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Axisymmetric free vibration of closed thin spherical nano-shell 
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Abstract: This work investigates the free axisymmetric vibrations of a closed spherical nano-shell using the Eringen nonlocal elasticity theory. The 
motion equations are properly formulated considering the hypotheses of thin shells and the solution is obtained using the classical separation of variables 
method. The effect of the nonlocal parameter on the natural frequencies and modal shapes are discussed in comparison to their local counterparts. This 
study could be useful in biomedical and bioengineering applications as well as in other fields related with the nanotechnology.

1. Introduction

Modern technological applications involve the use of systems
which can be devised as micro or nanostructures. From the discov-
ery of fullerenes [1] and Carbon Nanotubes (CNTs) [2], these
applications have experienced an exponential growth, mainly in
micro-or nano-electromechanical (MEMS or NEMS) devices [3],
nanomachines [4–7], as well as in biotechnology and biomedical
fields [8].

A main characteristic of these nanostructures is that their
dimensions become comparable to the size of their material micro-
structure or the molecular distances, thus the size effects are sig-
nificant regarding their mechanical behavior. These systems
could be analysed using Molecular Dynamics [9–12]. Since the
atomic and molecular approaches require a great computational
effort, simplified models are useful for analysing the mechanical
behavior of such devices. However, classical continuum mechanics
cannot predict the size effect, because the constitutive equations
derived from this framework lack an internal length, characterizing
the underlying microstructure, i.e. it is a scale-free theory.

Despite some sporadic efforts in the 19th century due to Cauchy
and Voigt, and in the first half of the 20th century through the
work of the Cosserat brothers to capture the effects of microstruc-
ture using the continuum equations of elasticity with additional
higher-order derivatives, the major revival took place in the
1960s. From this time are the works of Mindlin and Tiersten
[13], Kröner [14], Toupin [15,16], Green and Rivlin [17], Mindlin
[18,19] and Mindlin and Eshel [20]. However, these formulations
were excessively complex with too many parameters and equa-
tions. For instance, the more general form of the constitutive ten-

sors proposed by Mindlin [18] includes 903 independent elastic 
constants that can be reduced to 18 for the isotropic case.

More recently, Eringen derived, from his earlier integral non-
local theories [21], a simple stress-gradient formulation which
contains a length scale parameter. In the early 1990s, Aifantis
and coworkers suggested to extend the linear elastic constitutive
relations with the Laplacian of the strain through a length scale
parameter again [22–24]. Askes and Gitman [25] shown that an
unification of both Eringen and Aifantis theories is possible. An
overview on the historical development of theses theories, as well
as its meaning and implementation can be found in the paper by
Askes and Aifantis [26].

Among the size-dependent continuum theories, the theory of
nonlocal continuummechanics initiated by Eringen and coworkers
[27,28,21] has been widely used to analyse many problems, such
as wave propagation, dislocation, and crack singularities. From
the pioneer work of Peddieson et al. [29], this theory has been also
used to solve problems involving nanostructures. Thus, the Eringen
nonlocal theory of elasticity has been used to address the behavior
of beams [30–36], beams under rotation [37–40], rods [41–46],
plates [47–49], cylindrical shells [50–52], conical shells
[53,11,12], rings [54,55] and particles [56], as well as carbon nano-
tubes (CNTS) [57–64].

On the other hand, the dynamics of the closed spherical shells
(fluid-filled or empty) is a problem of technological importance
in some modern industrial, biomedical, biological and other appli-
cations [65,66]. There exists an extensive bibliography dedicated to
the analysis of buckling and vibrations of spherical shells from the
point of view of the classical elasticity theory [67–70]. The classical
continuum framework has been also applied to the case of nano-
spheres [71,72]. In various modern biomedical and biological
applications, spherical membrane structure (fluid-filled or empty)
can be used to model some micro/nanosized components, which
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are used as targeted drug delivery systems [73], biological cells
[74], and some kind of viruses [75,76].

