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Abstract

Knowledge of the position of nodes in a WSN is crucial in most wireless
sensor network (WSN) applications. The gathered information needs to be
associated with a particular location in a specific time instant in order to
appropiately control de surveillance area. Moreover, WSNs may be used for
tracking certain objects in monitoring applications, which also requires the
incorporation of location information of the sensor nodes into the tracking
algorithms. These requisites make localizacion and tracking two of the most
important tasks of WSN.

Despite of the large research efforts that have been made in this field,
considerable technical challenges continue existing in subjects areas like data
processing or communications. This thesis is mainly concerned with some
of these technical problems. Specifically, we study three different challenges:
sensor deployment, model independent localization and sensor selection.

The first part of the work is focused on the task of sensor deployement.
This is considered critical since it affects cost, detection, and localization ac-
curacy of a WSN. There have been significant research efforts on deploying
sensors from different points of view, e.g. connectivity or target detection.
However, in the context of target localization, we believe it is more conve-
nient to deploy the sensors in views of obtaining the best estimation possible
on the target positioning. Therefore, in this work we suggest an analysis of
the deployment from the standpoint of the error in the position estimation.

To this end, we suggest the application of the modified Cramér-Rao
bound (MCRB) in a sensor network to perform a prior analysis of the sys-
tem operation in the localization task. This analysis provides knowledge
about the system behavior without a complete deployment. It also pro-
vides essential information to select fundamental parameters properly, like
the number of sensors. To do so, a complete formulation of the modified
information matrix (MFIM) and MCRB is developed for the most common
measurement models, such as received signal strength (RSS), time-of-arrival
(ToA) and angle-of-arrival (AoA). In addition, this formulation is extended
for heterogeneous models that combine different measurement models. Sim-
ulation results demonstrate the utility of the proposed analysis and point
out the similarity between MCRB and CRB.

Secondly, we address the problem of target localization which encom-
passes many of the challenging issues which commonly arise in WSN. Con-
sequently, many localization algorithms have been proposed in the literature
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each one oriented towards solving these issues. Nevertheless, it have seen
tahta the localization performance of above methods usually relies heavily
on the availability of accurate knowledge regarding the observation model.
When errors in the measurement model are present, their target localization
accuracy is degraded significantly.

To overcome this problem, we proposed a novel localization algorithm
to be used in applications where the measurement model is not accurate or
incomplete. The independence of the algorithm from the model provides
robustness and versatility. In order to do so, we apply radial basis functions
(RBFs) interpolation to evaluate the measurement function in the entire
surveillance area, and estimate the target position. In addition, we also
propose the application of LASSO regression to compute the weigths of the
RBFs and improve the generalization of the interpolated function. Sim-
ulation results have demonstrated the good performance of the proposed
algorithm in the localization of single or multiples targets.

Finally, we study the sensor selection problem. In order to prolong the
network lifetime, sensors alternate their state between active and idle. The
decision of which sensor should be activated is based on a variety of factors
depending on the algorithm or the sensor application. Therefore, here we
investigate the centralized selection of sensors in target-tracking applications
over huge networks where a large number of randomly placed sensors are
available for taking measurements.

Specifically, we focus on the application of optimization algorithms for
the selection of sensors using a variant of the CRB, the Posterior CRB
(PCRB), as the performance-based optimization criteria. This bound pro-
vides the performance limit on the mean square error (MSE) for any un-
biased estimator of a random parameter, and is iteratively computed by
a particle filter (in our case, by a Rao-Blackwellized Particle Filter). In
this work we analyze, and compare, three optimization algorithms: a ge-
netic algorithm (GA), the particle swarm optimization (PSO), and a new
discrete-variant of the cuckoo search (CS) algorithm. In addition, we pro-
pose a local-search versions of the previous optimization algorithms that
provide a significant reduction of the computation time. Lastly, simulation
results demonstrate the utility of these optmization algorithm to solve a
sensor selection problem and point out the reduction of the computation
time when local search is applied.
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Resumen

Introducción

Las redes de sensores se presentan como una tecnoloǵıa muy interesante
que ha atráıdo considerable interes por parte de los investigadores en la
actualidad [1, 109]. Recientes avances en electrónica y en comunicaciones
inalámbricas han permitido de desarrollo de sensores de bajo coste, baja
potencia y multiples funciones, de reducido tamaño y con capacidades de co-
municación a cortas distancias. Estos sensores, desplegados en gran número
y unidos a través de comunicaciones inalámbricas, proporcionan grandes
oportunidades en aplicaciones como la monitorización y el control de casas,
ciudades o el medio ambiente.

Un nodo sensor es un dispositivo de baja potencia capaz de interactuar
con el medio a través de sus sensores, procesar información localmente y
comunicar dicha información a tus vecinos más próximos. En el mercado
existe una gran variedad de sensores (magnéticos, acústicos, térmicos, etc),
lo que permite monitorizar muy diversas condiciones ambientales (tempera-
tura, humedad, etc.) [25]. En consecuencia, las redes de sensores presentan
un amplio rango de aplicaciones: seguridad en el hogar, monitoridación del
medio, análisis y predicción de condiciones climáticas, biomedicina [79], etc.

A diferencia de las redes convencionales, las redes de sensores sus propias
limitaciones, como la cantidad de enerǵıa disponible, el corto alcance de sus
comunicaciones, su bajo ancho de band y sus limitaciones en el procesado
de información y el almacenamiento de la misma. Por otro parte, existen
limitaciones en el diseño que dependerán directamente de la aplicación que
se le quiera dar a la red, como por ejemplo el tamaño de la red, el esquema
de despliegue o la topoloǵıa de la red.

Localización y seguimiento en redes de sensores

Las redes de sensores están muy relacionadas con los fenómenos f́ısicos que
ocurren a su alrededor. La adquisición de información que realizan está
asociada a la localización que ocupan los sensores para conseguir aśı una
observación fiable del área que se está estudiando. Además, estas redes
suelen utilizarse para el seguimiento de blancos en tareas de monitorización,
que también necesitan incorporar información sobre la posición del sensor al
algoritmo de seguimiento empleado. Estos requisitos motivan el desarrollo
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de protocolos de localización eficientes para las redes de sensores.
El objetivo de la localización y el seguimiento es la determinación de

la posición de blancos (problema de localización) y/o sus trayectorias (pro-
blema de seguimiento) a partir de un conjunto de medidas proporcionadas
por unos nodos, situados en posiciones conocidas del área de estudio. A
pesar de que la localicalización y el seguimiento se suelen tratar como pro-
blemas distintos, una trayectoria puede definirse como un conjunto de pro-
blemas de localización en instantes sucesivos de tiempo.

En la literatura se puede encontrar una gran variedad de métodos de
localización de acuerdo con la naturaleza del problema a resolver. Estos
métodos difieren en la suposiciones que hacen sobre el hardware del dis-
positivo, los modelos de propagación de la señal, los requisitos de tiempo
y enerǵıa, la naturaleza del entorno (escenarios interiores o exteriores), la
densidad de nodos o la movilidad del dispositivo.

A pesar de los esfuerzos realizados en esté ámbito, son muchos los proble-
mas que quedan por resolver en el campo de la localización y el seguimiento
de blancos con redes de sensores. A continuación podemos ver algunos de
los principales problemas técnicos que presentan estas redes en aplicación a
tareas de localización:

• Despliegue de la red:

El conocimiento de la red es esencial para el correcto funcionamiento
de un sensor. Cada nodo necesita conocer la identidad y localización de
sus vecinos para colaborar con ellos en el procesado de la información.
En redes planificadas, la topoloǵıa de la red es conocidad a priori,
mientras que para redes adhoc dicha topoloǵıa se va construyendo en
tiempo real y se actualiza periódicamente para eliminar sensores que
fallan o detectar nuevos sensores [57]. Además del conocimiento de
la topoloǵıa, cada sensor necesita saber su ubicación [43]. Cuando
no es posible realizar, o demasiado costoso, realizar autolocalización a
través de GPS, es necesario proporcionar a la red de otros métodos de
autolocalización como por ejemplo los algoritmos de posicionamiento
relativo.

• Procesado conjunto de señales e información:

Los nodos de una red colaboran en la acumulación y el procesado de
datos para generar información útil. El procesado conjunto de señales
e información es una nueva área de investigación que está relacionada
con la fusión de información. Cuestionés técnicas importantes en este
ámbito son el grado de información compartida por los nodos de la
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red y como los nodos fusionan esa información. El procesado de datos
de otros sensores suele proporcionar un mejor resultado pero al mismo
tiempo requiere más recursos de comunicación (como enerǵıa). Por lo
tanto, es necesario considerar una solución intermedia entre los resul-
tados a obtener y los recursos consumidos en el procesado conjunto de
la información [83].

Las redes de sensores suelen emplearse para la detección, el seguimiento
y la clasificación de blancos [96]. La asociación de datos es un pro-
blema importante cuando aparecen múltiples objetivos en una región
pequeña. Cada sensor debe asociar su medida del entorno con uno de
los blancos. Además, la detección realizada por un blanco debe asocia-
rse con blancos detectados por otros sensores para evitar duplicidades.

• Medidas:

Muchos algoritmos de localización depeden de modelos de medida
basados en rango. Estos modelos propocionan información local en
términos de distancia o orientación relativa a los vecinos del sensor.
Dicha información local puede combinarse para proporcionar una es-
timación de la localización del blanco. El funcionamiento de los mo-
delos de rango se basa en el intercambio de mensajes entre nodos
considerando como medidas la potencia de la señal o el tiempo de lle-
gada. En la práctica, las distancias obtenidas a través de estas medidas
pueden contenter considerables errores cuando la señal se encuentra
obstáculos en el camino.

Contribuciones

Esta tesis se ha centrado en algunos de los principales problemas que tienen
hoy en d́ıa las redes de sensores (procesado conjunto de señal e información).
Particularmente se abordan tres problemas diferentes dentro de las tareas
de localicación y seguimiento con técnicas basadas en rango. El primer pro-
blema es el diseño y despliegue de la red para aplicaciones de localización. El
segundo es el problema de localización cuando no está disponible información
acerca del modelo de medida, problema que es también conocido como lo-
calización independiente de modelo. Finalmente, el tercer problema a tratar
es la optimización de la selección de sensores para tareas de seguimiento.

• Diseño y despligue de redes de sensores para localización.

El despligue de los sensores es una tarea cŕıtica, puesto que afecta
al coste y a la calidad de detección y localización de la red. A lo
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largo de estos años se han realizado muchos trabajos de investigación
en ámbito del despliegue de sensores desde distintos puntos de vista:
conectividad [106], detección de eventos [18], o cobertura [88]. En di-
chos trabajos, normalmente los sensores son desplegados de forma que
se asegura ciertos requisitos de cobertura o conectividad. Sin embargo,
en el contexto de la localización de blanco, consideramos que es más
conveniente realizar el despliegue de forma que se obtenga una mejor
estimación de la posición del blanco. Por lo tanto, en este trabajo su-
gerimos la realización de un análisis del despliegue desde el punto de
vista del error en la estimación. Ésto aumentará nuestro conocimiento
sobre el funcionamiento del sistema sin necesidad de llevar a cabo un
despliegue completo de la red. Además, puede proporcionarnos infor-
mación muy útil a la hora de seleccionar los parámetros de la red, como
por ejemplo el número de sensores desplegados o el tipo de sensor.

Para realizar este análisis, proponemos la aplicación de una variante
del ĺımite de Cramér-Rao (CRB), el ĺımite de Cramér-Rao moficiado
(MCRB). En este trabajo se presenta un desarrollo completo de la
formulación de la matriz de Fisher modificada (MFIM) y del MCRB
para los modelos de medida más comunes en redes de sensores (RSS,
ToA y AoA). Adicionalmente este desarrollo se extiende a modelos
heterogéneos, que permiten la combinación de medidas de distinta
naturaleza.

• Localización independiente del modelo.

El problema de la localización de blancos engloba muchos de los retos
que normalmente aparecen en las redes de sensores [111]. En con-
sequencia, este problema ha adquirido una gran atención en nues-
tros d́ıas. En la literatura pueden encontrarse muchos algoritmos que
básicamente difieren en sus suposiciones acerca del despliegue de la
red y las capacidades hardware de los dispositivos. La mayoŕıa de
estos métodos tienen una dependencia muy fuerte del conocimiento
preciso del modelo de medida que se está utilizando. De forma que
cuando aparecen errores en el modelo de observación, la precisión de
su localización se ve degradada siginitivamente.

Para solucionar este problema, proponemos un método para aquellos
casos en los que no está disponible información sobre modelo de me-
dida, un nuevo algoritmo de localización independiente del modelo.
Para ello, analizamos el problema de localización como un problema
de interpolación espacial basado en las muestras obtenidas por los sen-
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sores. En particular, aplicamos interpolación basada en funciones de
base radial (RBF) para evaluar la función de medida en todo el área
de vigilancia y estimar aśı la posición del blanco.

• Optimización de la selección de sensores para aplicaciones de seguimiento.

Las redes de sensores se suelen desplegar para que funcionen durante
largos periodos de tiempo (meses o incluso años). Sin embargo, debido
a limitaciones energéticas, estos dispositivos no pueden permanecer ac-
tivos continuamente, ya que la enerǵıa de que disponen se consumiŕıa
rápidamente conduciéndoles a la muerte. Para prolongar el tiempo
de vida de la red, los sensores alternan su estado entre activo e in-
activo. La decisión de cuando un sensor debe estar activo se basa
en factores como los algoritmos utilizados o la aplicación para la que
han sido ubicados. Por lo tanto, en este trabajo investigamos la se-
lección centralizada de sensores para aplicaciones de seguimiento de
blancos en redes de sensores donde un elevado número de sensores son
desplegados aleatoriamente.

Especialmente, nos centramos en la aplicación de algoritmos de op-
timización para la selección de sensores utilizando una variante del
CRB, el posterior CRB (PCRB), como medida de calidad. Para ello,
analizamos y comparamos tres algoritmos de optimización: algoritmos
genéticos (GA), particle swarm optimization (PSO) y cuckoo search
(CS). Además, proponemos una búsqueda local para los algoritmos
anteriores que proporciona una notable reducción del tiempo de com-
puto.

Ĺıneas futuras

Finalmente, se indican futuras ĺıneas de investigación que permiten extender
el trabajo iniciado en esta Tesis Doctoral:

• En este trabajo de investigación se han presentado y aplicado diferen-
tes modelos de medida, pero quizás el más interesante de ellos es el
modelo h́ıbrido. Por ello, consideramos interesante extender el análisis
realizado aqúı, con el fin de conocer las ventajas que proporciona las
distintas combinaciones de medidas (no sólo las dos mostras aqúı como
ejemplo de dicho modelo).

• El funcionamiento del método de localización independiente del mo-
delo presentado aqúı, se ha probado en es escenarios que podŕıamos
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considerar sencillos, en los que no existen obstáculos. Una extensión
de este trabajo podŕıa ser la implementación de simulaciones en esce-
narios más realistas donde los sensores no tuvieran una visión directa
del blanco. Esta ampliación de la investigación permitiŕıa comprender
mejor el funcionamiento de dicho algoritmo.

• La selección de sensores analizada en este trabajo se basa en la opti-
mización de un único objetivo, el error de estimación en la posición del
blanco. Sin embargo, los algoritmos de optimización utilizados (PSO
y GA) y otros muchos existentes en la literatura, presentan la posibili-
dad de realizar una optimización multiobjetivo. La implementación de
esta mejora permitiŕıa llevar a cabo la selección de sensores basándonos
en múltiple parámetros, y tener en cuenta aspectos muy interesantes
como la enerǵıa disponible en cada dispositivo o la conectividad.
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Chapter 1

Introduction

This chapter introduces the problem approach and the motivation, and for-
mulates the objectives of this thesis. Moreover, the outline of the dissertation
is described as well as the main contributions.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) are a technology that has attracted con-
siderable research interest over the past few years [1, 109]. Recent advances
in wireless communications and electronics have enabled the development of
low-cost, low-power and multi-functional sensors that are small in size and
communicate in short distances. These sensors, networked through wireless
links and deployed in large numbers, provide unprecedented opportunities
for monitoring and controlling homes, cities, and the environment.

By definition a Wireless sensor network is a large-scale, ad hoc, multi-
hop, unpartitioned network of largely homogeneous, tiny (hardly noticeable),
resource-constrained, low-complexity, mostly immobile (after deployment)
sensor nodes that would be randomly deployed in the area of interest and
which communicate in short distance either directly or through other nodes
by a wireless medium [91].

A sensor node is a low power device that is capable of (1) interacting
with its environment through various sensors, (2) processing information
locally, and (3) communicating this information wirelessly with its neigh-
bors. This device typically consists of three components and can be either
an individual board or embedded into a single system: wireless modules or
motes which possess the communication capabilities and the programmable
memory where the application code resides; a sensor board is mounted on
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Figure 1.1: A sensor node (Telos) developed by researchers at UC Berkeley, taken
from [86].

the mote and is embedded with multiple types of sensors; and a program-
ming board which provides multiple interfaces for connecting the motes to
PC/laptop. Figure 1.1 shows a typical sensor node (Telos mote) developed
by researchers at University of California Berkeley.

WSNs make use of many different types of sensors, e.g. magnetic, ther-
mal, acoustic, etc., which are able to monitor a wide variety of ambient
conditions that include the following [25]: temperature, humidity, pressure,
speed, direction, movement, light, soil makeup, noise levels, the presence or
absence of certain kinds of objects, and mechanical stress levels on attached
objects. As a result, a broad range of applications are possible: homeland
security, groundbased monitoring of both land and water [14], intelligence
gathering for defense, environmental monitoring, urban warfare, weather
and climate analysis and prediction, biomedical health monitoring [79], bat-
tlefield monitoring and surveillance, monitoring of seismic acceleration [31].

Even though WSNs have characteristics that make them highly desir-
able for a range of applications they have their own design and resource
constraints. Some of the more restrictive resource constraints are the lim-
ited amount of energy, the short communication range, the low bandwidth,
and the limited processing and storage capabilities. Otherwise the design
constraints are application dependent and are based on the monitored en-
vironment which plays a key role in determining the size of the network,
the deployment scheme, and the network topology. The size of the network
varies with the monitored environment. For indoor environments, fewer
nodes are required to form a network in a limited space whereas outdoor
environments may require more nodes to cover a larger area. An ad hoc
deployment is preferred over planned deployment when the environment is
inaccessible by humans or when the network is composed of hundreds to
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Figure 1.2: Localization and tracking problem in an environment infrastructured
with a wireless sensor network.

thousands of nodes. Obstructions in the environment can also limit com-
munication between nodes, which in turn affects the network connectivity.

Research in WSNs aims to meet the above constraints by introducing
new design concepts, creating or improving existing protocols, building new
applications, and developing new algorithms.

1.2 Localization and Tracking in WSNs

Knowledge of the position of each of the nodes of a WSN is crucial in most
WSN applications as the collected information needs to be associated to a
physical phenomenon happening in a particular place and time. This prob-
lem is known in literature as the localisation problem [93]. Moreover, WSNs
are frequently used for object tracking in a surveillance area, an application
that also requires knowledge of the position of the WSN nodes. These re-
quirements motivate the development of efficient localization protocols for
WSNs.

The aim of localization and tracking in WSN infrastructured environ-
ments is the estimation of the position of targets, (localization problem,
Figure 1.2(a)) and/or their trajectories (tracking problem, Figure 1.2(b))
from the field measurements available at a set of reference nodes located at
known positions in the sensed area.

Although localization and tracking are usually handled as distinct prob-
lems, the definition of a trajectory can be described as the solution of a set of
localization problems at successive time instants. From an algorithmic view-
point, the main difference between the localization problem and the tracking
one is that localization is a “one-time” detection procedure where the qual-
ity of the final solution (i.e., the accuracy of the estimation of the target
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location) is the only issue, while tracking is a “on-line” procedure where the
fast processing is an additional constraint in real-time applications.

Many existing systems and protocols attempt to solve the problem of
determining a target’s or node’s location within its environment [72]. WSN
localization protocols can be broadly classified into two categories [4, 60]:

• Range-based localization protocols ⇒ The range-based approaches ex-
ploit range information (distance or angle estimates) for computing the
location.

• Range-free localization protocols ⇒ The range-free methods do not
need absolute range information for distance estimation. They use the
number of hops between a pair of nodes as a distance metric. The
accuracy of range-free methods is lower than the range-based ones but
they satisfy the minimum requirements for many applications.

The researchers have come up with a variety of different localization
approaches according to the nature of the given problem. These approaches
differ in the assumptions that they make about their respective network and
device capabilities. These are related to device hardware, signal-propagation
models, timing and energy requirements, network makeup (homogeneous
vs. heterogeneous), the nature of the environment (indoor vs. outdoor),
node or beacon density, timing requirements, communication costs, error
requirements, and device mobility. In spite of the research efforts many
problems still remain open in the field of localization.

