (defined
by Young modulus E and Poisson ratio »), ¥ the yield function, = the
equivalent stress, &P the equivalent plastic strain rate, oy is the yield
stress and s the deviatoric stress tensor. The reference values that
will be considered for E, v, as well as for initial mass density, are
given in Table 1.

Next, we present the models used to describe the two afore-
mentioned hardening processes. It is worth noting that both pro-
cesses have been intentionally uncoupled in our study in order to
uncover separately the influence of each one in the process of cavity
expansion. Thus, plastic strain has been considered as the unique
source of work hardening, whereas phase transformation has been
considered as the unique source of transformation hardening.
Certainly both effects are ultimately triggered by plastic deforma-
tion, but the functional dependence of the yield stress on strain
greatly differs among them.

2.1. Work hardening material

For the work hardening material, the value of the yield stress is
given as a function of the equivalent plastic strain & through a
widely used power law (frequently referred to as the Ludwik
hardening law)

oy = A+ B@)* (4)

The reference values of the material parameters A, B and k are
given in Table 2.

2.2. Transformation hardening material

Based on the earlier study by Olson and Cohen [26] and
assuming that intersection of shear bands in the austenite is the
dominant mechanism of SIMT, we suggest a model which captures
the martensitic transformation by considering the closed-form

Table 1
Reference elastic properties and density for work hardening and transformation
hardening materials.

Symbol Property and units Value
E Young modulus (GPa) 200
v Poisson ratio 0.33
Do Initial density (kg/m?) 7800




Table 2

Reference parameters for the power law, Eq.

78

¢ éymbol Property and units Value
A Initial yield stress (MPa), Eq. (4) 500
B Work hardening modulus (MPa), Eq. (4) 500
k Work hardening exponent, Eq. (4) 0.5

relation between the volumetric fraction of martensite f;; and the
plastic strain in the austenite &)

fin=1- exp{— B(1 - exp(—azﬁ’))"} (5)

here n is the exponent relating shear bands with shear band in-
tersections through a power law, « is a temperature dependent
parameter representing the rate of shear-band formation and g a
temperature dependent parameter proportional to the probability
that a shear band intersection will form an embryo. The strain as
well as the strain rate of the austenite are quite close to the ho-
mogenized ones and much larger than those corresponding to the
martensite [27]. Therefore, based on Zaera et al. [21], the plastic
deformation in the austenite % and the plastic deformation of the
steel € are considered equivalent in the current approach, and Eq.
(5)leads to

fn=1—exp[— B(1 — exp(—az?))"] 6)

The closed-form solution provided by Eq. (6) to capture the
dependence of the transformed martensite in terms of strain,
instead of using an evolution law, presents the advantage of its
simplicity, specifically for analytical approaches like the self-similar
theory for cavity expansion that will be presented in the next
section.

Following Zaera et al. [21], the effective yield stress in the
two-phase steel gy is calculated by the rule of mixtures

oy = (1= fm)oy + fmoy' (7)

where ¢f and o} are the yield stress of the austenite and of the
martensite respectively. The previous expression highlights the
effect of martensitic transformation as unique source of hardening
that, according to the perfect-plasticity hypothesis adopted for the
phases, can be denoted as transformation hardening.

Table 3 shows the reference values of the parameters for the
SIMT model, representative of a metastable austenitic steel.

3. Theoretical model

We consider the dynamic expansion of a spherical cavity, in an
infinite medium, by subjecting constant pressure at the cavity wall.
Though the plastic deformation is incompressible, elastic
compressibility implies that the disturbance, imposed by the
expanding cavity, is carried outwards along the spatial radial co-
ordinate R at finite velocity. Considering materials with a definite
yield point, that velocity is the wave velocity of the elastic precursor

Table 3

Parameters related to SIMT model taken from Zaera et al. [21], Egs. (6) and
7]

¢ éymbol Property and units Value
n Dimensionless material constant, Eq. (6) 4.5
« Dimensionless material constant, Eq. (6) 7.943
8 Dimensionless material constant, Eq. (6) 1.204
ay Yield stress of the austenite (MPa), Eq. (7) 300
oy Yield stress of the martensite (MPa), Eq. (7) 900

behind which an elastic range develops, as illustrated on Fig. 1. 1 f
the applied pressure is sufficient to induce plasticity then an
interface between the elastic range and elastoplastic range follows
the elastic wave. For even higher levels of applied pressure, to
induce hypervelocity expansion of the cavity, a plastic shock wave
may appear in the elastoplastic range, characterized by a jump in
field variables [11,12].