The above cited works rest on the concepts of classical contin-
uum mechanics. In the authors knowledge, the only analyses con-
cerning spherical shells which take into account size effects using
nonlocal continuum theories is due to Ghavanloo and Fazelzadeh
[77], who presented a study on the radial vibrations of a closed
spherical shell using the Eringen nonlocal elasticity theory, and
the same authors [66], who studied the coupled axisymmetric
vibrations of fluid-filled closed spherical membrane shell using
the same nonlocal approach. However, for the case of axisymmet-
ric vibrations, its formulation of the problem is not properly
addressed because some issues concerning the handling of several
differential operators in spherical coordinates are omitted and the
analysis should be revisited.

In this paper we present a detailed study of free axisymmetric
vibrations of a closed spherical nano-shell using the Eringen
nonlocal elasticity theory. The hypothesis of thin shells have been
taken into account and then bending moments, shear efforts and
radial normal stresses were neglected. The solution method pro-
posed follows the procedure used by Baker [68] for the elastic local
case. The effect of the nonlocal parameter on the results, i.e. natural
frequencies and mode shapes, are discussed.

2. General equations of Eringen elasticity theory

The Eringen formulation [28,78,79] states that the nonlocal
stress-tensor t at any point x in a body can be expressed as

tðxÞ ¼
Z
X
aðjx0 � xj; cÞrðxÞdXðx0Þ ð1Þ

where r(x) is the classical local stress tensor at point x, which is
related to the linear strain tensor e by the conventional constitutive
relations for a Hookean material

r ¼ C : e ð2Þ
where C is the fourth-order elasticity tensor and e is given by

e ¼ 1
2
ðruþrðuTÞÞ ð3Þ

u being the displacement vector.
Eq. (1) represents the weighted average of the contributions to

the stress field at a point x of the strain field of all points in the
body in the neighborhood of x, the size of which is related to the
nonlocal modulus a(jx0 � xj,c). Here, jx0 � xj is the Euclidean dis-
tance and c is a material constant given by c = e0a/l, that depends
on internal and external characteristic lengths (a and l, respec-
tively) trough an adjusting constant e0, dependent on each
material.

Both Eqs. (1) and (2) define the considered nonlocal constitutive
behavior of a Hookean solid. For a class of physically admissible
kernel a(jx0 � xj,c), Eringen [21] showed that the nonlocal consti-
tutive equations given by the integral formulation could be
replaced by gradients. Thus, Eq. (1) can be written in an equivalent
differential form as

ð1� j2r2Þt ¼ r ð4Þ
j = e0a being the length scale which takes into account the size
effect on the response of nanostructures.

The balance of linear momentum results in the following equa-
tion of motion

r � tþ f ¼ q€u ð5Þ
where f represents the external body forces vector, and after using
Eq. (4)

r � rþ f ¼ ð1� j2r2Þq€u ð6Þ
Note that the displacement field of a nonlocal solid subject to an

external body force field f and an inertial body force �q€u is the
same as that of a classical solid subject to the same external force
f and an inertial body force �ð1� j2r2Þq€u.

Considering that the material is isotropic, the equations of
motion can be obtained in terms of the displacements

ð1� j2r2Þq€u ¼ ðkL þ GÞrðr � uÞ þ Gr2uþ f ð7Þ
kL and G being the Lamé constants. The above relation constitutes
the Navier equation of motion for nonlocal solids, which must be
solved with the appropriate initial and boundary conditions
applicable in each case.

3. Axisymmetric motion for the nonlocal spherical shell

The above theory will be used to study the axisymmetric free
vibration of a nonlocal closed thin spherical shell.

3.1. Problem formulation

We assume that the deformations are small enough for linear
equations to adequately describe the motion. The thickness h of
the shell is thin enough that bending moments, shear forces and
radial normal stresses can be neglected. The sign convention for
radial w(/, t) and meridional v(/, t) displacements, and for stress
resultants in meridional N/(/, t) and circumferential Nh(/, t) direc-
tions, are defined in Fig. 1. The governing equations of motion for
the nonlocal spherical shell can be directly derived from the classi-
cal formulation for local elasticity [68], as a result of the aforemen-
tioned analogy between the nonlocal solid subjected to an inertial
body force field �q€u and the equivalent local solid subjected to an
inertial body force field �ð1� j2r2Þq€u. Neglecting the external
body force f, in order to consider free vibrations, the corresponding
equations may be expressed as