1.2.1 Challenges in Localization and Tracking

WSNs pose many technical problems in the areas of data processing, com-
munication, and sensor management. Due to the harsh, uncertain and dy-
namic environments in which WSNs are used, they pose additional technical
challenges as the ones presented bellow:

Network Discovery

Knowledge of the network is essential for a sensor in the network to operate
properly. Each node needs to know the identity and location of its neighbors
to support processing and collaboration. In planned networks, the topology
of the network is usually known a priori. For ad hoc networks, the network
topology has to be constructed in real time, and updated periodically as
sensors fail or new sensors are deployed [57]. In addition to the knowledge
of the topology, each sensor also needs to know its own location [43]. When
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self-location by GPS is not feasible or too expensive, other means of self-
location, such as relative positioning algorithms, have to be provided.

Network Protocol and Routing

The network must deal with resources (energy and bandwidth) that are dy-
namically changing, and the system should operate autonomously, changing
its configuration as required. Since there is no planned connectivity in ad
hoc networks, connectivity must emerge as needed from the algorithms and
software. Since communication links are unreliable and shadow fading may
eliminate links, the software and system design should generate the required
reliability. This requires research into issues such as network size or the
number of links and nodes needed to provide adequate information for the
localization task.

Collaborative Signal and Information Processing

The nodes in a WSN collaborate to collect and process data to generate
useful information. Collaborative signal and information processing over a
network is a new area of research and is related to distributed information
fusion. Important technical issues include the degree of information shar-
ing between nodes and how nodes fuse the information from other nodes.
Processing data from more sensors generally results in better performance
but also requires more communication resources (and, thus, energy). There-
fore, one needs to consider the multiple trade-offs between performance and
resource utilization in collaborative signal and information processing [83].

Sensor networks are frequently used in the detection, tracking, and clas-
sification of targets [96]. Data association is an important problem when
multiple targets are present in a small region. Each node must associate
its measurements of the environment with individual targets. In addition,
targets detected by one node have to be associated with targets detected by
other nodes to avoid duplicated targets and enable fusion. Thus, distributed
data association is also a trade-off between performance and resource uti-
lization, requiring distributed data association algorithms tailored to sensor
nets.

Physical Layer Measurements

Most localization protocols rely on ranging techniques for localization. These
techniques provide local information in terms of distance or orientation
related to the neighbors of a node. This local information can then be
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combined to provide location estimates. Ranging techniques are based on
message exchanges between nodes in the network and corresponding signal
strength or timing measurements, which can be converted into distance mea-
surement. In practice, these distance measurements can result in a variable
distance error when the signal finds obstacles on its way.

1.3 Contributions

This thesis is mainly concerned with three different localization and track-
ing problems. The first problem is the design and deployment of sensor
networks for localization applications. The second one is the problem of
target localization in WSN when the measurement model is not accurate
or unavailable (also known as model-independent localization). Finally, the
third problem is related to the optimization of sensor selection for tracking
applications.

Specifically, the main contributions of this work can be summarized as
follows:

• the development of a priori analysis tools for localization on sensor
networks based on the computation of lower bounds on the estimators,

• the development of a novel model-independent localization method for
single or multiple targets, and

• the application of optimization algorithms for the selection of sensors
via the use of a lower bound of estimators as a quality measure.

1.3.1 Design and Deployment of WSN for Localization

Sensor deployment is a critical issue as it affects cost, detection, and local-
ization qualities of a wireless sensor network. There have been some research
efforts on deploying sensors from different points of view, such as connectiv-
ity [106], target or event detection [18], and coverage [88]. In these works,
sensors are usually deployed in a way that ensure certain requirements of
connectivity or coverage. However, in the context of target localization, we
believe it is more convenient to deploy the sensors in order to obtain the
best estimation of the target position. Therefore, in this work we suggest an
analysis of the deployment from the standpoint of the error in the position
estimation. This analysis provides knowledge about the behavior of the sys-
tem without a complete deployment. It also provides essential information
to select fundamental parameters properly.
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In order to perform this analysis, we propose the application of a variant
of the Cramér-Rao lower bound (CRB), the Modified Cramér-Rao Bound,
in a sensor network. We develop a complete formulation of the modified
information matrix (MFIM) and MCRB for the most common measure-
ment models, such as RSS, ToA and AoA. In addition, this formulation is
extended for heterogeneous models that combine different types of measure-
ment models.

1.3.2 Model-Independent Localization

The problem of target localization encompasses many of the challenging is-
sues which commonly arise in WSN [111]. Consequently, many algorithms
have been proposed in the literature each one oriented towards solving these
issues. Nevertheless, it has been seen that the localization performance of
the above methods relies heavily on the availability of an accurate knowl-
edge regarding the observation model. When measurement model errors are
present, their target localization accuracy is degraded significantly.

To overcome this problem, we propose a method for applications where
the measurement model may be unknown or incomplete, i.e. a model-
independent localization method. To do so, we study the localization task
as a spatial interpolation problem based on the samples obtained by the
sensors. In particular, we apply radial basis function (RBF) interpolation
to evaluate the measurement function in the entire surveillance area and to
estimate de target position.

1.3.3 Optimization of Sensor Selection for Target Tracking

Sensor networks are usually intended to last for long periods of time (months
or even years). However, due to the limited energy available on board, sen-
sors cannot remain active continuously because their energy would be de-
pleted quickly leading to its death. To prolong the network lifetime, sensors
alternate their state between active and idle. The decision of which sensor
should be activated is based on a variety of factors depending on the algo-
rithm or the sensor application: residual energy, required coverage, or the
type of information required.

Here we investigate the centralized selection of sensors in target-tracking
applications over huge networks where a large number of randomly placed
sensors are available for taking measurements. Specifically, we focus on the
application of optimization algorithms for the selection of sensors using a
variant of the CRB, the Posterior Cramér-Rao Bound (PCRB), as a quality
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measure. To do so, we analyze, and compare, three optimization algorithms:
a genetic algorithm (GA), the particle swarm optimization (PSO), and a new
discrete variant of the cuckoo search algorithm (CS). In addition, we propose
local-search versions of the previous optimization algorithms that provide a
significant reduction of the computation time.

1.4 Thesis Organization

This thesis is divided into six chapters, being Chaper 1 this Introduction:

• Chapter 2 provides the necessary mathematical and conceptual back-
ground required to understand the rest of the thesis and it divided
in three sections. The first section models the network explaining its
composition, the sensors’ oberservation model and the target dynam-
ics. Later on, a review of the main solutions to the problems of target
localization and tracking is presented. Finally, the CRB is described,
which is often used to analyzed the theorical performance of an esti-
mator.

• Chapter 3 proposes the application of the MCRB in a sensor network
to perform a prior analysis of the system operation in the localization
task. This chapter is divided in five sections. We first introduce the
problem, state the observation models and explain in detail differents
lower bounds of the estimator, as the CRB and its modified version.
Later on a complete formulation of the MCRB is developed for different
measurement models. The next sections provide a study based on
simulated results and there is a final section with some concluding
remarks.

• Chapter 4 develops a new model-independent localization method based
on the interpolation techniques. First, we present the network system
explaining its composition, the sensors’ oberservation model and the
target dynamics. Next we explain the spatial interpolation problem
and its use in localization tasks. Later, we introduce the proposed
algorithm based on RBF for the localization of single and multiple
targets. Finally, a simulation study is presented to validate the pro-
posed algorithm.

• Chapter 5 is focused on the selection of sensors for target localization
and tracking under nonlinear and nongaussian dynamic conditions.
The first section describes the system model and the applied tracking
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algorithm. In the next section, we define the sensor selection problem
and its solution by means of optimization methods. We also present
the PCRB as the performance-based optimization criteria. Later on
we analyze, and compare, three optimization algorithms: GA, PSO,
and a new discrete-variant of the CS algorithm. We then move on to
propose local-search versions of the previous optimization algorithms
that provide a significant reduction of the computation time. Finally,
we provide a simulation study and some concluding remarks.

• Chapter 6 summarizes the thesis contributions and presents some pos-
sible future research lines.
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Chapter 2

Localization and Tracking
Strategies

In this chapter we present some background material needed to understand
the rest of this work. First, we present mathematical models for the de-
scription of the network, the sensor oberservation functions and the target
dynamics. Later on, we present a review of the main existing solutions to
the problems of target localization and tracking. Finally, we describe the
Cramér-Rao Lower Bound, which is often used to analyzed the theorical
performance of an estimator.

2.1 Network Model

We define as pt = [xt, yt]
T , the position of a target at time instant t,

where xt and yt are the 2D coordinates of the position in the surveil-
lance area. The network responsible for the localization task consists of
a control unit (CU) and N sensor nodes. The positions of the sensors
xsi = [xsi , ysi ]

T , i = 1, . . . , N are fixed. The sensors take periodic ob-
servations to detect the existence of a target signal in its vicinity (such as
temperature, contamination level, physical movements, etc.) and transmit a
locally processed information to the CU. Each sensor has a processor, mem-
ory, and hardware that allow limited signal processing, data compression,
and wireless networking operations. The CU is responsible for locating and
tracking the target based on the observations sent by the sensors and other
geographical information.
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2.1.1 Sensor Deployment

WSNs offer the ability to monitor real-world phenomena in detail and at
large scale by embedding a wireless network of sensor nodes into the real
world. Here, deployment refers to the physical positioning of sensors in a
real-world scenario. Due to the importance of this step, numerous works
focus on the enhancement of the deployment process trying to, among other
things, reduce the time required and the energy consumed.

To sum up, the existing deployment strategies can be broadly classified
into two categories: deterministic and random. In deterministic deployments
sensors are manually placed, in most cases, in a grid-based layout. On
the other hand, in random deployments, sensors might be strewn from a
helicopter or deployed using drones.

Using a deterministic deployment strategy, access to the monitored field
must be granted and the number of required nodes for full converge can
be determined. Therefore, it is suitable for deployments where the coverage
and/or the sensor networks lifetime are maximized. In addition, the number
of required sensors to monitor a given area in a deterministic deployment,
in most cases, is lower [110]. However, the monitored field is not always
friendly or accessible; a hostile field might force random deployment.

This dissertation is focused on the random deployment of sensors. Specif-
ically, we consider that the sensors are placed following a uniform distri-
bution within the surveillance region, Rs. Consequently, the probability
density function (pdf) of a sensor location, p (xsi), is given by the following:

p (xsi) =
1

|Rs|
(2.1)

where |Rs| denotes the area of the surveillance region.

2.1.2 Measurement Model

A measurement from a target at the i−th sensor at time t is represented as:

zi,t = ht(pt,xsi) + ni (2.2)

where h(·) is a function of the target and i-th sensor position and ni is is the
uncertainty factor which is usually modeled as an additive white gaussian
noise (AWGN), ni ∼ N

(
0, σ2

ni

)
. For simplicity, it is assumed that the noise

variance is the same at every node, i.e. σ2
ni

= σ2
n.

In order to perform a more accurate localization, the sensors of the WSN
collect the information that is fused and processed by the CU. Therefore, a
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matrix representation of the collected measurements, zt, is very useful:

zt ∼ N (µt,Rt) (2.3)

µt = [µ1,t, . . . , µM,t]
⊤ = [ht (pt,xs1) , . . . , ht (pt,xsM )]⊤

Rt = σ2
nIM

being M , the subset of sensors that participates in the target location
(M ∈ N) and IM , the identity matrix of size M × M . Note that as the
uncertainty factor, ni, is modeled as AWGN, the collected measurements
follow a multivariate normal distribution.

Next, we describe the three main ranging techniques in WSNs, namely
received signal strength (RSS), time of arrival (ToA) and angle of arrival
(AoA). The matrix representation of these measurement models is presented
in Appendix A.

Received Signal Strength

The most common observation model is based on RSS measurements. Since
each sensor node is equipped with a radio and in most cases is able to report
the received signal strength of an incoming packet, this method has minimal
hardware requirements. The main idea is to estimate the distance from a
transmitter to a receiver using the following information:

• the power of the received signal,

• knowledge of the transmitted power, and

• the path-loss model.

In this scheme, the power of the received signal is communicated by the
transceiver circuitry through the RSSI (Received Signal Strength Indicator),
which is a standard feature of the communication system, thus reducing the
sensor cost and having a negligible impact on the local power consumption
of the device [64][81].

The RSS measurement from a target at the i−th sensor at time t is
represented by zRSS

i,t and is formulated as:

zRSS
i,t = PT − 10γ log10 ‖pt − xsi‖+ nRSS

i (2.4)

where PT is a constant associated to the transmitted power and the antenna
gains of the sensor, γ is the path loss exponent related to the environment
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(typically between 2 and 4), ‖·‖ is the Euclidean norm and nRSS
i is the un-

certainty factor which is usually modeled as AWGN, nRSS
i ∼ N

(
0, σ2

nRSS

)
.

Since the transmitted power, PT , is usually fixed and known by the sensors,
the RSS measurement can be used to estimate the distance with an error
proportional to the uncertainty factor, nRSS .

The accuracy of the RSSI-based measurement is limited. Firstly, the
effects of shadowing and multi-path may be severe and require multiple
measurements. In cases where there is no line of sight between the target
and the node, the RSS measurement results in a significant error in distance
estimation.

Another major challenge with the RSSI-based distance measurement is
the difficulty in estimating the parameters for the channel model in (2.4).
While the transmitted power may be fixed for a localization application,
the parameters associated with antenna gains may differ from node to node.
Moreover, γ varies with the environment. Hence, pre-deployment calibration
may be required to estimate these parameters for localization algorithms.

Time-of-Arrival

ToA models rely on accurate measurements of transmission and reception
times of signals between the target and the sensors [40]. These measure-
ments are used to estimate the distance based on the propagation time and
the speed of the signal. Since timing information is used for distance mea-
surements, synchronization is essential for these models.

The ToA measurement from a target at the i−th sensor at time t is
represented by zToA

i,t , and is formulated as follows:

zToA
i,t =

‖pt − xsi‖
v

+ nToA
i (2.5)

where v is the propagation speed and nToA
i is the measurement noise at

sensor i, which is modeled as AWGN, nToA
i ∼ N

(
0, σ2

nToA

)
.

The localization techniques based on ToA observations require very ac-
curate hardware to measure the actual received time of the signals. Any
small error in time measurement can result in large distance estimation er-
rors because of the high propagation speed of RF signals through the air.

Angle-of-Arrival

In addition to signal strength and time, the direction of the received signal
can also be exploited for localization. AoA measurements rely on directional
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antennas or special multiple antenna configurations to estimate the AoA of
the received signal from the target.

The AoA measurement is represented by zAoA
i,t and is defined as the angle

between the i−th sensor and the target [40]:

zAoA
i,t = arctan

(
yt − ysi
xt − xsi

)
+ nAoA

i (2.6)

where arctan(·) is the arctangent function and nAoA
i is the measurement

noise at sensor i, which is modeled as AWGN, nAoA
i ∼ N

(
0, σ2

nAoA

)

AoA models provide high localization accuracy depending on the mea-
surement accuracy. However, higher complexity antenna arrays are required
for direction measurement, which increases the cost. Furthermore, antenna
arrays require a certain spacing to provide spatial diversity and to accurately
measure the AoA. Considering the size of typical sensors, such a separation
may not be feasible, which makes AoA models impractical for certain WSNs.

Heterogeneous measurement

The heterogeneous measurement models (HM) are based on devices with
multiple sensing capabilities, which allow the combination of different type of
measurements to achieve an improvement (e.g, a more accurate estimations
or more complete information about a sensed event).

Articles like [30] or [13] apply heterogeneous models to localization prob-
lems and demonstrate their remarkable improvements compared to the use
of individual measurement models. The general formulation for a heteroge-
neous model is as follows:

zHM ∼ G
(
µHM ,ΣHM

)
(2.7)

µHM =
[
µMeasure1 , · · · ,µMeasureC

]T

ΣHM =




ΣMeasure1 · · · 0
...

. . .
...

0 · · · ΣMeasureC




where C is the number of measurements to be combined.

2.2 Target Model

The primary objective of target localization and tracking is to estimate the
position or trajectory of a target. Although a target is almost never really
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a point in space and the information about its orientation is valuable for
tracking, a target is usually treated as a point object, especially in target
dynamics models.

Almost all target tracking methods are model-based. They assume that
the target motion can be represented by some known mathematical models.
The most commonly used of such models are those known as state-space
models, which have the following form:

xt+1 = ft (xt,ut) (2.8)

where xt is the target state; ft is, a possibly, nonlinear function of the state
xt−1 and ut is an i.i.d. process noise sequence.

It is well known that the state of a target moving in a two dimmensional
plane can be fully characterized by its position, velocity and acceleration
vector. For instance, the general form of the target state vector can be
expressed as:

xt =



pt

vt

at


 (2.9)

where pt = [xt, yt]
T is the position vector, vt = [ẋt, ẏt]

T is the velocity
vector, at = [ẍt, ÿt]

T is the acceleration vector, all three defined in a two
dimemsional space. Depending on the target dynamics, the components of
the state vector can vary, i.e. the state vector of a motionless target can be
described just by its position vector.

This dissertation is focused on models which are linear in the state dy-
namic and non-linear in the measurement (as the ones presented in Section
2.1.2). The linear counterpart of the above equation is the following:

xt+1 = Ftxt +Gtut (2.10)

where Ft is the transition matrix and Gt is the noise gain.

Target motions are normally classified into two classes: maneuvering and
nonmaneuvering. A nonmaneuvering motion follows a straight line at a con-
stant velocity, sometimes referred to as uniform motion. Loosely speaking,
all the other motions belong to the maneuvering mode.

2.2.1 Nonmaneuvering Target Dynamic Model

When a target is treated as a static object, the nonmaneuvering motion is
thus described as vt = ṗt = ut, where ut is a white noise process, with a
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small effect on xt, that accounts for unpredictable modeling errors due to
turbulence, etc.

The corresponding state-space model with state vector, xt = [pt]
T =

[xt, yt]
T , is given by:

xt+1 =

[
1 0
0 1

]

︸ ︷︷ ︸
Ft

xt +

[
T 0
0 T

]

︸ ︷︷ ︸
Gt

ut (2.11)

where Ft is a transition matrix that depends on the time-discretization pe-
riod T , ut is a 2× 1 real-valued Gaussian vector with zero mean and known
covariance matrix, Σu = σ2

uI2. Note the transition matrix Ft is not time
dependent, so that the target position coincides with the previous instant
except for the perturbations introduced by the noise process.

In the literature, it is usually considered that the perturbation introduced
by the noise process is almost negligible. Consequently, a simplification of
the state-space model is done, because it can be considered time invariant,
xt = xt+1.

2.2.2 Maneuvering Target Dynamic Model

The maneuvering motion models assume that the dynamic movement has an
unknown acceleration that can be modeled as a random process. The models
proposed in the literature can be classified into three groups depending on
the assumed random process: white noise models, Markov process models
or semi-Markov jump process models. For simplicity, this dissertation only
considers the study of white noise models. In the sequel, we describe two
commonly used white noise models for target tracking.

White Noise Acceleration Model (WNA)

The simplest model to describe a target maneuver is the so-called white noise
acceleration model [5]. It assumes that the target acceleration ak = p̈k is
an independent process:

at = p̈t = ut (2.12)

where ut is a white noise process with zero mean and covariance matrix Σu.

This model is used when the maneuver is relatively small. Its state
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equation is:

[
pt+1

vt+1

]

︸ ︷︷ ︸
xt+1

=




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
Ft

[
pt

vt

]

︸︷︷︸
xt

+




1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T




︸ ︷︷ ︸
Gt

ut (2.13)

where xt represents the position and velocity in the previous time step and
ut is a 4×1 real-valued gaussian vector with zero mean and known covariance
matrix, Q = σ2

uI4. As a result, the noise term Gut is a 4× 1 real Gaussian
vector, with zero mean and covariance matrix, Σ = GtQG⊤

t .

Wiener Process Acceleration Model

The second simplest model is the so-called Wiener process acceleration
model [5]. It assumes that the acceleration is a Wiener process. It is also
referred to simply as the constant acceleration (CA) model.

For the WPA model, the state equation is given by:



pt+1

vt+1

at+1




︸ ︷︷ ︸
xt+1

=




1 0 T 0 1
2T

2 0
0 1 0 T 0 1

2T
2

0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
Ft



pt

vt

at




︸ ︷︷ ︸
xt

+




1
2T

2 0 0 0 0 0
0 1

2T
2 0 0 0 0

0 0 T 0 0 0
0 0 0 T 0 0
0 0 0 0 1 0
0 0 0 0 0 1




︸ ︷︷ ︸
Gt

ut

(2.14)
where xt represents the position, velocity and acceleration in the previous
time step and ut is a 6 × 1 real-valued gaussian vector with zero mean
and known covariance matrix, Q = σ2

uI6. As a result, the noise term Gut

is a 6 × 1 real Gaussian vector, with zero mean and covariance matrix,
Σ = GtQG⊤

t .

2.3 Localization Strategies

There are two models one can use in the estimation of a parameter, xt:

• Nonrandom ⇒ There is an unknown true value xt. This is also called
the non Bayesian or Fisher approach.
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• Random ⇒ It is called the Bayesian approach. The parameter is a
random variable with a prior (or a priori) pdf, p (xt), from which one
can obtain its posterior pdf using the Bayes’ formula:

p (xt|Zt) =
p (Zt|xt) p (xt)

p (Zt)
∝ p (Zt|xt) p (xt) (2.15)

where Zt is the measurements up to time t. The posterior pdf can be
used in several ways to estimate xt. Section 2.4 presents some of the
most important Bayesian approaches.

