
This document is published in:

Nguyen , N. T. (2013). Transactions on Computational
Collective Intelligence IX. (Lecture Notes in Computer
Science, 7770), Springer, 79-97.
DOI: http://dx.doi.org/10.1007/978-3-642-36815-8_4

© 2013 Springer-Verlag Berlin Heidelberg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-36815-8_4

Evaluation of Agents Interactions
in a Context-Aware System

Nayat Sanchez-Pi, David Griol, Javier Carbo, and Jose M. Molina

Carlos III University of Madrid,
Avda de la Universidad Carlos III, 22. Colmenarejo. Madrid
{nayat.sanchez,david.griol,javier.carbo,

josemanuel.molina}@uc3m.es

Abstract. The evaluation of Multi-Agent Systems (MAS) is a complex problem and it does not
have a single form. Much effort has been spent on suggesting and implementing new
architectures of MAS. Often these new architectures are not even compared to any other existing
architectures in order to evaluate their relative benefits. The present work focuses on
interactions, the most important characteristic of any complex software as autonomous agents
according to [25], as a problematic of evaluation. So, in this paper, we describe the assignment
of evaluation values to Agents interaction in a specific MAS architecture. This eval-uation is
based on the weight of the messages brought by an interaction.

Keywords: Multi-Agent Systems, Evaluation, Context-Aware Architectures.

1 Introduction

The use of nowadays technology like notebooks, PDAs and smart phones gave birth to
the concept of mobile computing. Mobile computing field had an increasing attention
few years ago, as many systems were designed towards this direction and to be context-
aware with the aim of optimizing and automating the distribution of their services in
the right time and in the right place. There is another concept introduced first by Weiser
[24]: pervasive computing, referring to the seamless integration of devices into the users
everyday life. It is also named ubiquitous computing, so devices should vanish into the
background to focus on the user and his tasks rather than being aware of the computing
devices and technical issues.

Multi-Agent Systems (MAS) appear in Computer Science as one important field in
the wide range of pervasive computing. An agent is a computational process that has
control over its internal state and behaviour. Software agents provide then an ideal mech-
anism for implementing heterogeneous and complex distributed systems. A multi-agent
system can be defined as a network of software agents that work together and share so-
cial skills. Multi-agent systems belong to the field of artificial intelligence, which aims
to provide principles for building complex systems involving multiple agents and also
the necessary mechanisms to coordinate individual behaviour of agents [23].

Due to advances in communication technologies such as sensor networks and radio
frequency identification (RFID), ubiquitous computing is increasingly entering in every
aspects of our lifes, opening a world of unprecedented scenarios where users interact

1

with electronic devices embedded in environments that are sensitive to the presence
of users [14]. These context-aware MAS combine ubiquitous information, communi-
cation, with enhanced personalization, natural interaction and intelligence. The use of
this context offers the possibility to tailor a new type of advanced applications. Context-
aware MAS should be able to adapt their operations to the current context without
explicit user intervention and taking environmental context into account. Particularly
when it comes to using mobile devices, as context data may change so rapidly, it is
desirable that programs and services react specifically to their current location, time
and other environment attributes and adapt their behaviour according to the changing
circumstances.

There are several works addressing evaluation in MAS and are characterized i.e., for
its architectural style [5]; for its agent-oriented methodologies based on the software
engineering related criteria and characteristics of MAS [15]; [8] or for the complexity
of interactions [12]. Due to the distributed nature of agent systems and the complexity
of the interaction inside them, their evaluation is a difficult task. According to cite-
wooldridge2001, interactions are the most important characteristic to evaluate in any
complex software as autonomous agents.

In this paper, we suggest an assignment of evaluation values to Agents interaction in
an specific MAS architecture for providing context services. This evaluation is mainly
based on the relevance of the messages content brought by an interaction. For dependant
nature of the relevance of the messages, the valuation has to be adhoc, but here we
provide an example of how interesting is this alternative in order to evaluate any MAS
architecture theoretically.