�ðbN/þ bNhÞ

¼qRh
@2w
@t2

�j
2

R2

@4w

@t2@/2þcot/
@3w
@t2@/

�2
@2w
@t2

�2
@3v
@t2@/

�2cot/
@2v
@t2

!!
ð8Þ

@ bN/

@/
þcot/ðbN/� bNhÞ

¼qRh
@2v
@t2

�j
2

R2

@4v
@t2@/2þcot/

@3v
@t2@/

� 1

sin2/

@2v
@t2

þ2
@3w
@t2@/

!!
ð9Þ

Fig. 1. Differential element of shell, membrane forces and symmetric displace-
ments in spherical coordinates.
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where the proper differential operators in spherical coordinates
have been used. R, q, E and m are the sphere radius, mass density,
Young modulus and Poisson ratio respectively. bN/ and bNh are the
stress resultants in the equivalent local problem, that can be
expressed in terms of the displacements as can be found, for in-
stance, in Soedel [70]

bN/ ¼ Eh
Rð1� m2Þ

@v
@/

þwþ mðcot/v þwÞ
� �

ð10Þ

bNh ¼ Eh
Rð1� m2Þ cot/v þwþ m

@v
@/

þw
� �� �

ð11Þ

Considering the following nondimensional quantities

�v ¼ v
R
; �w ¼ w

R
; s ¼ cst

R
; cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1� m2Þ

s
; l ¼ j

R
ð12Þ

the nondimensional equations of motion may be finally written in
terms of displacements as

�ð1þmÞ @�v
@/

þcot/�vþ2�w
� �

¼@2 �w
@s2 �l

2 @4 �w

@s2/2þcot/
@3 �w
@s2/�2

@2 �w
@s2 �2

@3�v
@s2@/�2cot/

@2�v
@s2

!
ð13Þ

@2�v
@/2 þ

@�v
@/

cot/� ðmþ cot2/Þ�v þ ð1þ mÞ @ �w
@/

¼ @2�v
@s2

� l2 @4�v
@s2/2 þ cot/

@3�v
@s2/

� csc2/
@2�v
@s2

þ 2
@3 �w
@s2/

!
ð14Þ

These equations are identical to the local formulation if the
nonlocal parameter l is set to zero. Note that, for l > 0, Eqs. (13)
and (14) are not coincident with those proposed by Fazelzadeh
and Ghavanloo [66].

Following Baker [68] we will assume that the shell is initially at
rest in a deformed shape, according to the following initial
conditions

�wð/;0Þ ¼ f ð/Þ; @ �w
@s

����
s¼0

¼ 0 ð15Þ

�vð/;0Þ ¼ gð/Þ; @�v
@s

����
s¼0

¼ 0 ð16Þ

Eqs. (13) and (14), subject to the initial conditions (15) and (16),
determine the free vibrational movement of the nonlocal spherical
shell.

3.2. Solving method

The differential equations to be solved are linear and homoge-
neous. Thus, in order to obtain the natural frequencies and modal
shapes of the vibration of the shell, the method of separation of
variables will be used. Let us assume