This section is focused on the Fisher approaches, which do not have prior
pdf associated with the parameter and thus one cannot define a posterior
pdf. In this case, one has the likelihood function of the parameter, p (zt|xt)
as a measure of how likely a parameter value is given the obtained observa-
tions. The likelihood function serves as a measure of the evidence from the
data.

A common method of estimating nonrandom parameters is the maximum
likelihood (ML) estimator that maximizes the likelihood function:

x̂ML
t = argmax

xt

p (zt|xt) (2.16)

The ML estimators have many desirable properties, especially for large
samples, such as sufficiency (complete information about the parameter of
interest contained in its ML estimator), consistency (true parameter value
that generated the data recovered asymptotically) and efficiency (lowest-
possible variance of parameter estimates achieved asymptotically). However,
particularly for high dimensional data, the likelihood can have many local
maxima. Thus, finding the global maximum can be a major computational
challenge.

2.3.1 Least Squares (LS)

Another common estimation procedure for nonrandom paramters is the least
squares (LS) method. This method estimates parameters by minimizing the
squared discrepancies between observed data and their expected values.

Given a set of M measurements, {zi,t}Mi=1, the LS estimator of xt is:

x̂LS
t = argmin

xt

{
M∑

i=1

[zi,t − ht (xt)]
2

}
(2.17)
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The criterion in (2.17) makes no assumptions about the measurement errors
or noises, ni. If these are independent and identically distributed zero-
mean Gaussian random variables, ni ∼ N

(
0, σ2

ni

)
, then the LS estimator

coincides with the ML estimator under these assumptions. In this case, the
observation model can be expressed as:

zi,t ∼ N
(
ht (xt) , σ

2
ni

)
(2.18)

and accordingly, the likelihood function of xt is then:

p (zt|xt) =
1√
2πσ2

n

exp−
∑M

i=1 [zi,t − ht (xt)]
2

2σ2
n

(2.19)

and the minimization of (2.17) is equivalent to the maximization of (2.19).

Linear Least Squares

When the parameter xt appears linearly in the measurement expression then
the least squares estimation problem can be solved in closed form, and it is
relatively straightforward to derive the statistical properties for the resulting
parameter estimates.

Let assume that the measurement model in our system is:

zt = Htxt + nt (2.20)

where Ht is the measurement matrix and nt is the error vector which is
modeles as a AWGN with covarianze matrix Rt. So, the cuadratic error is
computed as:

Jt = [zt −Htxt]
⊤R−1

t [zt −Htxt] (2.21)

The LS estimator that minimizes (2.21) is obtained by setting its gradient
with respect to x to zero, which yields:

x̂LS
t =

[
H⊤

t R
−1
t Ht

]−1
H⊤

t R
−1
t zt (2.22)

assuming the required inverse exits.

Non-linear Least Squares (NLS)

Non-linear least squares (NLS) is the form of least squares analysis used
to fit a set of M observations with a model that is non-linear in unknown
parameters xt. The basis of the method is to approximate the model by a
linear one and to refine the parameter by successive iterations.
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Let assume that the measurement model in our system is:

zt = ht (xt) + nt (2.23)

where ht (xt) is a nonlinear function of the state xt and nt is the error vector
which is modeles as a AWGN with covarianze matrix Rt.

This nonlinear model can be approximate by a linear one performing a
Taylor expansion of ht around a chosen initial value:

zt ≃ ht (x
∗
t ) +Ht (xt − x∗

t ) + nt (2.24)

where Ht is derivative matrix of ht evaluated in the initial point x∗
t :

Ht =
∂ht

∂xt

∣∣∣∣
xt=x∗

t

(2.25)

Therefore, the measurement residual, ∆zt, can be expressed in terms of the
error in the state estimate, ∆xt = xt − x∗

t , as follows:

∆zt = zt − ht (x
∗
t ) = Ht∆xt + nt (2.26)

Comparing ∆zt in (2.26) with the linear expresion presented in (2.20)

and the normal equations for LS of (2.22), the estimator ∆̂x of the increment
∆xt can be obtained as:

∆̂xt =
(
H⊤

t R
−1Ht

)−1
H⊤

t R
−1∆zt (2.27)

The solution of this NLS problem requires an iteration process to obtain
a good estimation of xt, or ∆xt. Using this approach, the solution point
x∗
t is update to x∗

t + ∆̂xt at each iteration. This process is repeated until
a convergence test is satisfied. A convenient test is to stop iteration when
the the elements in ∆̂xt become small, or when the decrese of the sum
of weighted squares (SOS) of residuals is less than some proportion of the
previous value, being the SOS:

SOS =
[
∆zt −Ht∆̂xt

]⊤
R−1

[
∆zt −Ht∆̂xt

]
(2.28)

2.4 Tracking Strategies

From a Bayesian perspective, the objective of the tracking problem is to
recursively calculate some degree of belief in the state xt at time t, taking
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different values, given the data Zt up to time t. Thus, it is required to
construct the pdf p (xt|Zt) and it is assumed that the initial pdf p (x0|Z0) =
p (x0) of the state vector, which is also known as the prior, is available ( Z0

being the set of no measurements).
The process of obtaining the pdf p (xt|Zt) consists in two steps performed

in a recursive mmaner: prediction and update [90]. Assume that the required
pdf p (xt−1|Zt−1) at time t−1 is available. The prediction step involves using
the knowledge of the system model to obtain the prior pdf of the state at
time t:

p (xt|Zt−1) =

∫
p (xt|xt−1) p (xt−1|Zt−1) dxt−1 (2.29)

At time step t, a measurement becomes available zt, and this may be
used to update the prior (update step) via Bayes’ rule:

p (xt|Zt) =
p (zt|xt,Zt−1) p (xt|Zt−1)

p (zt|Zt−1)
(2.30)

∝ p (zt|xt,Zt−1) p (xt|Zt−1) (2.31)

where the (omitted) normalizing constant:

p (zt|Zt−1) =

∫
p (zt|xt) p (xt|Zt−1) dxt (2.32)

The recurrence relations (2.29) and (2.31) form the basis for the optimal
Bayesian solution. This recursive propagation of the posterior density is
only a conceptual solution in that, in general, it cannot be determined ana-
lytically. Solutions do exist in a restrictive set of cases, i.e. the Kalman filter
described in the next section [53, 54]. Here we also describe how, when the
analytic solution is intractable, extended Kalman filters, unscended Kalman
filters and particle filters approximate the optimal Bayesian solution.

2.4.1 Kalman Filters

Kalman Filter

The Kalman filter assumes that the posterior density at every time step is
Gaussian and, hence, parameterized by a mean and covariance.

If p (xt−1|Zt−1) is Gaussian, it can be proved that p (xt|Zt) is also Gaus-
sian, provided that certain assumptions hold [44]:

• ut and nk are drawn from Gaussian distributions of known parameters.

• ft (xt,ut) is known and is a linear function of xt and ut.
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• ht (xt,nt) is a known linear function xt and nt.

So, the system model can be rewritten as:

xt+1 = Ftxt +Gtut (2.33)

zt = Htxt + nt

where Ft and Ht are knwon matrices defining the linear functions. The
noise sequences, ut and nt, have zero mean and are independent. Their
covariances are, respectively, Qt y Rt.

The KF algorithm can be viewed as the following recursive relationship:

p (xt−1|Zt−1) ∼ N
(
xt−1;mt−1|t−1,Pt−1|t−1

)

p (xt|Zt−1) ∼ N
(
xt;mt|t−1,Pt|t−1

)
(2.34)

p (xt|Zt) ∼ N
(
xt;mt|t,Pt|t

)

where

mt|t−1 = Ftmt−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊤ +GtQtG

⊤
t (2.35)

mt|t = mt|t−1 +Kt

(
zt −Htmt|t−1

)

Pt|t = Pt|t−1 −KtHtPt|t−1

and where N (x;m,P ) is a Gaussian density with argument x, mean m and
covariance P , and

Sk = HtPt|t−1H
⊤
t +Rt

Kt = Pt|t−1H
⊤
t S

−1
t (2.36)

are the covariance of the innovation term zt −Htmt|t−1, and Kalman gain,
respectively. Table 2.1 sumarizes the KF algorithm for linear state-space
models.

This is the optimal solution to the tracking problem if the assumptions
hold. The implication is that no algorithm can ever do better than a Kalman
filter in this linear Gaussian environment.

Extended Kalman Filter

Many estimation problems are nonlinear and/or non-Gaussian, therefore the
Kalman filter cannot be applied. A very popular approach to surmount this
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Table 2.1: Kalman filter (KF)

• At t = 0:

– Assign a mean vector m0 and a covariance matrix P0 to the first
time instant t = 0.

• For t > 0:

1. Compute the predicted state vector, mt|t−1, and predicted co-
variance matrix, Pt|t−1,

mt|t−1 = Ftmt−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊤ +GtQtG

⊤
t

2. Collect a new observation zt.

3. Compute the covariance of the innovation term St, the Kalman
gain Kt, and the posterior mean vector mt|t, and covariance ma-
trix Pt|t:

Sk = HtPt|t−1H
⊤
t +Rt

Kt = Pt|t−1H
⊤
t S

−1
t

mt|t = mt|t−1 +Kt

(
zt −Htmt|t−1

)

Pt|t = Pt|t−1 −KtHtPt|t−1

24



problem is the lineralization of the state space model in order to later apply
the Kalman filter to it. This approach is referred to as the extended Kalman
filter (EKF) [2, 53].

Consider the general form of the system model:

xt+1 = ft (xt) +Gtut (2.37)

zt = ht (xt) + nt

where ft (·) and ht (·) are nonlinear functions. The noise sequences, ut and
nt, have zero mean and are independent. Their covariances are, respectively,
Qt y Rt.

The EKF is based on the approximation of p (xt|Zt) by a Gaussian:

p (xt−1|Zt−1) ∼ N
(
xt−1;mt−1|t−1,Pt−1|t−1

)

p (xt|Zt−1) ∼ N
(
xt;mt|t−1,Pt|t−1

)
(2.38)

p (xt|Zt) ∼ N
(
xt;mt|t,Pt|t

)

where

mt|t−1 = ft
(
mt−1|t−1

)

Pt|t−1 = F̂tPt−1|t−1F̂
⊤
+GtQtG

⊤
t (2.39)

mt|t = mt|t−1 +Kt

(
zt − ht

(
mt|t−1

))

Pt|t = Pt|t−1 −KtĤtPt|t−1

and where F̂t and Ĥt are local linearizations of these nonlinear functions:

F̂t =
dft (x)

dx

∣∣∣∣
x=mt−1|t−1

Ĥt =
dht (x)

dx

∣∣∣∣
x=mt|t−1

(2.40)

Sk = ĤtPt|t−1Ĥ
⊤
t +Rt

Kt = Pt|t−1Ĥ
⊤
t S

−1
t

The EKF as described above utilizes the first term in a Taylor expansion of
the nonlinear function. Table 2.2 sumarizes the EKF algorithm for linear
state-space models.

This algorithm always approximates p (xt−1|Zt−1) to be Gaussian. If
the true density is non-Gaussian, then a Gaussian can never describe it
well. In such cases, particle filters will yield an improvement in performance
in comparison to that of an EKF [3].
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Table 2.2: Extended Kalman filter (EKF)

• At t = 0:

– Assign a mean vector m0 and a covariance matrix P0 to the first
time instant t = 0.

• For t > 0:

1. Compute the linearization of the matrix ft, denoted F̂t, and eval-
uate it at xt−1 = mt−1|t−1.

2. Compute the predicted state vector, mt|t−1, and predicted co-
variance matrix, Pt|t−1, as

mt|t−1 = ft
(
mt−1|t−1

)

Pt|t−1 = F̂tPt−1|t−1F̂
⊤
+GtQtG

⊤
t

3. Compute the linearization of the matrix ht, denoted Ĥt, and
evaluate it at xt = mt|t−1.

4. Compute the covariance of the innovation term St and the
Kalman gain Kt:

Sk = ĤtPt|t−1Ĥ
⊤
t +Rt

Kt = Pt|t−1Ĥ
⊤
t S

−1
t

5. Collect a new observation zt.

6. Compute the filter mean mt|t and covariance matrix Pt|t:

mt|t = mt|t−1 +Kt

(
zt −Htmt|t−1

)

Pt|t = Pt|t−1 −KtHtPt|t−1
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Unescented Kalman Filter

The basic premise behind the unscented Kalman filter is that: it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary
nonlinear function. Instead of linearizing using Jacobian matrices, the UKF
uses a deterministic sampling approach to capture the mean and covariance
estimates with a minimal set of sample points, called sigma points [104].
These sample points completely capture the true mean and covariance of
the posterior density p (xt|Zt), and when propagated through the true non-
linear system, captures the posterior mean and covariance accurately. The
basic premise behind the unscented Kalman filter is that: it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary
nonlinear function. Instead of linearizing using Jacobian matrices, the UKF
uses a deterministic sampling approach to capture the mean and covariance
estimates with a minimal set of sample points, called sigma points [104].
These sample points completely capture the true mean and covariance of
the posterior density p (xt|Zt), and when propagated through the true non-
linear system, captures the posterior mean and covariance accurately.

Specifically, given the state vector at step t − 1, xt, and assuming that
it has a mean value of mt−1|t−1 and covariance Pt−1|t−1, the statistics of xt

can be calculated by using the Unscented Transformation [52], or in other

words by computing the sigma points Xt =
{
X l
t

}L−1

l=0
with corresponding

weights
{
W l
}L−1

l=0
. The complete formulation of the sigma points and their

corresponding weights is presented in Appendix (B).
So, considering the system model presented in (2.37), the UKF approx-

imates the p (xt|Zt) by a Gaussian, as follows:

p (xt−1|Zt−1) ∼ N
(
xt−1;mt−1|t−1,Pt−1|t−1

)

p (xt|Zt−1) ∼ N
(
xt;mt|t−1,Pt|t−1

)
(2.41)

p (xt|Zt) ∼ N
(
xt;mt|t,Pt|t

)

where

mt|t−1 =
L−1∑

l=0

W l ft

(
X l
t−1

)
(2.42)

Pt|t−1 =
L−1∑

l=0

W l
[
ft

(
X l
t−1

)
−mt|t−1

] [
ft

(
X l
t−1

)
−mt|t−1

]⊤
+GtQtG

⊤
t

mt|t = mt|t−1 +Kt

(
zt − ẑt|t−1

)

Pt|t = Pt|t−1 −KtStK
⊤
t
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and where ẑt|t−1 =
∑L−1

l=0 W l ht

(
X l
t|t−1

)
is the predictived observation and

X l
t|t−1 are the propagated sample points X l

t−1 through the nonlinear function,
ft:

X l
t|t−1 = ft

(
X l
t−1

)
l = 1, · · · , L (2.43)

Finally, the Kalman gain Kt and the innovation covariance matrix St are
computed as:

Sk = Pzz +Rt (2.44)

Kt = PxzS
−1
t

with

Pzz =
L−1∑

l=0

W l
[
ht

(
X l
t|t−1 − ẑt|t−1

)] [
ht

(
X l
t|t−1

)
− ẑt|t−1

]⊤
(2.45)

and

Pxz =
L−1∑

l=0

W l
[
X l
t|t−1 −mt|t−1

] [
ht

(
X l
t|t−1

)
− ẑt|t−1

]⊤
(2.46)

Table 2.3 sumarizes the UKF algorithm for linear state-space models.

The UKF is highly efficient and inherits the benefits of the unscented
transform for linearization. For purely linear systems, it can be shown that
the estimates generated by the UKF are identical to those generated by the
Kalman filter. For nonlinear systems the UKF produces equal or better
results than the EKF, where the improvement over the EKF depends on the
state uncertainty and the nonlinearities in ft and ht [98].

2.4.2 Particle Filter (PF)

Sequential Monte Carlo (SMC) methods, or particle filters, [23, 21, 90],
provide approximate solutions to estimation problems, where linearizations
and Gaussian approximations are intractable or would yield too low a per-
formance. Non-Gaussian noise assumptions and incorporation of constraints
on the state variables can also be performed in a natural way. The key idea
is to represent the required posterior density function by a set of random
samples (called particles) with associated weights, and to compute the es-
timates based on these samples and weights. As the number of samples
tends to infinity, the approximation of the posterior distribution given by
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Table 2.3: Unscented Kalman filter (UKF)

• At t = 0: Assign a mean vector m0 and a covariance matrix P0 to the first
time instant t = 0.

• For t > 0:

1. Compute the predicted state vector, mt|t−1, and predicted covariance
matrix, Pt|t−1, as

mt|t−1 =
L−1∑

l=0

W l ft
(
X l

t−1

)

Pt|t−1 =

L−1∑

l=0

W l
[
ft
(
X l

t−1

)
−mt|t−1

] [
ft
(
X l

t−1

)
−mt|t−1

]⊤

+ GtQtG
⊤
t

2. Compute the predicted samples:

X l
t|t−1 = ft

(
X l

t−1

)

3. Compute the predicted measurement:

ẑt|t−1 =

L−1∑

l=0

W l ht

(
X l

t|t−1

)

4. Compute the covariance of the innovation term St and the Kalman gain
Kt:

Pzz =
L−1∑

l=0

W l
[
ht

(
X l

t|t−1 − ẑt|t−1

)] [
ht

(
X l

t|t−1

)
− ẑt|t−1

]⊤

Pxz =

L−1∑

l=0

W l
[
X l

t|t−1 −mt|t−1

] [
ht

(
X l

t|t−1

)
− ẑt|t−1

]⊤

Sk = Pzz +Rt

Kt = PxzS
−1

t

5. Collect a new observation zt.

6. Compute the filter mean mt|t and covariance matrix Pt|t:

mt|t = mt|t−1 +Kt

(
zt − ẑt|t−1

)

Pt|t = Pt|t−1 −KtStK
⊤
t
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the paritcle filter becomes exactly the posterior distribution of the optimal
Bayesian filter.

Considering the general form of the system model presented in (2.37),
the prediction and the update stage for the Bayesian inference are given in
(2.29) and (2.31), and repeated below for convenience:

p (xt|Zt−1) =

∫
p (xt|xt−1) p (xt−1|Zt−1) dxt−1 (2.47)

p (xt|Zt) =
p (zt|xt,Zt−1) p (xt|Zt−1)

p (zt|Zt−1)
(2.48)

The PF provides an approximate solution to the discrete-time recursive
Bayesian estimation problem by updating an approximate description of
the posterior filtering density. The PF approximates the probability density

p (xt|Zt) by a large set of M particles
{
x
(i)
t

}M

i=1
, where each particle has

an assigned relative weight, w
(i)
t , such that all weights sum to unity. The

location and weight of each particle reflect the value of the density in that
region of the state space. The PF updates the particle locations and the
corresponding weights recursively with each new observation.

Often the normalization factor in (2.48), p (zt|Zt−1), is unknown. How-
ever, in the formulation of the PF this factor is not necessary, since it is
suficient to evaluate:

p (xt|Zt) ∝ p (zt|xt) p (xt|Zt−1) (2.49)

where the likelihood p (zt|xt) is calculated from assumed measurement model
(see Section (2.1.2)).

The main idea in the PF is to approximate p (xt|Zt−1) with samples,
according to:

p (xt|Zt−1) ≈
M∑

i=1

w
(i)
t δ

(
xt − x

(i)
t

)
(2.50)

where δ is the delta-Dirac function. Therefore, it is a discrete weighted
approximation to the true posterior, p (xt|Zt−1). The weights are chosen
using the principle of importance sampling [23]. This principle relies on

the following: if the samples x
(i)
t were drawn from an importance density

q (xt|Zt), then the weights in (2.50) are defined by (2.51) to be:

w
(i)
t ∝

p
(
x
(i)
t |Zt

)

q
(
x
(i)
t |Zt

) (2.51)
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Returning to the sequential case, at each iteration, one could have sam-
ples constituting an approximation to p (xt−1|Zt−1) and want to approxi-
mate p (xt−1|Zt−1) with a new set of samples. If the importance density is
chosen to factorize such that:

q (xt|Zt) = q (xt|xt−1,Zt) q (xt−1|Zt−1) (2.52)

where q (xt|xt−1,Zt) is the importance function for xt conditioned upon
xt−1 and Zt, then we can compute the importance function in a recursive
manner:

w
(i)
t ∝

p
(
x
(i)
t |Zt

)

q
(
x
(i)
t |Zt

) ,

∝
p
(
Zt|x(i)

t

)
p
(
x
(i)
t |x(i)

t−1,Zt

)

q
(
x
(i)
t |x(i)

t−1,Zt

)
p
(
x
(i)
t−1|Zt−1

)

q
(
x
(i)
t−1|Zt−1

) ,

∝
p
(
Zt|x(i)

t

)
p
(
x
(i)
t |x(i)

t−1

)

q
(
x
(i)
t |xt−1,Zt

) w
(i)
t−1, (2.53)

where in order to reduce p
(
x
(i)
t |x(i)

t−1,Zt

)
to p

(
x
(i)
t |x(i)

t−1

)
we have taken

into account the fact that the dynamic model spedified by the state space
model in (2.37) is Markov.