Other researchers have also focused on interactions-based evaluations. These studies
have verified that this kind of evaluation originates different types of problems [12].
Firstly, the effect of an interaction unit (a single message) in an agent system could
be equivalent to the definition of n units (messages) in another system. This way, the
weight assigned to the same interaction is 1 in the first system and is n in the second.
Secondly, the interaction units that are received and cannot be used by an agent could
be a bias in the measurement of interaction in MAS.

Our proposal is based on [12]. The first task is to classify the possible received mes-
sages into different message types. Then, a weight is associated to a message according
to its type. If two messages with the same type produced very different effects on the
agent, then this assignment would not provide a correct solution. So we also consider
the cost of processing a message and the cost of deciding the corresponding responsive
action. They consists in the memorization that needs such message, in terms of change
of internal states caused by the received message, and the decision that concerns the
choice of the responsive action.

The rest of the paper is structured as follows. Section 2 describes related work on
the evaluation of Multi-Agent systems. In section 3 we briefly describe our agent-
based architecture that provides context-aware services. Section 4 explains the eval-
uation method based on the weight of the information brought by a message. Section 5
presents the application of the evaluation method to our MAS. Finally we draw some
conclusions and we suggest some future possible directions of research.

2

2 Related Work: Evaluation of Multi-Agent Systems

Evaluation is a central piece of software engineering. Evaluations methodologies allow
researchers to assess the quality of the findings and to identify advantages and disad-
vantages of a system. The goal in evaluation of conventional systems is proving that a
system is more efficient. Normally, variables associated with efficiency are: the time to
complete a given task or the number of errors that have been made while fulfilling the
task. Evaluating the performance of any system is a complex task but it is even more
complex when we deal with distributed systems.

Evaluations for context-aware systems can not be addressed in the same way evalua-
tion is understood for other software systems where the concept of large corpus data, the
establishment of ground truth and the metrics of precision and recall are used. Evalua-
tion for changeable systems like context-aware needs to be conducted to assess the im-
pact of the users. The heterogeneity, dynamicity, and heavily context-dependent behav-
iors of context aware systems require new approaches of performance evaluation. Nor-
mally, besides simulation techniques, real-world evaluation is addresed as field studies
and relies on collecting data from observation about the usability of the software in the
context of use. But there is a need of assessing usability of the software and measure the
utility of the context-aware system. A three level approach to evaluation is proposed by
[22]: evaluation of the science; evaluation of the component technology, and evaluation
of the impact.

Potential system impact metrics include: (a) Trust in the system, (b) Shift in user
time, (c) Increased quality of product, (d) Increased confidence in product. Measure-
ment of these attributes will encompass both quantitative and qualitative data. Trust in
the system can be measured by the amount of system suggestions that information ana-
lysts further explore and by user ratings and comments. Trust in the system may also be
a measure of the understanding the user has of how the system actually works. In that
respect assessing the user’s mental model of the system is appropriate [4,17].

Component metrics are, of course, specific to the particular functionality of the com-
ponent. To provide some examples of possible metrics, we go back to some current
research efforts. In particular, we consider potential metrics for question and answer di-
alogs, user modeling, hypotheses generation, prior and tacit knowledge. Question and
answer systems currently being developed in the research community go beyond sim-
ple Question and Answer systems. These systems might help a user construct a travel
itinerary, with flight reservations, hotel bookings and car rentals. Evaluation efforts for
dialog systems have used user satisfaction as the impact metric. Component metrics for
question and answer dialogs might include: (i) Completeness of answer; (ii) Accuracy
of answer; (iii) Effort required on part of user engaging in dialog.

Finally, scientific metrics are still important and need to be the first evaluation ap-
plied. Consider the same topics discussed in component metrics: question and answer
dialogs, user modeling, hypothesis generation, prior and tacit knowledge.