�wð/; sÞ ¼
X
n

Wnð/ÞSnðsÞ ð17Þ

�vð/; sÞ ¼
X
n

Vnð/ÞQnðsÞ ð18Þ

Then, Eqs. (13) and (14) become

�2ð1þ mÞWnSn � ð1þ mÞ V 0
n þ cot/Vn

� �
Qn

¼ Wn � l2 W 00
n þ cot/Wn0 � 2Wn

� �� �d2Sn
ds2

þ 2l2 V 0
n þ cot/Vn

� � d2Qn

ds2
ð19Þ

ð1þ mÞW 0
nSn þ V 00

n þ cot/V 0
n � ðmþ cot2/ÞVn

� �
Qn

¼ �2l2W 0
n
d2Sn
ds2

þ Vn � l2 V 00
n þ cot/V 0

n � csc2/Vn
� �� �d2Qn

ds2
ð20Þ

or, dividing Eq. (19) by Wn � l2 W 00
n þ cot/W 0

n � 2Wn
� �� �

and Eq.
(20) by Vn � l2 V 00

n þ cot/V 0
n � csc2/Vn

� �� �
�k1Sn � ð1þ mÞk2Qn ¼ d2Sn

ds2
þ 2l2k2

d2Qn

ds2
ð21Þ

ð1þ mÞk3Sn þ k4Qn ¼ �2l2k3
d2Sn
ds2

þ d2Qn

ds2
ð22Þ

with

k1 ¼ 2ð1þ mÞWn

Wn � l2 W 00
n þ cot/W 0

n � 2Wn
� � ð23Þ

k2 ¼ V 0
n þ cot/Vn

Wn � l2 W 00
n þ cot/W 0

n � 2Wn
� � ð24Þ

k3 ¼ W 0
n

V � l2 V 00
n þ cot/V 0

n � csc2/Vn
� � ð25Þ

k4 ¼ V 00
n þ cot/V 0

n � ðmþ cot2/ÞVn

Vn � l2 V 00
n þ cot/V 0

n � csc2/Vn
� � ð26Þ

For Eqs. (21) and (22) to be separable, ki must be constant.
We can now determine the constants k1 to k4 and the functional

forms of Wn and Vn.

3.3. Determination of ki and functional forms Wn and Vn

For convenience we let x = cos/. Then Eq. (23) leads to the
Legendre differential equation [80]

ð1� x2Þd
2Wn

dx2
� 2x

dWn

dx
þ 2ð1þ m� l2k1Þ � k1

l2k1
Wn ¼ 0 ð27Þ

For radial displacements Wn to be bounded over the entire
sphere, the following condition is required

2ð1þ m� l2k1Þ � k1
l2k1

¼ nðnþ 1Þ ð28Þ

or

k1 ¼ 2ð1þ mÞ
1þ l2ð2þ nðnþ 1ÞÞ ð29Þ

and the solution for Wn is given by the Legendre polynomials

WnðxÞ ¼ PnðxÞ ¼ 1
2nn!

dnðx2 � 1Þn
dxn

ð30Þ

with n integer greater or equal than zero.
In a similar way, Eq. (26) leads to a general Legendre differential

equation

ð1� x2Þd
2Vn

dx2
� 2x

dVn

dx
þ 1� m� k4

1þ l2k4
� 1
1� x2

� �
Vn ¼ 0 ð31Þ

For meridional displacements Vn being finite and single-valued
over the entire sphere, the following condition is required

1� m� k4
1þ l2k4

¼ nðnþ 1Þ ð32Þ

or

k4 ¼ 1� m� nðnþ 1Þ
1þ l2nðnþ 1Þ ð33Þ
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and the solution for Vn is given by the associated Legendre Polyno-
mials of the first kind (Condon–Shortley phase ommited, see Arfken
et al. [81])

VnðxÞ ¼ P1
nðxÞ ¼

ð1� x2Þ1=2
2nn!

dnþ1ðx2 � 1Þn
dxnþ1 ð34Þ

with n integer greater than zero.
To obtain k2 we use the following relation between Legendre

polynomials and associated Legendre polynomials of the first kind

P1
nðxÞ ¼ ð1� x2Þ1=2 dPnðxÞ

dx
ð35Þ

which is equivalent to

Vn ¼ �W 0
n ð36Þ

Substituting Eq. (36) and its derivative into Eq. (24) to eliminate
Vn and V 0

n, we get again the Legendre differential equation

ð1� x2Þd
2Wn

dx2
� 2x

dWn

dx
� k2ð1þ 2l2Þ

l2k2 � 1
Wn ¼ 0 ð37Þ

For Wn to be a bounded solution of this equation, the following
condition is required

� k2ð1þ 2l2Þ
l2k2 � 1

¼ nðnþ 1Þ ð38Þ

or

k2 ¼ nðnþ 1Þ
1þ l2ð2þ nðnþ 1ÞÞ ð39Þ

Now substituting Eq. (36) in Eq. (25) to eliminateW 0
n, we obtain

a general Legendre differential equation

ð1� x2Þd
2Vn

dx2
� 2x

dVn

dx
þ �1� k3

l2k3
� 1
1� x2

� �
Vn ¼ 0 ð40Þ

For Vn to be a finite and single-valued solution of this equation,
the following condition is required

