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Identi�cation of asymmetric conditional
heteroscedasticity in the presence of outliers

M. Angeles Carnero�, Ana Pérezyand Esther Ruizz
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Abstract

The identi�cation of asymmetric conditional heteroscedasticity is often based on sample
cross-correlations between past and squared observations. In this paper we analyse the
e¤ects of outliers on these cross-correlations and, consequently, on the identi�cation
of asymmetric volatilities. We show that, as expected, one isolated big outlier biases
the sample cross-correlations towards zero and hence could hide true leverage e¤ect.
Unlike, the presence of two or more big consecutive outliers could lead to detecting
spurious asymmetries or asymmetries of the wrong sign. We also address the problem of
robust estimation of the cross-correlations by extending some popular robust estimators
of pairwise correlations and autocorrelations. Their �nite sample resistance against
outliers is compared through Monte Carlo experiments. Situations with isolated and
patchy outliers of di¤erent sizes are examined. It is shown that a modi�ed Ramsay-
weighted estimator of the cross-correlations outperforms other estimators in identifying
asymmetric conditionally heteroscedastic models. Finally, the results are illustrated
with an empirical application.
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1 Introduction

It is already well known that time series of �nancial returns are conditionally hete-
roscedastic with volatilities responding asymmetrically to negative and positive past
returns. In particular, the volatility is higher in response to past negative shocks
(�bad�news) than to positive shocks (�good�news) of the same magnitude. Following
Black (1976) this feature is commonly referred to as leverage e¤ect. Incorporating the
leverage e¤ect into conditionally heteroscedastic models is important to better capture
the dynamic behaviour of �nancial returns and improve the forecasts of future volatility;
see Bollerslev et al. (2006) for an extense list of references and Hibbert et al. (2008)
for a behavioral explanation of the negative asymmetric return�volatility relation. The
identi�cation of leverage e¤ect is often based on the sample cross-correlations between
past returns and squared returns. Negative values of these cross-correlations indicate
potential asymmetries in the volatility; see, for example, Bollerslev et al. (2006), Zivot
(2009), Rodriguez and Ruiz (2012) and Tauchen et al. (2012).

Another feature often observed in long time series of �nancial returns is the occurren-
ce of occasional extreme values which can be regarded as outliers in the sense that they
seem to deviate from the underlying model generating the data. Carnero et al. (2007)
have shown that the presence of outliers biases the sample autocorrelations of squared
observations and hence may have misleading e¤ects on the identi�cation of conditional
heterocedasticity. In this paper, we analyse how the identi�cation of asymmetries can
also be a¤ected by the presence of outliers.

This paper has two main contributions. First, we derive the asymptotic biases
caused by large outliers on the sample cross-correlation of order h between past and
squared observations generated by uncorrelated stationary processes. We show that k
large consecutive outliers bias such correlations towards zero for h ≥ k, rendering the
detection of genuine leverage e¤ect di¢ cult. In particular, one isolated large outlier
biases all the sample cross-correlations towards zero and so it could hide true leverage
e¤ect. Moreover, the presence of two big consecutive outliers biases the �rst-order
sample cross-correlation towards 0.5 (−0.5) if the �rst outlier is positive (negative) and
so it could lead to identify either spurious asymmetries or asymmetries of the wrong
sign.

The second contribution of this paper is to address the problem of robust estimation
of serial cross-correlations by extending several popular robust estimators of pairwise
correlations and autocorrelations. In the context of bivariate Gaussian variables, there
are several proposals to robustify the pairwise sample correlation; see Shevlyakov and
Smirnov (2011) for a review of the most popular ones. However, the literature on robust
estimation of correlations for time series is scarce and mainly focused on autocovariances
and autocorrelations. For example, Hallin and Puri (1994) propose to estimate the au-
tocovariances using rank-based methods. Ma and Genton (2000) introduce a robust
estimator of the autocovariances based on the robust scale estimator of Rousseeuw and
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Croux (1992, 1993). More recently, Lévy-Leduc et al. (2011) establish its asymptotic
and �nite sample properties for Gaussian processes. Ma and Genton (2000) also sug-
gest a possible robust estimator of the autocorrelation function but they do not further
discuss its properties neither apply it in their empirical application. Finally, Teräsvirta
and Zhao (2011) propose two robust estimators of the autocorrelations of squares based
on the Huber�s and Ramsay�s weighting schemes. The theoretical and empirical evi-
dence from all these papers strongly suggests using robust estimators to measure the
dependence structure of time series.

We analyse and compare the �nite sample properties of the proposed robust esti-
mators of the cross-correlations between past and squared observations of stationary
uncorrelated series. As expected, these estimators are resistant against outliers re-
maining the same regardless of the size and the number of outliers. Moreover, even
in the presence of consecutive large outliers, the robust estimators considered estimate
the true sign of the cross-correlations although they underestimate their magnitudes.
Among the robust cross-correlations considered, the modi�ed version of the Ramsay-
weighted serial autocorrelation suggested by Teräsvirta and Zhao (2011) provides the
best resistance against outliers and the lowest bias.

To illustrate the results, we compute the sample cross-correlations and their robust
counterparts of a real series of daily �nancial returns. We show how consecutive extreme
observations bias the usual sample cross-correlations and could lead to wrongly identi-
fying potential leverage e¤ect. These empirical results enhance the importance of using
robust measures of serial correlation to identify both conditional heteroscedasticity and
leverage e¤ect.

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of
the e¤ects of additive outliers on the sample cross-correlations between past and squared
observations of stationary uncorrelated time series that could be either homoscedastic
or heteroscedastic. Section 3 considers four robust measures of cross-correlation and
compares their �nite sample properties in the presence of outliers. The di¢ culty of ex-
tending the Ma and Genton (2000) proposal to the estimation of serial cross-correlation
is discussed in Section 4. The empirical analysis of a time series of daily Dow Jones
Industrial Average index is carried out in Section 5. Section 6 concludes the paper with
a summary of the main results and proposals for further research.