The theoretical formulation presented in Masri and Durban [10]
and Cohen et al. [11] accounts for an arbitrary strain hardening
response. Hence, we briefly recapitulate that formulation here, in
the present notation. To bypass the transient response and obtain
the self-similar expansion field it is assumed that all field variables
depend only on the similarity parameter £ = R/A as the indepen-
dent variable, where A is the current hole radius. Therefore trans-
formation of field equations (i.e. equation of motion, constitutive
relations and conservation of matter) reduces to a system of two
differential equations

(1-20)% + (1 -0 +%@P’ —-(1-¢%) (8)
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with two closed-form relations for the density ratio and the
velocity

respectively, where

0 =3(1-2v)3,, 2&=2(1+r)3+ 3" (11)
here the superposed prime represents differentiation with respect
to £, the dimensionless radial, equivalent and hydrostatic stresses
are (2r, =, 2p) = (01,7, 04)/E respectively, p is the current density,
the velocity is dimensionless according to V = R/A, where the

f y Undisturbed
P / \ range

~ o ~~
Elastoplastic Elastic
range range

Fig. 1. Illustration of the steady cavity expansion field. The internal pressure p is
applied at the cavity wall where the dimensionless radial coordinate £ = R/A = 1. The
remote field, at ¢ > &, is undisturbed while behind the elastic wave, at ¢ = £, an elastic
range develops. The transition between the elastic and elastoplastic regions is denoted
by &; and £p denotes the plastic shock wave.



superposed dot represents differentiation with respect to time, and
the dimensionless cavity expansion velocity (with respect to the
wave velocity in a linearly elastic rod) is defined by

A
V E/po

Given a relation between the equivalent stress and the plastic
strain, as those defined in Section 2, the present system of equa-
tions is sufficient to describe the steady-state cavity expansion
process. Hence, for a given expansion velocity m, integration of the
equations with proper boundary conditions (obtained by shooting
method, see further details in Cohen et al. [11]), will admit the
matching cavitation pressure p = —ag, (§ = 1).

A closed-form solution for the elastic range was obtained by
Durban and Masri [9], showing that the dimensionless elastic wave
velocity is

(12)

1—v

(1-2v)(1+v) (13)

Cp =még =

in agreement with the known linearly elastic wave speed, where &g
represents the location of the elastic wave along the dimensionless
radial coordinate &.

It was shown in Cohen et al. [11] that for high expansion
ve-locities the system of equations (8) and (9) may become
singular if

2.2 14+ (1 =20)h g.9¢
(1 —2v)m“¢ _me (14)
where h = (1 + dEF'/dE)’1 is the nondimensional tangent modulus
of the stress strain curve. That singularity imposes possible
appearance of discontinuity in the field variables, namely a plastic
shock wave. At the discontinuity, the field equations must be
replaced with jump conditions. The fundamental relations are the
Hugoniot jump conditions,

1205 +2(1 - )3y + ] =0 (15)

[6@+e]=0 (16)

requiring conservation of mass and momentum, respectively.

Specifically for the limit case of an elastic/perfectly plastic ma-
terial the solution in Cohen et al. [11] shows that the plastic shock
wave settles on the interface between the elastic range and the
plastic range. Since no singularity in the field equations is detected
in the elastic range, it was not possible to obtain consistent jump
conditions across the shock. It should be noted, however, that
inserting minimal levels of material hardening into the constitutive
model can facilitate an analytical solution.

4. Finite element model

This section describes the features of the axisymmetric finite
element model developed to simulate dynamic spherical cavity
expansion. The numerical analyses are carried out using the finite
element program ABAQUS/Explicit [28]. Geometry and dimensions
of the finite element model are based on Rosenberg and Dekel [24].
The problem setting is of a very large sphere of radius Rg = 300 mm
with a small cavity in its center of radius R, = 0.5 mm. Due to the
symmetry of the model, only the § > 0 half of the specimen has
been analyzed (see Fig. 2). The solid is initially at rest while a
constant internal pressure p is applied at the cavity wall. It has to
be noted that the chosen dimensions (radius) of the sphere and the
cavity do not influence the simu-lation results. It has been
systematically verified that the stress waves generated by
application of the cavity pressure are reflected from the free
boundary much later than the development of a steady cavitation
field. As in the theoretical model, thermal effects are not
considered.

The model has been meshed using a total of 240,000 four-
node axisymmetric reduced integration elements, CAX4R in
ABAQUS notation. This number of elements results from placing
200 elements along the circumferential direction and 1200 along
the radial direction. The mesh shows radial symmetry in an
attempt to retain the symmetry of the problem and minimize the
potential interference of the mesh on the calculations. The ele-
ments size is constant along the circumferential direction

Revolution axis
200 elements along the 1
circumferential direction

Applied pressure, p

Cavity radius, R,
—

Mesh: radial symmetry

200 elements along the
circumferential direction

.