Since some years, there is a growing interest in understanding specific evaluation
problems that arise from context-aware systems [21,6,22]. For instance, [20] proposes
a taxonomy where we can find several methods for evaluating context aware systems
based on Pre-implementation Evaluation, Sub-system Evaluation, and Overall System
Evaluation. Research groups such as the Future Computing Environments Group at

3

Georgia Institute of Technology working on the “Aware Home” [1] and Tatsuya Ya-
mazaki of National Institute of Information and Communications Technology, Japan
working on the “Ubiquitous Home” [26] have completed real-life test home environ-
ments for accurate simulation of the home environment. Both groups aim to perfectly
emulate a real domestic environment and intend to have test-subjects spend significant
periods of time in these simulated home environments carrying out domestic activities.
However, such live usage test beds are expensive and difficult to reconfigure to emulate
a wide range of different contexts.

Kerttula and Tokkonen [13] have identified “the total user experience” as an area of
concern and aim to achieve it through early product and system simulations. This idea
moves away from testing in isolation and moves towards a simulation where services are
tested in parallel and valued over longer periods of time. This approach uses accurate
simulation/prototyping of services focusing on features such as the user interface, audio
properties and product behaviour, but not including the user’s surrounding physical
environment.

Huebscher and McCann [10] aim to allow initial testing of context-aware applica-
tions without requiring a physical deployment. However Huebscher and McCann are
working to simulate sensor data e.g. temperature, humidity or location, from a descrip-
tion of context or a simulation model of contexts. This in turn will be used to test the
context-logic of a context-aware application.

In the past, virtual reality simulation of pervasive computing environments has been
used in a small number of research efforts, specifically QuakeSim [3] and HP Lab’s
UbiWise [2]. These have demonstrated that 3D virtual reality computer game engines
potentially provide a cost effective platform for simulating pervasive computing en-
vironments with sufficient realism to accurately test human interaction with pervasive
computing software systems.

Also, Shirehjini and Klar have been developing 3DSim [16], a 3D tool for rapidly
prototyping Ambient Intelligence building blocks e.g. situation-recognition, goal-based
interaction. 3DSim aids the development of human-ambient-interaction systems such as
PDA based control systems, adaptive user interfaces, multimedia output coordination
or goal-based interaction systems. During a simulation, sensor data is derived from a
2D GUI and gesture elements which are the result of an avatar pointing at devices.

The team at GIST U-VR Lab, S. Korea have been working on creating a unified
context model and a method for the integration of contexts for unified context-aware
applications. To loosen the coupling between services and context, they have developed
a unified context that represents user-centric contextual information in terms of 5W1H
(Who, What, Where, When, How and Why) [11]. To demonstrate user-centric integra-
tion of contexts for a unified context-aware application model (the ubi-UCAM), they
created a simple 3D simulated environment [18]. By using the simulator they were able
to test the effectiveness of the Context Integrator when there were multiple users work-
ing with the service simultaneously. The simulated environment allowed them to assess
the capabilities of their Context Integrator before bringing it into a real world situation
(ubiHome).

Other examples of context-aware system evaluations are in Ambient Intelligence
(AmI) where sensory information is used to determine the context of a situation and

4

the application modifies its behaviour accordingly. The behaviour could be an action
performed automatically or information that is modified based on the context of the user.
Other researchers in augmented cognition and affective computing are attempting to
understand the cognitive state of the user and modify the delivery of information based
on what the user can currently handle. Evaluations of such systems cannot be done
solely through empirical methods as there are too many situations to test. Simulation
could be used as a supplement though human judgment of the appropriateness of the
modified behaviour needs to be the ultimate metric [3].

In this paper, we focus on the consideration of interaction as the main parameter of
evaluation, based on several research studies like the one [12]. As stated in the introduc-
tion, several tasks are required to perform this evaluated based on the classification of
the possible messages in the system into specific sets sharing the same type, the assign-
ment of a weight to a message according to its type, and the evaluation of the change
at the internal state caused by the received messages and the decisions that concern the
choice of the corresponding actions.