2 E¤ects of outliers on the identi�cation of asymmetries

In this section, we derive analytically the e¤ect of large additive outliers on the sample
cross-correlations between past and squared observations generated by uncorrelated
stationary processes that could be either homoscedastic or heteroscedastic. The main
results are illustrated with some Monte Carlo experiments.
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2.1 Asymptotic e¤ects

Let yt, t = 1, ..., T , be a stationary series with �nite fourth-order moment that is
contaminated from time τ onwards by k consecutive outliers with the same sign and
size, ω. The observed series is then given by

zt =

{
yt + ω if t = τ , τ + 1, . . . , τ + k − 1

yt otherwise.
(1)

Denote by r12(h) the sample cross-correlation of order h, h ≥ 1, between past and
squared observations of zt, which is given by

r12(h) =

T∑
t=h+1

(
zt�h − Z

)
(z2t − Z2)√

T∑
t=1

(
zt − Z

)2 T∑
t=1

(z2t − Z2)2
(2)

where Z =
1

T

T∑
t=1

zt and Z2 =
1

T

T∑
t=1

z2t . The most pernicious impact of outliers on

r12(h) happens when they are huge and do not come up in the very extremes of the
sample but on such a position that they a¤ect the two factors of the cross-products in
(2). In order to derive the impact of these outliers, we compute the limiting behaviour
of r12(h) when h+ 1 ≤ τ ≤ T − h− k + 1 and |ω| → ∞.

The denominator of r12(h) in (2) can be written in terms of the original unconta-
minated series yt, as follows√√√√√ ∑

t2T0,0

y2t +

k�1∑
i=0

(yτ+i + ω)2 − 1

T

 ∑
t2T0,0

yt +

k�1∑
i=0

(yτ+i + ω)

2 ×
×

√√√√√ ∑
t2T0,0

y4t +

k�1∑
i=0

(yτ+i + ω)4 − 1

T

 ∑
t2T0,0

y2t +

k�1∑
i=0

(yτ+i + ω)2

2 (3)

where Th,s = {t ∈ {h+ 1, ..., T} such that t 6= τ + s, τ + s+ 1, . . . , τ + s+ k − 1}. Since
we are concerned with the limit as |ω| → ∞, we focus our attention on the terms with
the maximum power of ω. Then, it turns out that (3) is equal to

(
k − k2

T

)
|ω|3+o(ω3).

In order to make the calculations simpler, we consider the following alternative
expression of the numerator in (2), which is asymptotically equivalent if the sample
size, T, is large relative to the cross-correlation order, h,

T∑
t=h+1

z2t zt�h −
1

T

(
T∑

t=h+1

z2t

)(
T∑

t=h+1

zt�h

)
. (4)
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When h is smaller than the number of consecutive outliers, i.e. h < k, expression
(4) can be written in terms of the original uncontaminated series yt, as follows

∑
t2Th,0\Th,h

y2t yt�h +

h�1∑
i=0

(yτ+i + ω)2yτ+i�h +

k�1∑
i=h

(yτ+i + ω)2(yτ+i�h + ω) +

k+h�1∑
i=k

y2τ+i(yτ+i�h + ω)

− 1

T

 ∑
t2Th,0

y2t +
k�1∑
i=0

(yτ+i + ω)2

 ∑
t2Th,h

yt�h +
k�1∑
i=0

(yτ+i + ω)

 . (5)

In expression (5), the terms with the maximum power of ω are the third and the �fth
ones, which contain k − h and k2 terms in ω3, respectively. Therefore, expression (5)
is equal to

(
k − h− k2

T

)
ω3 + o(ω3).

On the other hand, when the order of the cross-correlation is larger than the number
of outliers, i.e. h ≥ k, expression (4) can be written as follows

∑
t2Th,0\Th,h

y2t yt�h +
k�1∑
i=0

(yτ+i + ω)2yτ+i�h +
k+h�1∑
i=h

y2τ+i(yτ+i�h + ω) +

− 1

T

 ∑
t2Th,0

y2t +

k�1∑
i=0

(yτ+i + ω)2

 ∑
t2Th,h

yt�h +

k�1∑
i=0

(yτ+i + ω)

 . (6)

In this case, the term with the maximum power of ω is the fourth one, which contains
k2 terms in ω3. Therefore, expression (6) is equal to −k2

T ω
3 + o(ω3).

Consequently, since the product in expression (3) is always positive, the sign of the
limit of the cross-correlations in (2) is given by the sign of its numerator, which in turn
depends on the sign of ω, and we get the following result:

lim
jωj!1

r12(h) =

 sign(ω)×
(

1− h
k(1� k

T
)

)
if h < k

sign(ω)× k
k�T if h ≥ k.

(7)

Equation (7) shows that the e¤ect of outliers on the sample cross-correlations de-
pends on: (i) whether the outliers are consecutive or isolated and (ii) their sign. In
particular, one single large outlier (k = 1) biases r12(h) towards zero for all lags regard-
less of its sign. Thus, if a heteroscedastic time series with leverage e¤ect is contaminated
by a large single outlier, the detection of genuine leverage e¤ect will be di¢ cult, as it
was the detection of genuine heteroscedasticity; see Carnero et al. (2007). On the other
hand, a patch of k large consecutive outliers always biases r12(h) towards zero for lags
h ≥ k and, for smaller lags, it generates positive or negative cross-correlations depend-
ing on whether the outliers are positive or negative. For example, if T is large, two huge
positive (negative) consecutive outliers generate a �rst order cross-correlation tending
to 0.5 (−0.5), being all the others close to zero; see Maronna et al. (2006) and Carnero
et al. (2007) for a similar result in the context of sample autocorrelations of levels
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and squares, respectively. Therefore, if a heteroscedastic time series without leverage
e¤ect or an uncorrelated homoscedastic series is contaminated by several large negative
consecutive outliers, the negative cross-correlations generated by the outliers can be
confused with asymmetric conditional heteroscedasticity.1 In practice, we will not face
such huge outliers as to reach the limiting values of r12(h) in (7), but the result is still
useful because it provides a clue on the direction of the bias of the cross-correlations.