1200 elements along radial
direction
Bias ratio= 100

! Sphere radius, R,

Fig. 2. Axisymmetric finite element model developed to analyze dynamic spherical cavity expansion.
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Fig. 3. Variation in dimensionless applied pressure P with dimensionless cavitation
velocity m for work hardening (power law) and transformation hardening (SIMT)
materials. Comparison between theoretical model (TM) and finite element results (FE)
for reference material parameters.

whereas it decreases along the radial direction as the cavity is
approached. Namely, along the radial direction the elements
show a bias ratio of 100. Thus, small elements with dimensions
12 um x 4 pm are defined near the cavity, to capture high gra-
dients of stress and strain which are expected to arise in that
region. Furthermore, these high gradients of stress and strain may
lead to severe mesh distortion. In order to prevent this drawback,
the Arbitrary Lagrangian Eulerian (ALE) adaptive meshing avail-
able in ABAQUS has been applied to the entire model. ALE
adaptive meshing uses a single mesh definition that is gradually
smoothed within analysis steps. The frequency of adaptive
meshing is set to 1 and the remeshing sweeps per increment are
set to 10. These values of the controlling parameters of the
adaptive meshing are checked to be suitable to ensure a proper
aspect ratio of the elements during the computations. A mesh
convergence study has been performed, and the time evolution of
different critical output variables, namely stress, strain and cavi-
tation velocity were compared against a measure of mesh density
until the results converged satisfactorily.

The set of constitutive equations describing the material be-
haviors presented in Section 2 are implemented in the finite
element code through a user subroutine. For its integration in a
finite deformation framework, incremental objectivity is achieved
by rewriting them in a corotational configuration [29,30], d e fined

1,12

™

o FE-loading time =5 us
o FE - loading time = 10 us
FE - loading time = 15 us

@

in ABAQUS/Explicit by the polar rotation tensor. The stress is
updated with the radial return algorithm

i S
o1 = oY — 3GAsPoEL (17)
On+1
where the trial stress is defined by
ol — g, +C: Ae (18)

According to the properties of radial return, the equivalent
stress may be updated with the following equation

Tnp1 = o3 — 3GAEP (19)

and the yield condition Eq. (2) which, coupled to Eq. (4) in the case
of the work hardening material and Eq. (7) in the case of the

transformation hardening material, permits to obtain the equiva-

lent plastic strain increment AeP. .
In the next sections, results obtained from the theoretical model

and the finite element simulations are presented. It has to be
mentioned that extremely high levels of applied pressure are
investigated, in a range where the ability of the material to endure
such load levels may be questionable. Nevertheless, exploring high
pressure cavitation fields is justified for the sake of better under-
standing of the essential phenomena involved in dynamic cavita-
tion problems.

The following analysis is composed of two parts. We begin by
focusing on the dynamic development of a steady self-similar field
including possible appearance of plastic shock waves beyond a
critical cavitation velocity. Then we examine the influence of
the constitutive equation in the dynamic deformation field.
Throughout the analysis, comparison between analytical results
and the numerical model is conducted and results are shown for
both work hardening and transformation hardening solids.

5. Analysis and results: self-similar fields and plastic shock
waves

Cavitation fields, which are characterized by steady expansion of
an embedded cavity due to application of internal pressure at the
cavity wall, are necessarily involved with high levels of strains and
high gradients with possible appearance of plastic shock waves at
hypervelocities [11,12]. Therefore, to verify the application of the
suggested numerical approach to model such extreme material
behavior it is essential, as a first step, to compare the numerical
results with analytical solutions. That numerical model can then be
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Fig. 4. Work hardening material (power law). Variation along the normalized radial coordinate ¢ of: (a) density ratio p/po and (b) dimensionless radial stress ¢,/oy. Comparison
between theoretical model (TM) and finite element results (FE) for P = 40. Finite element results are shown for different loading times: 5 ps, 10 ps and 15 ps.
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Fig. 5. Work hardening material (power law). Variation along the normalized radial coordinate ¢ of: (a) density ratio p/po and (b) dimensionless radial stress o,/oy. Comparison
between theoretical model (TM) and finite element results (FE) for P = 176. Finite element results are shown for different loading times 2 ps, 3 us and 4 ps.

extended to include more complex material response for which
analytical solutions are not available.

Theoretical solutions of dynamic cavitation fields [11,12] bypass
the transient dynamic behavior to obtain only the steady self-
similar response. However, to obtain the steady field via finite
element simulations, the transient behavior can not be avoided and
initial conditions must be defined. In this respect, we have checked
that the limit steady-state expansion field is not sensitive to the
loading path. This implies an eigenvalue problem relating the
steady expansion velocity with the applied pressure. That relation
can then be compared with the analytical results. Hence, the nu-
merical model can provide information on the evolution of the
steady field, and more specifically an estimation of the time it takes
for the steady field to evolve.

The finite element simulations presented in this paper consider
a solid, initially at rest, subjected to sudden application of a con-
stant pressure. If that pressure is below a critical value, the velocity
of the cavity wall rises quickly and just after decays to zero since the
solid is able to find a new configuration of static equilibrium. For
pressures above that critical value, the velocity of the cavity wall
rises with time approaching a finite value asymptotically. There-
fore, for a given applied pressure, the numerical computations
provide the cavitation velocity and an estimation of the time
required to reach it.