Particularly, the choice of q
(
x
(i)
t |x(i)

t−1,Zt

)
= p

(
x
(i)
t |x(i)

t−1

)
, gives the

following update:

w
(i)
t ∝ p

(
Zt|x(i)

t

)
w

(i)
t−1 (2.54)

Resampling

A common problem with the PF is the degeneracy phenomenon, where
after a few iterations, all but one particle will have negligible weight. This
degeneracy implies that a large computational effort is devoted to updating
particles whose contribution to the approximation to p (xt|Zt) is almost zero.

A suitable measure of degeneracy of the algorithm is the effective sample
size Neff introduced by [23]. This measure relies on the calculation of how
many samples in the particle cloud that actually contribute to the support
of the probability density approximation. It is impossible to evaluate the
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expression analytically for Neff , but an approximation is given by:

N̂eff =
1

∑M
i=1

(
w

(i)
t

)2 (2.55)

where w
(i)
t is the normalized weight obtained using (2.53).

One common way to deal with degeneracy is resampling [37]. In resam-
pling, one draws (with replacement) a new set of M particles from the dis-
crete approximation to the distribution p (xt|Zt) provided by the weighted
particles:

p (xt|Zt) =
M∑

i=1

w
(i)
t δ

(
xt − x

(i)
t

)
(2.56)

Resampling is performed when ever the effective sample size Neff drops
below a certain threshold. Note that since resampling is done with replace-
ment, a particle with a large weight is likely to be drawn multiple times and
conversely particles with very small weights are not likely to be drawn at
all. Also note that the weights of the new particles will all be equal to 1

M
.

Thus, resampling effectively deals with the degeneracy problem by getting
rid of the particles with very small weights.

A generic partilce filter is then as described in Table 2.4.

Rao-Blackwellized particle filter

PF in high dimensional state-spaces can be inefficient, because a large num-
ber of samples are needed to represent the posterior. A standard technique
to increase the efficiency of sampling techniques is to reduce the size of the
state-space by marginalizing out some of the variables analytically, this is
called Rao-Blackwellization [12]. Combining these two techniques results in
Rao-Blackwellised particle filter (RBPF) [22, 23].

The key idea of RBPF is to partition the state-space xt into two sub-
spaces, xl,t and xn,t, such as the distribution p (xl,t|xn,t,Zt) can be updated
analytically and efficiently, while the distribution p (xn

t |Zt) is update using
a PF. The justification of this descomposition follows from the chain rule of
probability:

p (xl,1:t,xn,1:t|Zt) = p (xl,1:t|xn,1:t,Zt) p (xn,1:t|Zt) (2.57)

Sampling just xn,1:t will generally require many fewer particles than standard
particle filtering, which would sample both xn,1:t and xl,1:t.
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Table 2.4: Particle Filter

At t = 0: Generate M samples
{
x
(i)
0

}M

i=1
from the initial distribution

p (x0) and initialize the importance weights w
(i)
0 = 1

M
, i = 1, · · · ,M .

For t > 0:

1. For i = 1, . . . ,M :

– Draw x
(i)
t ∼ p(xt|x(i)

t−1).

– Assign the particle a weight, w
(i)
t , according to:

w
(i)
t ∝ p

(
Zt|x(i)

t

)
w

(i)
t−1

2. Calculate total weight: wTotal =
∑M

i=1w
(i)
t .

3. Calculate the normalized weights:

w
(i)
t =

w
(i)
t

wTotal
, i = 1, · · · ,M

4. Compute N̂eff :

N̂eff =
1

∑M
i=1

(
w

(i)
t

)2

5. If N̂eff ≤ Mthreshold resample:

– Draw indices k1, · · · , kM ∈ {1, · · · ,M} according to the

probabilities w
(1)
t , · · · , w(M)

t .

– Set
(
x
(i)
t

)
=
(
x
(ki)
t

)
with probability w

(ki)
t , for i = 1, · · · ,M .

– Set w
(i)
t = 1/M , for i = 1, · · · ,M .
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The second density in (2.57), p (xn,1:t|Zt), can be approximated using
the standard PF. Bayes’ theorem and the Markov property inherent in the
state-sapce model can be used to write this pdf as:

p (xn,1:t|Zt) ∝ p (zt|xn,1:t,Zt−1) p (xn,t|xn,1:t−1,Zt−1) p (xn,1:t−1|Zt−1)
(2.58)

where the likelihood term, p (zt|xn,1:t,Zt−1), and the prior density, p (xn,t|xn,1:t−1,Zt−1),
are integrals with respect to the conditional posterior of xl,1:t and xl,1:t−1:

p (zt|xn,1:t,Zt−1) =

∫
p (zt,xl,t|xn,1:t,Zt−1) dxl,1:t (2.59)

p (xn,t|xn,1:t−1,Zt−1) =

∫
p (xn,t,xl,t|xn,1:t−1,Zt−1) dxl,1:t−1 (2.60)

Given that we want to approximate (2.58) with a PF, the weights of a
RBPF algorithm can be computed as:

ω
(i)
t ∝

p
(
Zt|x(i)

1:t

)
p
(
x
(i)
n,t|x

(i)
n,1:t−1

)

q
(
x
(i)
n,t|xn,1:t−1,Zt

) w
(i)
t−1, (2.61)

where the computation of p
(
x
(i)
n,t|x

(i)
n,1:t−1

)
and p

(
Zt|x(i)

1:t

)
depends on the

analytic solution obtained for p
(
xl,t|x(i)

n,1:t,Zt

)
and q

(
x
(i)
n,t|xn,1:t−1,Zt

)
is

the proposed function.
Table 2.5 describes the general steps of a RBPF algorithm. Note that

step 2 should be recursive as well if the method is to be practical. This

normally implies that some statistics characterizing p
(
xl,t|x(i)

n,1:t,Zt

)
have

to be stored.

2.5 Cramér-Rao Lower Bound

The CRB establishes the lower limit on how much “information” about an
unknown probability distribution parameter a set of measurements carries.
More specifically, the inequality establishes the minimum variance for an un-
biased estimator of the parameter, xt, of a probability distribution, p (zt|xt)
[102]:

E
{
[x̂t (zt)− xt] [x̂t − xt]

T
}
≥ CRB(xt) = I−1

t (2.62)

where

It = −Ezt

{[
∂ log p(zt|xt)

∂xt

] [
∂ log p(zt|xt)

∂xt

]T}
(2.63)
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Table 2.5: Rao-Blackwellized Particle Filter

At t = 0: Generate M samples
{
x
(i)
0

}M

i=1
from the initial distribution

p (x0) and initialize the importance weights w
(i)
0 = 1

M
, i = 1, · · · ,M .

For t > 0:

1. For i = 1, . . . ,M :

– Draw x
(i)
n,t ∼ p(xn,t|x(i)

n,1:t−1).

– Compute x
(i)
l,t analytically conditioned upon x

(i)
n,1:t.

– Assign the particle a weight, w
(i)
t , according to:

w
(i)
t ∝ p

(
Zt|x(i)

1:t

)
w

(i)
t−1

2. Calculate total weight: wTotal =
∑M

i=1w
(i)
t .

3. Calculate the normalized weights:

w
(i)
t =

w
(i)
t

wTotal
, i = 1, · · · ,M

4. Compute N̂eff .

5. If N̂eff ≤ Mthreshold resample:

– Draw indices k1, · · · , kM ∈ {1, · · · ,M} according to the

probabilities w
(1)
t , · · · , w(M)

t .

– Set
(
x
(i)
t

)
=
(
x
(ki)
t

)
with probability w

(ki)
t , for i = 1, · · · ,M .

– Set w
(i)
t = 1/M , for i = 1, · · · ,M .

35



is the Fisher Information Matrix (FIM), Ezt {·} denotes statistical expecta-
tion with respect to the subscripted variable, and p(zt|xt) is the probability
density function of zt given xt. The FIM can be seen as a quantification
of the (maximum) existing information in the data about a parameter. Ef-
ficiency amounts to the extracted information being equal to the existing
one, i.e., all the information has been extracted.

Three important points must be kept in mind about the CRB:

1. The bound pertains only to unbiased estimators. For estimators that
are biased, there is a modified version of the CRB [102].

2. The bound may be unreachable in practice.

3. Maximum likelihood estimators achieve the lower bound as the size of
the measurement set tends to infinity.

The CRB can be extreamly useful in several ways as providing a bench-
mark against which other unbiased estimators can be compared; or analyzing
the feasibility of the estimators.
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Chapter 3

Preliminar Analysis of the
Deployment

In this chapter we propose the application of the modified Cramér-Rao
Bound (MCRB) in a sensor network to perform a prior analysis of the sys-
tem operation in the localization task. This analysis allows knowledge of
the behavior of the system without a complete deployment. It also pro-
vides essential information to select properly fundamental parameters. To
do so, a complete formulation of the modified Fisher information matrix
(MFIM) and MCRB is developed for the most common measurement mod-
els, such as RSS, ToA and AoA. In addition, this formulation is extended
for heterogeneous models that combine different type of measurement mod-
els. Simulation results demonstrate the utility of the proposed analysis and
point out the similarity between MCRB and Cramér-Rao Bound (CRB).

The rest of this chapter is organized as follows. In Section 3.1 we present
an introduction to the topic. Section 3.2 introduce the network system
explaining its composition, the sensors’ oberservation model and the target
dynamics. An explanation about the definition of an activation area is
described in Section 3.3. An introduction to the MCRB and its dependence
on the MFIM is done in Section 3.4. In Section 3.5, we develop the complete
formulation of the MFIM for each measurement model. The final expressions
for the MCRB are presented in Section 3.6 and some simulation results are
reported in Section 3.7. To conclude the chapter, we draw some conclusions
in Section 3.8.
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3.1 Introduction

Sensor deployment is a critical issue as it affects cost, detection, and lo-
calization qualities of a WSN. There have been some research efforts on
deploying sensors from different points of view, such as connectivity [106],
target or event detection [18], and coverage [88]. They usually deploy sen-
sors in a way that ensure certain requirements of connectivity or coverage.
However, in the context of target localization, we believe it is more conve-
nient to focus the sensor deployment to obtain the best estimation of the
target position. Therefore, here we suggest an analysis of the deployment
from the standpoint of the error in the position estimation.

In a target-locating system, the estimation of the target position is per-
formed using the noisy measurements of the sensors located at the area
closest to the target, also called activation area [105, 65]. To judge the
performance of a given estimator, it is common to compare it against the
CRB [102], which is the lower bound on the variance of the estimator. Many
authors develop this limit for the most common measurement models such
as RSS, ToA and AoA [16, 81]. Other authors, such as [30], have developed
the CRB for heterogeneous models that are a combination of ToA and AoA
measurements. All of them, however, consider measurement models with
deterministic and known parameters only.

Unfortunately, one is often faced with cases where the observation model
involves additional random parameters that are known only through their
statistical distribution. For instance, in a prior analysis of sensor network,
as the one we propose here, sensor locations are only known through their
statistical distribution. In these cases, the CRB is difficult to calculate,
and therefore, one may want to resort to alternative bounds that require
less analytical manipulation. One of these methods is the MCRB [20, 35].
The major two features of this bound are: 1) it is easy to compute in the
presence of random parameters; and 2) although for the general case, it is
looser than the CRB, in some cases, it approaches the CRB. This lower limit
has been applied to different estimation problems, such as in [34] where it is
used in radar applications or in [74] where it is applied to a communication
system. However, its use in position estimation for sensor networks has been
overlooked.

The present chapter proposes the application of the MCRB in a sen-
sor network to perform a prior analysis of the operation in the localization
task. This analysis allows knowledge of the behavior of the location system
without a complete deployment. In addition, it provides essential informa-
tion, such as the estimation error, to select properly fundamental parameters
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such as the sensor density (i.e., number of sensors per square meter) or the
measurement model for the localization scenario. To do so, we develop the
MCRB for the measurement models commonly used in sensor networks,
such as RSS, ToA and AoA. We also consider a heterogeneous model allow-
ing the combination of different types of measures as a way to improve the
estimations.

3.2 System Model

According to the state-space model presented in Section 2.2, we assume that
a motionless target is located in a two dimmensional region. Therefore, the
target state vector is denoted as x = [x, y]T . Note that the temporal index
has been eliminated for simplicity since the target position remains invariant
with the time.

In Section 2.1, it has been already indicated that the coordinates of the
i−th sensor are denoted as xsi = [xsi , ysi ]

T , i = 1, . . . , N , where N is the
number of deployed sensors. In addition, the coordinates of the sensor are
presented in a matrix form as Xs = [xs1 , · · · ,xsN ]

T . Since the sensors are
deployed following a uniform distribution, the pdf of a sensor location is
p (xsi , ysi) =

1
|Rs| where |Rs| denotes the area of the surveillance region.

The general formualtion of a measurement model is zi = h(x,xsi) + ni,
where h(·) is a function of the target position and ni is an AWGN, ni ∼
N
(
0, σ2

ni

)
. In this chapter, we assume the utilization of three kind of mea-

surement models: RSS, ToA and AoA. Their theorical expressions are given
in (2.4), (2.5) and (2.6), respectively, and repeated below for convenience:

zRSS
i = PT − 10γ log10 ‖x− xsi‖+ nRSS

i (3.1)

zToA
i =

‖x− xsi‖
v

+ nToA
i (3.2)

zAoA
i = arctan

(
y − ysi
x− xsi

)
+ nAoA

i (3.3)

We also assume the used of heterogeneous measurement models, whose for-
mulation has been previously given in (2.7).

Localization and tracking algorithms are based on measurement collec-
tions, due to the matrix formulation of these measurement models is very
useful. Assume that the measurements of M sensors are collect to locate a
target, and are represented as z. Since an AWGN model is assume for each
measurment, z follows a multivariate gaussian distribution as z ∼ N (µ,R)
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Figure 3.1: Illustration of the activation area, which is indicated by a striped circle.
The target is located at the center of this area and is denoted by a black point.

where µ = [h(x,xs1), . . . , h(x,xsM )]T and R = σ2
nIM . Section 2.1.2 and

Appendix A show in detail these assumptions.

3.3 Activation Area

Sensors, as any other measuring device, have hardware limitations regarding
the maximum and minimum signal power which they are able to detect. It
means that sensors cannot detect a target when it is located far away from
their positions; and therefore, only sensors closest to the target position
should detect it and estimate its location. This fact allows the definition of
an activation area, Ac, which is established as the area around the target
where sensors can detect it and therefore participate with their measure-
ments on its location.

Figure 3.1 presents a simple example of an activation area. It is usually
represented by a circle because sensors are limited by the received power,
which is known to have circular symmetry. The example also shows that
the activation area is marked out by both minimum and maximum distance,
dmin and dmax.

The closest distance, dmin, is given by the characteristics of the device,
that is, by the maximum power or measure that can withstand before en-
tering in an abnormal working mode. Considering this deterministic value
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as zmax and the power measurement model given by (2.4), the minimum
activation distance is modeled as a log-normal distribution:

dmin ∼ Log-N

(
ln 10 · PT − zmax

10γ
,

(
ln 10

10γ

)2

· σ2
nRSS

)
(3.4)

The furthest distance, dmax, is obtained by replacing zmax in (3.4) by
the minimum power or measure accepted by the sensor, zmin, which is de-
termined by the device characteristic, the required QoS [55] or the studied
scenario.

3.4 Modified Cramér Rao Bound

Using the definition explained in Section 2.5, the CRB of an unbiased esti-
mator of x, x̂(z), is given by:

cov(x̂) ≥ CRB(x) =
1

Ez

{
∂ log p(z|x)

∂x
·
[
∂ log p(z|x)

∂x

]T} (3.5)

where Ez {·} denotes statistical expectation with respect to the subscripted
variable, and p(z|x) is the probability density function of z given x.

To compute the CRB, we need p(z|x), which, in principle, can be ob-
tained from the integral:

p(z|x) =
∫ ∞

−∞
p(z|x,Xs) p(Xs)) dXs (3.6)

where p(z|x,Xs) is the conditional probability density function of z givenXs

and x. Unfortunately, in most cases, the computation of (3.5) is impossible
because the integration in (3.6) cannot be carried out analytically.

A way out of this impasse is to develop a different bound. Another lower
bound to the variance of x̂(z)− x is the MCRB, which can be computed as
follows:

MCRB(x) =
1

EXs

[
Ez|Xs

{
∂ log p(z|x,Xs)

∂x
·
[
∂ log p(z|x,Xs)

∂x

]T}] (3.7)

This lower bound can be expressed as the inverse of the MFIM, IM (see
Section 3.5):

MCRB (x) ≥ (IM (x))−1 (3.8)

cov(x̂) ≥ CRB(x) ≥ MCRB(x). (3.9)
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In [20] it is shown that the inequality CRB(x) ≥ MCRB(x) holds true,
which means that MCRBs are generally looser than CRBs. For this reason
and for computation simplicity, we use the MCRB as a lower bound of the
estimator variance.

3.5 Modified Fisher Information Matrix

The MFIM is a way of measuring the amount of information that an ob-
servable random variable, z, carries about an unknown parameter, x, upon
which the probability of z depends. From (3.7) the formulation of the MFIM
can be developed as follows:

IM (x) = EXs

{
Ez|Xs

[
∂ log p(z|x,Xs)

∂x
·
[
∂ log p(z|x,Xs)

∂x

]T]}
(3.10)

where p(z|x,Xs) is the conditional pdf of z given Xs and x. In [58], it is
proved that when this pdf is a multivariate normal distribution, N (µ,R),
the MFIM can be expressed as follows:

IM (x)|l,q = EXs

{
∂µT

∂xl
R−1 ∂µ

∂xq
+

1

2
Tr

(
R−1 ∂R

∂xl
R−1 ∂R

∂xq

)}
. (3.11)

As shown in Section 3.2, our covariance matrix does not depend on x
and has the form R = σ2

n IN . Consequently, a simplification of the above
equation can be performed:

IM (x)|l,q = EXs

{
σ−2
n

∂µT

∂xl

∂µ

∂xq

}
= σ−2

n Exsi

{
M∑

i=1

∂µi

∂xl

∂µi

∂xq

}
. (3.12)

Assuming sensors are identically distributed, the result of this statistical
expectation is the same for everyone. Consequently, the previous equation
can be written as:

IM (x)|l,q = σ−2
n Exsi

{
M

∂µi

∂xl

∂µi

∂xq

}
. (3.13)

Note that M is defined as the number of sensors that are located in the
activation area. Thus, taking into account the uniform distribution of the
sensors (see (2.1)), it is formulated as follows:

M = N ·
∫

Ac

1

|Rs|
dxsi dysi . (3.14)
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Therefore, replacing (3.14) in (3.13) a final expression for a component
of MFIM is obtained:

IM (x)|l,q = σ−2
n

∫

Ac

N

|Rs|
· ∂µi

∂xl

∂µi

∂xq
dxsi dysi

= σ−2
n

∫

Ac

ρs ·
∂µi

∂xl

∂µi

∂xq
dxsi dysi (3.15)

where ρs is the sensor density or the number of sensors per square meter,
ρs =

N
|Rs| .

The following sections develop the formulation of IM for each measure-
ment model.

3.5.1 MFIM for RSS

MFIM of RSS measurement model for a network with M sensors is obtained
through the derivative of (A.1):

IM (x)RSS = EXs

{
100γ2

σ2
nRSS

ln2 (10)
·
M∑

i=1

1

d4i

(
(x− xsi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (y − ysi)
2

)}
.

(3.16)
Applying the development achieved in Section 3.5, we can calculate the
MFIM as:

IM (x)RSS = Exsi

{
M

100γ2

σ2
nRSS

ln2 (10)
· 1
d4i

(
(x− xsi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (y − ysi)
2

)}
.

(3.17)
IM (x)RSS calculation is based on solving the integral proposed in (3.15)

for each matrix element. The solution for the component IM (x)RSS |xx arises
as follows:

IM (x)RSS |xx =
N

σ2
nRSS

|Rs|
· 100γ2

ln (10)2
·
∫

Ac

(x− xsi)
2

d4i
dysi dxsi . (3.18)

Taking into account the circular shape of the activation area, the integral
presented in (3.18) can be solved by performing a change of coordinates
system:

x− xsi = r · cos θ (3.19)

y − ysi = r · sin θ

di =

√
(x− xsi)

2 + (y − ysi)
2 = r
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where r ∈ [dmin, dmax] and θ ∈ [0, 2π]. These changes lead to a simpler
integral and provide a closed expression for IM (x)RSS |xx:

IM (x)RSS |xx =
N

σ2
nRSS

|Rs|
· 100γ2

ln (10)2
·
∫ 2π

0

∫ dmax

dmin

r2 cos2 θ

r4
r dr dθ =

=
ρs

σ2
nRSS

· 100γ2

ln (10)2
· π ln

(
dmax

dmin

)
. (3.20)

Following the same reasoning, we can obtain the expressions for the other
components:

IM (x)RSS |yy = IM (x)RSS |xx (3.21)

IM (x)RSS |xy =
ρs

σ2
nRSS

ln

(
dmax

dmin

)
·
∫ 2π

0
cos θ · sin θ dθ = 0.