So far, we have assumed that the consecutive outliers have the same magnitude and
sign. However, it could also be interesting to analyse the e¤ects of outliers of di¤erent
signs on the sample cross-correlations. For instance, one isolated positive (negative)
outlier in the price of an asset at time τ , implies a doublet outlier in the corresponding
return series, i.e. a positive (negative) outlier at time τ followed by a negative (positive)
outlier at time τ + 1. In this case, we will have k = 2 consecutive outliers of opposite
signs, that will be assumed, for the moment, to have equal magnitude, i.e. ωτ =

|ω|sign(ωτ ) and ωτ+1 = |ω|sign(ωτ+1). Then, if h = 1 and the outlier size, |ω|, goes to
in�nity, the largest contribution to the limit of the numerator of r12(1) given in (5) is
due to the following term

(yτ+1 + ωτ+1)
2 (yτ + ωτ )

and this is equal to |ω|3sign(ωτ ). Therefore, the sign of the limit of the cross-correlation
is the sign of the �rst outlier: if this is positive and the second is negative, the limit of
r12(1) as |ω| → ∞ will be positive and equals to 0.5, while if the �rst outlier is negative
and the second is positive, the limit of r12(1) as |ω| → ∞ will be negative and equals to
−0.5. For h ≥ 2, all the cross-correlations r12(h) will go to zero. A similar analysis can
be carried out if the series is contaminated by k = 3 consecutive outliers of the same
size but di¤erent signs to know whether the limit of the cross-correlations is positive
or negative.

Note also that the results above are still valid if the outliers have di¤erent sizes. In
this case, we can write ωt = ω + δt in (1) instead of ω and the results will be the same
when |ω| → ∞.

2.2 Finite sample e¤ects

To further illustrate the results in the previous subsection, we generate 1000 arti�cial
series of size T = 1000 by a homoscedastic Gaussian white noise process with unit
variance and by the EGARCH model proposed by Nelson (1991). The latter model
generates asymmetric conditionally heteroscedastic time series; see Rodríguez and Ruiz
(2012) for the advantages of the EGARCH model when compared with alternative
asymmetric GARCH-type models. The particular EGARCH model chosen to generate
the data is given by

yt = σtεt

log(σ2t ) = −0.006 + 0.98 log(σ2t�1) + 0.2(|εt�1| − E(|εt�1|))− 0.1εt�1 (8)

1Note that the limits in (7) are valid regardless of whether yt is homoscedastic or heteroscedastic.
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where εt is a Gaussian white noise process with unit variance and, consequently,
E(|εt�1|) =

√
2/π; see Nelson (1991) for the properties of EGARCH models. The

parameters in (8) have been chosen to imply a marginal variance of yt equal to one
and to resemble the values usually encountered in real empirical applications; see, for
instance, Hentschel (1995) and Bollerslev and Mikkelsen (1999).

Each simulated series is contaminated �rst, with a single negative outlier of size
ω = −50 at time t = 500, and second, with two consecutive outliers of the same
size but opposite signs, the �rst negative (ω = −50) at time t = 500 and the second
positive (ω = 50) at time t = 501. For each replicate, we compute the sample cross-
correlations up to order 50 and then, for each lag, h, we compute their average over
all replicates. The �rst row of Figure 1 plots the average sample cross-correlations
from the uncontaminated white noise process (left panel) and for the uncontaminated
EGARCH process (right panel). The average sample cross-correlations computed from
the corresponding contaminated series with one and two outliers are plotted in the
second and third rows, respectively. In all cases, the red solid line is the true cross-
correlation.

INSERT FIGURE 1 HERE

As we can see, when a series generated by the EGARCH model is contaminated with
one single large negative outlier, we may wrongly conclude that there is not leverage
e¤ect since all the cross-correlations become nearly zero. On the other hand, when the
series is contaminated with two consecutive outliers of di¤erent sign, being the �rst one
negative, only the �rst cross-correlation will be di¤erent from zero and approximately
equal to −0.5 regardless of whether the series is homoscedastic or heteroscedastic.
Therefore, in this case, we can identify either a negative leverage e¤ect when there is
none (the series is truly a Gaussian white noise) or a much more negative leverage e¤ect
than the actual one (as in the case of the EGARCH model). Similar results would be
obtained if the two outliers were positive, but in this case the �rst cross-correlation
would be biased towards 0.5. Consequently, we could wrongly identify asymmetries in
a series that is actually white noise or we could identify a positive leverage e¤ect when
it is truly negative as in the EGARCH process.