Relations between the dimensionless cavitation pressure P = p/ay
and the dimensionless cavity expansion velocity m are shown on
Fig. 3 for both work hardening (power law) and transformation

hardening (SIMT) materials with reference parameters listed in
Tables 1—3. Results are presented within a wide range of cavitation
velocities 0.05<m<0.75 for both theoretical and numerical
models. As expected in view of available results [9,10,24], the
cavity pressure is an increasing power-type concave-up function of
the cavity expansion velocity. Agreement between the theoretical
model and the finite element computations is shown. However, the
theoretical prediction of cavitation in the SIMT material is limited
to m<0.28. The theoretical model predicts that at m=0.28 a plastic
shock wave will appear and since the different phases of the SIMT
material are non-hardening, that shock wave will settle on the
interface between the plastic zone and the elastic zone [11]. Hence,
it is not possible to obtain consistent jump conditions across the
shock discontinuity and the analytical solution is limited as
explained in Section 3.

The numerical simulations predict that, for the lowest cavitation
velocity investigated, the time required to reach the steady-state is
~2.5 us whereas for the greatest cavitation velocity considered the
time required to reach the steady-state is ~0.4 us. That result is
similar for both types of hardening materials, implying that the
inelastic behavior has little influence on the time required to reach
the steady-state expansion, at least for the loading configuration
and material behaviors selected in this paper. We will further
elaborate on this point in Section 6.

Next, we pay specific attention to the development of a self-
similar field and the appearance of plastic shock waves when a
critical cavitation velocity is exceeded. For the sake of clarity, we

P=176

Loading time = 3 ps
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+8.972e+05
+8.970e+05
+8.223e+05
+7.475e+05
+6.728e+05
+5.980e+05
+5.233e+05
+4 .485e+05
+3.738e+05
+2.,990e+05
+2.243e+05
+1.495e+05
+7.475e+04
+0.000e+00

A

Shock wave /”;

Plastic strain, P

+4.481e+00
+1.000e+00
+9.167e-01
+8.3353e-01
+7.500e-01
+6.667e-01
+5.6833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

(b)

Pressure, P

-

Fig. 6. Finite element results. Work hardening material (power law). Detail of the zone surrounding the cavity. Cavitation fields for P = 176 and loading time 3 ps: (a) plastic strain

rate 2’ and (b) plastic strain zP.
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Fig. 7. Transformation hardening material (SIMT). Variation along the normalized radial coordinate £ of: (a) density ratio p/po and (b) dimensionless radial stress ¢,/gy. Comparison
between theoretical (TM) model and finite element results (FE) for P = 63. Finite element results are shown for different loading times 5 ps, 10 us and 15 ps.

discuss the results separately for the work hardening and the
transformation hardening solids.

5.1. Work hardening material (power law)

Variation of the density ratio p/pg and the dimensionless radial
stress oy/oy along the normalized radial coordinate ¢ = R/A are
shown on Fig. 4 for P = 40 (which corresponds to m = 0.28). Pre-
dictions of the theoretical model are confronted with results ob-
tained from the finite element calculations. The latter have been
obtained for three different loading times (5 ps, 10 ps and 15 ps) for
which the cavitation velocity has already been reached. Agreement
between the theoretical model and the finite element calculations
is shown. Furthermore, the differences between finite element re-
sults corresponding to different loading times are practically
negligible. Thus confirming the self-similarity of the cavitation field
which, in turn, is a fundamental hypothesis for development of the
theoretical model as discussed in Section 3. It should be noted that
the theoretical model predicts decrease in density at the very near
vicinity of the cavity which can only be observed by enlargement of
the figure in that area, see Cohen et al. [11]. That behavior is
accompanied by infinite values of strain and effective stress owing

° FE - loading time = 2 us
@ FE - loading time = 3 us
% FE - loading time = 4 us

p/p, ;
% |
@
ﬂﬂﬁ
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@
o
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11 oo
o
1 ! ! 4z Y b woad———
1 1.2 1.4 1,6 18 2

(a)
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to singularity of the self-similar field at £ = 1 [11,12]. However,
discretization of the solid impedes to expose this singularity in the
computational model. The element size imposes a limit to the
characteristic length scale of the phenomena which can be
described by the numerical simulations.

In Fig. 4(a) we see that near the cavity the maximum density
ratio is p/pp = 1.1. As we move away from the cavity the material
density smoothly decreases as a concave-up power-type function.
For £ = 3.30 we observe a change in the slope of the curve which
defines the elastoplastic interface. For §£ > 3.30 the field is elastic
and extends up to ¢ = 4.43 where p/po = 1, i.e. for values of £ >
4.43 the solid is undisturbed. The location of the rigid/elastic front
ob-tained from the numerical computations can only be observed
by enlargement of the figure in that area. This value of £ = 4.43,
obtained from the finite element computations, is very close to
4.35, which is the theoretical value obtained from Eq. (13). The
small difference could be attributed to the discretization and to the
artificial dissipative effects (viscosity) included by the finite
element code. The cavitation pressure is observed on Fig. 4(b) near
the cavity wall (¢ = 1) where P = — g,/oy = 40.