3.5.2 MFIM for ToA

As in previous section, the MFIM for a set of M ToA measures has the
following expression:

IM (x)ToA = EXs

{
1

σ2
nToA

v2
·
M∑

i=1

1

d2i

(
(x− xsi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (y − ysi)
2

)}
.

(3.22)

Following the previous procedure, we can apply the solution proposed
on (3.12) to express the MFIM as:

IM (x)ToA = Exsi

{
M

σ2
nToA

v2
· 1
d2i

(
(x− xsi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (y − ysi)
2

)}
.

(3.23)

The approach to solve this integral is similar to the one proposed for
TOA measurements: a change in the coordinate system, as shown in (3.19),
and a modification of the integration limits. This procedure leads to the
following formula for IM (x)AoA|xx:

IM (x)ToA|xx =
N

σ2
nToA

v2 · |Rs|
·
∫ 2π

0

∫ dmax

dmin

r2 cos2 θ

r2
r dr dθ =

=
ρs

σ2
nToA

v2
· π
(
d2max − d2min

)

2
. (3.24)

44



IM (x)AoA|yy and IM (x)AoA|xy are calculated in the same way:

IM (x)ToA|yy = IM (x)ToA|xx (3.25)

IM (x)ToA|xy =
ρs

σ2
nToA

v2

(
d2max − d2min

)

2
·
∫ 2π

0
cos θ · sin θ dθ = 0.

3.5.3 MFIM for AoA

The MFIM of M AoA measurements is obtained as follows:

IM (x)AoA = EXsi

{
1

σ2
nAoA

·
M∑

i=1

1

d4i

(
(y − ysi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (x− xsi)
2

)}
.

(3.26)
As in the previous measurement model, the MFIM is computed by applying
the solutions proposed previously:

IM (x)AoA = Exsi

{
M

1

σ2
nAoA

· 1
d4i

(
(y − ysi)

2 (x− xsi) (y − ysi)

(x− xsi) (y − ysi) (x− xsi)
2

)}
.

(3.27)
Finally, applying the previous developments to the case of the ToA

method, the expressions obtained for each component of the IM (x)ToA ma-
trix are:

IM (x)AoA|xx = IM (x)|yy =
ρs

σ2
nAoA

π ln

(
dmax

dmin

)
(3.28)

IM (x)AoA|xy = 0.

Note that the computed integrals have the same form as in the RSS model
(see Section 3.5.3), so the developments are analogous to the ones set out
on that case.

3.5.4 MFIM for Heterogeneous measurements

It has already been mentioned that the heterogeneous models are based on
the combination of different types of measurement. The computation of the
MFIM for a union of measurements is analyzed in [13], where the authors
demonstrated that the MFIM for a heterogeneous model is equal to the sum
of the information of each type of measurement:

IM (x)HM =
K∑

k=1

IM (x)Measurek (3.29)

45



where K is the number of measurements to be combined. Therefore, it
can be applied to the results obtained for each of the measurement models
previously presented. As an example, we develop the MFIM for two types
of combination:

MFIM for ToA-RSS Combination

The final equation for MFIM of this combination is the union of the ones
computed for ToA and RSS:

IM (x)ToA−RSS = IM (x)ToA + IM (x)RSS .

As in previous cases, the MFIM can be expressed as a linear function of
the parameter IM which is computed as the sum of the matrices shown in
Sections 3.5.1 and 3.5.2:

IM (x)ToA−RSS |xx = IM (x)ToA−RSS |yy = (3.30)

= π ρs

(
d2max − d2min

2σ2
nToA

v2
+

100γ2

σ2
RSS ln2 (10)

ln

(
dmax

dmin

))

IM (x)ToA−RSS |xy = 0.

MFIM for AoA-RSS Combination

Sections 3.5.1 and 3.5.3 present MFIM results that are summed to obtain
the MFIM:

IM (x)AoA−RSS = IM (x)AoA + IM (x)RSS .

Thus, the final expressions for each component of the matrix IM are as
follows:

IM (x)AoA−RSS |yy = IM (x)AoA−RSS |yy = (3.31)

= π ρs ln

(
dmax

dmin

) (
1

σ2
nAoA

+
100γ2

σ2
nRSS

ln2 (10)

)

IM (x)AoA−RSS |xy = 0.

3.6 MCRB Computation

Once the MFIM is formulated for each measurement model, the computation
of MCRB is straightforward. In [13], the MCRB is defined as follows:

MCRB(x) =
IM (x)|xx + IM (x)|yy

IM (x)|xx · IM (x)|yy − (IM (x)|xy)2
. (3.32)

46



Measurement Model MCRB

RSS
σ2
nRSS

ρs
· ln2 (10)

50γ2 π ln
(

dmax
dmin

)

ToA
σ2
nToA

ρs
· 4 v2

π(d2max−d2min)

AoA
σ2
nAoA

ρs
· 2

π ln
(

dmax
dmin

)

Table 3.1: Summary of the MCRB expressions for each measurement model

Taking into account the MFIM results shown earlier, some general con-
clusions can be drawn:

• IM (x)|xx = IM (x)|yy

• IM (x)|xy ∼= 0

Note that they are applicable to any of the analyzed models and that they
simplify the formulation of the MCRB:

MCRB(x) =
2

IM (x)|xx
. (3.33)

In conclusion, the MCRB is inversely proportional to the IM (x)|xx. The
following sections characterize this expression to each measurement model,
and Table 3.1 summarizes the obtained results.

3.6.1 MCRB for RSS

The final expression for the MCRB with RSS measures is obtained by re-
placing the previously calculated value for IM |xx in (3.33):

MCRB(x)RSS =
σ2
nRSS

ρs
· ln2 (10)

50γ2 π ln
(
dmax

dmin

) . (3.34)

By analyzing the obtained expression it can be seen that as the noise variance
is reduced or the sensor’s density is increased, the MCRB approaches to
zero. This is a logical consequence because the estimation obtained with
low noise measurements or with a high number of them should be more
accurate. This trend is also observed in the CRB whose formulation can be
found in Appendix C.
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3.6.2 MCRB for ToA

Similarly, the MCRB for ToA measurements is obtained by applying the
formulation of IM |xx, detailed in (3.24), and leads on

MCRB(x)ToA =
σ2
nToA

v2

ρs
· 4

π
(
d2max − d2min

) . (3.35)

As in the previous case, it can be seen that the MCRB becomes to
zero with decreasing noise variance or with increasing number of deployed
sensors.

3.6.3 MCRB for AoA

The modified limit for AoA measures is obtained by the following equation:

MCRB(x)AoA =
σ2
nAoA

ρs
· 2

π ln
(
dmax

dmin

) . (3.36)

In the same way as the previous cases, the MCRB goes to zero when the
application scenario has low noise variance or a high density of sensors.

3.6.4 MCRB for Heterogeneous

The computation of the MCRB for hybrid measurements is analogous to
those developed for the previous models. Therefore, the results for the
studied hybrid models are as follows:

MCRB(x)ToA−RSS =
1

ρsπ
·
(
d2max − d2min

2σ2
nToA

v2
+

100γ2

σ2
nRSS

ln2 (10)
ln

(
dmax

dmin

))−1

(3.37)

MCRB(x)AoA−RSS =
2

ρsπ ln
(
dmax

dmin

) ·
(

1

σ2
nAoA

+
100γ2

σ2
nRSS

ln2 (10)

)−1

.

(3.38)

3.7 Simulation Results

We have performed some simulations using MATLAB to evaluate and com-
pare the MCRB and the CRB.
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The sensor network field considered here is an area of 100 × 100m2,
where N sensor nodes have been deployed following a uniform distribution.
Simulation results are averaged over 100 simulation runs, where different
network configurations and target location are studied. For CRB and MCRB
computations, the simulation parameters given in [82] are used as reference:
v = 3 · 108 m

s
and γ = 2.

The sensor density, ρs, is set following studies [65] and [105], where the
authors demonstrate that the number of sensors covering the activation area,
called ns, follows a Poisson distribution with parameter λ = ρsAc. More-
over, they define a coverage probability, which is presented as the probability
of ns sensor covering the activation area:

Pcov(ns) = 1−
ns−1∑

k=0

(ρsAc)
k e−ρsAc

k!
. (3.39)

According to this formulation and taking into account that location algo-
rithms use at least three3 measures to perform localization, we have cho-
sen for the simulations a sensor density of 0.011 sensors

m2 which leads to a
Pcov = 0.99.

Figures 3.2, 3.3, and 3.4 present MCRB’s and CRB’s evolution with
respect to the standard deviation of the observation noise, σn. Results
are shown in a logarithmic scale for RSS, ToA, and AoA measurements,
respectively. As observed in these figures, the theoretical expressions devel-
oped for the MCRB are close to the results obtained for the CRB. Like-
wise, the simulation results comply the inequation presented in Section 3.4,
CRB ≥ MCRB. Also, the equality between both terms is achieved when σn
becomes zero, as it might be expected from the theoretical analysis. These
facts demonstrate that MCRB is a good approximation, or lower limit, for
the CRB. Note that the MCRB computation does not require knowledge of
the sensor locations.

Figures 3.5 and 3.6 show the behavior of the heterogeneous models with
respect to the standard deviation of the observation variance. Note that
these models combine two measurement methods, and so they are affected
by two different noise distributions. To illustrate the evolution of the MCRB,
results are shown regarding the standard deviations σnToA

v and σnAoA
re-

spectively. The standard deviation of the RSS noise, σnRSS
, is fixed, to

a value which achieves a MCRB of 0.1m2 for the individual model. This
value is indicated with a circle in Figure 3.2. The simulations show that the
measured fusion provides similar results to those obtained by the individual
ones, when low noise levels are applied. However, as both observation noises
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Figure 3.2: MCRB against the standard deviation σnRSS
when only the RSS mea-

surements are considered
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Figure 3.3: MCRB against the product v ·σnToA
, when only the ToA measurements

are considered to estimate the target position.

increase, the heterogeneous models achieve a lower error bound, whereas the
individual errors increase drastically.

To complete the results for heterogeneous models, Figures 3.7 and 3.8
show values of RSS and ToA/AoA noise, which achieves the desired error,
MCRB = 0.1m2. As can be seen, the heterogeneous models achieve the de-
sired error with higher noise values than the ones reached by the individual
models. Given these results, we reach the conclusion that combining mea-
surement models improves the MCRB greatly without having to increase
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Figure 3.4: MCRB against the standard deviation σnAoA
, when only the AoA

measurements are considered to estimate the target position.
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Figure 3.5: MCRB for a ToA-RSS model against the product v σnToA
, when σnRSS

is selected to achieve an MCRB of 0.1m2.

the size of the network.

Finally, Figures 3.9, 3.10, and 3.11 illustrate how the number of active
sensors, M , affects the MCRB and CRB. Note that M is proportional to
the sensor density, M ∝ ρs, as is shown in (3.14). The results illustrate the
improvement in the estimation error achieved when increasing the number of
sensors involved in the estimation. The highest improvement in both cases,
MCRB and CRB, is achieved when a network with a low ρs increases its
size. This effect is reduced when the density of sensors increases and it leads
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, which
achieves a MCRB of 0.1m2

to cases where the deployment of a new sensor provides a small reduction
in the estimation error. Therefore, in this case, it is not worth assuming the
cost of adding a new sensor.

3.8 Conclusions

This chapter proposes the application of the MCRB to carry out a priori
performance analyses in localization applications based on sensor networks.
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Figure 3.9: MCRB against the number of sensors used in the localization, M , when

the ratio
σ2

nRSS

γ
is equal to 1 dB2 and only the RSS measurements are considered

to estimate the target position.

To this end, we have reformulated the MCRB for the measurement models
commonly used in sensor networks (RSS, ToA, and AoA) and for other
heterogeneous models that combine different types of measures.

We have performed some simulations to assess the expressions obtained
for MCRB. The results have shown that the expressions for MCRB fulfill
the inequality CRB ≥ MCRB. In fact, the equality holds when the sensor
density is high or the noise level is low. In the case of heterogeneous models,
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Figure 3.10: MCRB against the number of sensors used in the localization, M ,
when the product v · σnToA

is equal to 1 m2 and only the ToA measurements are
considered.
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Figure 3.11: MCRB against the number of sensors used in the localization, M ,
when σnAoA

is equal to 0.1 rad and only the AoA measurements are considered.

the results point out that the combination of different measurement models
provides the system with improved robustness against high noise levels. Our
simulations have also illustrated the reduction of the estimation error when
the sensor density increases.

Finally, we can conclude that the MCRB is a useful alternative to the
CRB as the two techniques are very similar in many practical cases whilst
the compuational cost of the MCRB is much lower. In addition, the ap-
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plication of MCRB in this scenario allowed us to analyze the behavior of
the different measurement models under several noise distributions, which
makes the selection of the most suitable model for each case easier.
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Chapter 4

Model-Independent
Localization

In this chapter we propose a novel localization algorithm to be used in
applications where the measurement model is not accurate or incomplete.
The independence of the algorithm from the model provides robustness and
versatility. In order to do so, we apply radial basis functions (RBFs) in-
terpolation to evaluate the measurement function in the entire surveillance
area, and estimate the target position. In addition, we also propose the ap-
plication of the LASSO regression to compute the weigths of the RBF and
improve the generalization of the interpolated function. Simulation results
have demonstrated the good performance of the proposed algorithm in the
localization of single or multiples targets.

The rest of this chapter is organized as follows. In Section 4.1 we present
an introduction to the topic. Section 4.2 introduces the network system
explaining its composition, the sensors’ oberservation model and the target
dynamics. The interpolation problem and its use in localization tasks are
explained in Section 4.3. In Section 4.4 the model-independent localization
algorithm based on RBF is presented. Section 4.5 proposes the utilization
of this algorithm to the problem of multiple target localization. To validate
the proposed algorithm, some simulation results are presents in Section 4.6.
Finally, we draw some conclusions in Section 4.7.

4.1 Introduction

The importance of localization information arises from several factors, such
as the node addressing, evaluation of nodes’ density and coverage, energy
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map generation, geographic routing, object tracking, and other geographic
algorithms. All of these factors make localization systems a key technology
for the development and operation of WSNs.

Extensive research has been done in wireless sensor networks for lo-
calization. Some methods are iterative and require good initial solution
guesses [29], while some are closed-form solutions, such as the two-stage
LS method [15], the linear-correction LS method [49], the multidimensional
scaling technique [107] and many others [19, 68, 71]. It has been shown
that the localization performance of the above methods relies heavily on the
availability of accurate knowledge on the observation model. When errors in
the measurement model are present, the target localization accuracy would
be degraded significantly. In addition, these methods are unable to locate
multiple targets.

To overcome this problem, some articles have developed methods for the
case of incomplete information about the measurement model (i.e. model-
independent case). For instance, the authors of [62] detect the sensor node
with the strongest energy measurement and set the location estimate equal
to its location [62], assuming that this node is the closest one to the source,
the so-called Closest Point of Approach (CPA). Another model-independent
localization method is the one presented in [87], where the authors calculate
the target location by properly averaging the locations of active sensor nodes.

We are interested in performing a model-independent localization in a
more general network environment where the sensor density is low. In or-
der to estimate the target position under these assumptions, we study the
localization task as a spatial interpolation problem based on the samples
obtained by the sensors. Several techniques were proposed to solve approxi-
mation and interpolation problems such as RBF, splines or locally weighted
linear regression [73]. Among these methods, RBF are commonly used for
interpolating multivariable functions due to its universal approximation ca-
pabilities [80].

In this chapter we propose an alternative model-independent localiza-
tion algorithm. In particular, we apply RBF interpolation to evaluate the
measurement function in the entire surveillance area. Thus the target po-
sition can be calculate as the maximum or minimum of the interpolated
function. The spatial interpolation, on which is based our proposed al-
gorithm, does not require information about the measurement parameters
(model, transmitted power, etc.). It contributes to the versatility and ro-
bustness of the proposed localization method. In addition, the use of this
model-independent algorithm for the localization of multiple targets is also
proposed.
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We also proposed a novelty regarding the training phase of the selected
interpolation method. Specifically, we present the computation of the RBF
weights with the LASSO regression method, which is a shrinkage and selec-
tion method for linear regression. This method provides an increase in the
generalization ability of the RBF interpolation. In addition, this method
automatically selects the appropriate number of RBFs to be used in the in-
terpolation, thus avoiding the application of growing and pruning algorithms
which can be computationally expensive [47, 48].

4.2 System Model

We follow the state-space model presented in Section 2.2, where we assume
that a motionless target is located in a two dimmensional region. Therefore,
the target state vector is denoted as x = [x, y]T . Note that the temporal
index has been eliminated for simplicity since the target position is time
invariant.

In Section 2.1, it has been already indicated that the coordinates of the
i−th sensor are denoted as xsi = [xsi , ysi ]

T , i = 1, . . . , N , where N is the
number of deployed sensors. In addition, the coordinates of the sensor are
presented in a matrix form as Xs = [xs1 , · · · ,xsN ]

T .

The general formulation of a measurement model is zi = h(x,xsi) + ni,
where h(·) is a function of the target and sensor position and ni is the
additive white Gaussian noise (AWGN), ni ∼ N

(
0, σ2

ni

)
.

In the case of multiple targets, models such as RSS, provide measure-
ments which contains the contribution of each target. Consequently, the
measurement of the i-th sensor has the form:

zi =

K∑

k=1

h (xk,xsi) + nik (4.1)

where K is the number of targets in the surveillance area, ni,k is an AWGN,
ni,k ∼ N

(
0, σ2

ni

)
.

We represent with vector z the measurements collected from all sensors.
Since an AWGN model is assumed for each measurment, z follows a multi-
variate gaussian distribution as z ∼ N (µ,R) where µ = [h(x,xs1), . . . , h(x,xsN )]

T

and R = σ2
nIN . Section 2.1.2 and Appendix A justify in detail this assump-

tion.
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4.3 Spatial Interpolation

Interpolation refers to the process of estimating the unknown data values
for specific locations using the known data values of other points. In many
situations we may wish to model a feature as a continuous field (i.e. a
surface), yet we only have data values for a finite number of points. It
therefore becomes necessary to interpole (i.e. estimate) the values for the
intervening points.

Interpolation methods can be classified as exact or inexact. Using exact
interpolation, the predicted values at the points for which the data values are
known should be the known values; inexact interpolation methods remove
this constraint, i.e. the observed data values and the interpolated values for a
given point are not necessarily the same. In practice, inexact interpolation is
typically more used because the data are usually noisy, and an interpolating
function passing through every data point leads to overfitting and thereby
a poor generalization.

Many interpolation methods have been studied in the literature [59, 63].
Some of the most interesting are:

• Linear ⇒ It is a method of curve fitting using linear polynomials. This
interpolation is quick and easy, but it is not very precise.

• Bilinear ⇒ It is the extension of linear interpolation for interpolating
functions of two variables (e.g., x and y) on a regular 2D grid. The
key idea is to perform linear interpolation first in one direction, and
then again in the other direction. Although each step is linear in the
sampled values and in the position, the interpolation as a whole is not
linear but rather quadratic in the sample location.

• Polynomial ⇒ It is the interpolation of a given data set by a polyno-
mial: given some points, find a polynomial which goes through these
points. It is a generalization of linear interpolation and it overcomes
most of the problems of linear interpolation (e.g. precision). However,
it also has some disadvantages as the expensive cost of calculating the
interpolation polynomial.

• Spline ⇒ It divides the function on intervals and uses low-degree poly-
nomials in each of the intervals. It also chooses the polynomial pieces
such that they fit smoothly together. The resulting function is called
a spline.
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• Radial basis functions ⇒ They approximate multivariable functions
by linear combinations of terms based on a single univariate function,
the RBF. They are usually applied to approximate functions or data
which are only known at a finite number of points (or too difficult
to evaluate otherwise), so that the evaluations of the approximating
function can take place often and efficiently. Their universal approx-
imation capabilities have been studied in many research works like
[80, 85]. The interpolation by RBFs is used in this chapter, so the
following section explains the RBFs in detail.

4.3.1 Localization via Interpolation

As mentioned above, in this work we study the localization task as a problem
of spatial interpolation. Thus, based on a set of samples of the measurement
function taken by the sensors of the network, {zi,xsi}Ni=1, we are able to
reconstruct the measurement function across the surveillance area.

Note that this localization method is applicable to any of the interpo-
lation techniques described before. The only requirement is to adjust the
design parameters of each technique according to available data (i.e. the
measurements).

Once the measurement funcion is reconstructed, we are able to locate
the target position as the maximum or minimum of the interpolated func-
tion. The selection between a maximum or a minimum of the interpolated
function depends on the kind of measurement function. For instance, when
models like RSS are used, where the measurement diminishes as the target
moves away, the maximum of the interpolated function provides the target
location. On the contrary, the target location is indicated by a minimum of
the interpolated function when it is applied to models like ToA, for which
the measurement increases as the target moves away. The top graph on
Figure 4.1 shows an example of a RSS measurement function, which has
a maximum at the position where target is located. In addition, the bot-
tom graph of Figure 4.1 shows the measurements collected by the sensors
employed for the interpolation task.