3 Our Agent-Based Context-Aware System

The proposed agent-based architecture manages context information to provide person-
alized services through users interactions with conversational agents. As it can be ob-
served in Figure 1, it consists in five different types of agents that cooperate to provide
an adaptive service. User agents are configured into mobile devices or PDAs. Providers
are implemented as Conversational Agents that provide the specific services through
dialogs with users. A Facilitator Agent matches the different positions and interests of
users with the providers defined in the system. A Positioning Agent communicates with
the ARUBA positioning system [19] to obtain and provide positioning information of
user agents in the system. Finally, a Log Analyzer Agent generates user profiles from the
users’ previous dialogs that are used by Conversational Agents to adapt their behaviour.

A conversational agent includes a software that accepts natural language as input
and generates natural language as output, engaging in a conversation with the user. To
successfully manage the interaction with the users, conversational agents usually carry
out five main tasks: automatic speech recognition (ASR), natural language understand-
ing (NLU), dialog management (DM), natural language generation (NLG) and text-to-
speech synthesis (TTS). These tasks are usually implemented in different modules. In
our architecture, we incorporate a Context Manager in the architecture of the designed
conversational agents, This module deals with loading the context information provided
by the User and Positioning Agents, and communicates it to the different modules of
the Conversational Agent during the interaction.

To manage context information we have defined a data structure called user profile.
Context information in our user profile can be classified into three different groups.
General user information stores user’s name and machine identifier, gender, preferred
language, pathologies or speech disorders, age, Users Skill level is estimated by taking
into account variables like the number of previous sessions, dialogs and dialog turns,
their durations, time that was necessary to access a specific web service, the date of the
last interaction with the system, etc. Using these measures a low, medium, normal, high

5

Fig. 1. The proposed multi-agent architecture

or expert level is assigned. Usage statistics and preferences are automatically evaluated
taking into account the set of services most required by the user during the previous
dialogs, date and hour of the previous interactions and preferred output modality.

The free software JADE (Java Agent Development Framework)1 has been used for
the implementation of our architecture. It was the most convenient option as it simplifies
the implementation of multi-agent systems through a middle-ware that complies with
the FIPA specifications and through a set of graphical tools that supports the debugging
and deployment phases. The agent platform can be distributed across machines and the
configuration can be controlled via a remote GUI.

3.1 Ontology

Jointly to our system architecture, we defined an objective description of the con-
cepts and relationships of the domain of knowledge used in the exchanged messages
by agents. This explicit and formal specification of a shared conceptualization is what
we usually called ontology [9]. An ontology allows that a content of a message can be
interpreted unambiguously and independently from the context.

Eight concepts have been defined for the generic ontology used in our system. The
definition is: Location (XCoordinate int, YCoordinate int), Place (Building int, Floor
int), Service (Name String), Product (Name String, Characteristics List of Features),

1 http://jade.tilab.com/

6

Feature (Name String, Value String), Context (Name String, Characteristics List of Fea-
tures), Profile (Name String, Characteristics List of Features), DialogLog (Log List of
Features).

Our ontology also includes six predicates with the following arguments: HasLoca-
tion (Place, Position, and AgentID), HasServices (Place, Position, and List of Services),
isProvider (Place, Position, AgentID, Service), HasContext (What, Who), HasDialog
(DialogLog and AgentID), HasProfile (Profile and AgentID), and Provide (Product and
AgentID).

3.2 Agents Interaction

The interaction with the different agents follows a process which consists of the follow-
ing phases:

1. The ARUBA positioning system is used to extract information about the positions
of the different agents in the system. This way, it is possible to know the positions
of the different User Agents and thus extract information about the Conversational
Agents that are available in the current location.

2. The Positioning Agent reads the information about position (coordinates x and y)
and place (Building and Floor) provided by the ARUBA Positioning Agent by read-
ing it from a file, or by processing manually introduced data.

3. The Positioning Agent communicates the position and place information to the
User Agent.

4. Once a User Agent is aware of its own location, it communicates this information
to the Facilitator Agent in order to find out the different services available in that
location.