Fig. 5 presents results similar to those in Fig. 4, but considers a
much larger value of the applied pressure P = 176 (which
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Fig. 8. Transformation hardening material (SIMT). Variation along the normalized radial coordinate ¢ of: (a) density ratio p/po and (b) dimensionless radial stress o,/oy. Finite
element results (FE) for P = 293.3. Finite element results are shown for different loading times 2 ps, 3 us and 4 ps.
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Fig. 9. Work hardening material (power law). Variation in dimensionless applied
pressure P with dimensionless cavitation velocity m for » = 0.1, v = 0.33 (reference
material) and » = 0.499. Comparison between theoretical model (TM) and finite
element (FE) results.

corresponds to m = 0.66). Nevertheless, it is observed that the
agreement between the theoretical model and the finite element
computations is maintained. Finite element results are shown for
2 us, 3 us and 4 ps. Differences between the computation results for
the different times are minimal, implying that a self-similar cavi-
tation field develops as assumed in the theoretical approach. We
anticipate that FE calculations confirm self-similarity of the cavita-
tion fields, for all the applied pressures and material behaviors
investigated in this paper. As expected, comparison of these results
with those presented in Fig. 4 illustrate that material density and
radial stress near the cavity wall increase with applied pressure. It
has to be noted that, unlike the curves for P = 40, on Fig. 5 the ratios
p/po and a;/ayevolve with ¢ as concave-down power-type functions.
Approaching £ = 1.6, from the cavity wall, we observe a sudden
decrease in p/pg and ¢,/oy and then a change in slope which corre-
sponds to the interface between the elastoplastic range and the
elastic range. By comparison with the results reported in Fig. 4, w e
see that the value of £ which determines the elastoplastic interface
decreases with applied pressure. The rapid decrease in p/pp and o,/oy
detected close to £ = 1.6 is caused by the emergence of a plastic
shock wave. It has been observed that the shock intensifies with
increasing cavitation velocity, while the first shock appears for
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p/po =  FE-v=0.499

0. /0, s

expansion velocity m = 0.56. Furthermore, the plastic shock wave
moves toward the elastoplastic interface as the cavitation velocity
increases [11]. For a more detailed discussion on the theoretical
background on appearance of shock waves in cavitation see Refs.
[11,12]. Moreover, for values of £ > 1.6 we have the elastic field
which extends to £ = 1.84 (the rigid/elastic front can only be
observed by enlargement of the figure in that area). This latter
value defines the velocity of the elastic precursor which propagates
into the undis-turbed material. The value of £ obtained from the
finite element computations is very close to 1.86, which is obtained
from Eq. (13).

While the theoretical model unequivocally determines the
shock wave by prescribing jump conditions at the onset of singu-
larity in the governing equations (see Section 3 for details), in the
finite element simulations such discontinuity in the field variables
is not observed but rather what can be named as a steep gradient.
Hence, FE computations predict a finite width of the shock wave
which is, at a some extent, controlled by the element size (see
Zukas and Scheffer [31]). Despite that inherent mesh dependency,
agreement with theoretical results is observed while the only dif-
ference is in smoothening the computational results in the vicinity
of the shock wave.

Detailed contours of plastic strain rate and plastic strain in the
zone surrounding the cavity are obtained via the finite element
model at 3 ps and presented on Fig. 6 for P = 176. It is shown that,
near the cavity wall, strain rate values are up to 7x10° s~'. The
deformation rate monotonically decreases as we move outwards
along the radial direction. Nevertheless, at a certain distance from
the cavity a drastic increase of strain rate appears. This increase,
which is limited to a narrow band, illustrates the emergence of the
shock wave which leads to prediction of plastic strain rates of up to
~9x10° s~ . From the plastic strain contours we deduce that the
shock wave is located near the elastoplastic interface, where the
plastic strains suddenly drop from a finite value to zero. Moreover,
as anticipated in Section 4, high levels and high gradients of plastic
strain are predicted at the cavity wall.

5.2. Transformation hardening material (SIMT)

In Fig. 7 we show results for the variation of the ratios p/pp and
grloy with the normalized radial coordinate £. The dimensionless
applied pressure considered is P = 63 (corresponding to m = 0.28).
Theoretical predictions are compared with finite element results
obtained for three different loading times (5 s, 10 us and 15 ps). As
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Fig. 10. Work hardening material (power law). Applied pressure P = 176. Variation along the normalized radial coordinate ¢ of: (a) density ratio p/po and (b) dimensionless radial
stress a,/oy. Comparison between theoretical model (TM) and finite element results (FE) for » = 0.1, » = 0.33 (reference material) and » = 0.499. Finite element results are shown for

3 ps.



for the work hardening material, agreement between the theoret-
ical model and the finite element computations is observed and the
difference between the finite element results for the different
loading times, is hardly noticed. Implying that a self-similar field
exists for a broader range of material response. The elastoplastic
interface is located at £; = 3.30 and the rigid/elastic front at
¢g = 4.43 in agreement with predictions obtained from Eq. (13).