We now analyse how fast the limit in (7) is reached as the size of the outliers
increases. In order to do that, we contaminate the same 1000 arti�cial series simulated
before �rst with one isolated outlier of size {−ω} at time t = 500 and second with two
consecutive outliers of sizes {−ω, ω} located at times t = {500, 501}, where ω could
take several values, namely ω = {1, 2, ..., 50}. We then compute the average of the
�rst and second order sample cross-correlations from these contaminated series over
the 1000 replicates. Figure 2 plots the average of r12(1) (�rst row) and r12(2) (second
row) against the size of the outlier, ω, for the two simulated processes and the two
types of contamination considered. The values of the theoretical cross-correlations for
the uncontaminated processes are also displayed with a red solid line.
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INSERT FIGURE 2 HERE

As we can see, the sample cross-correlations start being distorted when the outliers
are larger (in absolute value) than 5 standard deviations. Furthermore, when the size
of the outliers is over 20, the corresponding sample cross-correlations are already quite
close to their limiting values (−0.5 in the �rst order cross-correlation and 0 in the
second order cross-correlation). Moreover, the size of two consecutive outliers does not
need to be very large to distort the �rst order sample cross-correlation. However, a
single outlier needs to be of larger magnitude to bias this correlation towards zero.
In homoscedastic series, two consecutive outliers have a tremendous e¤ect on the �rst
order sample cross-correlation, even if they are not very big, and could lead to wrongly
identify asymmetries in a series that is actually white noise. On the other hand, a
heteroscedastic series contaminated with one single outlier as big as 15 or 20 could
be confused with white noise. Similar results would be obtained if the series were
contaminated with positive outliers but they are not reported here to save space.

3 Robust cross-correlations

In the previous section we have shown that the sample cross-correlations between past
and squared values of a stationary uncorrelated series are very sensitive to the presence
of outliers and could lead to a wrong identi�cation of asymmetries. In this section we
consider robust cross-correlations to overcome this problem. In particular, we generalize
some of the robust estimators for the pairwise correlations described in Shevlyakov and
Smirnov (2011) and one of the robust autocorrelations proposed by Teräsvirta and Zhao
(2011). We discuss their �nite sample properties and compare them to the properties
of the sample cross-correlations.

3.1 Extensions of robust correlations

A direct way of robustifying the pairwise sample correlation coe¢ cient between two
random variables is to replace the averages by their corresponding nonlinear robust
counterparts, the medians; see Falk (1998). By doing so in the sample cross-correlation
r12(h) in (2) we get the following expression, that is called the sample cross-correlation
median estimator:

r12,COMED(h) =
medt2fh+1,...,Tg{(zt�h −med(z))(z2t −med(z2))}

MAD(z)MAD(z2)
(9)

where med(x) stands for the sample median of x andMAD denotes the sample median
absolute deviation, i.e. MAD(x) = med(|x −med(x)|). Unless otherwise stated, the
median is calculated over the whole sample. When the median is calculated over a
subsample, this is speci�cally stated, as in (9), wheremedt2fh+1,...,Tg denotes the sample
median calculated over the subsample indexed by t ∈ {h+ 1, ..., T}.
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Another popular robust estimator of the pairwise correlation is the Blomqvist quad-
rant correlation coe¢ cient. The extension of this coe¢ cient to cross-correlations yields
the following expression, that will be called the Blomqvist cross-correlation coe¢ cient:

r12,B(h) =
1

T

T∑
t=h+1

sign(zt�h −med(z))sign(z2t −med(z2)). (10)

Estimation of the correlation between two random variables X and Y can also be
based on a scale approach, by means of the following identity:

ρ(X,Y ) =
V ar(U)− V ar(V )

V ar(U) + V ar(V )
(11)

where

U =

(
X

σX
+

Y

σY

)
and V =

(
X

σX
− Y

σY

)
(12)

are called the principal variables and σX and σY are the standard deviations of X and
Y , respectively. In order to get robust estimators for ρ, Gnanadesikan and Ketten-
ring (1972) propose replacing the variances and standard deviations in (11) and (12),
respectively, by robust estimators as follows

ρ̂(X,Y ) =
Ŝ2(U)− Ŝ2(V )

Ŝ2(U) + Ŝ2(V )
(13)

where Ŝ is a robust scale estimator. Depending on the robust estimator Ŝ used in
(13), di¤erent robust estimators of the correlation may arise. For instance, Shevlyakov
(1997) considers Ŝ as the Hampel�s median of absolute deviations and gets the median
correlation coe¢ cient. This estimator extended to compute cross-correlations, called
median cross-correlation coe¢ cient, would be:

r12,MED(h) =

(
medt2fh+1,...,Tg(|ut|)

)2 − (medt2fh+1,...,Tg(|vt|))2(
medt2fh+1,...,Tg(|ut|)

)2
+
(
medt2fh+1,...,Tg(|vt|)

)2 (14)

where

ut =
zt�h −med(z)

MAD(z)
+
z2t −med(z2)

MAD(z2)
and vt =

zt�h −med(z)

MAD(z)
− z2t −med(z2)

MAD(z2)
.

Finally, in the context of time series, Teräsvirta and Zhao (2011) propose robust es-
timators of the autocorrelations based on applying the Huber�s and Ramsay�s weights to
the sample variances and autocovariances. We extend this idea to the cross-correlations
where the two series involved are the lagged levels, zt�h, and its squares, z2t . In particu-
lar, we focus on the weighted correlation with the Ramsay�s weights using a slight mod-
i�cation to cope with squares. The resulting weighted estimator of the cross-correlation
of order h proposed is given by

r12,W (h) =
γ̃12(h)√
γ̃1(0)γ̃2(0)

(15)
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where

γ̃12(h) =

T∑
t=h+1

wt�h
(
zt�h − Zw

)
w2t (z

2
t − Z2w)

T∑
t=h+1

wt�hw2t

,

γ̃1(0) =

T∑
t=1

wt
(
zt − Zw

)2
T∑
t=1

wt

and γ̃2(0) =

T∑
t=1

w2t

(
z2t − Z2w

)2
T∑
t=1

w2t

with

Zw =

T∑
t=1

wtzt

T∑
t=1

wt

, Z2w =

T∑
t=1

w2t z
2
t

T∑
t=1

w2t

, wt = exp

(
−a |zt − Z|

σ̂z

)
and σ̂z =

√√√√ 1

T − 1

T∑
t=1

(
zt − Z

)2
.