�1� k3
l2k3

¼ nðnþ 1Þ ð41Þ

or

k3 ¼ � 1
1þ l2nðnþ 1Þ ð42Þ

3.4. Solution for the time-dependent functions Sn and Qn

By suitable combinations of Eqs. (21) and (22), we can trans-
form them in two uncoupled biquadratic differential equations

d4Sn
ds4 þ nn

d2Sn
ds2 þ cnSn ¼ 0 ð43Þ

d4Qn

ds4
þ nn

d2Qn

ds2
þ cnQn ¼ 0 ð44Þ

Note that both equations have the same coefficients

nn ¼
ð1þ nðnþ1ÞÞð1þl2ð�2þ nðnþ1ÞÞÞ � mð�3þl2ð�2þ nðnþ 1ÞÞÞ

1þl2½2ð1þ nðnþ 1ÞÞ þl2nðnþ1Þð�2þ nðnþ1ÞÞ�
ð45Þ

cn ¼ ð1� m2Þð�2þ nðnþ 1ÞÞ
1þ l2½2ð1þ nðnþ 1ÞÞ þ l2nðnþ 1Þð�2þ nðnþ 1ÞÞ� ð46Þ

The solution of these linear differential equations can be written
as

SnðsÞ ¼ AS
n cosðansÞ þ BS

n sinðansÞ þ CS
n cosðbnsÞ þ DS

n sinðbnsÞ ð47Þ

QnðsÞ ¼ AQ
n cosðansÞ þ BQ

n sinðansÞ
þ CQ

n cosðbnsÞ þ DQ
n sinðbnsÞ ð48Þ

where the natural frequencies are roots of the corresponding char-
acteristic equation of the differential problem given by Eqs. (43) and
(44)

an ¼
nn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2n � 4cn

q
2

0@ 1A1=2

ð49Þ

bn ¼
nn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2n � 4cn

q
2

0@ 1A1=2

ð50Þ

As in the local elasticity case, there are two natural frequencies
for each value of n: the upper branch an and the lower branch bn.
The eight unknown amplitudes in Eqs. (47) and (48) are obtained,
applying the corresponding initial conditions, in terms of the initial
values of the functions Sn and Qn and of their first, second and third
derivatives

Snð0Þ ¼ S0n; Qnð0Þ ¼ Q0
n ð51Þ

dSn
ds

����
s¼0

¼ dQn

ds

����
s¼0

¼ 0 ð52Þ

d2Qn

ds2

�����
s¼0

¼ €Q0
n ¼ pnS

0
n þ qnQ

0
n ð53Þ

d2Sn
ds2

�����
s¼0

¼ €S0n ¼ rnS
0
n þ snQ

0
n ð54Þ

and

d3Sn
ds3

�����
s¼0

¼ d3Qn

ds3

�����
s¼0

¼ 0 ð55Þ

with

pn ¼ ð1þ m� 2 l2k1Þk3
1þ 4 l4k2k3

ð56Þ

qn ¼ �2 l2ð1þ mÞk2k3 þ k4
1þ 4 l4k2k3

ð57Þ

rn ¼ � k1 þ 2 l2ð1þ mÞk2k3
1þ 4 l4k2k3

ð58Þ

sn ¼ � k2ð1þ mþ 2 l2k4Þ
1þ 4 l4 k2k3

ð59Þ

Initial conditions (51) and (52) correspond to Eqs. (15) and (16).
Initial conditions (53) and (54) are obtained combining Eqs. (21)
and (22), whereas initial conditions (55) are obtained by derivation
of Eqs. (21) and (22). The solution of the algebraic system of
equations given by the eight initial conditions, Eqs. (51)–(55), leads
to