5. The Facilitator Agent informs the User Agent about the services available in this
position .

6. The User Agent decides the services in which it is interested.
7. Once the User Agent has selected a specific service, it communicates its decision

to the Facilitator Agent and queries it about the service providers that are available.
8. The Facilitator Agent informs the User Agent about the identifier of the Conversa-

tional Agent that supplies the required service in the current location.
9. The User Agent asks the Conversational Agent for the required service.

10. Given that the different services are provided by context-aware Conversational
Agents, they ask the User Agent about the context information that would be useful
for the dialog. The User Agent is never forced to transmit its personal information
and preferences. This is only a suggestion to customize the service provided by
means of the Conversational Agent.

11. The User Agent provides the context information that has been required.
12. The conversational agent manages the dialog providing an adapted service by means

of the context information that it has received.
13. Once the interaction with the Conversational Agent has finished, the Conversational

Agent reads the contents of the log file for the dialog and send this information to
the Log Analyzer Agent.

14. The Log Analyzer Agent stores this log file and generates a user profile to person-
alize future services. This profile is sent to the Conversational Agent.

7

4 Evaluation Proposal Based on Agents Interaction

The consideration of interaction as a problematic of evaluation has been addressed for
other researches. But such an evaluation of interaction brings up different types of prob-
lems [12]. First, the effect of an interaction unit (a single message) in an agent system
may be equivalent to n units (messages) in another system. The weight of the interac-
tions realizing the same work is 1 and it is n in the second. Later, the interaction units
that are received and cannot be used by an agent may be a bias in the measurement of
interaction in MAS

Therefore, we take the idea of [12]. The first idea is to classify the possible received
messages into sets having the same type. Then, a weight is associated to a message
according to its type. But when two messages of the same type have very different
effects on the agent, this idea does not provide with a correct solution. The effects of
interactions consist of the processing of the message and then a responsive action. The
processing is realized by: memorization that treats the part of change at the internal
state caused by the received message, and the decision that concern the choice of the
action that will be handled. In this work, we follow this approach where the evaluation
is based on the weight of the information brought by a message is suggested.

According to the model, two kinds of functions are considered:

– A function Interaction associates weight to the message according to its type.
Function Interaction can be computed adopting the primitives proposed by [7] to
the type of interaction. This work consists of four possibilities of message types:
present, request, answer, and inform. We note MA

received as the set of messages which
may be received by agent A, and the function Interaction associates a weight value
for each received message by agent A:

Interaction = MA
received → weightofmessagetype (1)

– This solution partially resolves the problem and it works when two messages of the
same type have equivalent effects on the agent. So, we introduce Φ that associates
weight to the message according to the change provoked on the internal state and
the actions triggered by its reception. This function evaluates the treatment of a
message in agent systems. For better understanding Φ is divided into two functions:
one that evaluates Decision, DDA and another that evaluates Memorization, MMA.
The function MMA associates a value to the variation of the internal state (caused by
message received). We note as SoA the set of possible original internal states for the
agent A while S f A is the set of final internal states for agent A. To quantify, some
measurable characteristics of the internal state must be defined. The specification of
these characteristics is related to the application domain. Since these characteristics
have an associated weight, then the function MMA is considered as the sum of these
weights:

MMA = SoA × Sf A → sumofweightsofstatecharacteristicsthatchanged (2)

Concerning DDA, this function associates a value to the triggered actions (results
of the message received). To quantify, certain type of actions must be defined.

8

A type of actions having a weight. Then, the value of the function DDA is con-
sidered as the sum of the weights of triggered actions where AA stands for the set
of actions may be done by agent A:

DDA = AA → sumofweightsoftriggeredactions (3)

Then, the function Φ dependant of the change of internal state and of triggered
actions due to the message received, is then defined as the sum of these functions
DDA and MMA.

The approach then focuses on the evaluation of interactions in MAS based on this func-
tion combination: Interaction + Φ .