Following Teräsvirta and Zhao (2011), we use a = 0.3. By applying the weights
wt to the series in levels, every observation will be downweighted except those equal
to the sample mean. Note that when the weighting scheme is applied to squared
observations, the weights are squared so that bigger squared observations are more
downward weighted than their corresponding observations in levels.

3.2 Monte Carlo experiments

In order to analyse the �nite sample properties of the four robust cross-correlations
introduced above, we consider the same Monte Carlo simulations described in subsec-
tion 2.2. For each replicate, the robust cross-correlations are computed up to lag 50.
The �rst row of Figure 3 plots the corresponding Monte Carlo averages for the un-
contaminated white noise process (left panel) and for the uncontaminated EGARCH
process (right panel). The second and third rows of Figure 3 depict the averages of the
robust cross-correlations computed for the same series contaminated with one and two
outliers, respectively. In all cases, the true cross-correlations are also displayed.

INSERT FIGURE 3 HERE

Several conclusions emerge from Figure 3. First, as expected, robust measures of
cross-correlations are resistant to the presence of outliers, either isolated or in patches;
note that the plots displayed in the �rst row are nearly the same to those displayed
in the other two rows. Second, in EGARCH processes, the robust cross-correlations
estimate the sign of the true cross-correlations properly but they underestimate their
magnitude. In fact, the �rst three robust cross-correlations (r12,COMED, r12,B and
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r12,MED) estimate asymmetries which are much weaker than the true ones. However,
the weighted cross�correlation, r12,W , performs quite well because its bias is much lower
than those of the other robust measures even in the presence of two big consecutive
outliers. Actually, the values of r12,W are very close to their theoretical counterparts.
This could be due to the fact that the �rst three robust measures considered are direct
extensions of the corresponding robust estimators originally designed to estimate the
pairwise correlation coe¢ cient for bivariate Gaussian distribution. In such framework,
some of these measures, like the Blomqvist quadrant correlation and the median corre-
lation coe¢ cient are asymptotically minimax with respect to bias or variance. However,
in time series data, and, in particular, in conditional heteroscedastic time series, none
of these assumptions hold and hence the behaviour of these measures is not that good
as postulated for the bivariate Gaussian case. Unlike, the Ramsay-weighted autocorre-
lation estimator proposed by Teräsvirta and Zhao (2011) was already designed to cope
with time series data, and this could be the reason for the good performance of r12,W
in estimating cross-correlations.

We also perform a similar analysis to that in subsection 2.2, by studying the e¤ect
of the size of the outliers on the four robust cross-correlations for the two types of
contamination, namely contamination with one isolated outlier of size {−ω} and with
two consecutive outliers of sizes {−ω, ω}, where ω = {1, 2, ..., 50}. The results, which
are not displayed here to save space but are available upon request, are as expected.
Robust cross-correlations remain the same regardless of the size and the number of the
outliers. Moreover, they all subestimate the magnitude of the leverage e¤ect, but the
bias in the weighted cross-correlation, r12,W , is negligible as compared to the alternative
robust cross-correlations considered.

So far, we have analysed the Monte Carlo mean cross-correlograms for di¤erent
lags and sizes of the outliers. In order to complete these results, we next study the
whole �nite sample distribution of the cross-correlations considered focusing on the �rst
lag.2 Table 1 reports the Monte Carlo means and standard deviations (in parenthesis)
of the �rst order sample cross-correlation, as de�ned in (2), and of the four robust
cross-correlations introduced in subsection 3.1, for the two processes, Gaussian white
noise and EGARCH, and for the two types of contamination; Figure 4 displays the
corresponding Box-Plots.

INSERT TABLE 1 HERE
INSERT FIGURE 4 HERE

As expected, when the series is a homoscedastic Gaussian white noise and there are
no outliers or there is one isolated outlier, all estimators behave similarly and the sample
cross-correlations perform very well. Note that, in this case, the sample correlation
is the maximum likelihood estimator of its theoretical counterpart and therefore it

2The results for other lags are available from the authors upon request.
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is consistent and asymptotically unbiased and e¢ cient. Unlike, the robust estimators
have, in general, slightly larger dispersion since they are not as e¢ cient as maximum
likelihood estimators. However, when there are two consecutive outliers, the sample
cross-correlation breaks down and it becomes unreliable: its distribution is completely
pushed downwards and it would be estimating a large negative asymmetry when there
is none. Unlike, all the robust estimators considered perform very well in terms of bias
and r12,COMED(1) also performs quite well in terms of variance.

When the simulated process is an EGARCH, another picture comes up. When the
series is not contaminated, either the sample cross-correlation, r12(1), or the weighted
cross�correlation, r12,W (1), performs better than any of the other robust measures
originally designed to estimate pairwise correlations in bivariate Normal distributions.
However, when the EGARCH series is contaminated by one single negative outlier,
the sample cross-correlation is pushed upwards towards zero, as postulated from the
theoretical results in section 2, and it would be unable to detect the true leverage ef-
fect in the data. The situation becomes even worse in the presence of two consecutive
outliers, where the sample cross-correlation becomes completely unreliable due to its
huge negative biases. As expected, the distribution of all the robust cross-correlations
remain nearly the same regardless of the presence of outliers. However, the estima-
tors r12,COMED(1), r12,B(1) and r12,MED(1), in spite of their robustness, are upwards
biased towards zero and so they will underestimate the true leverage e¤ect. Unlike,
the weighted sample cross-correlation with the modi�ed Ramsay�s weights, r12,W (1),
performs surprisingly well in terms of bias, even in the presence of two big outliers.
As it happened with the simulated white noise process, the estimator r12,MED(1) has
the largest standard deviation of all the estimators considered; see Table 1. Therefore,
it seems that the robust cross-correlation r12,W (1) is preferable to any other measure
considered in this section for the identi�cation of asymmetries in conditionally het-
eroscedastic models.