BS
n ¼ DS

n ¼ BQ
n ¼ DQ

n ¼ 0 ð60Þ

AS
n ¼ S0n

€S0n=S
0
n þ b2

n

b2
n � a2n

ð61Þ
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CS
n ¼ S0n

€S0n=S
0
n þ a2n

a2
n � b2

n

ð62Þ

AQ
n ¼ Q0

n

€Q0
n=Q

0
n þ b2

n

b2
n � a2

n

ð63Þ

CQ
n ¼ Q0

n

€Q0
n=Q

0
n þ a2n

a2n � b2
n

ð64Þ

Taking into account conditions (53) and (54), and the relation
a2n þ b2

n ¼ nn, the final expression for the time-dependent functions
are

SnðsÞ ¼ S0n
bn � a2

n

b2
n � a2n

cosðansÞ þ bn � b2
n

a2n � b2
n

cosðbnsÞ
" #

ð65Þ

QnðsÞ ¼ Q0
n
an � a2n
b2
n � a2n

cosðansÞ þ an � b2
n

a2n � b2
n

cosðbnsÞ
" #

ð66Þ

where

bn ¼
€S0n
S0n

þ nn ð67Þ

an ¼
€Q0
n

Q0
n

þ nn ð68Þ

The initial values S0n and Q0
n can be obtained following the pro-

cedure proposed by Baker [68]. Considering Eqs. (17) and (18) at
t = 0

�wðx; 0Þ ¼
X1
n¼0

PnðxÞS0n ð69Þ

�vðx;0Þ ¼
X1
n¼1

P1
nðxÞQ0

n ð70Þ

multiplying the above expressions by Pm(x) and P1
mðxÞ respectively,

integrating over 0 6 / 6 p and using the orthogonal properties of
the Legendre Polynomials, we get

S0n ¼ �2nþ 1
2

Z �1

1
PnðxÞ �wðx; 0Þdx ð71Þ

Q0
n ¼ �ð2nþ 1Þðn� 1Þ!

2ðnþ 1Þ!
Z �1

1
P1
nðxÞ�vðx;0Þdx ð72Þ

3.5. Modal shapes

We can find the modal shape vibrating with upper branch
frequency an by setting to zero the amplitudes corresponding to
the lower branch frequency in Eqs. (65) and (66)

bn � b2
n ¼ 0; an � b2

n ¼ 0 ð73Þ
therefore

bn ¼ an ð74Þ
or

€S0n
S0n

¼
€Q0
n

Q0
n

ð75Þ

Combining the last condition with Eqs. (53) and (54) we get

pn
S0n
Q0

n

 !2

þ ðqn � rnÞ S0n
Q0

n

 !
� sn ¼ 0 ð76Þ

and solving this quadratic equation

Wan ¼
S0n
Q0

n

�����
an

¼
rn � qn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqn � rnÞ2 þ 4pnsn

q
2pn

ð77Þ

where the negative sign before the radical is chosen to satisfy either
of conditions (73). Finally, the temporal function corresponding to
the frequency an is given by

Sann ðsÞ ¼ S0n
���
an
cosðansÞ; Qan

n ðsÞ ¼ Q0
n

���
an
cosðansÞ ð78Þ

Likewise, we can get the modal shape vibrating with lower fre-
quency bn by setting to zero the amplitudes corresponding to the
upper branch frequencies in Eqs. (65) and (66)

bn � a2n ¼ 0; an � a2n ¼ 0 ð79Þ
leading to

Wbn ¼
S0n
Q0

n

�����
bn

¼
rn � qn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqn � rnÞ2 þ 4pnsn

q
2pn

ð80Þ

where the positive sign before the radical is chosen to satisfy either
of conditions (79). Therefore, the temporal function corresponding
to the frequency bn is given by

Sbnn ðsÞ ¼ S0n
���
bn
cosðbnsÞ; Qbn

n ðsÞ ¼ Q0
n

���
bn
cosðbnsÞ ð81Þ
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Fig. 2. Natural frequencies for different values of l (m = 1/3). (a) Upper branch an.
(b) Lower branch bn.
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The solution of Baker is recovered for l = 0, exceptuating the
sign of the expression, which is consistent with the positive direc-
tion for the radial displacement taken in the present work.

