
This document is published in:

Engels, G. et al. (eds.) (2010). Graph Transformations and
Model-Driven Engineering: Essays Dedicated to Manfred
Nagl on the Occasion of his 65th Birthday. (Lecture Notes
in Computer Science, 5765). Springer, 175-201.
DOI: http://dx.doi.org/10.1007/978-3-642-17322-6_9

© 2010 Springer-Verlag Berlin Heidelberg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-17322-6_9

Controlling Reuse in Pattern-Based Model-to-

Model Transformations

Esther Guerra1, Juan de Lara2, and Fernando Orejas3

1 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

2 Universidad Autónoma de Madrid, Spain
Juan.deLara@uam.es

3 Universitat Politècnica de Catalunya, Spain
orejas@lsi.upc.edu

Abstract. Model-to-model transformation is a central activity in Model-Driven
Engineering that consists of transforming models from a source to a target language.
Pattern-based model-to-model transformation is our approach for specifying
transformations in a declarative, relational and formal style. The approach relies on
patterns describing allowed or forbid-den relations between two models. These patterns
are compiled into oper-ational mechanisms to perform forward and backward
transformations.

Inspired by QVT-Relations, in this paper we incorporate into our framework
the so-called check-before-enforce semantics, which checks the existence of suitable
elements before creating them (i.e. it promotes reuse). Moreover, we enable the use of
keys in order to describe when two elements are considered equal. The presented
techniques are illustrated with a bidirectional transformation between Web Services
Description Language and Enterprise Java Beans models.

1 Introduction

Model-Driven Engineering (MDE) [28] proposes the construction of software
systems using models as primary artefacts. In this paradigm, models are used
to specify, reason, generate code, document, test, analyse and maintain the final
application. Hence, model transformation becomes a key enabling technology for
MDE, and is being subject of intensive research nowadays. The Model-Driven
Architecture [17] (MDA) is a particular incarnation of MDE promoted by the
OMG, which proposes the use of its standard languages, like MOF for meta-
modelling and QVT [23] (Query/View/Transformation) for transformations.

Model-to-Model (M2M) transformation involves transforming models from a
source to a target language. In the context of MDE, M2M transformations are
used e.g. to migrate between language versions, to refine a model, or to trans-
form a model into a semantic domain for analysis. Several usage scenarios can
be identified. Source-to-target (resp. target-to-source) transformations assume
the existence of a source (resp. target) model and create a target (resp. source)
model from scratch. Incremental transformations optimize the former, so that

1

if the source (resp. target) model is changed after being transformed, the target
(resp. source) is updated but not regenerated. A further step is model synchro-
nization, where both models can be modified at any time, and the changes are
propagated to the other model to recover consistency. Hence, a sensible approach
is to define a unique specification establishing when two models are consistent,
and then generate specific lower-level operational mechanisms to solve the sce-
nario of interest. This has the advantage that the transformation is specified
only once, but it requires using a bidirectional, declarative style of specification.
Moreover, the synthesis of operational mechanisms may imply complex algebraic
manipulations of the declarative attribute conditions appearing in the transfor-
mation specification.

Even though many transformation languages have been proposed in the lit-
erature [23,25], there is a need for expressive, high-level, and formal languages
able to precisely express the M2M consistency problem and enabling the anal-
ysis of the transformation specifications. Following the ideas of [25], but aimed
at a relational style of specifications in the lines of [23,27], in [4] we developed
a new approach for specifying M2M transformations. The approach is based
on patterns describing positive or negative conditions that are to be satisfied
by two models in order to be considered consistent. Patterns have a high-level
(i.e. independent of the operational mechanism), algebraic semantics enabling
the decision of whether two models are consistent, or to find the discrepancies
with respect to the specification. These patterns are then compiled into opera-
tional mechanisms, based on triple graph grammar rules [4,12], but in which no
algebraic manipulation of attribute formulae is necessary.

We believe our framework can be used to formalise other transformation lan-
guages, especially QVT-Relations (QVT-R). The purpose of this paper is to ad-
vance in this direction. With this aim, we extend our previous works [4,12,21] by
bringing into our framework two concepts of QVT-R: the Check-Before-Enforce
(CBE) semantics and the keys. CBE semantics is a way to promote element reuse
in transformations, and to enable many-to-one relations between elements across
models. In particular, before creating an element, it is checked whether an exist-
ing one can be reused. Keys allow specifying when two elements are considered
equal. Moreover, in order to promote the use of our techniques in MDE, we pro-
pose a way to enrich the transformation specification with integrity constraints
of the source and target meta-models, in particular the association cardinality
constraints. Finally, we extend our patterns by allowing abstract objects. These
features are illustrated through a transformation between Web Service Descrip-
tion Language [29] (WSDL) models and Enterprise Java Beans [19] (EJBs).

Paper organization. Section 2 introduces related work. Section 3 presents the
case study we will use throughout the paper. Section 4 recalls the necessary
background for subsequent sections. Section 5 reviews our notion of patterns,
and Section 6 the generation of source-to-target and target-to-source operational
mechanisms. Then, Section 7 incorporates the CBE semantics and keys into
our framework. Section 8 presents further details of the case study and, finally,

2

Section 9 ends with the conclusions. An appendix presents some of the proofs of
the main claims and propositions.

2 Related Work

Bidirectional transformation languages are receiving increasing attention in
MDE, as they are able to capture consistency relations between two models
in a direction-independent way. In this approach, a unique specification is used
to derive operational mechanisms solving the different synchronization scenarios
mentioned in the introduction (see also [16]).

A prominent example of this kind of languages is QVT-R [23], a part of the
QVT family of transformation languages sponsored by the OMG. A QVT-R
specification is made of relations, each consisting of two or more domains (i.e.
models). Relations can be top or non-top level, and include when and where
clauses that may be used to express dependencies between relations. The exe-
cution of a transformation requires that all its top-level relations hold, whereas
the non-top level ones only need to hold when invoked from the where section
of other relations. The standard specifies that QVT-R models are enforced by
its compilation into QVT-core, a lower-level language. While QVT-R has no ex-
plicit notion of traces (i.e. relations between the model elements involved in the
transformation), the compilation to QVT-core creates them automatically.

In [1], transformations are expressed through declarative relations made of
positive patterns, heavily relying on OCL constraints, but no operational mech-
anism is given to enforce such relations. In BOTL [2], the mapping rules use a
UML-based notation that allows reasoning about applicability or meta-model
conformance. In our approach we can reason both at the specification and op-
erational levels. In [6], the authors rely on completely relational transformation
units and infer the order of execution by studying their dependencies. They use
attribute grammars as (uni-directional) transformation language. This kind of
grammars is made of textual relations where the order of execution of rules is
not given, but it is automatically calculated in accordance with the dependency
relations that arise between attributes. In the MTF language from IBM [18],
transformations are made of textual relations expressed in RDL (the Relations
Definition Language) that do not impose a direction of the transformation, but
this is selected when invoking the transformation engine. Similar to QVT-R,
MTF relations must be invoked from other relations in order to be executed,
whereas in our approach we query the trace model.

TGGs [25] formalize the synchronized evolution of two graphs through declar-
ative rules. The language spawned by these rules contains the pairs of models
considered consistent. From this specification, low-level operational rules are
derived to solve different synchronization scenarios. Interestingly, our patterns
define a language of valid consistent models by means of constraints instead of
rules (even though the operational mechanisms are implemented through oper-
ational rules) and hence we admit negative constraints too. The work in [15]
included in this volume improves previous works on TGGs by considering TGG

3

schemas (meta-model triples in our jargon) with so called monotonic constraints
(which if satisfied by a model, are satisfied by any submodel). These constraints
are similar to our notion of N-patterns, but our N-patterns are not necessarily
monotonic. Also, they propose a guiding mechanism for applying the operational
rules by a so called dangling edge condition, which before applying one transfor-
mation rule checks if some edge in the source will not get translated. In our case,
we assume that not every element in the source needs to be translated, but the
fact that we generate several rules for each pattern permits obtaining all valid
target models, if more than one exists [21]. An attempt to bridge TGGs and
QVT-R is [10], where QVT-R is both compiled into operational TGGs (instead
of using QVT-core) and translated into declarative TGGs.

An interesting issue in these languages is how to handle and express object
reuse. This aspect has been tackled in QVT-R by the CBE semantics, where
the operational mechanism checks which objects exist and can be reused before
creating them. In order to specify when two elements are considered equal, one
can set keys (similar to keys in databases). Reuse has to be handled explicitly
in TGGs by including the objects to be reused in the left-hand side (LHS) of
the declarative rules. Up to now, our patterns followed a similar approach by
defining the objects to reuse as positive pre-conditions. It is interesting how-
ever to decouple the specification of the reusing policy (keys in QVT) from the
specification of the transformation itself, which potentially leads to more flexible
and reusable transformations. In this paper we incorporate these ideas into our
framework.