To sum up, the main steps of the proposed localization method are:

1. collet the measurements taken by the sensors, {zi,xsi}Ni=1,

2. determine the interpolation parameters, which depend on the chosen
method (e.g. coeffients in case of the polynomial interpolation),

3. evaluate the measurement function in the surveillance area, applying
the chosen interpolation method, and
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(a) Example of the RSS measurement function.
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(b) Example of RSS measurements employed for the interpolation task.

Figure 4.1: Example of the RSS measurement function and measurement samples
employed for the interpolation.

4. locate the maximum/minimum of the measurement function, which
corresponds to the target location:

x̂ = argmax
xp

{ẑ (xp)} (4.2)

where ẑ is the interpolated measurement function, xp is a point of the
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surveillance area and x̂ is the estimation of the target position.

4.4 Localization via Radial Basis Function Inter-
polation

As pointed in Section 4.3, RBFs are an interesting method for function
interpolation. For this reason, in this chapter we use them to perform the
localization task.

The RBF approach introduces a set of I basis functions, which take the
form φ (‖x− c‖) where φ (·) is some non-linear function that depends on the
distance between the independent variable x and some point c, called center.

Therefore, the interpolation problem explained in Section 4.3.1 can be
reinterpreted as follows:

ẑ (xp) =
I∑

i=1

ωiφ (‖xp − ci‖) + ω0 (4.3)

where ω0 is the bias value; ωi are the weights and xp is a point of the
surveillance area. The bias ω0 can be inserted inside the summation by
introducing an extra basis function φ0 and setting its activation to one, so
that:

ẑ (xp) =
I∑

i=0

ωiφ (‖xp − ci‖) (4.4)

or, in matrix form:

ẑ (xp) =
[
ω0 ω1 · · · ωI

]
︸ ︷︷ ︸

w

·




1
φ (‖xp − c1‖)

...
φ (‖xp − cI‖)




︸ ︷︷ ︸
φ

(4.5)

being w the vector of weights and φ the vector of RBFs.
A range of theoretical and empirical works have studied different forms

of basis functions [11, 45]. Some of the most commonly used basis functions
are shown in Table 4.1. In this chapter, we use the most-known radial
function, namely, the gaussian basis function:

φi (x) = exp

(
−‖x− ci‖

2σ2
i

)
(4.6)
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Name of the RBF Definition

Multiquadratic
√
σ2 + r2

Inverse multiquadratic 1√
σ2+r2

Inverse quadratic 1
σ2+r2

Gaussian e−
r2

2σ2

Cubic |r|3
Thin plate spline r2 ln |r|3

Wendland type order 2 (1− r)4 (4r + 1)

Order 4 (1− r)6
(
35
3 r

2 + 6r + 1
)

Order 6 (1− r)8
(
32r3 + 25r2 + 8r + 1

)
Table 4.1: List of some types of radial functions, where r = ‖x− c‖.

σ

σ
σ

Figure 4.2: Example of a Gaussian RBF.

where ci and σ2
i are the mean and the variance of the i-th gaussian function.

Figure 4.2 presents an example of gaussian RBF for different values of σ2.

From (4.5) and (4.6), it can be seen that the design of a RBF involves the
selection of parameters as the number of radial functions I, the center loca-
tions ci, the width σ associated with φ or the weights w. Assuming that the
number of basis functions and their type have been selected, training RBFs
involves determining the values of three sets of parameters: the centers, the
widths and the weights, in order to minimize a suitable cost function.

In practice, the estimation of these parameters can be performed in a
two-stage procedure:

1. determine the centers, ci, and the widths, σi, and
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2. determine weights ωi associated to the centers and widths obtained in
the previous step.

In the first stage only the input values are used for determining the
centers ci and the widths σi of the basis functions. To determine the centers,
ci, methods like random selection [45], clustering algorithm [80] or uniformly
spaced grid [8, 9, 46], are usually applied. The widths of the radial functions
should be chosen so that the input space is fully covered as uniformly as
possible. For RBFs whose centers are far from others, σ should be large
enough to cover the gap. On the other hand, for those in the dense region,
σ should be small. In practice, the width is usually set to twice the distance
between its center and the center of the nearest neighbor [75]. In this work
we opt to locate the centers conforming a uniform grid while the value of
the width is analyzed in the simulations (see Section 4.6).

Once the basis functions are fixed, a training phase is used to determine
the weigths. Section 4.4.1 explains in detail this second stage.

4.4.1 Weight Computation: LASSO Regression

The second step of the training simply fits a linear model with weights ωi to
the outputs with respect to some objective function. A common objective
function is the minimization of the sum-squared error function which yields
the well-known LS solution for the weights [45]:

z =
[
ω0 ω1 · · · ωI

]
︸ ︷︷ ︸

w

·




1 · · · 1
φ (‖xs1 − c1‖) · · · φ (‖xsN − c1‖)

...
. . .

...
φ (‖xs1 − cI‖) · · · φ (‖xsN − cI‖)




︸ ︷︷ ︸
Φ

(4.7)

w = zΦ† (4.8)

being z a vector with dimmension 1 × N which contains the measurement

at the reference points, Φ is the matrix of RBFs and Φ† =
(
Φ⊤Φ

)−1
Φ⊤

denotes the pseudo-inverse of Φ. In practice we tend to use singular value
decomposition (SVD) to avoid possible ill-conditioning of Φ.

The LS solution to the weights computation is a simple way to train the
RBFs. This method, however, is not very practical since it requires the use
of pruning or growing algorithms to choose the appropiate number of RBFs.
Furthermore, the interpolation obtained with this method usually leads to
overfitting problems, i.e., it does not generalize well.
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To overcome this problem we propose to compute the weights with a dif-
ferent regression method, Least Absolute Shrinkage and Selection Operator
(LASSO) regression [99]. This is a regression method that minimizes the
residual sum of squares subject to the L1-norm of its coefficient vector not
being greater than a given value, L1 {w} ≤ l.

Given the nature of this constraint, it tends to produce some coefficients
that are exactly zero. Thereby the LASSO enables estimation and variable
selection simultaneously in one stage. Theoretical analysis in [77] indicate
that LASSO regression is particularly effective when there are many irrele-
vant variables and only a few training examples.

The LASSO estimation aplied to our problem is defined as:

ŵ = argmin
w

N∑

k=1

(
zk − ω0 −

I∑

i=1

ωiφ (‖xsk − ci‖)
)2

subject to
I∑

i=1

|ωi| ≤ l

(4.9)
where l ≥ 0 is a tunning parameter that controls the amount of shrinkage
that is applied to the estimates.

An equivalent Lagrangian form can also be written for the LASSO prob-
lem as:

ŵ = argmin
w




1

2

N∑

k=1

(
zk − ω0 −

I∑

i=1

ωiφ (‖xsk − ci‖)
)2

+ λ
N∑

i=1

|ωi|




(4.10)

being λ the tunning parameter that controls the strength of the penalty.
There is a one-to-one correspondence between the parameters l in (4.9) and
λ in (4.10). Note that when λ = 0, the ŵ is the solution of the previously
presented LS problem whilst when λ increases, more weights are set to zero
(less RBFs are selected).

Computing the LASSO solution is a quadratic programming problem
which can be computationally demanding. Nevertheless, there are efficient
methods like [24, 41, 78] which compute the solution with the same compu-
tational cost as a simpler regression method as for example ridge regression.

4.5 Localization of Multiple Targets

Consider a case where K targets are located in the surveillance area, each
of them contributing to the set of measurements collected at each of the
sensors. Consequently, the measurement of the i-th sensor has the form
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presented in (4.1). Note that there is a coupling between the components
corresponding to each target in the measurement collected by a single sensor.

The goal of the localization task is to determine the locations of these
targets simultaneously and accurately, using only a small number of noisy
measurements. To do so, we propose the application of the previously pre-
sented localization algorithm (see Section 4.4) only including slight modifi-
cations in order to apply this method in the field of multiple targets. The
procedure of the multitarget localization algorithm is as follows:

1. collet the measurements taken by the sensors, {zi,xsi}Ni=1,

2. determine of weights,

3. evaluate the measurement function in the surveillance area, and

4. locate as many maximums/minimums of the measurement function as
targets are in the surveillance area.

4.6 Simulation Results

We have performed some simulations using MATLAB to evaluate the pro-
posed localization method.

The sensor network field considered here is an area of 200×200m2, where
N = 20 sensor nodes have been deployed following a uniform distribution.
We assume the model of (2.4) where the N sensors take RSS measurements.
For clarity purposes we rewrite the equation here:

zRSS
i = PT − 10γ log10 ‖x− xsi‖+ nRSS

i (4.11)

where the values for the different parameters are: PT = 30 dBm, the path
loss exponent is γ = 2 and the standard deviation of noise σnRSS

is
√
2 dB.

Note that as mentioned in Section 4.4, this kind of measurement function
presents a maximum in the position where the target is located.

Some design parameters, such as the number of RBFs or the width of
the gaussian, are analyzed in the simulation part to select an appropiate
value.

Simulation results are averaged over 200 simulation runs, where different
network configuration are used.
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4.6.1 Single Target Localization

Figure 4.3 presents the number of selected radial functions against the
LASSO parameter, λ (see (4.10)), for different sizes of the RBF grid. As it
is observed for all grid sizes, the number of selected RBFs remains constant
for low values of λ. This is because of the volume of the training data is
small, which leads to the selection of a small subset of RBFs from the very
begining. As λ increases, it can be seen a reduction in the number of RBFs,
reaching really low values, up to about 4 selected RBFs.
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Figure 4.3: Number of selected RBFs against the LASSO parameter, λ.

Figure 4.4 shows the evolution of the RMSE with respect to the LASSO
parameter, λ, for different sizes of the RBF grid. As observed for all grid
sizes, the RMSE keeps constant for low values of λ. This fact changes when
λ is increased, which leads to a lower estimation error of approximately
5m. For very high values of λ, a increment in the RMSE can be detected.
Considering Figure 4.3, it can be deduced that for these values of λ, the
number of selected RBF is too low to perform a good interpolation and,
thus, an accurate estimation.

Figure 4.5 presents in a 3−D graphic the evolution of the RMSE against
the size of RBF grid used in the interpolation task and the widths of the
gaussian RBFs, σ, when 20 sensors are deployed and the LASSO parameter
is λ = 250. Note that σ is defined as a function of the distances between
the centers of neighboring RBFs, d. As observed, a high estimation error
is obtained for small widths. This is because the gaussians are too narrow
and they can not uniformly cover the area to be interpolated. Thus an
unsatisfactory interpolation is performed and, consequently, an inaccurate
localization is achieved. As the size of the grid and the width are increased,
the RMSE is improved, getting their best values for widths between 2 d and
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Figure 4.4: RMSE against the LASSO parameter, λ.

2.5 d and grid sizes of 10×10 or greater. Therefore, a grid size of 16×16 and
σ = 2 d can be considered as appropriate parameters for our simulations.
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Figure 4.5: RMSE against the size of RBF grid and the widths of the RBFs, σ.

Figure 4.6 shows the evolution of the RMSE with respect to the number
of deployed sensors, N . As observed, a high estimation error is obtained
when few sensors are deployed. The reason for this is that the number of
collected measurements is not high enough to adequately train the RBFs.
Thus an unsatisfactory interpolation is performed and, consequently, the
accuracy of the target localization is poor. As the number of sensors is
increased, the RMSE is improved. A deployment of 20 sensors can be looked
upon as a suitable choice.
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Figure 4.6: RMSE against the number of sensors, N .

Figure 4.7 shows the interpolation of the measurement function when 20
sensors are deployed and a grid of 16 × 16 gaussian RBFs, with σ = 2, is
employed. As observed, the interpolated function has a maximum located
approximately in the target position, thereby implementing the localization
task. In addition it should be noted that the interpolation error for the
known data, i.e. the difference between the real measurement and the one
obtained with the interpolation, is 0.3 dBm. So it is considered that an
appropiate interpolation of the measurement function is achieved with these
configuration parameters (number of sensors and RBFs paramerts).

Figure 4.7: Example of interpolated measurement function.

Figure 4.8 presents a comparison, in terms of RMSE, between the pro-
posed localization method and a model-based localization algorithm that
uses a version of the LS algorithm presented in [95]. This figure ilustrates
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the evolution of the RMSE with respect to the real path loss exponent of the
RSS model indicated in (4.11), when it is assumed that the estimated path
loss exponent is γ = 2. As it is seen, the RMSE of the proposed method
is constant for all values of γ. This is consistent with the fact that it is a
model-independent localization method, that does not requires information
about the measurement model to estimate the target position. On the other
hand, the estimation error of the LS method increases as the real path loss
exponent differs from the simulation value.
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Figure 4.8: Comparasion between WLS and the proposed method.

4.6.2 Localization of multiple targets

Figure 4.9 shows the interpolation of the measurement function when 20
sensors are deployed and a grid of 16 × 16 gaussian RBFs, with σ = 2 d, is
employed. As mentioned in the discussion of Figure 4.7, the interpolated
function has two maximums located at approximately the target positions.
In this case, the interpolation error for the known data is 0.75 dBm. So it
is considered that an appropiate interpolation of the measurement function
is achieved.
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Figure 4.9: Example of interpolated measurement function for multitarget localiza-
tion.

Figure 4.10 presents the evolution of the RMSE with respect to the
distance between two targets, for different widths, σ. As observed, two
different stages can be identified. The first one happens at short distances
where the identification of the two targets can not be performed. Therefore
the proposed method estimates the position of a unique target and the
increment of the distance between targets leads to a rise of the RMSE. The
second stage takes place when the distance between targets is large enough
to allow the identification of both targets. In this case, the RMSE decreases
as the targets are separated, since they are distanced enough to allow the
identification of several maximums in the interpolated function.

σ=2
σ=2.5

Figure 4.10: RMSE against the distance between two targets.
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4.7 Conclusions

This chapter proposes a novel model-independent localization algorithm
based on the interpolation of the measurement function with RBFs. To
this end, we have studied the RBF solutions to the interpolation problem
and we have adjusted the formulation to our localization problem. We have
also suggested simple changes of this procedure in order to allow its imple-
mentation for the localization of multiple targets. In addition, we proposed
the computation of the RBF weights with the LASSO regression method,
which automatically choses an appropiate number of RBFs to obtain a good
generalization of the interpolated function.

We have performed some simulations to evaluate the proposed local-
ization algorithms. The results have shown that the proposed algorithm
provides low estimation errors with a low density of sensors and without
using any prior information regarding the measurement parameters. These
methods are extensible to the problem of multiple target localization, where
the proposed method achieved good results specially when the targets are
far enough. Likewise it has been observed that the use of the LASSO re-
gression in the RBF training stage adjusts the number of radial functions to
a low value as well as achieving a better generalization of the interpolated
function.

Finally, we can conclude that the model-independent localization method
proposed in this chapter is a good alternative for target localization prob-
lems, specially when the WSN has a low density of sensors and there is no
information about the measurement model.
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Chapter 5

Sensor Selection for
Predictive Target Tracking

In this work, we investigate the centralized selection of sensors in target
tracking applications over huge networks where a large number of randomly
placed sensors are available for taking measurements. We have used the
posterior Cramér-Rao Bound (PCRB) as the performance-based optimiza-
tion criteria because of its built-in capability to produce online estimation
performance predictions, a “must” for high maneuverable targets or when
slow-response sensors are used. In this chapter we analyze, and compare,
three optimization algorithms: genetic algorithm (GA), particle swarm op-
timization (PSO), and a new discrete-variant of the cuckoo search (CS)
algorithm. Finally, we propose local-search versions of these optimization
algorithms that provide a significant reduction of the computation time.

The rest of this chapter is organized as follows. The system model and
the applied tracking algorithm are explained in Section 5.2. In Section 5.3,
we define the sensor-selection problem and its solution by means of opti-
mization methods. Section 5.4 presents the discrete formulation of cuckoo
search algorithm and its application to our problem. The use of a local
search instead of a global search is proposed in Section 5.5. Simulation re-
sults are presented in Section 5.6. Finally, concluding remarks are presented
in Section 5.7.

5.1 Introduction

As known, the tracking accuracy improves with the increasing number of
measurements. Therefore, in terms of the tracking performance, it is de-
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sirable to use as many measurements as possible. However, the nodes in
the WSNs have limitations in energy consumption, computation power, and
sensing ranges, which means that it is not optimal for all available sensors to
take measurements. As a result, we have two conflicting goals: (1) to collect
information of high quality (utility), and (2) to conserve energy (cost).

Several suboptimal heuristics have been proposed to approximately solve
the sensor-selection problem. These include genetic algorithms [10], particle
swarm optimization [70, 76], convex optimization [51], or stochastic strate-
gies [39].

Regarding the objective function (or, in other words, the utility func-
tion), the sensor selection can be based on entropy or performance-related
criteria [92].

With respect to the entropy-based utility functions, an uncertainty-
bounded model was proposed in [50], where sensor information utility is
related to the uncertainty area of target concerned with the sensors. This
approach is good in precision but intensive in calculation. An entropy-based
information utility measurement was also defined in [112]. This approach,
implemented with Bayesian Filters, is based on the estimation of an expected
target belief state. Although it achieves good tracking accuracy, it requires
precise estimates for the probability density functions needed to obtain the
information metric.

Regarding the performance-based utility functions, the CRB provides
the limit on the mean square error (MSE) for any unbiased estimator of the
target state. This provides a powerful tool that, within the context of tar-
get tracking, has been used to assess the performance of estimators of track
parameters for deterministic target motion [42]. In the case of dynamic and
uncertain target motion, the PCRB provides a measure of the achievable
performance for recursive Bayesian estimators of the uncertain target state,
with the added advantage of being independent of the estimation mecha-
nism. In addition, it provides online estimation performance predictions,
which are very useful both for tracking highly maneuverable systems and to
activate slow-response sensors, as some used in environmental monitoring
[27]. In [114] and [66], the authors demonstrated the utility of this criterion
over information-based or entropy-based methods.

Optimization algorithms are proposed here as a solution to the sensor-
selection problem. Many articles in the literature have used these algorithms
in the field of WSNs in many different ways [26, 94]. For instance, the
authors of [67] pose the optimization of the sensors placement to achieve
the optimal communication coverage, or as in [7] where its authors propose
an energy-efficient routing based on optimization algorithms.
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In this chapter we focus on the application of optimization algorithms
for the selection of sensors using the PCRB as a quality measure. The
main part of this work is devoted to the performance comparison of well-
known optimization algorithms, such as PSO [56] and GA [36]. We have
also included the CS algorithm [108] in our study because it provides more
robust and precise results than the PSO and the GA [17]. It is important to
mention that the conventional CS algorithm can not be directly applied to
discrete search-space problems (e.g. the selection of ns out of N sensors).
For this reason, in this paper we present a modification (the Discrete Cuckoo
Search, DCS) that, obviously, could be also applied to other discrete search-
space problems.

Another contribution is related to the kind of search carried out by the
optimization algorithms. In order to achieve a more significant reduction of
the computation time, we also propose a local search that is based in the
reduction of the search space, and demonstrate its utility over the global
search.

5.2 System Model

5.2.1 Dynamic and Observation Model

The aim of target tracking is to estimate the state trajectories of a movable
element. Although a target is almost never really a point in space and
the information about its orientation is valuable for tracking, a target is
usually treated as a point object without a shape in tracking, especially
in target dynamic models, as mentioned in Section 2.2. Under the usual
Markov assumption, the standard discrete-time dynamic and observation
models are:

xt ∼ p (xt|xt−1) (5.1)

zt ∼ p (zt|xt) (5.2)

where xt represents the state of the dynamic system at time t and zt is the
observation vector.

Equation (5.1) describes the transition model that governs the time evo-
lution of the state vector. As mentioned in Section 2.2, the state vector xt

contains the kinematics quantities (position pt, velocity vt, acceleration at,
etc.) that describe the target motion. We assume the gaussian dynamic
linear model presented in (2.10) and repeted here for convenience [6]:

xt = Ft xt−1 +Gtut (5.3)
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where Ft is the transition matrix at time t, ut is the (white gaussian) process
noise with covariance matrix Q.

Equation (5.2) is referred to as the observation model that relates the
observed vector zk to the state vector xk, as it has been shown in Section
2.1.2. Accordingly, the observations at the i-th sensor can be described as:

zi,t = h (pt,xsi) + ni, i = 1, . . . , N (5.4)

being xsi the position of the i-th sensor and ni a white Gaussian noise with
variance σ2

ni
. In 2.1.2 we give some models for the most common sensors in

tracking applications (RSS, ToA, and AoA).

5.2.2 Tracking Algorithm: Rao-Blackwellised Particle Filter

As it is mentioned in Section 2.4.2, RBPF refers to a Sequential Monte
Carlo algorithm, in which only some components of the state vector are
sampled, while others are handled analytically [22]. Rao-Blackwellization
can result in a tremendous decrease in the variance of a Monte Carlo estimate
when compared with a standard implementation of the particle filter [23].
This improvement is especially significant when the observation model only
provides information about a partition of the state vector (usually, the target
position). On the other hand, Rao-Blackwellization restricts the applicable
form of the estimation model to a conditionally linear-Gaussian structure as
the one presented here (see (5.3)).