4 Discussion

In the previous section, we analyse the �nite sample performance of several robust
estimators of the cross-correlations, including the estimator in (13) with Ŝ de�ned as
the Hampel�s median of absolute deviations. Other possible choices for Ŝ are the robust
scale estimators Sn and Qn proposed by Rousseeuw and Croux (1993). Shevlyakov and
Smirnov (2011) show that the robust estimator of the pairwise correlation between
bivariate Gaussian variables based on Qn performs better than other robust correlation
estimators. Ma and Genton (2000) suggest bringing this approach to estimate the
autocorrelation of Gaussian time series. In this section, we show that this extension
is not so straight when the processes involved are non-Gaussian.

Let us consider replacing the scale estimator Ŝ in equation (13) by the highly
e¢ cient robust scale estimator Qn proposed by Rousseeuw and Croux (1992, 1993).

12



Given the sample observations x =(X1, ..., Xn) from a distribution function FX , the
scale estimator Qn is based on an order statistic of all pairwise distances and is de�ned
as follows:

Qn(x) = c(FX) {|Xi −Xj | , i < j}(k) , (16)

where k ≈
(
n
2

)
/4 for large n and c(FX) is a constant, that depends on the shape of the

distribution function FX , introduced to achieve Fisher consistency. In particular, if FX
belongs to the location-scale family Fµ,σ(x) = F ((x− µ)/σ), the constant is chosen as
follows

c(F ) = 1/(K�1F (5/8)),

where KF is the distribution function of X −X 0, being X and X 0 independent random
variables with distribution function F ; see Rousseeuw and Croux (1993). In particular,
in the Gaussian case (F = Φ), the constant is:

c(Φ) = 1/(
√

2Φ�1(5/8)) = 2.21914.

Although c(FX) can also be computed for various other distributions, the FOR-
TRAN code provided by Croux and Rousseeuw (1992) and the MATLAB Library
for Robust Analysis (https://wis.kuleuven.be/stat/robust/LIBRA) developed at RO-
BUST@Leuven, compute the estimator Qn with the Gaussian constant c(Φ).3

In the time series setting, Ma and Genton (2000) propose the following robust
estimator of the serial autocorrelation. Let y =(Y1, ..., YT ) be the observations of a sta-
tionary process Yt and let ρ(h) = Corr(Yt�h, Yt) be the corresponding autocorrelation
function. In this case, the variables X and Y in (12) represent two variables, Yt�h and
Yt, with the same model distribution and, consequently, σX = σY . Therefore, using
identity (12) with σX = σY , plugging the scale estimator Qn in (13) and taking into
account that Qn is a¢ ne equivariant, i.e. Qn(aX+b) = |a|Qn(X), the robust estimator
of ρ(h) would be:

ρ̂Q(h) =
Q2T�h(u)−Q2T�h(v)

Q2T�h(u) +Q2T�h(v)
(17)

where u is a vector of length T − h de�ned as u = (Y1 + Yh+1, , ..., YT�h + YT ) and
v is another vector of length T − h de�ned as v = (Y1 − Yh+1, , ..., YT�h − YT ). Ma
and Genton (2000) argue that the estimator ρ̂Q(h) is independent of the choice of the
constants needed to compute the scale estimators Qn involved in (17). In another
framework, Fried and Gather (2005) use the estimator ρ̂Q(1) and also state that such
constants cancel out. However, as we show bellow, the constants do not cancel out
in general and this simpli�cation only applies for Gaussian variables. By rewriting
Qn(x) = c(FX)Q�n(x) where Q�n(x) = {|Xi −Xj | , i < j}(k), the estimator ρ̂Q(h) in

3Note that the algorithm in Croux and Rousseeuw (1992) also includes a correction factor to improve
�nite sample unbiasednes of Qn. We ignore this factor because it does not make any di¤erence to our
discussion.
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(17) becomes:

ρ̂Q(h) =
c2(FU )Q�2T�h(u)− c2(FV )Q�2T�h(v)

c2(FU )Q�2T�h(u) + c2(FV )Q�2T�h(v)
(18)

where FU and FV denote the cumulative distribution functions of Yt�h+Yt and Yt�h−Yt,
respectively. Note that this estimator requires computing c(FU ) and c(FV ). As Lévy-
Leduc et al. (2011) point out, this is easily done in the Gaussian case, where c(FU ) =

c(FV ) = 2.21914; otherwise, the problem could become unfeasible. Moreover, the
constants only cancel out if c(FU ) = c(FV ), but this condition is rarely achieved, unless
the process Yt is Gaussian.

Turning back to the estimation of cross-correlations between past and squared ob-
servations of uncorrelated stationary processes, the situation becomes even more tricky.
In this case, the two series involved are the lagged levels, Yt�h, and its own squares, Y 2t ,
which are not equally distributed neither Gaussian. Furthermore, the variables X and
Y in (12) will stand for Yt�h and Y 2t and so the constraint σX = σY no longer holds.
Hence, the �rst step to compute the robust estimator of Corr(Yt�h, Y 2t ), based on iden-
tities (11) and (12), will be to �standardize�the two series involved. Let Ỹt = Yt/QT (y)

and Ỹ 2t = Y 2t /QT (y2) denote the robust �standardized�forms of the series Yt and Y 2t ,
respectively, where QT (y) = c(FY )Q�T (y) and QT (y2) = c(FY 2)Q

�
T (y2). The second

step will be to form the vector of sums and the vector of di¤erences:

ũ = (Ỹ1 + Ỹ 2h +1, , ..., ỸT�h + Ỹ 2T ),

ṽ = (Ỹ1 − Ỹ 2h +1, , ..., ỸT�h − Ỹ
2
T ).