3 The Example Case Study

In this section we introduce the case study that we will use throughout the
paper, namely the transformation between WSDL documents and EJBs, both
represented as models. WSDL [29] is an XML-based language for describing web
services, endorsed by the W3C. Here we use the last version 1.1, which is the
most widely used by tools. Fig. 1 shows a simplified meta-model for WSDL we
have developed taking as a basis the XML syntax described in [29].

A WSDL model includes the definition of services as collections of network
endpoints, or ports (class Port in the meta-model). Ports and messages are de-
scribed in an abstract way through classes PortType and Message, independently
from their concrete usage. Then, a binding provides the concrete information (ad-
dresses, protocols – normally HTTP – and so on) to use the services through their
ports. The binding is usually done through SOAP [30], although for simplicity
we have omitted the classes for the binding from the meta-model. A PortType
defines a number of operations (similar to functions in programming languages)
that the service exposes, modelled by class Operation. There are four types of
operation, defining a protocol for exchanging messages. For example, while op-
erations of type OneWay just receive one message, RequestResponse operations
in addition send a response back. The operations refer to the messages involved,

4

Service

-name:String

Port

-name:String*

Binding

-name:String

binding+

PortType

-name:String

type+

OperationBinding

operation+*

Message

-name:String

Operation

-name:String

input+

0..1

output+0..1

fault+

0..1

OneWay

RequestResponse

SolicitResponse

Notification * operation+

MessageBinding

message+

input+ output+ fault

Definitions

-targetNamespace:URI
-name:String *

*

Fig. 1. WSDL meta-model (simplified)

either input, output or fault. A Message has a structure made of several logical
parts, omitted here for simplification.

Enterprise JavaBeans (EJBs) [24] is a Java API that defines a component ar-
chitecture to build server-side enterprise applications. Its specification provides a
number of services commonly found in these applications, like persistence, trans-
action processing, concurrency control, security and exposing business methods
as web services, among others. Fig. 2 shows a simplification of its meta-model we
have developed taking [19] as a basis. An EJB container (class EJBJar) can hold
a number of beans (i.e. Java components), the most important types of which
are Session and Entity. The former are distributed objects that can have a
state or not, depending on whether their attribute sessionType takes the value
stateful or stateless, respectively. Stateful beans keep track of the calling
process through a session, and hence a different bean instance is created for
each customer. On the contrary, stateless beans enable concurrent access. Entity
beans (class Entity) represent persistent data maintained in a database1. For
simplicity, we have omitted the details of this kind of beans.

EJBs are deployed in an application server. Each EJB has to provide a Java
implementation class, and two interfaces called Home and Remote. The meta-
model in Fig. 2 contains a high-level Java meta-model that reflects the depen-
dency of EJBs to Java.

In our case study, we are interested in specifying a bidirectional transforma-
tion between WSDL and EJB models. This is useful as, when building EJB
applications, it is sometimes needed to expose them as web services, and hence
to generate a WSDL file with the service description. The generated opera-
tional (backward) transformation would do this automatically. The opposite is
also common, sometimes a WSDL file with the description of a service needs
to be implemented. The generated operational (forward) transformation would

1 We use the EJB1.1 specification; in the EJB3.0 specification Entity Beans were
superseded by the Java Persistence API.

5

EJBJar

-displayName:String

EnterpriseBean

-displayName:String

enterpriseBeans+

1..*

Session

-transactionType:TransType

-sessionType:SessType

Entity

-isReentrant:Boolean

JavaContainer

-isPublic:Boolean
0..1 remoteInterface+

0..1 homeInterface+

0..1 ejbClass+

0..1

primaryKey+

JavaPackage
*

Method

*

JavaInterface

JavaClass

-isFinal:Boolean

-isAbstract:Boolean

JavaEntity

-name:String

implements+ *

parent+
0..1

child+
*

<< enumeration >>

SessType

+stateful:int=1

+stateless:int=2

<< enumeration >>

TransType

+Bean:int=1

+Container:int=2

Fig. 2. EJB meta-model (simplified)

synthesize an EJB model containing skeletons of the necessary Java classes and
interfaces. There are already available tools that perform these tasks. For exam-
ple, the Oracle Containers for J2EE (OC4J) [20] has a tool called wsdl2ejb that
generates an EJB from a WSDL file. Similarly, the IBM Websphere application
server [13] provides the EJB2WebService tool to create a web service (including
the WSDL file) from EJBs. Note however that both tools are not incremental
and overwrite existing files. Our method has the potential to be incremental and
moreover it would generate both tools starting from a single specification.

4 Preliminaries

In this section we introduce the basic theoretical concepts (triple graphs and
constraint triple graphs) that we will use in our M2M specification language.

In order to perform M2M transformations, it is useful to consider structures
made of a source and a target model, related through a trace model. This struc-
ture is called triple graph [25]. As we can provide nodes and edges in graphs
with attributes and types (called E-graphs in [8]), models can be naturally en-
coded with graphs. An E-graph is a tuple G = (V G, DG, EG, EG

NA, EG
EA, (srcG

j ,

tarG
j)j∈{G,NA,EA}), where V G and DG are sets of graph and data nodes, EG is a

set of graph edges, EG
NA and EG

EA are sets of edges modelling attributes for both
nodes and edges, functions srcG

G : EG → V G and tarG
G : EG → V G are the graph

edge source and target functions, srcG
NA : EG

NA → V G and tarG
NA : EG

NA → DG

are the source and target functions for node attributes, and srcG
EA : EG

EA → EG,
tarG

EA : EG
EA → DG are the functions for edge attributes. Even though we use

E-graphs in our triple graphs, any other type of graph could also be used. Graphs
can be typed by a type graph TG (similar to a meta-model) [8] becoming objects
of the form (G, type : G→ TG), where type is a typing function.

Hence, triple graphs are made of three graphs: source (S), target (T) and cor-
respondence (C). Nodes in the correspondence graph relate nodes in the source
and target graphs by means of two graph morphisms [7].

6

Definition 1 (Triple Graph and Morphism). A triple graph TrG = (S cS←
C

cT→ T) is made of three E-graphs S, C and T s.t. DC = ∅, and two graph
morphisms cS and cT called the source and target correspondence functions.

A triple morphism m = (mS , mC , mT) : TrG1 → TrG2 is made of three E-
morphisms mX for X = {S, C, T }, s.t. mS◦c1

S = c2
S◦mC and mT ◦c1

T = c2
T ◦mC,

where cx
S and cx

T are the correspondence functions of TrGx (for x={1, 2}).
Remark. The correspondence graph is restricted to be unattributed (i.e. DC =
∅), but not necessarily discrete. This is so because otherwise, in general, we could
not take cS and cT to be graph morphisms, as the conditions for attributes fail.

We use the notation 〈S, C, T 〉 for a triple graph made of graphs S, C and T .
Given TrG = 〈S, C, T 〉, we write TrG|X for X ∈ {S, C, T } to refer to a triple
graph where only the X graph is present, e.g. TrG|S = 〈S, ∅, ∅〉. Triple graphs
and morphisms form the category TrG.

Example. The left of Fig. 3 shows a triple graph relating a WSDL model and
an EJB model. The graph nodes are depicted as rectangles, and the data nodes
in DS and DT as rounded rectangles. We only draw the used data nodes, as they
may be infinite. We have represented the types of nodes after a semicolon. In
fact, a triple graph is typed by a type triple graph (or meta-model triple [11]),
where the typing morphism is a triple graph morphism. The right of the same
figure shows the triple graph in UML notation, which we will use throughout
the paper.

s : Service

d : Definitions

: String b1 : Session

e : EJBJardj : D2J

sb : S2B

String

String

name

name

name

name

S TC

cS cT

http://exp.com:
URI

targetNamespace

Container:
transType

stateless:
sessType

session
Type

transactionType
s : Service

d : Definitions

targetNamespace=http://exp.com

b1 : Session

transactionType = Container
sessionType = stateless

e : EJBJar

name StockQuotedj : D2J

sb : S2B

WSDL EJB

Fig. 3. Triple graph example in theoretical (left) and compact notations (right)

Next, we present the notion of constraint triple graph [12]. It will be used
later as a building block of our patterns, as a way to express desired relations
between the source and target models, and also in the left and right hand sides of
the generated TGG operational rules. Constraint triple graphs are triple graphs
attributed over a finite set ν of variables, and equipped with a formula on this set
(i.e., a Σ(ν)−formula, where Σ is a signature) to constrain the possible attribute
values of source and target elements.