In Fig. 8 we examine results obtained for a higher level of the
dimensionless cavitation pressure P = 293.3. This value of pressure
leads to cavity expansion velocity m = 0.66 (see Fig. 3). This is
above the upper limit in velocity (m = 0.28) for which the
theoretical model can provide predictions. Hence, in Fig. 8 only the
finite element results are presented for the variation of p/pg and o,/
oy along the normalized radial coordinate £. These are taken at
three different loading times (2 ps, 3 us and 4 ps) for which the
cavitation velocity has already been reached. The results obtained
for the three loading times lie within a single curve. We show that
near the cavity p/pp = 1.6 and o,/oy = — 293.3. Moreover, the
elastoplastic interface is located at §; = 1.6. Close to that point we
can see a steep slope in the curves p/pg — ¢ and o,/oy — & which
characterizes the appearance of a plastic shock wave (at such a high
cavitation ve-locities the plastic shock wave emerges close to the
elastoplastic interface [11]). The rigid/elastic front is placed at &g =
1.84 in agreement with predictions obtained from Eq. (13).

The next section of the analysis is devoted to explore the role
played by different material aspects in the spherical cavity
expansion.

6. Analysis and results: material aspects
6.1. The role played by the Poisson ratio

The effect of elastic compressibility in the dynamic cavitation
process is investigated. Hence, in the present section results are
presented for several values of the Poisson ratio with material
hardening given in equation (4).

In Fig. 9 we show the relation between the dimensionless
pressure P and the dimensionless cavity expansion velocity m.
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Fig. 12. Work hardening material (power law). Variation in dimensionless applied
pressure P with dimensionless cavitation velocity m for k = 0.1, k = 0.3 and k = 0.5
(reference material). Comparison between theoretical model (TM) and finite element
results (FE).

Results are presented for both theoretical and computational
models considering » = 0.1, 0.33 and 0.499 within the range
0.05<m<0.75. Agreement between predictions obtained from
both methodologies is found. We show that the P—m curve is
shifted upwards as » increases. In other words, for a given value of
applied pressure P the cavitation velocity m increases as v de-
creases. This functional dependence of » on the cavitation velocity
is more noticeable as the cavitation pressure increases. The
theoretical model predicts the first shock at m = 0.39 for » = 0.1
and at m = 0.56 for » = 0.33. It has to be noted that, approaching
the incompressibility limit with » = 0.499, no plastic shock is
detected within the range of cavitation velocities examined in this
work. Moreover, the numerical computations show that the time
to reach the steady field depends on the value of » considered.
This dependence is more noticeable as applied pressure increases.
Thus for the highest applied pressure considered (P = 208) the
time required to reach the steady field is ~0.3 ps for v = 0.1,

P=176 Loadingtime =3 pus
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v=0.499
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Fig. 11. Finite element results. Work hardening material (power law). Detail of the plastic strain rate contours in a zone surrounding the cavity. Cavitation fields for P = 176 and

loading time 3 ps: (a) » = 0.1, (b) » = 0.33 (reference material) and (c) » = 0.499.
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Fig. 13. Work hardening material (power law). Applied pressure P = 176. Variation along the normalized radial coordinate £ of: (a) density ratio p/po and (b) dimensionless radial
stress a,/ay. Comparison between theoretical (TM) model and finite element results (FE) for k = 0.1, k = 0.3 and k = 0.5 (reference material). Finite element results are shown for 3 ps.

~0.4 ps for » = 0.33 and ~1.0 ps for » = 0.499. The computational
model therefore illustrates the key role played by elastic
compressibility on the transient response that precedes the self-
similar expansion.

Variation of the density ratio p/pp and the dimensionless radial
stress g,/ay along the normalized radial coordinate £ is shown on
Fig. 10 for P = 176 and the three values of the Poisson ratio
considered in this section of the paper (v = 0.1, 0.33 and 0.499). We
compare results obtained from the theoretical model and the finite
element computations. The latter have been obtained at a loading
time (3 ps) for which the steady state has already been reached.
Therefore, we will not further elaborate on this issue in forth-
coming analyses. Irrespective of the value of v considered, there is a
very close agreement between the analytical model and the nu-
merical computations.

In Fig. 10(a) we see that near the cavity the density ratio is
highly affected by the elastic compressibility: p/po = 2.9 for » = 0.1,
plpo = 1.6 for v = 0.33 and p/po = 1.0 (slightly above 1.0) for
v = 0.499. Furthermore, the Poisson ratio has strong influence on
the location of the elastoplastic interface. For » = 0.1 we observe at
¢ = 1.18 a sudden drop in the ratio p/pp which represents the
emergence of a plastic shock wave and for » = 0.33 the drop, located
at ¢ = 1.6, is more modest. For v = 0.499 the variation in density
ratio is very small and no sudden drop is detected. The cavitation
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Fig. 14. Typical curve of the volume fraction of the martensite (f;;) as a function of the
plastic strain () to show the role of the parameters fim and ¢} in the kinetics of
martensitic transformation under isothermal conditions.

pressure is observed on Fig. 10(b) near the cavity wall where P
= — gy/oy = 176. The numerical simulations predict that the rigid/
elastic front is placed at {g = 1.58 for» = 0.1, at g = 1.84 forv = 0.33
and at £ = 25.25 for v = 0.499. These values of &g predicted by the
numerical computations are in close agreement with the analytical
predictions obtained from Eq. (13).