The third step will be to calculate the robust variance estimates of these two vectors,
Q2T�h(ũ) and Q2T�h(ṽ), respectively, and �nally, replace these variance estimators in
(11) and obtain the following estimator:

r12,Q(h) =
c2(F

Ũ
)Q�2T�h(ũ)− c2(F

Ṽ
)Q�2T�h(ṽ)

c2(F
Ũ

)Q�2T�h(ũ)− c2(F
Ṽ

)Q�2T�h(ṽ)
(19)

where F
Ũ
and F

Ṽ
denote the cumulative distribution functions of Yt�h+Y 2t and Yt�h−

Y 2t , respectively.
Therefore, it is clear that the estimator (19) will require computing four constants,

c(FY ), c(FY 2), c(FŨ ) and c(F
Ṽ

), but this task seems to be unfeasible. Note that, even
if Y were Gaussian, Y 2 would be no longer Gaussian, neither Y +Y 2 nor Y −Y 2 would
be. Moreover, even if we could compute the constants in such case, the assumption of
Gaussianity for Y would be unsuitable, because the distribution of �nancial returns is
known to be heavy-tailed.

To further illustrate what would it happen if we ignored the constants and proceed
as in the Gaussian setting, we repeat the same Monte Carlo experiment described in
previous sections for the EGARCH model, computing for each replicate the estimator
r12,Q(1) in (19) with all constants equal to c(Φ). The Monte Carlo means and stan-
dard deviations are reported in the last row of Table 1. As expected, the results are
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disappointing: the estimator r12,Q turns out to be the most biased among the robust
estimators considered and it also has a larger variance than both r12,COMED(1) and
r12,B(1).

Hence, one should be very cautious before implementing robust estimators originally
designed for bivariate Gaussian distributions in a time series setting with potential non-
Gaussian variables.

5 Empirical application

In this section we illustrate the previous results by analyzing a series of daily Dow Jones
Industrial Average (DJIA) returns observed from October 2, 1928 to August 30, 2013,
with T = 21409. This is the series considered by Charles and Darné (2014). Figure 5
plots the data. As expected, the returns exhibit the usual volatility clustering, along
with some occasional extreme values that could be regarded as outliers, the largest one
corresponding to October 19, 1987, when the index collapsed by -22.6%. Charles and
Darné (2014) apply the procedure proposed by Laurent et al. (in press) to detect and
correct additive outliers in this return series and show that large shocks in the volatility
of the DJIA are mainly due to particular events (�nancial crashes, US elections, wars,
monetary policies, etc.), but they also �nd that some shocks are not identi�ed as outliers
due to their occurring during high volatility periods.

INSERT FIGURE 5 HERE

In order to show how the potential outliers can mislead the detection of the leverage
e¤ect, as measured by the cross-correlations between past and squared returns, we use
a rolling window scheme, where the sample size used to compute the cross-correlations
is T = 10001. Therefore, we �rst estimate the cross-correlations over the period from 2
October 1928 to 26 September 1968. When a new observation is added to the sample,
we delete the �rst observation and re-estimate the cross-correlations. This process is
repeated until we reach the end of the sample. This amounts to considering 11409

di¤erent subsamples covering periods of di¤erent volatility levels and di¤erent types
and sizes of outliers. For instance, the �rst subsample, runing from 2 October 1928 to
26 September 1968, includes outliers associated with the 1929 Stock market crash and
the World War II in Europe, while the last subsample, corresponding to observations
from 14 May 1974 to 30 August 2013, includes outliers due to the 1987 Stock market
crash, the 1997-1998 Asian and Russian �nancial crisis, the 1991 Gulf war and the Sep-
tember 11, 2001 terrorist attacks. For each subsample considered, we compute the �rst
order sample cross-correlation, r12(1), using equation (2) and the corresponding robust
weighted cross-correlation, r12,W (1), as de�ned in equation (15), for both the original
return series and the outlier-adjusted return series of Charles and Darné (2014)4. Figure
6 displays the values of these cross-correlations for the 11409 subsamples considered.

4The results for other lags are available from the authors upon request.
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INSERT FIGURE 6 HERE

Several conclusions emerge from Figure 6. First, this �gure clearly reveals how
extreme observations can bias the sample cross-correlation and could lead to a wrong
identi�cation of asymmetries. As expected, there are several sharp drops and falls in the
values of r12(1) when it is computed for the original returns (top panel). These changes
are generally associated with the entrance and/or exit of outlying observations in the
corresponding subsample. For instance, the second sudden rise in the value of r12(1),

from nearly −0.07 to nearly −0.03, is due to the consecutive exit from the corresponding
subsamples of two extreme observations, namely y754 = −10.73 (5/10/1931) and y755 =

14.87 (6/10/1931), the latter being identi�ed as an outlier in Charles and Darné (2014).
When these two observations, the �rst one being negative and the second positive, are
in the subsample, the value of r12(1) is pushed towards a negative value, but when
the �rst of these observations leaves the sample and only the positive outlier remains,
r12(1) is pushed to a value closer to zero, as postulated by our theoretical result in
Section 2. Unlike, the sudden fall at t = 4804, where r12(1) decays to a very negative
value around −0.085, can be explained by the entrance in the corresponding subsample
of the "Black Monday" October 19, 1987, where the DJIA sustained its largest one-day
drop (y14804 = −22.61), following another large negative return (y14804 = −4.60).

Another remarkable feature from Figure 6 is the di¤erence between the values of
the sample cross-correlation in the top and bottom panels, enhancing the little resis-
tance of r12(1) to the presence of outliers. Noticeable, the �rst-order sample cross-
correlation still exhibits some breaks when computed for the outlier-corrected series
(bottom panel). These changes are associated with extreme observations that were
not identi�ed as outliers neither corrected in Charles and Darné (2014). For instance,
the sharp drop in r12(1) in bottom panel of Figure 6, from around −0.07 to the lowest
negative value −0.116, has to do with the presence/absence of two consecutive negative
observations, namely y1194 = −7.07 (20/7/1933) and y1195 = −7.84 (21/7/1933). A
similar situation arises at time t = 10164, where the value of r12(1) decays from −0.027

to −0.075; such a big drop is associated with the entrance of three consecutive ex-
treme observations at the end of the subsample, namely y20162 = −5.07 (19/11/2008),
y20163 = −5.56 (20/11/2008) and y20164 = 6.54 (21/11/2008), which, according to
our theoretical result in Section 2, will bias downwards the �rst-order sample cross-
correlation.