Definition 2 (Constraint Triple Graph). Given an algebra A over signature
Σ = (S, OP), a constraint triple graph CTrGA = (TrG, ν, α) consists of a triple
graph TrG = 〈S, C, T 〉, a finite set of S-sorted variables ν = DS 	DT (with 	
denoting disjoint union) and a Σ(ν)−formula α in conjunctive or clausal form.

7

Before defining morphisms between constraints, we need an auxiliary operation
for restricting Σ(ν)−formulae to a smaller set of variables ν′ ⊆ ν. This will be
useful for example when restricting a constraint triple graph to the source or
target graph only. Thus, given a Σ(ν)-formula α, its restriction to ν′ ⊆ ν is
given by α|ν′ = α′, where α′ is like α, but with all clauses with variables in
ν − ν′ replaced by true. Thus, for example (x = 3)∧¬(y = 7)|{x} = (x = 3), as
we substitute ¬(y = 7) by true.

Given a constraint CTrGA = (TrG, ν, α), we write αS for the restriction
to the source variables α|DS , and αT for the restriction to the target variables
α|DT . Given a variable assignment f : ν → A, we write A |=f α to denote that
the algebra A satisfies the formula α with the value assignment induced by f.
Note that if A |=f α, then A |=f α|ν′ ∀ν′ ⊆ ν.

Morphisms between constraint triple graphs are made of a triple graph mor-
phism and a mapping of variables (i.e. a set morphism). In addition we require
an implication from the formula of the constraint in the codomain to the one in
the domain, and also implications from the source and target restrictions of the
formula in the codomain to the restrictions of the formula in the domain. This
means that the formula in the domain constraint should be weaker or equivalent
to the target (intuitively, the codomain may contain “more information”).

Definition 3 (Constraint Triple Graph Morphism). A constraint triple
graph morphism m = (mTrG, mν) : CTrGA

1 → CTrGA
2 is made of a triple mor-

phism mTrG : TrG1 → TrG2 and a mapping mν : ν1 → ν2 s.t. the diagram to
the left of Fig. 4 commutes, and ∀f : ν2 → A s.t. A |=f α2, then A |=f (αS

2 ⇒
mν(αS

1)) ∧ (αT
2 ⇒ mν(αT

1)) ∧ (α2 ⇒ mν(α1)), where mν(α) denotes the formula
obtained by replacing every variable X in α by the variable mν(X).

DTrG1
S ��

��

mT rG
D,S

��
=

DTrG2
S ��

��
ν1 mν ��

=

ν2

DTrG2
T

� �

��

mT rG
D,T

�� DTrG2
T

� �

�� : D
: F

: E

e = w

: A

a = x0
: C

: B

b = y0

d = z

x0 = 4
z > x0

x0 > y0
w > x0 y0 >= 1

B

: C
: A

a = x

: B

b = y

y <> xx > 0 y > 0

A

Fig. 4. Condition for CTrG-morphisms (left). Example (right).

Remark. Note that α2 ⇒ mν(α1) does not imply αS
2 ⇒ mν(αS

1) or αT
2 ⇒

mν(αT
1). For technical reasons we require (αS

2 ⇒ mν(αS
1))∧ (αT

2 ⇒ mν(αT
1)), as

we need to build source and target constraint restrictions (see below) and obtain
a morphism from the restricted constraint to the full constraint.

Example. The right of Fig. 4 shows a constraint triple graph morphism. Con-
cerning the formula, if we assume some variable assignment f : νB → A satisfying
αB (i.e. s.t. A |=f αB), then such f makes A |=f [(x0 = 4 ∧ z > x0) ⇒ (x0 >
0)]∧ [(y0 >= 1)⇒ (y0 > 0)]∧ [(x0 = 4∧z > x0∧x0 > y0∧w > x0∧y0 >= 1)⇒
(x0 > 0 ∧ y0 <> x0 ∧ y0 > 0)]. Thus, the formula in A (the morphism domain)
is weaker or equivalent to the formula in B (the morphism codomain).

8

From now on, we restrict to injective morphisms (for simplicity, and because
our patterns are made of injective morphisms). Given Σ and A, constraint triple
graphs and morphisms form the category CTrGA. As we will show later, we
need to manipulate objects in this category through pushouts and restrictions.
A pushout is the result of gluing two objects B and C along a common subobject
A, written B +A C. Pushouts in CTrGA are built by making the pushout of the
triple graphs, and taking the conjunction of their formulae.

Proposition 1 (Pushout in CTrGA). Given the span of CTrGA-morphisms
BA b←− AA c−→ CA, its pushout is given by DA = (B +A C, νB +νA νC , c′(αB)∧
b′(αC)), and morphisms c′ : BA → DA and b′ : CA → DA induced by the
pushouts in triple graphs (B +A C) and sets (νB +νA νC).

Proof. In appendix.

Example. Fig. 5 shows a pushout, where the pushout object D is the result of
gluing the constraint triple graphs B and C along the constraint triple graph A,
written B +A C. In particular, the resulting constraint has the common nodes
A, B and C, whereas graph B adds node D, and graph C adds node E. The
formula of D αD includes the conjunction of the formulas of graphs B and C,
and note that αD ⇒ c′(b(αA)) ≡ b′(c(αA)).

c’

: D : A

zd > xd
xd = 4

xd >= 0 wd > xd
xd > yd

: C
: B : E

yd >= 1
yd = 3

D

d = zd a = xd b = yd e = wd

: A

a = x1
: C

y1 = 3

: B : E

C

w > x1x1 >= 0

b = y1 e = w

: D : A
: C

: B

b = y0

x0 = 4
z > x0

B

d = z a = x0

x0 > y0 y0 >= 1: B

b = y
: C

: A

a = x

y > 0y <> xx > 0

A b

c

P.O.

b’

Fig. 5. Pushout example

Sometimes, we have to consider the source or the target parts of a constraint
triple graph. The source restriction of a constraint triple graph CTrGA, written
CTrGA|S , is made of the source graph and the source formula, and similarly for
the target restriction. Hence, CTrGA|S = (TrG|S = 〈S, ∅, ∅〉, DS, α|DS = αS).
The source restriction CTrGA|S of a constraint induces a morphism CTrGA|S ↪→
CTrGA. Also, given a morphism q : CTrGA

1 → CTrGA
2 , we can construct mor-

phism qS : CTrGA
1 |S → CTrGA

2 |S and similarly for the target. This restriction
operation will be used later to consider only the source or target models in a con-
straint, when such constraint is evaluated source-to-target or target-to-source.

An attributed triple graph can be seen as a constraint triple graph whose for-
mula is satisfied by a unique variable assignment, i.e. ∃1f : ν → A with A |=f α.
We call such constraints ground, and they form the GroundCTrGA full sub-
category of CTrGA. We usually depict ground constraints with the attribute

9

values induced by the formula in the attribute compartments and omit the for-
mula. The equivalence between ground constraints and triple graphs is useful as,
from now on, we just need to work with constraint triple graphs.

5 Pattern-Based Model-to-Model Transformation

Now we use the previous concepts to build our M2M specification language.
Specifications in our language are made of so called triple patterns. These are
similar to graph constraints [8], but made of constraint triple graphs instead of
graphs. This allows interpreting them both source-to-target and target-to-source.

We consider two kinds of pattern: positive (called P-patterns) and negative
(N-patterns). While the former express allowed relations between source and
target models, the latter describe forbidden scenarios. A P-pattern has a main
constraint (written P (Q)), a (possibly empty) positive pre-condition C (written←−
P (C)), a set of negative pre-conditions (written

←−
N (Ci)), and a set of negative

post-conditions (written N(Cj)). The main constraint of a P-pattern only needs
to hold when the positive pre-condition and no negative pre-condition of the
pattern hold. If such is the case, then no negative post-condition of the pattern
should hold. An N-pattern is a particular case of P-pattern where C and Q are
empty, and there is only one negative post-condition N(Cj) which is forbidden
to occur (as any negative post-condition). Next definition formalises the syntax
of patterns, while Definition 5 describes their semantics.

Definition 4 (Triple Pattern). Given the injective CTrGA-morphism C
q→

Q and the sets of injective CTrGA-morphisms NPre = {Q ci→ Ci}i∈Pre, NPost =
{Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci) ∧←−P (C)⇒ P (Q)

∧

j∈Post

N(Cj) is a positive pattern (P-pattern).

– N(Cj) is a negative pattern (N-pattern).