Thus, our proposal is to partition the state-space xt into two subspaces:
the position pt (that is the main, if not the only, factor in the observation
model), and the rest of the kinematic features, x̃t. This way, in our RBPF
implementation, pt samples are updated as in standard particle filter, and
then the x̃t distributions are updated using an exact filter conditional on pt,
as the Kalman filter. The overall algorithm is summarized as follows:

1. Initialize the M particles and weights:
{
x
(m)
t , w

(m)
t

}M

m=1
.

2. Particle filter time update:

(a) Kalman filter measurement update.

(b) Predict new particles.

(c) Kalman filter time update.

3. Particle filter measurement update: Evaluate weights.
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4. Obtain an approximation of the p (xt|zt) and an estimation of the state
vector, x̂t

5. Resample.

6. Set t = t+ 1 and go to step 2.

5.3 Sensor Selection

5.3.1 Problem Statement

The sensor selection problem can be stated as follows: given a set of N
sensors S = {s1, . . . , sN}, determine the best subset S′ of ns < N sensors
that achieves the higher quality of information with respect to its tracking
task. In general, it is considered an optimization problem that can be written
as:

maximize/minimize F
(
S′)

subject to S′ ⊂ S

S′ ∈ N
ns×1

where F (S′) is the objective, or fitness function, that modelizes the tracking
task. The approach used in the selection algorithm (i.e. entropy-based ap-
proach, mean squared error based approach, etc) defines the fitness function.
As previously mentioned, this work is focused on the approach presented in
[114], where the minimization of the PCRB is used as the fitness function.
Section 5.3.2 explains in detail the formulation of this bound.

In most cases, this problem becomes equivalent to the Knapsack prob-
lem which is known to be NP-complete [32]. This means that there is no
polynomial-time algorithm for its exact solution. This is clearly not desir-
able, especially if we consider a network with a large number of sensors.
Hence, approximate and heuristic procedures are mostly used to solve this
problem. Here, we propose the utilization of optimization methods which
provide near-optimal solutions in a reasonable amount of time. Section 5.3.3
explains in detail the optimization algorithms employed in this work.

5.3.2 Fitness Function: Posterior Crámer-Rao Bound

The conventional CRB, explained in 2.5, provides the performance limit
on the MSE for any unbiased estimator of a fixed parameter. For random
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parameters, the author of [101] presented an analogous bound, the PCRB
or Bayesian CRB, which shows that:

E
{
[x̂t − xt] [x̂t − xt]

⊤
}
≥ J−1

t (5.5)

in which Jt is the posterior Fisher information matrix (PFIM) defined as:

Jt = E
{
−∇xt∇⊤

xt
log p (xt, zt)

}
. (5.6)

The authors of [100] show that from the previous PFIM, Jt, can be
computed recursively as follows:

Jt+1 = D22
t −D21

t

(
Jt +D11

t

)−1
D12

t (5.7)

where

D11
t = Ep(xt+1|zt+1)

{
−∇xt∇⊤

xt
log p (xt+1|xt)

}
(5.8)

D12
t = Ep(xt+1|zt+1)

{
−∇xt∇⊤

xt+1
log p (xt+1|xt)

}
(5.9)

D21
t =

[
D12

t

]⊤
(5.10)

D22
t = D22,a

t +D22,b
t = Ep(xt+1|zt+1)

{
−∇xt+1

∇⊤
xt+1

log p (xt+1|xt)
}
+

+ Ep(xt+1|zt+1)

{
−∇xt+1

∇⊤
xt+1

log p (zt+1|xt+1)
}

(5.11)

and:
J0 = E

{
−∇x0

∇⊤
x0

log p (x0)
}

(5.12)

where p (x0) is the initial distribution of the target state vector.
In general, the expectations in (5.8)-(5.11) have no analytical closed-

form solution and must be approximated. The authors of [97] formulate
an approximation of the PCRB via Sequential Monte Carlo methods as the
one applied for target tracking in this work. Considering the dynamic model
explained in Section 5.2, the expectations in (5.8)-(5.11) can be rewritten
as follows:

D11
t = FT

t

(
GtQG⊤

t

)−1
Ft (5.13)

D12
t =

(
D21

t

)⊤
= −F⊤

t

(
GtQG⊤

t

)−1
(5.14)

D22,a
t =

(
GQG⊤

t

)−1
(5.15)
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So, applying this development and the matrix inversion lemma as in [90],
we get:

Jt+1 = D22,b
t +

(
GtQG⊤

t + FtJ
−1
t F⊤

t

)−1
(5.16)

As a first step in applying Monte Carlo integration, we will need to define
the following matrix function:

Λ22,b (xt, zt+1) = −∇xt+1
∇⊤

xt+1
log p (zt+1|xt+1) (5.17)

The expectations presented in ((5.11)) can be evaluated with a sample mean
approximation once we have a sample-based representation of the posterior
density, as the one we have when sequential Monte Carlo algorithm:

D22,b
t

∼= 1

M

M∑

m=1

Λ22,b
(
x
(m)
t , zt+1

)
(5.18)

where x
(m)
t+1 ∀m = 1, · · · ,M are the a posteriori samples representing the

density p (xt+1|zt+1) and M is the number of samples.

5.3.3 Optimization Methods

There are many optimization algorithms which can be classified in many
ways, depending on the focus and characteristics: gradient-based or derivative-
free, heuristic or metaheuristic, etc.

An interesting class of optimization algorithms are the metaheuristic
methods [103]. They are defined as approximate methods that are designed
to attack hard optimization problems where classical methods have failed
to be effective and efficient. The metaheuristic methods combine different
concepts for exploring and exploiting the search space to find efficiently
near-optimal solutions. Due to these reasons, we applied some of the most
popular and efficient metaheuristic algorithms to our optimization problem:

• Cuckoo Search ⇒ It is one of the latest nature-inspired metaheuristic
algorithms, [108]. It is inspired by the obligate brood parasitism of
some cuckoo species by laying their eggs in the nests of other host
birds (of other species). In addition, this algorithm is enhanced by the
so-called Lévy flights, rather than by simple isotropic random walks. In
this article, we present a discrete variant of this optimization method
(see Section 5.4 for details).
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• Particle Swarm Optimization ⇒ PSO algorithm is inspired by social
behavior of animals moving in large groups (birds in particular) [56].
The algorithm investigates the search space using a group of potential
solutions, called particles, characterized by its position and velocity.
The PSO concept consists of, at each time step, changing the velocity
of each particle toward best local and global locations. As our problem
has a discrete nature, the implementation of PSO used in this work is
the one proposed in [89].

• Genetic Algorithm ⇒ They are probably the most popular evolution-
ary algorithms with a diverse range of applications. GAs [36] are a
model or abstraction of biological evolution based on Charles Darwin’s
theory of natural selection. The essence of these algorithms involves
the encoding of solutions as arrays of bits or character strings (chro-
mosomes), the manipulation of these strings by genetic operators (also
known as crossover and mutation) and a selection step based on their
fitness to find a solution to a given problem. Each iteration, which
leads to a new population, is called a generation, and at the end,
the best chromosome is decoded to obtain a solution to the problem.
The implementation of GA applied in this work is similar to the one
presented in [113].

5.4 Discrete Cuckoo Search

5.4.1 Cuckoo Search

The CS approach adapts and combines two behaviors from nature to produce
an algorithm that fulfills the criteria of a metaheuristic algorithm. These
are:

1. Cuckoo breeding behavior ⇒ Many species of cuckoo are brood par-
asites, laying their eggs in communal nests,though they may remove
others’ eggs to increase the hatching probability of their own eggs. If
a host bird discovers that the eggs are not its own, it will either throw
away these alien eggs or simply abandon its nest and builds a new nest
elsewhere. In the CS approach, worst solutions are discarded and new
solutions are generated after each step.

2. Lévy flights ⇒ In nature, animals search for food in a random or
quasirandom manner. In general, the foraging path of an animal is
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effectively a random walk because the next move is based on the cur-
rent location/state and the transition probability to the next location.
Which direction it chooses depends implicitly on a probability, which
can be modeled mathematically. For example, various studies have
demonstrated that the flight behavior of many animals and insects
show the typical characteristics of Lévy flights. Broadly speaking,
Lévy flight is a random walk whose step length is drawn from the
Lévy distribution, often in terms of a simple power-law formula:

Lévy ∼ l−β (5.19)

where 1 ≤ β ≤ 3 and therefore has an infinite variance. Lévy flight is
used in CS-based scheme for generating new nests or solutions after
each step.

The CS algorithm considers various design parameters and constraints;
the three main rules on which it is based are as follows:

• Each cuckoo lays one egg at a time, and dumps its egg in randomly
chosen nest.

• The best nests with high quality of eggs will carry over to the next
generations.

• The number of available host nests is fixed, and the egg laid by a
cuckoo is discovered by the host bird with a probability pa ∈ [0, 1]. In
this case, the host bird can either throw the egg away, or abandon the
nest and build a new nest.

Based on the above mentioned rules, the basic steps of the CS can be
summarized as in Algorithm 1.

When generating new solutions s(k+1) for a cuckoo i, a Lévy Flight is
performed:

s
(k+1)
i = s

(k)
i + α ⊕ Lévy (β) (5.20)

where α > 0 is the step size which should be related to the scales of the
problem of interests and the product ⊕ means entrywise multiplications.
Here the consecutive jumps/steps of a cuckoo form essentially a random
walk process.

The number of parameters to be tuned in CS is less than other nature in-
spired techniques, and thus it is potentially more generic to adapt to a wider
class of optimization problems. The technique has been shown to be suc-
cessful on some benchmark functions and it is better than other approaches
[108].
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Algorithm 1: Cuckoo Search

Data: Objective function: F (s), s = (s1, s2, . . . , sd)
T

Result: Solution to the optimization problem: s which
maximize/minimize F (s).

Generate an initial population of ncs host nests si, i = 1, 2, . . . , ncs;
while (k < Maximum Generation) or (stop criterion) do

Get a cuckoo (say i) randomly and generate a new solution by
Lévy flights;
Evaluate its quality/fitness, Fi = F (si);
Choose a nest among ncs (say j) randomly;
if Fi > Fj then

Replace j by the new solution;
end
Abandon a fraction (pa) of worse nests and build new ones at new
locations via Lévy flights;
Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best;

end
Post process results and visualization;

5.4.2 Discrete Cuckoo Search Scheme

The classical CS algorithm described in the previous section is not applicable
when the optimization problem has a discrete nature, as the one we are
addressing here. A problem has a discrete nature if its search space is
discrete, that is, if each tentative solution is bound to a discrete set of values.
Some examples of discrete optimization are the Knapsack, the traveling-
salesman problem, or the school-scheduling problem.

A modification of the classical CS algorithm suitable for optimization
within such a discrete search space is proposed here. The proposed solution
keeps the main ideas of the CS, but introduces changes in the cuckoos’
movements.

The classical CS bases the cuckoos’ movement in a continuous distribu-
tion, the Lévy distribution. However, this kind of movement can not be
used if a discrete solution should be obtained. Thus, the proposed version
of CS applies a discrete movement model, as the discrete Lévy flight, which
provides a discrete jump step. The complete formulation of the discrete
Lévy flight is presented in Section 5.4.3.

Based on the above mentioned CS algorithm and introducing the pro-
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posed modifications, the basic steps of the DCS can be summarized as shown
in Algorithm 2.

Algorithm 2: Discrete Cuckoo Search

Data: Objective function: F (s), s = (s1, s2, . . . , sd)
T

Result: Solution to the optimization problem: s which
maximize/minimize F (s).

Generate an initial population of ncs host nests si, i = 1, 2, . . . , ncs;
while (k < Maximum Generation) or (stop criterion) do

Get a cuckoo (say i) randomly, generate a new solution by
Discrete Lévy flights and verify that all the elements of the
solution are different.;
Evaluate its quality/fitness, Fi = F (si);
Choose a nest among ncs (say j) randomly;
if Fi > Fj then

Replace j by the new solution;
end
Abandon a fraction (pa) of worse nests, build new ones at new
locations via Discrete Lévy flights and verify that all the elements
of the solution are different.;
Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the best;

end
Post process results and visualization;

5.4.3 Discrete Lévy Flights

Lévy flights are stochastic processes characterized by the ocurrence of ex-
tremely long jumps, so that their trajectories are not continuous anymore.
The length of these jumps is distributed acording to a Lévy stable statistics
with a power-law tail and divergence of the second moment.

To construct a discrete Lévy flight, or a random walk model, which is
convergent to the stable pdf, the clue point is to guess a suitable generating
function, p̃ (z), whose power-law series expansion coefficients provide the
jump probabilities.

Many articles in the literature have addressed the issue of the discrete
random walks, more specifically the discrete Levy flights [69]. An interesting
research work is the one presented in [38], where the authors develop a
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discrete random walk whose transition probability, pl, is proportional to
|l|−β , as the Lévy flights. Its generating function is defined as follows:

p̃ (z) = 1− 2λζ (γ + 1) + λ
[
φ (z, γ + 1) + φ

(
z
−1, γ + 1

)]
(5.21)

where φ is the polylogarithmic function, formulated as:

φ (z, β) =
∞∑

l=1

z
l

l β
, |z| < 1, β ∈ R (5.22)

The jump probabilities of this random walk are obtained by computing
its power-series expansion, as done in [38]:

p0 = 1− 2λζ (γ + 1)

pl = λ |l|−(γ+1) ∀l 6= 0 (5.23)

where λ is restricted to 0 < λ < 1
2ζ(γ+1) , and ζ is the Riemann zeta function

which is defined as:

ζ (β) =
∞∑

l=1

l−β, β > 1 (5.24)

Note that in the case γ = 2, the classical random walk model is no longer re-
covered, since now arbitrarily large jumps occur (with a probability decaying
as |l|−3) as in the Lévy flights.

As mentioned, we propose the application of this implementation of dis-
crete Lévy flights to the DCS algorithm presented previously. It allows the
generation of new discrete solutions at each iteration, and consequently, ob-
taining solutions to discrete optimization problems as the one we propose
here.

5.5 Global and Local Search

Optimization problems are classified into two types: global and local search
(or optimization) problems. The task of global optimization is to find the
solution for which the objective function gets its smallest value (the global
minimum). Thus, global optimization aims at determining not just a local
minimum but the smallest local minimum within the solution set. Other-
wise, the local optimization typically converges towards a local minimum,
not necessarily the global one.

Applying this classification to our optimization problem, we can identify
it as a global search problem. As mentioned in Section 5.3, our aim is to
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select a set of sensors, among all the sensors in the network, which minimizes
a known fitness function. So, our optimization problem considers all possible
solutions to find the global minimum. Despite its optimal behavior selecting
the best solution from a large set of possibilities, global search has a main
disadvantage, its execution time. Since the optimization algorithm starts
from a wide range of possible solutions, it requires a considerable runtime
to find the best one. This problem is especially important in real-time
monitoring applications, which require quick optimization.

To reduce the runtime, we propose to transform the global sensor-selection
problem into a local search problem. To do so, the optimization algorithm
should consider a subset of all possible solutions, i.e. a subset of all sensors
in the network. Then, the optimization algorithm performs a search among
a small set of solutions, thus reducing the runtime.

The reduction of the solution space used by the optimization algorithm
is performed employing the available information of the target and the char-
acteristics of the sensors. If the estimated position of the target in a certain
instant k is x̂t, we can give a rough approximation of the target position in
time t+ 1, x̆t+1, by applying the simple linear dynamic model:

x̆t+1 = Ft+1x̂t (5.25)

Sensors can detect and measure events only within a certain distance,
which is known as coverage radius Rc. This radius is characterized in terms
of the measurement noise, σ2

n, and the false alarm probability, Pfa, which
is proportional to the clutter density [28, 84, 61, 33]. Therefore, we can
define an activation area around x̆t+1 in which the sensors should detect
and measure the target movement [84]. Therefore, only those sensors located
in the activation area are considered in the optimization algorithm for the
selection task. Figure 5.1 illustrates the reduction of the solution space.

5.6 Simulation Results

We have performed some simulations using MATLAB to evaluate and com-
pare the analyzed optimization methods and types of search.

The sensor network field considered here is an area of 500×500m2, where
250 sensor nodes have been deployed following a uniform distribution. The
sensors wake up and sense every Ts = 0.25 s and the targets dynamics is
given by the WNA presented in Section 2.2.2.

At each time, three sensors are selected (ns = 3) to report the informa-
tion of the target to a cluster head according to the measurement models
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Figure 5.1: Example of the reduction of the solutions space. The activation area is
represented by a circle with center in p̆t+1 which is denoted by a triangle. The sen-
sors are indicated by circles and the dark circles denote the sensors in the activation
area at time t+ 1.

presented in Section 5.2 (see also 2.1.2). The simulation parameters for each
measurement model are the following:

• RSS ⇒ Pref = 30 dBm, the path loss exponent is α = 2 and the
standard deviation of noise σnRSS

is
√
2 dB.

• ToA ⇒ The standard deviation of noise is fixed by σnToA
c = 4m.

• AoA ⇒ The standard deviation of noise σnAoA
is 0.16 rad ≃ 9◦ .

The computation of the PCRB requires prior knowledge of the initial
target state vector, as is indicated in ((5.12)). This prior distribution is
assumed Gaussian with mean µ = [10 10 5 5] and covariance matrix P0 =
diag (1, 1, 0.5, 0.5), so p (x0) ∼ N (µ,P0).

Performance is assessed in terms of tracking error (RMSE) and compu-
tational effort of the optimization methods with global and local search. An
upper bound for the computational effort is obtained by the product of the
number of attempt solutions applied by the algorithm multiyplied by the
number of iterations (in our case, 50×100 = 5000). The real computational
effort can be estimated by the product of the actual iteration in which the
best solution was found by the number of attempt solutions. This method
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is computed independently and is very useful to evaluate the optimization
algorithm.

Simulation results are averaged over 300 simulation runs, where differ-
ent network configurations and target trajectories are studied. The same
trajectories are tracked for each method under two searching scenarios: (a)
global search, and (b) local search.

5.6.1 Results with global search

Figures 5.2, 5.3 and 5.4 show the corresponding computational effort for
each optimization method against the RMSE. The results are represented
by ellipses, so that their centers show the mean values of computational
effort and RMSE, and the axes indicate the standard deviation of these val-
ues. As observed in these figures, the values of RMSE obtained for each
optimization method are quite similar. The results also validate the pro-
posed implementation of DCS, as it achieves the lower estimation error with
the lower standard deviation. From the point of view of computational ef-
fort, it can be seen that PSO requires fewer iterations to converge to an
acceptable solution, while DCS and GA require more computational time.
An exception can be seen in the results for ToA (see Figure 5.3) where all
methods greatly reduce their computational effort. The reason is that its
fitness function (PCRB of ToA measurement) is simpler than the function
used for the other measurement models, and hence it requires less computing
time to achieve an acceptable solution.
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Figure 5.2: Computational effort against RMSE when RSS measurements are ap-
plied and a global search is implemented.
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Figure 5.3: Computational effort against RMSE when ToA measurements are ap-
plied and a global search is implemented.
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Figure 5.4: Computational effort against RMSE when AoA measurements are ap-
plied and a global search is implemented.

5.6.2 Results with local search

Figures 5.5, 5.6 and 5.7 show the corresponding computational effort for each
optimization method against the RMSE when a local search is implemented
with Rc = 25m. As observed in these figures, the results obtained for each
optimization algorithm are similar to those obtained using a global search.
DCS still reaches the lowest estimation error, although the differences with
respect to the other methods are not noticeable. Considering the computa-
tional effort, these results point out that PSO requires less computational
time than the other two methods, as with global search. In addition, it
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can be seen that the values of computational effort with local search are
substantially lower than those obtained with a global search. This fact
demonstrates that the simplification of the solution space proposed in this
work provides a significant reduction of the computational complexity with
a slight increment of the estimation error.
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Figure 5.5: Computational effort against RMSE when RSS measurements are ap-
plied and a local search is implemented.
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Figure 5.6: Computational effort against RMSE when ToA measurements are ap-
plied and a local search is implemented.

Figure 5.8 shows the histogram of the position error distribution for
DCS algorithm when local search is implemented and RSS measurements
are used. As it can be seen, most of the samples are positioned around the
mean error whose value is already shown in previous figures. Likewise some
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Figure 5.7: Computational effort against RMSE when AoA measurements are ap-
plied and a local search is implemented.

samples spread over higher error values and form the tail of the distribution.
In addition to the histogram, this figure shows the distribution that fits the
data according to the fit test implemented by Matlab, a Rayleigh distribu-
tion. For the other optimization algorithms, the results are similar, and the
error distribution can be approximated by a Rayleigh too (see Figure 5.9).
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Figure 5.8: Histogram of the position error distribution for local search, when RSS
measurements and DCS algorithm is utilized.

Figure 5.9 presents three Rayleigh distributions, which approximate the
histogram of the position error for each optimization algorithm. Rayleigh is
the distribution of the magnitude of a two-dimensional random vector whose
coordinates are independent, identically distributed, zero mean normal vari-

92



Algorithm Rayleigh Parameter Mean [m] Variance [m2]

DCS 2.32 2.91 2.31
GA 3.36 4.21 4.86
PSO 3.08 3.86 4.01

Table 5.1: Statistics and parameters of the Rayleigh approximation.

ables. This definition is adapted to the obtained results, since the position
error is the magnitude of a vector that contains the error in both dimensions,
x and y. As observed in this figure, the means of the distributions are very
close, whereas the variances change from one method to another. This fact
can clearly be seen in Table 5.1 which presents a summary of the Rayleigh
statistics and parameters.
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Figure 5.9: Rayleigh approximation of the position error distribution for each op-
timization algorithm.