5 Evaluating Our MAS

In this section we present the application of the interaction-based evaluation method de-
scribed above to the architecture presented in Figure 1. It was completely implemented
using JADE/LEAP Agents and ARUBA positioning system (see screen capture of Fig-
ure 2). In order to apply evaluation, we have computed functions and assigned weights
to each message for each agent interaction.

Fig. 2. Screen Capture of JADE/LEAP agent of our system running in an airport domain

5.1 Weights vs. Type of Message: Function Interaction

First we compute function Interaction according to the four possibilities of message
types mentioned in Section 3: present, request, answer, and inform. Each message of
phases is classified into one of them:

9

1. The ARUBA positioning system knows a change in position of a given User agent:
no message involved

2. The Positioning Agent reads from a file the information about position provided by
the ARUBA Positioning Agent: no message involved

3. The Positioning Agent communicates the position (coordinates x and y) and place
(Building and Floor) information to the User Agent: present message.

4. Once a User Agent is aware of its own location, it asks about the different services
available in that location to the Facilitator Agent: request message.

5. The Facilitator Agent informs the User Agent about the services available in this
position: inform message

6. The User Agent decides the services in which it is interested: no message involved
7. Once the User Agent has selected a specific service, it communicates its decision

to the Facilitator Agent and queries it about the service providers that are available:
request message

8. The Facilitator Agent informs the User Agent about the identifier of the Conver-
sational Agent that supplies the required service in the current location: inform
message

9. The User Agent asks the Conversational Agent for the required service: request
message

10. Conversational Agent ask the User Agent about the context information that would
be useful for the dialog: request message

11. The User Agent provides the context information that has been required: inform
message

12. The conversational agent manages the dialog providing an adapted service by means
of the context information that it has received: no message involved

13. Once the interaction with the Conversational Agent has finished, the Conversational
Agent send the log file of the dialog to the Log Analyzer Agent: inform message

14. The Log Analyzer Agent stores this log file and generates a user profile to per-
sonalize future services. This profile is sent to the Conversational Agent: inform
message

These four types have to be distinguished because of the different basic behaviors that
they model from the sender or the receiver points of view:

– A request includes a change of state of the sender, waiting for the answer.
– An inform includes no change of state for both the sender and the receiver. It might

generate other informs, and possibly answers.
– A present includes a possible change in the state of the sender and/or of the re-

ceiver. Typically, a present will enable entering a society and introduce itself to
other agents

5.2 Weights vs. Treatment of a Message: Function Φ

Next we have to evaluate the function Φ that computes the variation of internal state
caused by memorization step and decision step. Memorization is evaluated by function

10

MMA, since we have an ontology described in Section 3 we can measure that changes
according to:

– number of concepts involved
– number of attributes involved

We could also consider the relevance of attributes and concepts giving different weights
to any of them. We consider three levels of relevance: low, medium and high. For in-
stance:

– Phase 1. ARUBA localizes a given user: no attributes involved since no message
exchange involved (0 required attributes).

– Phase 2. Positioning agent receives internally location information from ARUBA:
no attributes involved since no message exchange involved (0 required attributes).

– Phase 3. Positioning agent sends location information to User Agent: attributes
relative to location involved (4 required attributes: Building, Floor and Coordinates
X Y, relevance: medium)

– Phase 4. User Agent asks about available services to a Facilitator Agent: attributes
relative to location involved (4 required attributes: Building, Floor and Coordinates
X Y, relevance: medium)

– Phase 5. Facilitator Agent informs User Agent about Services available, it is where
the Facilitator Agent informs the User Agent about the services available at this po-
sition: It depends on the number of services (s). Particularly: 2s attributes required
(s times a service type, s times a service name, relevance: medium)

– Phase 6. User agent decides internally which service is interesting. No attributes
involved since no message exchange involved (0 required attributes).