Remark. The notation
←−
P (·),←−N (·), N(·) and P (·) is just syntactic sugar to indi-

cate a positive pre-condition (that we call parameter), a negative pre-condition,
a negative post-condition and the main constraint respectively.

The simplest P-pattern is made of a main constraint Q restricted by negative
pre- and post-conditions (Pre and Post sets). In this case, Q has to be present
in a triple graph (i.e. in a ground constraint) whenever no negative pre-condition
Ci is found; and if Q is present, no negative post-condition Cj can be found for
the pattern to be satisfied. In this way, while negative pre-conditions express
restrictions for the constraint Q to occur, negative post-conditions describe for-
bidden graphs. If a negative pre-condition is found, it is not mandatory to find
Q, but still possible. P-patterns can also have positive parameters, specified with
a non-empty C. In such a case, Q has to be found only if C is also found. Finally,
an N-pattern is made of one negative post-condition forbidden to occur, and C
and Q are empty.

10

Example. Fig. 6 shows some patterns specifying the consistency between WSDL
and EJB models. The P-pattern P(Definitions-EJBJar) declares that each
Definitions object has to be related with an EJBJar with same name. This
means that the service described in a WSDL document will be handled by a set
of related EJBs, bundled in the same jar container. The P-pattern P(Service-
SessionBean) states that each WSDL Service is managed by a Session bean,
made of home and remote interfaces and an implementation class, and with
methods to create and initialize the bean. The attribute condition enforces some
naming conventions for these. Note that some attribute details (e.g. whether
the bean is stateful or stateless) are left open. The pattern has a positive pre-
condition C, which we show in compact notation using param tags.

: Definitions

name = n1

: EJBJar

displayName = n2

: D2J

n1 = n2

P(Definitions-EJBJar)

: Service

name = ns

: Session

displayName = nb

: S2B

ns = nr

P(Service-SessionBean)

: Definitions : D2J : EJBJar
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

nb = nr+”Bean”
nh = nr+”Home”
nc = nr+”Impl”
mh = “create”
mc = “init”

: Method

name = mh

: Method

name = mc

: PortType : P2B

<<param>> <<param>> <<param>>

N(SharedService)

: Service

: Definitions

: Definitions

: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

P(Operation-Method)

: Enterprise
Bean

: P2B

: JavaClass

:ejbClass

: PortType
<<param>>

<<param>>
<<param>>

n2 <> “init”

N(TwoClasses)

: Enterprise
Bean

: JavaClass

: JavaClass

:ejbClass

:ejbClass

N(SharedBean)

: Enterprise
Bean

: EJBJar

: EJBJar

Fig. 6. Some patterns for the WSDL-EJB transformation

The P-pattern P(Operation-Method) declares that each Operation in a given
port type is to be implemented as an EJB Method with same name in the bean
implementing the port type. The target attribute condition n2<>“init” avoids
translating the special init method created by pattern P(Service-SessionBean)
back into an operation. In addition, the pattern uses abstract objects of types
EnterpriseBean and Operation. This is allowed and, intuitively, it is equiva-
lent to the disjunction of the eight patterns that result from the substitution
of the abstract objects by all its concrete subtypes. Thus, the PortType may
be connected either with a Session or with an Entity, and the method with
any subtype of Operation. Finally, three N-patterns forbid Services to belong
to two Definitions, and an EnterpriseBean to belong to two EJBJars and
have two JavaClasses. Later we will see that in fact these N-patterns can be
automatically derived from the meta-models, and also that there is no need to
manually specify the parameters in the P-patterns P(Service-SessionBean) and
P(Operation-Method).

Next, we define pattern satisfaction. Since N-patterns are a special case of
P-patterns, a unique definition is enough. Satisfaction is checked on constraint
triple graphs, not necessarily ground. This is so because, during a transformation,

11

the source and target models do not need to be ground. When the transformation
finishes a solver can find an attribute assignment satisfying the formulae.

We define forward and backward satisfaction. In the former we check that the
main constraint of a pattern is found in all places where the pattern is source-
enabled. That is, roughly, in all places where the pre-conditions for enforcing
the pattern in a forward transformation hold. The separation between forward
and backward satisfaction is useful because if we transform forwards (assuming
an initial empty target) we just need to check forward satisfaction. Full satis-
faction implies both forward and backward satisfaction and is useful to check if
two graphs are actually synchronized. For simplicity, we only enunciate forward
satisfaction, see the full definition in [12].

Definition 5 (Satisfaction). A constraint triple graph CTrG satisfies CP =
[

∧

i∈Pre

←−
N (Ci) ∧←−P (C)⇒ P (Q)

∧

j∈Post

N(Cj)], written CTrG |= CP , iff:

– CP is forward satisfiable, CTrG |=F CP : [∀mS : PS → CTrG s.t. (∀i ∈ Pre
s.t. NS

i � PS , �nS
i : NS

i → CTrG with mS = nS
i ◦ aS

i), ∃m : Q → CTrG
with m ◦ qS = mS, s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj], and

– CP is backward satisfiable, CTrG |=B CP , see [12]

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {S, T }),
see left of Fig. 7. C +C|x Q|x is the pushout object of C and Q|x through C|x.

Remark. We use the notation A ∼= B to denote that A and B are isomorphic,
and A � B to denote that A and B are not isomorphic.

d : Definitions

name = n1

e : EJBJar

displayName = n2

m : D2J

n1 = n2

Q

d : Definitions

PS

d : Definitions

targetNamespace = http://exp.com

e : EJBJarm : D2J

CTrG

: Service

: PortType

: Session

displayName StockQuoteServiceBean
transactionType = Container
sessionType = stateless

: S2B

d : Definitions

Q |S

P.O.

C |S

C

Ci|S

dS
i

��

P.O.

C|S
�
�

�����
�� qS

�����
��

bi
S��

C
=

eS
i

����
�� cS

		����� P.O. Q|S
pS

�����

NS
i

/
nS

i

��

PS

=

aS
i

��

mS ��

qS �� Q
= =

cj ��

m�����
���

Cj

/
nj

CTrG

Fig. 7. Forward satisfaction (left). Example (right).

Example. The right of Fig. 7 shows an example of forward satisfaction of pat-
tern P(Definitions-EJBJar) by a ground constraint triple graph CTrG. There is
one occurrence of the source restriction of the pattern in CTrG, which can be
extended to the whole pattern. In addition, CTrG also backward-satisfies the

12

pattern and hence it satisfies it. Note however that CTrG does not forward-
satisfy pattern P(Service-SessionBean) as the session bean does not define the
required java classes and interfaces. The satisfaction checking of a pattern with
abstract objects is the same as that of a pattern without them, thus enabling
the usual allowed substitution of abstract types by concrete ones.

We can distinguish several kinds of pattern satisfaction. In trivial satisfaction,
a pattern is satisfied because no morphism mS exists (i.e. there is no occurrence
of the source restriction of the pattern). This is for example the case of pattern
P(Operation-Method) in the constraint CTrG of Fig. 7, as there is no Operation
object in the source of the constraint. In vacuous satisfaction, a pattern is sat-
isfied because mS exists but some of its negative pre-conditions are also found.
In this case, the main constraint Q of the pattern is not demanded to occur in
CTrG. Finally, in positive satisfaction, mS and m exist and the negative pre- and
post-conditions are not found. All these three cases are handled by Definition 5.

One M2M specification is a conjunction of patterns, and hence a constraint
triple graph satisfies a specification if it satisfies all its patterns.

5.1 Considering the Meta-model Integrity Constraints

A transformation specification cannot be oblivious of the meta-model integrity
constraints. The simplest ones are the maximum cardinality constraints in as-
sociation ends. These induce N-patterns that in this paper we automatically
derive and include in the transformation specification. This is useful to prevent
the operational mechanisms from generating syntactically incorrect models, as
N-patterns will be transformed into post-conditions of the operational rules.

The generation procedure is simple: if a class A is restricted to be connected
to a maximum of j objects of type B, then we build an N-pattern made of an A
object connected to j+1 B objects. As an example, Fig. 6 showed three N-patterns
that were derived from the WSDL and EJB meta-model constraints.

Note that additional (but restricted) forms of OCL could also be transformed,
and here we can benefit from previous works on translating OCL into graph
constraints [31]. Interestingly, once the meta-model constraints are expressed
in the form of patterns, we can analyse their consistency with the rest of the
specification. For example, if we find a morphism from some of the generated N-
patterns to an existing P-pattern, then we can conclude that the transformation
is incorrect, as it could try to create models violating the cardinality constraints.
We plan to develop further static analysis techniques, similar to those of [22].