Fig. 11 presents detailed contours of plastic strain rate in the
zone surrounding the cavity obtained via the finite element model
for P = 176. We show results for » = 0.1, 0.33 and 0.499 taken at 3 ps.
As expected, the radius of the cavity is greater as the value of »
decreases. Moreover, for » = 0.1 and 0.33 we observe a narrow band
of high strain rates located at a certain distance from the cavity
wall. This drastic increase in strain rate represents the plastic shock
wave as discussed in Section 5. Within the band, higher strain rates
are predicted in the case of » = 0.1 (9x10° s—1) than in the case of
v = 0.33 (9x10° s~1). No shock wave is observed for » = 0.499 as
expected when approaching the incompressibility limit.

6.2. The role played by strain hardening

In this section we examine specifically the role played by strain
hardening on the dynamic cavitation fields. We consider separately
each of the two hardening mechanisms described in Section 2.
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Fig.15. Dimensionless flow stress (oy/cf) versus equivalent plastic strain (¢”) for case
1(&) = 0.2, flim — 70%), case Il (¢ = 0.2, flim — 30%) and case Ill (¢ = 0.5, flim = 70%).
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Fig. 16. Transformation hardening material (SIMT). Variation in dimensionless applied
pressure P with dimensionless cavitation velocity m for case I (reference case), case Il
and case III. Comparison between theoretical model (TM) and finite element results
(FE).

6.2.1. The work hardening effect

For the material hardening relation given in equation (4) we
consider three values of the work hardening exponent k = 0.1, 0.3
and 0.5 with all other material parameters left with reference
values (Table 2). The according dimensionless pressure P versus the
dimensionless cavitation velocity m are shown on Fig. 12. Results
from the theoretical model and the finite element simulations are
presented within the range of cavity expansion velocities
0.05<m<0.75 showing close agreement of theoretical results with
the finite element simulation. As in Cohen et al. [11], we observe
that the P—m curve hardly depends on the work hardening coef-
ficient. Furthermore, irrespective of the considered value of k, the
finite elements predict that the time required to reach the steady
state is ~2.5 ps for the lowest cavitation pressure considered (P = 8)
and ~0.4 ps for the highest (P = 208). According to those observa-
tions reported in Section 5, we emphasize here that the transient
behavior which precedes the steady-state expansion seems to be
hardly influenced by the inelastic behavior of the material (for the
loading configuration and material behaviors selected in this
paper).

In Fig. 13 we show the variation of density ratio p/pp and the
dimensionless radial stress o,/oy along the normalized radial
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110 8 N
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(@)

coordinate £ for P = 176. This value of applied pressure leads to
cavitation velocity m = 0.66 (see Fig. 12). Theoretical and finite
element results are compared for k = 0.1, k = 0.3 and k = 0.5. The
computational results are taken at a loading time of 3 pus showing
agreement between theory and finite element simulation.
The work hardening coefficient hardly affects the curves p/pg — &
and o,/ay — &. Irrespective of the value of k considered, the elasto-
plastic interface is located at §; = 1.6 and the rigid/elastic front is
placed at £ = 1.86. The work hardening exponent plays a minor
role in the transient behavior as well as in the steady-state.

6.2.2. The transformation hardening effect

To investigate the constitutive sensitivity of the material with
the hardening response described in equation (7), we consider two
different sets of material parameters in addition to the reference
values of @ and § given in Table 3 (case I). First, it is instructive to
illustrate the role of the parameters « and ( in the material
response. To that end we define the maximum fraction of trans-
formed martensite — f,,™ and the value of plastic deformation at
half-transformation — &?, as illustrated on Fig. 14. While f, '™ is
solely determined by (3, the value of e‘: is determined by both « and
. Whereas the parameter flim controls the value of the flow stress
once the transformation is completed, the parameter & controls
the rate of transformation hardening. Next, we explore the role
played by Pand f'm on the process of dynamic cavitation, paying
attention to three selected cases illustrated in Fig. 15. These are:

— Case I: &# =0.2 and flim — 70% (a = 7.943, § = 1.204, values
given in Table 3). This is considered as the reference case.

— Case II: ¢/ = 0.2 and fim = 30% (a = 9.154, 8 = 0.357). In com-
parison with case I, now the fraction of martensite at saturation
is decreased. This slows down the transformation hardening,
and the saturation flow stress decreases.

— Case III: &/ = 0.5 and flim = 70% (« = 3.177, § = 1.204). In com-
parison with case I, here the plastic strain at half-transformation
increases. The plastic strain at which the transformation ends is
delayed, decreasing the slope of the stress—strain curve. Notice
that cases I and Il have the same saturation flow stress.