4. Analysis of the influence of the nonlocal parameter

4.1. Frequencies

Eqs. (49) and (50) provide the natural frequencies of the free
vibration of the shell. It is worth to highlight that the values calcu-
lated by Baker [68] are recovered by setting l = 0. As in the local
elasticity case, b0 leads to a spurious mode, and b1 equals zero
for every value of the nonlocal parameter thus forecasting a trans-
lational mode that will be confirmed afterwards. Fig. 2 shows the
frequencies for n from 0 through 10, for different values of the
nonlocal parameter. The frequencies of both upper and lower
branches decrease with increasing values of l. The translational
mode b1 is accountably independent of the nonlocal parameter,
and the breathing mode a0 is independent as well. The lower fre-
quencies a1, a2, and b2 are slightly affected by l. The effect of the
nonlocal parameter starts to play a major role for values of
nP 3. Actually there are remarkable differences between local
and nonlocal theories for large values of n, even for small values
of l.

4.2. Modal shapes

To draw the modal shapes, let us fix the initial radial displace-
ment at the north pole to

wnð0; 0Þ ¼ ��R ð82Þ
with 0 < �� 1. Therefore

�wnð0; 0Þ ¼ Wnj/¼0S
0
n ¼ Wnjx¼1S

0
n ¼ �� ð83Þ

Since Wn = Pn, condition (83) leads to S0n ¼ ��, and the initial
amplitudes of the tangential displacement, for frequencies an and
bn, are given by

Q0
n

���
an

¼ � �
Wan

; Q0
n

���
bn

¼ � �
Wbn

ð84Þ

Finally, the modal shapes can be written as

wnð/;0Þ ¼ ��RPnðcos/Þ ð85Þ

vnð/; 0Þ ¼ � �
Wn

RP1
nðcos/Þ ð86Þ

withWn ¼ Wan orWn ¼ Wbn depending on the branch of frequencies.
Fig. 3 shows, for l = 0, the modal shapes for n from 0 through 3.

The solution given by Baker [68] is recovered, including the trans-
lational mode corresponding to b1.

In order to evaluate the influence of the nonlocal parameter on
the amplitude of the meridional displacement v, the factor Wn in
Eq. (86) is plotted in Fig. 4 for the upper and lower branches. It
can be observed that Wan decreases with n for every value of l.
Moreover, for l > 0, the Wan curves intersect the horizontal axis.
Since v increases as the absolute value of Wan decreases, this may
lead to large values of the meridional displacement for certain
modal shapes, as can be seen in Fig. 5b.

Regarding the lower branch (Fig. 4b), Wbn is not affected by the
nonlocal parameter. Thus, the nonlocal modal shapes are analo-
gous to their local counterparts.

(a) (b)

(c) (d)

Fig. 3. Modal shapes for: (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 3; (m = 1/3, l = 0,
� = 0.1). Black: undeformed configuration. Red: modal shape for an. Blue: modal
shape for bn. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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5. Conclusions

A detailed study of free axisymmetric vibrations of a closed
spherical nano-shell using the Eringen nonlocal elasticity theory
is presented. The hypotheses of thin shells are taken into account
and then bending moments, shear efforts and radial normal stres-
ses are neglected.

Using the classical variable separation method, the solution is
assumed as a sum of products of both space-dependent and
time-dependent functions, permitting to obtain the natural
frequencies and modal shapes. As in the local elasticity case, there
are two natural frequencies for each value of n, the upper branch
and the lower branch, with a specific vibration mode for each
frequency.

The following conclusions on the effect of nonlocal parameter in
natural frequencies and modal shapes can be established:

� The frequencies of both upper and lower branches decrease
with increasing values of the nonlocal parameter l.

� The breathing mode a0 is independent of the nonlocal parame-
ter. The lower frequencies a1, a2, and b2 are slightly affected by
l.

� Remarkable differences between local and nonlocal theories,
even for small values of l, appear for larger values of n (nP 3).

� The ratio of the radial to meridional displacements, correspond-
ing to certain modal shapes associated to the upper branch,
approaches zero for l > 0. This may lead to large values of the
meridional displacement in the nonlocal case.

� The modal shapes corresponding to the lower branch frequen-
cies are not affected by the nonlocal parameter, thus the non-
local modal shapes are analogous to their local counterparts.
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