Figure 5.10 presents the evolution of the RMSE, of each optimization
method, with respect to the false alarm probability, Pfa, for two different
measurement noises, σnRSS

=
√
2 dB and σnRSS

=
√
4 dB. Note that the

Pfa is related with Rc as it has been mentioned in Section 5.5. As observed
in these figures, the results obtained for each optimization method are quite
similar, especially when low false alarm probabilities are used. All methods
present a quick increase in the RMSE that converges to an approximately
constant value for higher false alarm probabilities. For lower probabilities,
it can be seen that DCS has a slightly slower increase in the RMSE than
the other methods. On the other hand, PSO is presented as the best option
since it reaches more moderate estimation error than the other two methods
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when higher probabilities are used. As expected, the comparison of both
figures points out an increment in the estimation error when noise levels
rise.
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(a) Evolution of the RMSE against the false alarm probability with σn =
√
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(b) Evolution of the RMSE against the false alarm probability with σn =
√

4 dB

Figure 5.10: Evolution of the RMSE against the false alarm probability when local
search and DCS alogoritm are applied.

Figure 5.11 shows the percentage of disconnected instants, of each opti-
mization method, with respect to the false alarm probability for two different
measurement noises, σnRSS

=
√
2 dB and σnRSS

=
√
4 dB. In this work, a

disconnection is defined as a loss of the target by the tracking system. Ac-
cordingly, it is considered that a target is lost whenever the estimation error
exceeds the coverage radius, Rc. As observed in this figure, the results have
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the same form as the ones presented in Figure 5.10: a quick increase in the
percentage of disconnections that converges to an approximately constant
value for higher false alarm probabilities. Therefore the comments about
these results are the same as in the previous figures: all methods provide
similar results for low probabilities, whereas PSO is presented as the best
choice when higher probabilities are used. As expected, the comparison of
both figures points out an increment in the percentage of disconnections
when noise levels rise.
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(a) Percentage of disconnected instants against the false alarm probability
with σn =
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(b) Percentage of disconnected instants against the false alarm probability
with σn =
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Figure 5.11: Percentage of disconnected instants against the false alarm probability
when local search is applied.

Finally, Figure 5.12 illustrates how the coverage radius, Rc, affects the
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computational effort of both search methods, local and global, when RSS
measurements and DCS algorithm is utilized. Remember that global search
does not consider this parameter, while the local one uses it to perform
the reduction of the solution space (Section 5.5). The results point out
the rise in the computational effort for the local search when increasing the
coverage radius. The highest values of Rc provide the convergence of the
computational effort of both search methods: local and global.
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Figure 5.12: Comparison between the computational effort of local and global
search, when RSS measurements and DCS algorithm is utilized.

5.7 Conclusions

This chapter proposes the application of different optimization algorithms
to sensor selection methods based on a PCRB criterion. To this end, we
formulate the optimization problem and select three of the most popular
optimization algorithms: CS, PSO and GA. Due to the discrete nature of
our problem, we propose a discrete version of the CS algorithm and compare
it with the other two algorithms (PSO and GA). In addition, we propose
a local search, which is based on the reduction of the search space, and
demonstrates its utility with respect to a global search.

We have performed some simulations to assess the optimization algo-
rithms and the searching methods proposed in this work. The results have
shown that the proposed discrete version of CS achieves lowest estimation
error. Considering the computational effort, the results illustrate that PSO
requires less computational time than the other algorithms. In addition, the
simulations have shown that the proposed local search method provides a

96



significant reduction of the computational complexity without a significant
increment of the estimation error.

Finally, we can conclude that the proposed discrete optimization algo-
rithm, DCS, is a good alternative to any other discrete optimization algo-
rithm when the application requires a low estimation error but it is not
focused on low computational cost. If, on the other hand, the application
demands a low computational effort, the PSO algorithm is more suitable. In
addition, the application of optimization algorithms in this scenario allows
selecting a small set of sensors to estimate the target position in a relatively
small computation time. Moreover, we can also conclude that the proposed
local search is a useful alternative to the global one as it achieves similar
estimation errors with less computational effort.
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Chapter 6

Summary and Future
Research

In this chapter we outline the main conclusions derived from the thesis. Next
we suggest the new lines of work that have risen out the research carried
out in this thesis.

6.1 Summary

The aim of this work has been the design and optimization of WSN for ap-
plications of localization and tracking. To this end, three different challenges
have been studied: sensor deployment, model independent localization and
sensor selection. The main conclusions about each of these subjects are
presented below.

6.1.1 Design and deployment of WSN for localization

The first part of the work has been focused on the sensor deployement, which
is a critical issue in WSN. Specifically, we have suggested an analysis of the
deployment from the standpoint of the error in the position estimation. To
this end, we propose the application of the MCRB in order to obtain an a
priori knowledge of the system behavior.

First, we have developed the formulation of the MFIM and the MCRB
for the most common measurement models, such as RSS, ToA, and AoA.
In addition, this formulation have been extended for heterogeneous models
that combine different types of measures.
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We have provided simulation results that assess the obtained expressions
for MCRB. The results have shown that the MCRB and the CRB obtain
similar results, specially when the sensor density is high or the noise level is
low. It should be noted that the main difference between these two bounds
lies in the type of knowledge required regarding the network. On one hand
the computation of CRB assumes knowledge of the sensor positions and, on
the other hand, the calculation of MCRB only requires information about
the statistical distribution of the sensor positions. Likewise, the simulation
results points out the usefulness of the hybrid measurements models since
the combination of different measurement improves the robustness against
noise uncertainty on of the localization system.

To sum up, we can conclude that the MCRB is a useful alternative to
the CRB as the two techniques are very similar in many practical cases
whilst the computational cost of the MCRB is much lower. In addition, the
application of the MCRB in this scenario allowed us to analyze the behavior
of different measurement models under several noise distributions, which
makes the selection of the most suitable model for each case easier.

Early works on Chapter 3 lead to the publishing of the following confer-
ence article,

• S. Pino-Povedano, F-J. González-Serrano, “Applying Modified Cramér-
Rao Bound to Random Sensor Deployment”, Seventh International
Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2011,
pp.36,44, 16-18 Dec. 2011,

whilsts, the following journal article can be regarded as a summary of
Chapter 3:

• S. Pino-Povedano, F-J. González-Serrano, “On the Use of Modified
Cramér-Rao Bound in Sensor Deployment”, IEEE Sensors Journal,
vol.13, no.11, pp.4163,4171, Nov. 2013.

6.1.2 Model-Independent Localization

Target localization is one of the main applications of WSN. As a result
many research works have focused on solving this problem in very different
ways. In this dissertation, we have chosen to address the problem of target
localization when measurement information are not accurate or unavailable.

To this end, we proposes a novel model-independent localization algo-
rithm based on the interpolation of the measurement function with RBFs.
We have studied the operation of the RBFs and adecuated their formulation

100



to our interpolation problem. Besides the use of this algorithm for locate
single targets, we have suggested simple changes on its procedure that allow
its application in locating multiple targets. In addition, we proposed the
computation of the RBF weights with the LASSO regression method, which
provides a reduction in the number of RBF to be assessed to obtain the
interpolated function.

Some simulations have been carried out to evaluate the proposed lo-
calization algorithm. The results have shown that the proposed algorithm
provides low estimation errors with a low density of sensors and without
a prior information of the measurement parameters. These conclusions are
extensible to the problem of locating multiple targets, where the proposed
method achieved good results especially when the targets are enough dis-
tanced. Likewise it has been demonstrated that the use of the LASSO
regression in the RBF training stage reduces considerably the number of
radial functions to be evaluate as well as achieves a better generalization of
the interpolated function.

Lastly, a summary of Chapter 4 is in preparation to be submitted to the
following journal:

• S. Pino-Povedano, C. Bousoño-Calzón, F-J. González-Serrano, “Ra-
dial Basis Function Interpolation for Model-Independent Localization”,
submitted to IEEE Sensors Journal.

6.1.3 Optimization of sensor selection for target tracking

Energy saving is critical to WSN because of the frequent invalidation of
sensors, which degrades the tracking accuracy and reduces the lifetime of
the network. Sensor selection is one of the many solutions that have been
proposed to prolong the network lifetime.

In this dissertation, we suggest the application of different optimization
algorithms to sensor selection methods based on a PCRB criteria. To this
end, we formulate the optimization problem and select three of the most
popular optimization algorithms: CS, PSO and GA. Due to the discrete
nature our problem, we propose a discrete version of the CS algorithm and
compare it with the other two algorithms (PSO and GA). In addition, we
propose a local search, which is based on the reduction of the search space,
and demonstrate its utility with respect to a global search.

We have performed some simulations to assess the optimization algo-
rithms and the searching methods proposed in this work. The results have
shown that the proposed discrete version of CS achieves the lowest estima-
tion error. Considering the computational effort, the results illustrate that
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PSO requieres less computational time than the other algorithms. In ad-
dition, the simulations have shown that the proposed local search method
provides a significant reduction of the computational complexity without a
significant increment of the estimation error.

To sum up, we can conclude that the proposed discrete optimization
algorithm, DCS, is a good alternative to any other discrete optimization
algorithms when the application requires a low estimation error but it is not
focused on low computational cost. If, on the other hand, the application
demand a low computational effort, the PSO algorithm is more suitable. In
addition, the application of optimization algorithms in this scenario, allows
us to select a small set of sensors to estimate the target position in a relatively
small computational time. Moreover, we can also conclude that the proposed
local search is a usefull alternative to the global search as it achieves similar
estimation errors with significantly less computational effort.

It has to be noted that the work presented in Chapter 5 has been sub-
mitted to the following journal:

• S. Pino-Povedano, F-J. González-Serrano,“Comparison of optimiza-
tion algorithms in the sensor selection for predictive target tracking”,
submitted to Ad hoc Networks Journal (2nd review).

6.2 Future Research

Let us end this dissertation by adding some potential open issues that may
contribute to extend the work exposed in this thesis. Some of them are
directly derived from the discussion started above, and for some others, we
have already had some preliminary results that guarantee its feasibility and
interest. Some of them are briefly described hereafter:

• This dissertation has presented and applied different measurement
models, however the most interesting ones have turned up to be the
hybrid models. Consquently, we suggest extending the analysis carried
out in Chapter 3, in order to incorporate other hybrid combinations
of measurement models.

• The performance of the model-independent localization method pro-
posed here has been tested in a “simple” scenario, which is an area
without obstacles. An extension of this work could be performing sim-
ulations in more realistic scenarios, where the sensors do not have a
direct view of the target. This research extension could allow a better
understanding of the algorithm performance with real devices.
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• The sensors selection analyzed in this work is based on the optimiza-
tion of an unique objective function, the estimation error. Note that
the optimization algorithms used here (PSO and GA) and many oth-
ers in the literature, present the possibility of a multi-objective opti-
mization. The implementation of this improvement could allow the
selection of sensors based on multiple parameters, and take into ac-
count other interesting aspects such as the available energy or the
connectivity.
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Appendix A

Collection of Measurement

• RSS ⇒ The set of RSS measurements taken by M sensors at time k
is modeled as follows:

zRSS
k ∼ N

(
µRSS , σ2

nRSS
IM
)

(A.1)

µRSS
k = PT · 1M×1 − 10γ · [log10 (d1), . . . , log10 (dM )]T

where IM is the identity matrix of size M , 1M×1 is a vector containing
ones and whose length is M .

• ToA ⇒ The matrix form of a collection of ToA observations at time
k can be represented as follows:

zToA
k ∼ N

(
µToA, σ2

nToA
IM
)

µToA
k =

[
d1
v
, . . . ,

dM
v

]T
(A.2)

• AoA ⇒ The matrix development is similar to the one presented for
the ToA method:

zAoA
k ∼ N

(
µAoA, σ2

nAoA
IM
)

(A.3)

µAoA
k =

[
arctan

(
y − ys1
x− xs1

)
, . . . , arctan

(
y − ysM
x− xsM

)]T
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Appendix B

Selection of Sigma Points for
UKF

Consider propagating a random variable xt (with dimension nx) through a
nonlinear function, zt = h (xt). Assume xt has mean mt|t and covariance
Pt. To calculate the statistics of zt, we form a matrix Xt of 2nx + 1 sigma
vectors X l

t with corresponding weights W l. The 2nx+1 sigma points X l
t are

chosen according to the following rule:

X 0
t = mt|t (B.1)

X l
t = mt|t +

[√
(nx + κ)Pt

]
l

l = 1, · · · , nx

X l
t = mt|t −

[√
(nx + κ)Pt

]
l

l = nx + 1, · · · , 2nx

Here,
[√

(nx + κ)Pt

]
l
is the l-th column of the matrix square root, and

κ = is a scaling parameter that determines how far the sigma points are
spread from the mean.

The weights W l are defines by:

W0 =
κ

nx + κ
(B.2)

W l =
1

2 (nx + κ)
l = 1, · · · , 2nx

(B.3)
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Appendix C

CRB Formulation

The CRB calculation for different measurement models has been widely
discussed in the literature as in [16] or [81]. This appendix summarizes
its formulation to facilitate the understanding of the results shown in this
chapter.

• CRB for ToA

CRB(x)ToA = σ2
nToA

v2·




∑M
i=1

(x−xsi)
2

d2i

∑M
i=1

(x−xsi)(y−ysi)
d2i∑M

i=1
(x−xsi)(y−ysi)

d2i

∑M
i=1

(y−ysi)
2

d2i




−1

• CRB for AoA

CRB(x)AoA = σ2
nAoA

·




∑M
i=1

(y−ysi)
2

d4i

∑M
i=1

(x−xsi)(y−ysi)
d4i∑M

i=1
(x−xsi)(y−ysi)

d4i

∑M
i=1

(x−xsi)
2

d4i




−1

• CRB for RSS

CRB(x)RSS =
σ2
nRSS

ln2 (10)

100 γ2
·




∑M
i=1

(x−xsi)
2

d4i

∑M
i=1

(x−xsi)(y−ysi)
d4i∑M

i=1
(x−xsi)(y−ysi)

d4i

∑M
i=1

(y−ysi)
2

d4i




−1
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Appendix D

Acronyms and Abbrevations

• AoA : Angle of Arrival.

• AWGN : Additive White Gaussian Noise.

• CA : Constant Acceleration Model.

• CPA : Closest Point of Approach

• CS : Cuckoo Search.

• CRB : Crámer Rao Lower Bound.

• DCS : Discrete Cuckoo Search.

• EKF : Extended Kalman Filter.

• FIM : Fisher Information Matrix.

• GA : Genetic Algorithm.

• KF : Kalman Filter.

• LASSO : Least Absolute Shrinkage and Selection Operator.

• LS : Least Squares.

• LSE : Least Squares Estimator.

• MCRB : Modified Crámer Rao Lower Bound.

• MFIM : Modified Fisher Information Matrix.
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• ML : Maximum Likelihood.

• MSE : Mean square error.

• NLS : Nonlinear Least Squares.

• PCRB : Posterior Crámer Rao Lower Bound.

• PF : Particle Filter.

• PFIM : Posterior Fisher Information Matrix.

• PSO : Particle Swarm Optimization.

• RBF : Radial Basis Function.

• RF : Radio Frequency.

• RMSE : Root mean square error.

• RSS : Received Signal Strength.

• RSSI : Received Signal Strength Indicator.

• SMC : Sequential Monte Carlo.

• SOS : Sum of weighted squares.

• SVD : Singular value decomposition.

• ToA : Time of Arrival.

• UKF : Unescented Kalman Filter.

• WLS : Weighted Least Squares.

• WNA : White Noise Acceleration Model.

• WPA : Wiener Process Acceleration Model.

• WSN : Wireless Sensor Network.
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Appendix E

Notation

• x: scalar magnitudes are denoted using lower case regular face letters.

• x: vectors are displayed as lower case bold-face letters.

• X: matrices are displayed as upper case bold-face letters.

• x = [x1, ..., xn]: the scalar coordinates of a row vector in n-dimensional
space are denoted with square brackets.

• x = [x1, ..., xn]
⊤: a column vector is described a the transpose of a

row vector.

• x ∈ R: sample space of random variable x is the set of real numbers.

• x ∈ R2: random variable x is of dimension 2 and its sample space is
the set of real numbers.

• x ∼ p (x): means that a random variable or a sample x has the indi-
cated distribution.

• p (·): (lower case letter) probability density function (pdf) of a random
variable or vector.

• p (x|y): the conditional pdf of x given y.

• Prob {·}: the probability of an event.

• U([a, b]): uniform distribution in the interval between a and b.

• N (µ, σ2): normal distribution with mean µ and variance σ2.
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• N (x;µ, σ2): evaluation of the normal pdf with mean µ and variance
σ2 in x.

• Ex {·}: statistical expectation with respect to the subscripted variable.

• ∇x: means the gradient of the subscripted variable.
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optimization algorithm for solving optimal sensor deployment prob-
lem. Journal of Automatic Control, 18(1):9–14, may 2008.

[90] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House, 2004.

[91] K. Romer and F. Mattern. The design space of wireless sensor net-
works. Wireless Communication, 11(6):54–61, December 2004.

[92] H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy,
T. Brown, and T. La Porta. A survey of sensor selection schemes in
wireless sensor networks. In Proceedings of the Defense and Security
Symposium, pages 65621A–65621A. International Society for Optics
and Photonics, 2007.

[93] C. Savarese, J.M. Rabaey, and J. Beutel. Location in distributed ad-
hoc wireless sensor networks. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 4 of
ICASSP 2001, pages 2037–2040 vol.4, 2001.

[94] Q. Shi, C. He, H. Chen, and L. Jiang. Distributed wireless sensor net-
work localization via sequential greedy optimization algorithm. IEEE
Transactions on Signal Processing, 58(6):3328–3340, June 2010.

123



[95] P. Stoica and J. Li. Lecture notes - source localization from range-
difference measurements. IEEE Signal Processing Magazine, 23(6):63–
66, Nov 2006.

[96] L.D. Stone, T.L. Corwin, and C.A. Barlow. Bayesian Multiple Target
Tracking. Artech House, Inc., Norwood, MA, USA, 1st edition, 1999.

[97] Jr. Taylor, R.M., B.P. Flanagan, and J.A. Uber. Computing the recur-
sive posterior cramer-rao bound for a nonlinear nonstationary system.
In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 6 of ICASSP ’03, pages VI –
673–6 vol.6, april 2003.

[98] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[99] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

[100] P. Tichavsky, C.H. Muravchik, and A. Nehorai. Posterior cramer-rao
bounds for discrete-time nonlinear filtering. IEEE Transactions on
Signal Processing, 46(5), may 1998.

[101] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part
I. Wiley-Interscience, 1 edition, September 2001.

[102] H.L. Van Trees. Detection, Estimation, and Modulation Theory Part
I. Wiley, 2001.

[103] S. Voss, I.H. Osman, and C. Roucairol, editors. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization.
Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[104] E.A. Wan and R. van der Merwe. The Unscented Kalman Filter, pages
221–280. John Wiley and Sons, Inc., 2002.

[105] Y. Wang, M. Wilkerson, and X. Yu. Hybrid sensor deployment for
surveillance and target detection in wireless sensor networks. In Pro-
ceedings of the 7th International Wireless Communications and Mobile
Computing Conference, IWCMC 2011, pages 326 –330, july 2011.

[106] Y.C. Wang, C.C. Hu, and Y.C. Tseng. Efficient deployment algorithms
for ensuring coverage and connectivity of wireless sensor networks. In
Proceedings of the First International Conference on Wireless Inter-
net, pages 114 – 121, july 2005.

124



[107] H.W. Wei, R. Peng, Q. Wan, Z.X. Chen, and S.F. Ye. Multidimen-
sional scaling analysis for passive moving target localization with tdoa
and fdoa measurements. IEEE Transactions on Signal Processing,
58(3):1677–1688, March 2010.

[108] X.S. Yang and S. Deb. Engineering optimisation by cuckoo search.
Int. J. Mathematical Modelling and Numerical Optimisation, 1(4):330
– 343, 2010.

[109] J. Yicka, B. Mukherjeea, and D. Ghosal. Wireless sensor network
survey. Computer Networks, 52(12):2292 – 2330, 2008.

[110] H. Zhang and J.C. Hou. Is deterministic deployment worse than ran-
dom deployment for wireless sensor networks? In Proceedings of IEEE
International Conference on Computer Communications, INFOCOM
2006, pages 1–13, 2006.

[111] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information
Processing Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2004.

[112] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor
collaboration. IEEE Signal Processing Magazine, 19(2):61–72, 2002.

[113] J. Zhao, Y. Wen, R. Shang, and G. Wang. Optimizing Sensor Node
Distribution with Genetic Algorithm in Wireless Sensor Network, vol-
ume 3174 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2004.

[114] L. Zuo, R. Niu, and P.K. Varshney. Posterior crlb based sensor selec-
tion for target tracking in sensor networks. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing,
volume 2 of ICASSP 2007, pages II–1041–II–1044, 2007.

125