Finally, Figure 6 highlights the robustness of the weighted cross-correlation, r12,W (1),

to the presence of potential outliers; its values remain nearly the same in the two pan-
els, indicating that the leverage e¤ect suggested by the sample cross-correlation could
be misleading in some cases. However, the value of r12,W (1) does not remain constant
across all the subsamples considered. Note that it ranges from more negative values at
the subsamples that include the more ancient observations to values being still negative
but closer to zero as more recent observations are incorporated in the subsamples.
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6 Conclusions

This paper shows that outliers can severely a¤ect the identi�cation of the asymmetric
response of volatility to shocks of di¤erent signs when this is performed based on the
sample cross-correlations between past and squared returns. In particular, the presence
of one isolated outlier biases such cross-correlations towards zero and hence could hide
true leverage e¤ect while the presence of two big outliers could lead to detect either
spurious asymmetries or asymmetries of the wrong sign. As a way to protect against
the pernicious e¤ects of outliers, we suggest using robust cross-correlations. Our Monte
Carlo experiments show that, among the robust measures considered in this paper,
the weighted cross-correlation based on a slight modi�cation of the serial correlation
with Ramsay�s weights proposed by Teräsvirta and Zhao (2011), seems to be the more
appropriate when dealing with conditionally heteroscedastic models. These results are
further illustrated in the empirical application. It is shown that the �rst order sample
cross-correlation between past and squared daily DJIA returns is harmfully a¤ected
by the presence of outliers, while its robust counterpart is not. In fact, depending
on which measure of cross-correlation is used, the detection of asymmetries could be
misleading. It is also shown that some observations which are not identi�ed as outliers
may still have a distorting e¤ect on the identi�cation of asymmetries in the volatility,
enhancing the advantages of using robust methods as a protection against outliers
rather than detecting and correcting them. The empirical application also prompts to
the existence of possible time-varying leverage e¤ects. We leave this topic for further
research along with the problem of robust estimation of asymmetric GARCH models.
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Table 1. Monte Carlo means and standard deviations of the �rst-order cross-correlation
between past and current squared observations from uncorrelated stationary processes.
Sample size is T=1000 and the number of replications is 1000.

No outliers One single outlier Two consecutive outliers
w = 0 w = −50 w = {−50, 50}

Estimator White noise (ρ12(1) = 0)
r12(1) 0.0014

(0.0313)
−0.0009
(0.0168)

−0.4548
(0.0112)

r12,COMED(1) 0.0005
(0.0247)

0.0005
(0.0247)

0.0002
(0.0246)

r12,B(1) 0.0004
(0.0311)

0.0005
(0.0312)

0.0006
(0.0311)

r12,MED(1) 0.0014
(0.0504)

0.0012
(0.0504)

0.0012
(0.0502)

r12,W (1) 0.0015
(0.0334)

0.0015
(0.0322)

0.0015
(0.0320)

Estimator EGARCH (ρ12(1) = −0.0662)
r12(1) −0.0606

(0.0555)
−0.0007
(0.0171)

−0.4562
(0.0172)

r12,COMED(1) −0.0225
(0.0250)

−0.0227
(0.0249)

−0.0233
(0.0250)

r12,B(1) −0.0309
(0.0301)

−0.0303
(0.0308)

−0.0311
(0.0307)

r12,MED(1) −0.0252
(0.0497)

−0.0255
(0.0497)

−0.0251
(0.0497)

r12,W (1) −0.0551
(0.0377)

−0.0596
(0.0421)

−0.0590
(0.0442)

r12,Q(1) −0.0189
(0.0340)

−0.0190
(0.0340)

−0.0190
(0.0340)
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Figure 1: Monte Carlo means of sample cross-correlations in simulated white noise (�rst
column) and EGARCH (second column) series without outliers (�rst row), with a single
negative outlier (second row) and with two consecutive outliers, negative and positive
(third row) of size |ω| = 50. The red solid line represents the true cross-correlations.
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Figure 2: Monte Carlo means of sample cross-correlations of order 1 (�rst row) and
of order 2 (second row) for white noise (�rst column) and EGARCH series (second
column) contaminated with a single negative outlier and with two consecutive outliers,
negative and positive, as a function of the outlier size. The red solid line represents the
true cross-correlation.
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Figure 3: Monte Carlo means of robust cross-correlations in simulated white noise (�rst
column) and EGARCH (second column) series without outliers (�rst row), with a single
negative outlier (second row) and with two consecutive outliers, negative and positive
(third row) of size |ω| = 50. The red solid line represents the true cross-correlations.
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Figure 4: Monte Carlo distribution of estimated �rst-order cross-correlations using
di¤erent estimators: the SAMPLE cross-correlation; the cross-correlation median esti-
mator (COMED); the median cross-correlation coe¢ cient (MED); the Blomqvist cross-
correlation coe¢ cient (B) and the weighted cross-correlation estimator (W).
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Figure 5: Daily returns of Dow Jones Industrial Average (DJIA) index observed from
October 2, 1928 to August 30, 2013.
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Figure 6: Sample and robust �rst order cross-correlations computed with subsamples of
size T*=10001 using a rolling window of both the DJIA daily returns (top panel) and
its outlier-corrected counterpart (bottom panel) from starting point t=1 to t=11409.
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