6 Generation of Operational Mechanisms

This section describes the synthesis of TGG operational rules implementing
forward and backward transformations from pattern-based specifications. In
forward transformation, we start with an initial constraint triple graph with
correspondence and target empty, and the other way round for backward trans-
formation. Moreover, we also assume that the source or target initial models

13

do not violate any N-pattern of the specification. Recall that some of these N-
patterns are derived from the maximum association cardinality constraints in
meta-models, and hence it is reasonable to assume syntactically correct starting
models.

The synthesis process derives one rule from each P-pattern, made of triple
constraints in its LHS and RHS. In particular, PS = C +C|S Q|S is taken as
the LHS for the forward rule, and the main constraint Q as the RHS. As an
example, Fig. 8 shows the LHS and RHS of the forward rule derived from pattern
P(Definitions-EJBJar).

d : Definitions

name = n1

e : EJBJar

displayName = n2

m : D2J

n1 = n2

Q=R

d : Definitions

PS=L

d : Definitions

Q |SC

P.O.

C |S

Fig. 8. Forward rule generation example

If a rule creates objects having a type with defined subtypes, we generate a set
of rules resulting from substituting the type by all its concrete subtypes in the
graph created by the rule, i.e. the nodes in RHS \LHS. This substitution is not
necessary in the elements of the LHS as they are not created, and it is not done
in the NACs either in order to obtain the expected behaviour of disjunction.
Using an optimization similar to [3], one could also work directly with abstract
rules, but we would have to modify the notion of morphism and it is left for
future work.

The negative pre- and post-conditions of a P-pattern are used as negative pre-
and post-conditions of the associated rule(s). All N-patterns are converted into
negative post-conditions of the rule(s), using the well-known procedure to con-
vert graph constraints into rule’s post-conditions [8]. Finally, additional NACs
are added to ensure termination. For simplicity, we only show the generation of
the forward rules, the backward rules are generated analogously [12].

Definition 6 (Derived Forward Rule). Given specification SP and P =
[
∧

i∈Pre

←−
N (Ci) ∧←−P (C)⇒ P (Q)

∧
j∈Post N(Cj)] ∈ SP , the set of forward rules

−→rP = {((L = C +C|S Qn|S rn

→ Rn = Qn), pren(P), postn(P))}n∈Conc(P) is de-

rived, where {L rn→ Qn}n∈Conc(P) is the set of rules L → Qn resulting from all
valid substitutions of types by concrete subtypes in nodes belonging to V Q\r(V L).
The set pren(P) of NACs is defined as the union of the following two sets:

14

– NAC(P) = {L aS
i→ NS

i |L � NS
i }i∈Pre is the set of NACs derived from P ’s

negative pre-conditions, with NS
i
∼= Ci|S +C|S C. See the left of Fig. 7, where

PS is L in this definition.
– TNACn(P) = {L mk→ Tk} is the set of NACs ensuring termination, where

Tk is built by making mk injective and jointly surjective with Qn f→ Tk, s.t.
the diagram shown below commutes.

Qn|S ��

��
=

Qn

f
��

L �� Tk

and the set postn(P) is defined as the union of the following two sets of negative
post-conditions:

– POST n(P) = {mj : Rn → Cj}j∈Post is the set of rule’s negative post-
conditions, derived from the set of P ’s post-conditions.

– NPAT n(P) = {Rn → D|[N(Ck)] ∈ SP , Rn → D ← Ck is jointly surjective,
and (Rn \ L) ∩ Ck �= ∅} is the set of negative post-conditions derived from
each N-pattern N(Ck) ∈ SP .

Remarks. In the previous definition, we have used function Conc(P), which
given a pattern P , calculates the set of all valid node type substitutions {Qn}
of its main constraint Q. Slightly abusing the notation, we have used Conc(P)
as an index set.

The set NPAT n(P) contains the negative post-conditions derived from the
N-patterns of the specification. This is done by relating each N-pattern with the
rule’s RHS in each possible way. Moreover, the requirement that (Rn \L)∩Ck �=
∅ reduces the size of NPAT n(P), because we only need to consider possible
violations of N-patterns due to created elements by the RHS, as we start with
an empty target model, and the source already satisfies all N-patterns.

Example. The upper row of Fig. 9 shows the operational forward rule generated
from pattern P(Service-SessionBean), which does not contain abstract objects.
There are three NACs for termination, TNAC1, TNAC2 and TNAC3, the former
equal to R. TNAC3 is not shown in the figure, but is like TNAC1 with an additional
node of type D2J in the correspondence graph, connecting nodes d and e. Note
that we do not do any algebraic manipulation of formulae to generate the rule,
hence demonstrating the advantages of using constraint triple graphs in our
approach. The figure also shows a direct derivation where both G and H are
ground constraints. Constraint H is obtained by a pushout, and hence according
to Prop. 1 is calculated by a pushout on triple graphs and the conjunction of
the formulae of R and G. When the transformation ends, a constraint solver can
be used to resolve attribute values. We will present further generated rules in
Section 8.

According to [21], the generated rules are terminating and, in absence of N-
patterns, correct: they produce only valid models of the specification. However,
the rules are not complete: not all models satisfying the specification can be

15

s: Service

name = ns

: Session

displayName = nb

: S2B

ns = nr

R = TNAC1

d: Definitions m: D2J e: EJBJar
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

nb = nr Bean
nh = nr
nc = nr Impl
mh = create
mc = init

: Method

name = mh

: Method

name = mc

p: PortType : P2B

: Definitions

targetNamespace = tn
name = n1

: EJBJar

displayName = dn

: D2J

H

: Service

name = n2

: PortType

name = n3

: Session

displayName = nb

: S2B
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

: Method

name = mh

: Method

name = mc

tn = http://exp.com

: P2B

n2 = nr

dn StockQuote
nb = nr Bean
nh = nr
nc = nr Impl
mh create
mc init

: Definitions

targetNamespace = tn
name = n1

: EJBJar

displayName = dn

: D2J

G

: Service

name = n2

: PortType

name = n3

tn = http://exp.com
n1 = StockQuote
n2 = StockQuoteService
n3 = StockQuotePortType dn = StockQuote

s: Service

L

d: Definitions m: D2J e: EJBJar

p: PortType

s: Service

name = ns

: Session

displayName = nb

: S2B

ns = nr

TNAC2

d: Definitions m: D2J e: EJBJar
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

nb = nr Bean
nh = nr
nc = nr mpl
mh = create
mc = init

: Method

name = mh

: Method

name = mc

p: PortType : P2B

: D2J : EJBJar

Fig. 9. Generated forward rule and derivation

produced. For example, assume we have a starting model with two Definitions
objects with same name. Then, the synthesized forward rules are able to generate
the model to the left of Fig. 10, but not the one to the right of the same figure,
which also satisfies the specification. The model to the right would be generated
if we could synthesize rules reusing elements created by previous applications of
rules. Next subsection describes a method, called parameterization, that ensures
completeness of the rules generated from a specification without N-patterns (and
therefore it makes possible to find both solutions in the figure). The main idea
is to generate additional patterns with increasingly bigger parameters, which
enables the generated rules to reuse previously created elements.

: Definitions

name = “StockQuote”

: EJBJar

displayName = “StockQuote”

: D2J

Generated graph

: Definitions

name = “StockQuote”

: EJBJar

displayName = “StockQuote”

: D2J

: Definitions

name = “StockQuote” : EJBJar

displayName = “StockQuote”

: D2J

Non-generated graph

: Definitions

name = “StockQuote”

: D2J

Fig. 10. Reachable (left) and unreachable (right) models for the specification without
parameterization

Please note that the resulting constraint of a forward transformation forward-
satisfies the specification, but does not necessarily backward-satisfies it. This is
also noticed in QVT-R [23], where check-only transformations are directed as
well (either forwards or backwards). Thus, the result of an enforcing forward
transformation does not necessarily satisfy the same transformation when exe-
cuted backwards in mode check-only, and vice versa.

16

If a specification contains arbitrary N-patterns, these are added as negative
post-conditions for the rules, preventing the occurrence of N-patterns in the
model. However, they may forbid applying any rule before a valid model is found,
thus producing graphs that may not satisfy all P-patterns. In this case, some
terminal graphs – to which no further rule can be applied – may not be models
of the specification. Note however that if the specification admits solutions, our
operational mechanisms are still able to find all of them, but in this case not all
terminal models with respect to the grammar satisfy the specification.

6.1 Parameterization and Heuristics for Rule Derivation

In order to obtain completeness, we apply an operation called parameterization
to every P-pattern in the specification. In this way, the resulting rules are able
to generate all possible models of the specification [12,21]. The parameterization
operation takes a P-pattern and generates additional ones, with all possible
positive pre-conditions “bigger” than the original pre-condition, and “smaller”
than the main constraint Q. This allows the rules generated from the patterns
to reuse already created elements.