In Fig. 16 we show the variation of P with m for cases I, Il and III.
Finite element computations are shown within the range
0.05<m<0.75, whereas predictions of the theoretical model are
limited to the range 0.05<m=<0.28. To be noted that m=0.28
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Fig. 17. Transformation hardening material (SIMT). Applied pressure P = 293.3. Variation along the normalized radial coordinate ¢ of: (a) density ratio p/po and (b) dimensionless
radial stress a,/oy. Finite element results (FE) for case I (reference case), case II and case III taken at 3 ps.
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represents the cavitation velocity for which the theoretical model
predicts the appearance of the first shock, imposing an upper limit
to the predictions of the analytical model as discussed in Section 5.
Within the range of cavitation velocities for which theoretical
predictions are available, the agreement between the analytical
model and numerical computations is observed. Moreover, it is
shown that the transformation hardening barely affects the P—m
relation. Furthermore, irrespective of the case considered the finite
elements predict that the time required to reach the steady state is
~2.5 us for the lowest cavitation pressure considered (P = 13.3) and
~0.4 ps for the highest (P = 347).

As opposed to the observations reported for different dynamic
problems [20,19,27] in which the transformation hardening has
large influence on the material response, we show here that strain
induced martensitic transformation barely affects cavitation
instability (at least for the loading configurations considered in this
paper).

This behavior is further illustrated in Fig. 17 where we show the
variation of the density ratio p/pp and the dimensionless radial
stress g/gy along the normalized radial coordinate ¢ for P = 293.3
(which corresponds to m = 0.66). Finite element results taken at a
loading time of 3 us are shown for cases I, Il and IIl. Theoretical
predictions are not shown because the cavitation velocity
(m = 0.66) exceeds the upper limit for which the theoretical model
admits solutions for this material behavior. Differences between
the finite element curves p/po — £ and g,/oy — £ obtained for cases I,
I and III are negligible. A plastic shock wave is observed near the
elastoplastic interface £ = 1.6. The rigid/elastic front is placed at
£g = 1.84 in agreement with results obtained from Eq. (13).

In Fig. 18 we present contours of volume fraction of martensite
in the zone surrounding the cavity obtained via the finite element
model for P = 293.3. Results are shown for cases I, Il and III. Large
values of strain are reached during the cavity expansion, favoring
the martensitic transformation. Near the cavity we observe that the
volume fraction of martensite is the maximum allowed fli™ for each
case considered. However, we observe that large variations in the
transformation hardening do not introduce substantial variations

in the cavitation fields. Though several applications in which
martensitic transformation enhances ductility and, in turn, en-
hances the energy absorption capabilities of the material under
dynamic loading, the present analysis suggests that cavitation in-
stabilities could not be impeded or controlled by enhancing the
hardening response of the material. This result, together with the
unrealistic stress levels observed in the steady cavitation state,
suggest that incorporation of internal failure mechanisms, such as
material porosity [12], pressure sensitivity [8] or a cut-off stress
level, may be a key in design of materials with improved penetra-
tion resistance.

7. Concluding remarks

A numerical model to systematically evaluate the time depen-
dent dynamic expansion of a spherical cavity, embedded in an
unbounded medium and subjected to internal pressure is pre-
sented. Constitutive response is modeled by the standard principles
of Huber—Mises plasticity, accounting for finite strains. Two
distinct hardening mechanisms are considered; work hardening
and strain induced martensitic transformation (SIMT). Despite the
discretization, the numerical model is able to capture the propa-
gation of spherical plastic shock waves, which were recently
exposed in the theoretical study by Cohen et al. [11], and agrees
with theoretical predictions at the steady-state limit. Though the
theoretical analysis suggests that the appearance of a shock wave is
involved with a finite jump in field variables, the inherent damp-
ening of the numerical algorithm admits a smooth response with a
thin band of steep gradients and increased strain rates at the shock.
The thickness of the shock wave in the simulation is therefore
controlled at a some extent by the numerical model. Nevertheless,
other than the local discrepancies in the vicinity of the shock,
agreement with the theoretical model is not compromised.
Furthermore, it is conceivable that in real-life materials some strain
rate effect necessarily exists implying that a jump in field variables
is purely theoretical. Simulation results show that, for the material
response considered and for instantaneous application of load,
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Fig.18. Finite element results. Transformation hardening material (SIMT). Detail of the volume fraction of martensite in a zone surrounding the cavity. Cavitation fields for P = 293.3

and loading time 3 ps: (a) case I (reference case), (b) case Il and (c) case IIL.

12



steady self-similar cavity expansion evolves at less than 3 us, thus
verifying the application of steady cavitation fields in prediction of
hypervelocity penetration phenomena. It was also shown that the
dynamic field is barely sensitive to the inelastic material response.
That low sensitivity together with the unrealistically high levels of
stress exhibited by the present model, implies that future design of
structures with increased penetration resistance must account for
more detailed material models. Namely, internal damage mecha-
nisms such as material porosity or a cut-off hydrostatic stress level
should be incorporated. While the theoretical model is limited to
the steady-state response in absence of strain rate effects and
thermo-mechanical coupling, the numerical model suggested here,
and verified at the steady-state limit, facilitates future investigation
of dynamic cavitation fields and shock wave propagation for more
complicated material response.
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