Definition 7 (Parameterization). Given T =
∧

i∈Pre

←−
N (Ci)∧←−P (C)⇒ P (Q)

∧
j∈Post N(Cj), its parameterization is Par(T) = {∧i∈Pre

←−
N (Ci) ∧ ←−P (C ′) ⇒

P (Q)
∧

j∈Post N(Cj)|C i1
↪→ C′ i2

↪→ Q, C � C′, C′ � Q}.
Remark. The formula αC′ can be taken as the conjunction of αC for the vari-
ables already present in νC , and αQ for the variables not in νC (i.e. in ν′

C\i1(νC)).
Formally, αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming of variables).

Example. Fig. 11 shows some of the parameters generated by parameteriza-
tion for a pattern like P(Operation-Method) in Fig. 6 but without parameters.
Parameterization generates 123 patterns in total. The pattern with parameter←−
P (1) is enforced when the port is already mapped to an EJB with a Java class,
and in forward transformation avoids generating a rule that creates a bean and
a Java class with arbitrary names. Parameter

←−
P (3) reuses an operation with the

same name as the method, and in backward transformation allows generating
just one operation from a number of methods with the same name but different
number of parameters. However,

←−
P (2) is potentially harmful as it may lead to

reusing a method that already belongs to a different bean, and thus to an in-
correct model. Note however that this is not possible as an N-pattern generated
from the maximum cardinality constraints of the meta-model forbids methods
to belong to two different JavaClasses. This shows that including the cardinal-
ity constraints of the meta-models as N-patterns in the transformations allows
controlling the level (and correctness) of reuse.

As the example shows, parameterization generates an exponential number of
patterns with increasingly bigger parameters, resulting in an exponential number
of rules. However one does not need to generate these rules beforehand, but they
can be synthesized “on the fly”. Moreover, some of these forward rules generated

17

pa
ra

m
et

er
iz

at
io

n

: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

P(Operation-Method)

: Enterprise
Bean: P2B

: JavaClass

:ejbClass

: PortType

: Operation

name = n1

: Method

name = n2

n1 = n2

P(3)

: Enterprise
Bean: P2B

: JavaClass

:ejbClass

: PortType

P(2)

: Enterprise
Bean

: P2B: PortType : Method

name = n2
init

P(1)

: Enterprise
Bean: P2B

: JavaClass

:ejbClass

: PortType

Fig. 11. Parameterization example

from the parameterized pattern will actually be equal, namely, those generated
from parameters with same target and correspondence graph. Although param-
eterization ensures completeness, we hardly use it in practice due to the high
number of generated rules, and we prefer using heuristics to control the level
of reuse. However, as previously stated, generating fewer patterns can make the
rules unable to find certain models of the specifications (those “too small”).

In order to reduce the number of rules, we propose two heuristics. The first
one is used to derive only those parameters that avoid creation of elements with
unconstrained attribute values. The objective is to avoid synthesizing rules that
create elements whose attributes can take any value. Instead, we prefer that
these elements are generated by some other rule that assigns them a value, if it
exists. Note that some transformations may not provide a unique value for each
attribute thus being “loose”.

Heuristic 1. Given a pattern P , replace it by a new pattern that has as param-
eter all elements with some attribute not constrained by the formula in P but
constrained by some other pattern, as well as the mappings and edges between
these elements. We do not apply the heuristic if the obtained parameter is equal
to Q.

Example. In the pattern in Fig. 11, the heuristic generates just one pattern
with parameter

←−
P (1). Thus, the generated forward rules do not create beans

or classes with arbitrary names. Note that the heuristic replaces the original
pattern with the generated one. This example shows that there is no need to set
this parameter explicitly a priori as we did in the initial specification of Fig. 6.

In Fig. 12 we present to the left an extended version of the pattern
P(Definitions-EJBJar) which maps WSDL definitions to a jar but also to a
package. In the backward direction, a definitions object will be created for each
package and its container jar (this is known because the package contains an
interface that belongs to a bean inside the jar), and we use the name of the
package to give value to the targetNamespace attribute. However, in the for-
ward direction we want to avoid the creation of beans with undefined name,
therefore we apply the presented heuristic and obtain the pattern to the right,
where the positive pre-condition is annotated with the key 〈〈param〉〉 and high-
lighted. In addition, we need to ensure that there are no two Definitions with
same name and targetNamespace, otherwise the operational mechanisms would

18

create different Definition objects for each JavaInterface inside a package.
This can be done using one N-pattern, or as we will see later, using the CBE
semantics.

: Definitions

name = n1
targetNamespace = n3

: JavaPackage

name = n4

: D2P

n1 = n2
n3.authority = n4

P(Definitions-EJBJar&Package)

: D2J

: EnterpriseBean

: JavaInterface

:remote
Interface

: EJBJar

displayName = n2

h
eu

ri
st

ic
1

: JavaInterface
<<param>>

: Definitions

name = n1
targetNamespace = n3

: JavaPackage

name = n4

: D2P

n1 = n2
n3.authority = n4

P(Definitions-EJBJar&Package.h1)

: D2J

: EnterpriseBean

:remote
Interface

: EJBJar

displayName = n2

<<param>>

<<param>>

Fig. 12. Applying heuristic 1 to a pattern

The next heuristic generates only those parameters that avoid duplicating a
graph S1, forbidden by some N-pattern of the form N(S1 +U S1). This ensures
the generation of rules producing valid models for the class of specifications with
N-patterns of this form (called FIP in [4]), and which include the N-patterns
generated by the maximum cardinality constraints in meta-models. The way to
proceed is to apply heuristic 2 to each P- and N-pattern of the form N(S1+U S1),
and repeat the procedure with the resulting patterns until no more different
patterns are generated.

Heuristic 2. Given a P-pattern [
∧

i∈Pre

←−
N (Ci)∧←−P (C)⇒ P (Q)] ∈ SP , if there

is an N-pattern [N(S)] ∈ SP with S ∼= S1+U S1, and ∃s : S1 → Q, u : U → C s.t.
s ◦ u1 = q ◦ u (see left of Fig. 13), and �s′ : S1 → C all injective s.t. q ◦ s′ = s,
then we generate additional patterns with parameters all C′

j s.t. q1 and qs in
Fig. 13 are jointly surjective, and the induced C′

j → Q is injective.

N(SharedBean)

: Enterprise
Bean

: EJBJar

: EJBJar

: Enterprise
Bean

: Enterprise
Bean

: EJBJar

: Enterprise
Bean

: EJBJar

U

S1

S1U
u1 ��

u1
��

P.O.

u

��

S1

��

U ��

u

��
=

S1

qs
�� ��

S1

s

���
��

��
��

/s′
��

S C
q1 �� ��C′

j
�� Q

C q
�� Q

Fig. 13. Condition for heuristic 2 and generated parameters (left and center). Decom-
position of N-pattern (right).

The rationale of this heuristic is that if a P-pattern has a parameter C that
contains U but not S1, and its main constraint Q contains S1, then applying the
pattern creates a new structure S1 glued to an existing occurrence of U . This
heuristic enlarges the parameter to include S1 and thus avoid its publication.
The way to proceed is to apply the heuristic for each P- and N-pattern of the

19

form N(S1 +U S1), and repeat the procedure with the resulting patterns until
no more different patterns are generated.

Example. The right of Fig. 13 shows that N-pattern N(SharedBean) satisfies
the conditions demanded by heuristic 2. The pattern forbids an EnterpriseBean
to belong to two EJBJars. Fig. 14 shows the application of heuristic 2 to the P-
pattern P(Definitions-EJBJar&Package.h1) previously obtained by heuristic 1,
and to the N-pattern N(SharedBean) decomposed in Fig. 13. The generated
parameter C′

1 includes the EJBJar so that it is not created in forward transfor-
mation. In this way, it avoids the creation of the model fragment forbidden by
the N-pattern. Note that the initial pattern with parameter C is also kept in the
specification.

: Definitions
name = n1
targetNamespace = n3

: JavaPackage

name = n4

: D2P

n1 = n2
n3.authority = n4

: D2J

: EnterpriseBean

: JavaInterface

:remote
Interface

: EJBJar

displayName = n2

Q

: Enterprise
Bean

: EJBJar

: JavaInterface

: Enterprise
Bean

: EJBJar

: Enterprise
Bean

: JavaInterface

C

S1

1

Fig. 14. Applying heuristic 2

7 Check-Before-Enforce Semantics

Even though the presented heuristics help controlling the level of reuse, in an
M2M transformation it is useful to control whether an element has to be cre-
ated in the generated domain or whether it already exists and can be reused.
This avoids creating duplicated objects. This control mechanism has been in-
corporated to approaches like QVT and is called Check-Before-Enforce (CBE)
semantics. In this section we incorporate it to our framework.

The idea is to generate N-patterns forbidding two objects of the same type
with the same attribute values. Then, our Heuristic 2 takes each P-pattern in
the specification and generates new ones with appropriate parameters reusing
the objects whenever possible.

Example. The left of Fig. 15 shows the N-pattern that the CBE semantics gen-
erates for class Definitions, which forbids two Definitions objects with same
attribute values in the WSDL model. The center of the same figure presents the
pattern generatedbyheuristic 2 frompatternP(Definitions-EJBJar&Package.h1)
shown in Fig. 12 due to the newly introduced N-pattern. The new pattern adds a
Definitions object to the previous parameter.

To allow for a better control of reuse, and to permit the specification of
when two objects are to be considered equal, QVT includes the concept of Key.
Keys allow us, for example, to neglect certain attributes when comparing if two

20

: Definitions
name = n1
targetNamespace = tn1

n1 = n2
tn1 = tn2

N(CBE:Definitions)

: Definitions
name = n2
targetNamespace = tn2

: JavaInterface
<<param>>

: Definitions

name = n1
targetNamespace = n3

: JavaPackage

name = n4

: D2P

n1 = n2
n3.authority = n4

P(Definitions-EJBJar&Package.h1.h2)

: D2J

: EnterpriseBean

:remote
Interface

: EJBJar

displayName = n2

<<param>>

<<param>>

<<param>>

N(Key:PortType)

: Service

: PortType : PortType
name = n1 name = n2

n1 = n2

Fig. 15. N-pattern generated by CBE semantics (left). Pattern generated by heuristic
2 (center). N-pattern generated from the key of PortType.

objects are the same, or include further connected objects in the comparison.
Again, such a concept can be easily incorporated into our framework by an ap-
propriate generation of N-patterns. For instance, we can set that the key for
PortTypes is their name and owner service. This would be specified in QVT
as Key PortType{name, Service}, from which our procedure generates the N-
pattern to the right of Fig. 15.

8 Specification Process and Back to the Case Study

Fig. 16 summarises the steps needed to engineer a pattern-based transformation
specification and obtain the operational mechanisms. The process is shown as a
SPEM model [26], similar to an activity diagram, where activities are numbered
in dots and represented as arrow-like icons. The model distinguishes the level at
which the activity is performed (language, specification or operational) and who
performs it (language engineer, transformation engineer or automated process).

First, the language engineer designs the source and target meta-models or
reuse them if already available (step 1). Next, the transformation engineer de-
signs the allowed traces between the elements in the source and target languages,
obtaining a meta-model triple as a result (step 2). Once this is available, sev-
eral activities can start in parallel. On the one hand, the engineer builds the
transformation specification (step 3a) and sets the keys (step 3b1). On the other
hand, our automatic mechanisms generate the N-patterns derived from the meta-
model constraints (step 3c), as well as those for the CBE semantics and keys
(step 3b2). Then, we apply the heuristics to the transformation specification and
N-patterns synthesized by the previous activities (step 4). This results in an
enriched specification that is used to generate the TGG operational rules, once
the transformation direction is chosen (step 5).

If we apply this engineering process to our case study, the first step is to
build the WSDL and EJB meta-models, which were shown in Figs. 1 and 2. The
trace meta-model defines four types of nodes: (i) D2J connecting Definitions
and EJBJar objects, (ii) S2B connecting Service and Session objects, (iii) P2B
connecting PortType and Session objects, and (iv) O2M connecting Operation
and Method objects.

21

Language Level Transformation Specification Level Operational Level

meta-model triple

S meta-model T meta-model

Language
Engineer

Transformation
Engineer

A
u

to
m

at
ed

P
ro

ce
ss

build S/T
meta-models

design trace
meta-model

design
transformation

generate N-patterns
from MM constraints

trafo spec.

N-patterns
MM constraints

generate N-patterns
from keys&CBE

N-patterns
CBE semantics

apply heuristics
enriched

trafo spec.
select direction,
generate rules

TGG
operational rules

1

2

3a

3c

4 5

set keys

3b1

keys

3b2

Fig. 16. Our transformation engineering process

Next, we have to design the transformation specification. This is made
of the three P-patterns shown in Fig. 6: P(Definitions-EJBJar), P(Service-
SessionBean) and P(Operation-Method), all of them without parameters.
For simplicity we do not consider Java packages, and thus omit pattern
P(Definitions-EJBJar&Package) shown in Fig. 12.

Meanwhile, step 3c generates one N-pattern for each association end in the
meta-model with bounded upper cardinality. Three of these N-patterns were
shown in Fig. 6. In its turn, step 3b2 generates additional N-patterns due to
the CBE semantics and according to the specified keys. This results in one N-
pattern for each class in the meta-models. In case we chose the direction of the
transformation first, it would be enough to generate N-patterns from one of the
meta-models: the target in forward transformations and the source in backwards.
Fig. 15 showed some of the N-patterns generated due to CBE semantics. Then,
applying the heuristic 1 replaces some P-patterns by others with parameters,
and applying the heuristic 2 adds new patterns to the specification.

Finally, we choose the operational scenario to be solved and generate the TGG
operational rules. Two of the generated forward rules are shown in Fig. 17. The
rule to the left is generated from the P(Definitions-EJBJar) pattern and creates an
EJBJar object for each Definitions object in the WSDL model. The rule has one
termination NAC equal to the RHS, and two post-conditions coming from the N-
pattern N(SharedBean) that was derived by a meta-model cardinality constraint.

22

Definitions-EJBJar

d: Definitions

L

d: Definitions

name = n1

R = TNAC1

j: EJBJar

displayName = n2

m: D2J

n1 = n2

d: Definitions

name = n1

NPAT1 (post)

j: EJBJar

displayName = n2

m: D2J

n1 = n2

: Enterprise
Bean

: EJBJar

d: Definitions

name = n1

NPAT2 (post)

j: EJBJar

displayName = n2

m: D2J

n1 = n2

: Enterprise
Bean

: EJBJar

: EJBJar

Definitions-EJBJar.cbe
Operation-Method.h1

o: Operation

L

b: Enterprise
Beanm: P2B

c: JavaClass

:ejbClass

p: PortType

o: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

R = TNAC1

b: Enterprise
Beanm: P2B

c: JavaClass

:ejbClass

p: PortType

o: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

TNAC2

: Enterprise
Bean: P2B

: JavaClass

:ejbClass

p: PortType

m: P2B b: Enterprise
Bean

c: JavaClass
:ejbClass

o: Operation

name = n1

: Method

name = n2

: O2M

n1 = n2

TNAC3

b: Enterprise
Beanm: P2B

c: JavaClass

:ejbClass

p: PortType

: P2B

Fig. 17. Some of the generated forward rules for the case study

The right of the same figure shows the rule generated from pattern
P(Operation-Method.h1), pattern that replaced pattern P(Operation-Method) af-
ter applying the heuristic 1. The rule creates one Method for each Operation in
a PortType. Note that objects o and b have abstract type. The rule has three
termination NACs, as well as several negative post-conditions that are omitted
for simplicity.

The generated forward rules can be applied to WSDL models in order to ob-
tain the EJB model. Fig 18 shows one example where we start with a WSDL
containing one Service owning a PortType with two Operations. After ap-
plying the four rules shown in the figure, we obtain the constraint triple graph
to the right, to which no more rules can be applied. Note that in this final
model not all attributes are constrained, for example the transactionType and
the sessionType of the Session object (these attributes are not considered by
the transformation specification). Hence, a constraint solver could give arbitrary
values to these attributes, or the user could be asked to give one. Also, for this
starting model the transformation is confluent (in the sense that we obtain a

: Session

name = nb

: S2B
: JavaInterface

name = nh

: JavaInterface

name = nr

: JavaClass

name = nc

:home
Interface

:remote
Interface

:ejbClass

: Method

name = mh

: Method

name = mc

: P2B

: Definitions

targetNamespace = tn
name = n1

: Service

name = n2

: PortType

name = n3

tn = http://exp.com

: Request
Response

name = n4

: OneWay

name = n5

1. Definitions-EJBJar
2. Service-SessionBean.h1
3. Operation-Method.h1
4. Operation-Method.h1

: Definitions

targetNamespace = tn
name = n1

: Service

name = n2

: PortType

name = n3

tn = http://exp.com

: Request
Response

name = n4

: OneWay

name = n5

: EJBJar

displayName = dn

: D2J

n1 = dn
n2 = nr
n5 = n6
n4 = n7

: Method

name = n6

: O2M

: Method

name = n7

: O2M

Fig. 18. Example model transformation

23

unique constraint triple graph, from which we can however derive several mod-
els by assigning different attribute values), but this is not necessarily so for other
models, as already noted in [12,21]. This is actually a good behaviour, as one
obtains all terminal models that satisfy the transformation specification.

9 Conclusions and Future Work

In this paper we have incorporated the CBE semantics and keys concepts of
QVT-R into our pattern-based M2M framework in order to control object reuse
in M2M transformations. This is achieved by adding N-patterns to the spec-
ification so that they forbid the existence of two objects that are considered
equal, thus making the operational mechanism to reuse such objects whenever
possible. We have also shown that the meta-model inheritance hierarchy and the
integrity constraints have to be considered by the transformation specification.
In particular, we have discussed how to generate N-patterns from the maximum
cardinality constraints in associations, as well as how to handle abstract objects
in patterns. Finally, we have illustrated these concepts with a transformation
between WSDL and EJB models.

There are many open lines for further research. For example, one could consider
the benefits of adding relations between the nodes in the correspondence graph
instead of having a discrete graph there. These have been exploited in [9] for im-
plementing incremental transformations, but note that our theory demands graph
morphisms between the correspondence and the other two graphs, hence posing
some restrictions. We are also starting to investigate more complex operational
scenarios, like incremental transformations and model synchronization. On the
theoretical side, it is worth investigating analysis methods for specifications, as
well as simplifications of the current formalism. For example, in our experience, it
seems possible to get rid of parameters in the initial specification, and express the
restrictions with N-patterns so that one ends up with equivalent specifications.
However, this is still an open question. We would also like to explore higher-level
means of specifications, by (i) omitting the correspondence graph at the speci-
fication level (and automatically generating the traces at the operational level,
as in [10,14]), and (ii) making possible the specification of pattern dependencies
and parameter passing, similar to when or where clauses in QVT. These two steps
would allow us to express the semantics of QVT-R with our framework. We also
plan to perform a detailed study of the expressivity of different mechanisms for
reuse of other bidirectional languages, like TGGs and QVT-R, by using realistic
examples. Finally, we are also investigating other languages for the operational
mechanisms, like Coloured Petri Nets, in the style of [5].

Acknowledgements. Work partially supported by the Spanish Ministry of Sci-
ence and Innovation, with projects METEORIC (TIN2008-02081) and FOR-
MALISM (TIN2007-66523), and the R&D program of the Community of Madrid
(S2009/TIC-1650, project “e-Madrid”). Moreover, part of this work was done
during a post-doctoral stay of the first author at the University of York, and sab-
batical leaves of the second and third authors to the University of York and TU

24

Berlin respectively, all with financial support from the Spanish Ministry of Science
and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185).

References

1. Akehurst, D.H., Kent, S.: A relational approach to defining transformations in a
metamodel. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 243–258. Springer, Heidelberg (2002)

2. Braun, P., Marschall, F.: Transforming object oriented models with BOTL.
ENTCS 72(3) (2003)

3. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
graph transformation with node type inheritance. TCS 376(3), 139–163 (2007)

4. de Lara, J., Guerra, E.: Pattern-based model-to-model transformation. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
pp. 426–441. Springer, Heidelberg (2008)

5. de Lara, J., Guerra, E.: Formal support for QVT-Relations with coloured Petri
nets. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 256–270.
Springer, Heidelberg (2009)

6. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute
grammars. In: Konstantas, D., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS
2003. LNCS, vol. 2817, pp. 412–423. Springer, Heidelberg (2003)

7. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

9. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2009)

10. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies:
Implementing Query/View/Transformation with Triple Graph Grammars. Soft-
ware and Systems Modeling 9(1), 21–46 (2010)

11. Guerra, E., de Lara, J.: Event-driven grammars: Relating abstract and concrete
levels of visual languages. Software and Systems Modeling, special section on ICGT
2004 6(3), 317–347 (2007)

12. Guerra, E., de Lara, J., Orejas, F.: Pattern-based model-to-model transformation:
Handling attribute conditions. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 83–99. Springer, Heidelberg (2009)

13. IBM WebSphere, http://www-01.ibm.com/software/websphere/
14. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implemen-

tations, and application scenarios. Technical Report TR-RI-07-284, Paderborn Uni-
versity (2007)

15. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended triple graph grammars with
compatible graph translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Hei-
delberg (2010)

16. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey.
ENTCS 148(1), 113–150 (2006)

17. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled. Addison-Wesley Object
Technology Series (2004)

18. MTF. Model Transformation Framework,
http://www.alphaworks.ibm.com/tech/mtf

25

19. OMG: Metamodel and UML profile for Java and EJB specification (2004),
http://www.omg.org/cgi-bin/doc?formal/04-02-02.pdf

20. Oracle containers for J2EE,
http://www.oracle.com/technology/tech/java/oc4j

21. Orejas, F., Guerra, E., de Lara, J., Ehrig, H.: Correctness, completeness and ter-
mination of pattern-based model-to-model transformation. In: Kurz, A., Lenisa,
M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 383–397. Springer,
Heidelberg (2009)

22. Orejas, F., Wirsing, M.: On the specification and verification of model transforma-
tions. In: Palsberg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700,
pp. 140–161. Springer, Heidelberg (2009)

23. QVT (2008), http://www.omg.org/spec/QVT/1.0/PDF/
24. Roman, E., Sriganesh, R.P., Brose, G.: Mastering Enterprise JavaBeans, 3rd edn.

Wiley, Chichester (2004)
25. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

26. SPEM (2008), http://www.omg.org/cgi-bin/doc?formal/08-04-01.pdf
27. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open

questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

28. Völter, M., Stahl, T.: Model-driven software development. Wiley, Chichester (2006)
29. W3C: WSDL v1.1. specification (2001), http://www.w3.org/TR/wsdl
30. W3C: SOAP v1.2. specification (2007), http://www.w3.org/TR/soap
31. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted

OCL constraints into graph constraints for generating meta model instances by
graph grammars. ENTCS 211, 159–170 (2008)

Appendix

Proof of Proposition 1.

Proof. We have to prove that if diagrams (1) and (2) are pushouts then diagram
(3) is also a pushout, where DA = (D, νD, c′(αB) ∧ b′(αC)).

A

(1)

bTrG
��

cT rG

��

B

c′T rG

��

νA

(2)

bν
��

cν

��

νB

c′ν

��

AA

(3)

b ��

c

��

BA

c′

��
C

b′T rG

�� D νC
b′ν

�� νD CA
b′

�� DA

First, it may be noted that diagram (3) is indeed a diagram in CTrGA, since
(c′(αB)∧b′(αC))⇒ c′(αB) and (c′(αB)∧b′(αC))⇒ b′(αC) are tautologies, which
means that b′ and c′ are indeed morphisms in CTrGA. Moreover, we know that
if diagram (3’) commutes:

AA

(3′)

b ��

c

��

BA

c′′

��
CA

b′′
�� D′A

26

then also diagrams (1’) and (2’) commute:

A

(1′)

bT rG
��

cT rG

��

B

c′′T rG

��

νA

(2′)

bν
��

cν

��

νB

c′′ν

��
C

b′′T rG

�� D′ νC
b′′ν

�� ν′
D

which means that there are unique morphisms eTrG : D → D′ and eν : νD → νD′

satisfying eTrG ◦ b′TrG = b′′TrG, eTrG ◦ c′TrG = c′′TrG, eν ◦ b′ν = b′′ν , and
eν ◦ c′ν = c′′ν . But this means that e : (D, νD, c′(αB) ∧ b′(αC))→ (D′, νD′ , αD′)
is a morphism, since if A |= αD′ ⇒ c′′(αB) and A |= αD′ ⇒ b′′(αC) then
A |= (αD′ ⇒ (c′′(αD) ∧ b′′(αC))). But we know that c′′(αB) ∧ b′′(αC) = (e ◦
c′)(αB) ∧ (e ◦ b′)(αC) = e(c′(αB) ∧ b′(αC))) and this means that A |= (αD′) ⇒
e(c′(αB) ∧ b′(αC)). Finally, if e′ : (D, νD, c′(αB) ∧ b′(αC)) → (D′, νD′ , αD′) is a
morphism satisfying that e′ ◦ b′ = b′′ and e′ ◦ c′ = c′′ then, by the uniqueness of
eTrG and eν , we have that e = e′.

27