– Phase 7. User agent informs the chosen service to the Facilitator Agent: 2 required
attributes Service type and Service name, relevance: medium

– Phase 8. Facilitator agent informs the user agent about the Conversational Agents
who provide that service: it depends on the number of conversational agents who
provide similar services (diversity of services), we call this factor (level of over-
lapping of services) that requires 1 attribute per Facilitator Agent (Agent global
name)

– Phase 9. User Agent asks Conversational Agent about the required service:2 re-
quired attributes Service type and Service name, relevance: medium

– Phase 10: Conversational Agent requests context information about the service re-
quested to the User Agent. Since the utility of the context-aware system depends
directly on the personal information and preferences that the User Agent freely de-
cides to communicate, the relevance is high. This is only a suggestion to customize
the service provided by means of the Conversational Agent. Weights linked to this
exchanged context information depend on the the attributes required by the chosen
service (nas).

– Phase 11: User Agent provides the context information that has been requested
by Conversational Agent: Similarly to Phase 10, Weights linked to this exchanged
context information depend on the the attributes required by the chosen service
(nas), relevance is again high.

11

– Phase 12: Conversational Agent provides the service using received context in-
formation. no attributes involved since no message exchange involved (0 required
attributes).

– Phase 13: Conversational Agent sends the log file to the Log Analyzer Agent: Log
file contains the different attributes of the complete context information correspond-
ing to the provided service. Their number depends on the the attributes required by
the chosen service (nas), and since adaptivity of the context-aware system relies on
the availability of several logs per user, the relevance of the corresponding attributes
is high.

– Phase 14: Finally a high weight is assigned to the exchanged messages of this
phase where the Log Analyzer Agent sends a user profile to the Conversational
Agent. Since this profile is generated by the aggregation of several dialog logs to
personalize future services, it can be assumed a high relevance to this message
exchange. Number of attributes involved depends on the overlapping of this log
respect to the previous dialogs implemented (partly time-decrescent function). We
call this factor level of log overlapping

Then we need to compute DDA function that associates the variation of internal state
caused by decision step. This function associates a value to the triggered actions. In
order to quantify it, certain type of actions must be defined. Each type of actions should
have a weight. Then, the value of the function DDA is considered as the sum of the
weights of triggered actions. Again we classify the weight in three categories: low,
medium and high. The set of actions involved in our agent system can be also clas-
sified as external and internal. The external actions correspond to the communicative
responses to the given message, where the weight of this reactive action is obtained
from the weight of the content included in the responsive messages. On the other hand,
internal actions involve the processing and decision making of the next phases:

– Phase 4: Once a User Agent is aware of its own location, it asks about the different
services available in that location to the Facilitator Agent: request message. Simple
query to the internal database of Facilitator agent. No intelligence involved: low
weight.

– Phase 6: The User Agent decides the services in which it is interested. Intelligent
and relevant decision with a real economic cost: high weight.

– Phase 8: The Facilitator Agent informs the User Agent about the identifier of the
Conversational Agent that supplies the required service in the current location: Sim-
ple query to the internal database of Facilitator agent. No intelligence involved: low
weight.

– Phase 11: The User Agent provides the context information that has been required.
Intelligent and relevant decision with a privacy cost: high weight.

– Phase 13: Once the interaction with the Conversational Agent has finished, the Con-
versational Agent send the log file of the dialog to the Log Analyzer Agent. Simple
query to the internal database of Conversational agent. No intelligence involved:
low weight.

– Phase 14: The Log Analyzer Agent stores this log file and generates a user profile
from it to personalize future services. Intelligent and relevant decision: medium
weight.

12

5.3 Case of Use: a Montecarlo Simulation of an Airport Context-Aware System

In order to define a case of use, we used a scenario inspired in the Airport domain which
uses an extension of the generic ontology mentioned in Section 2 [19].

Fig. 3. Zones of the Airport

Our airport scenario has six different zones that do not overlap with each other. Fig-
ure 3 shows the map of the airport with the zones that host services of our context-aware
system. They are: Airport Zone (register service), Customs Zone (customs service),
Commercial Zone (magazines, restaurants, spa, shop), Offices Zone (airline offices
services), Check-In Desk Zone (check-in service) and Finger Zone (finger service).
Providing each of these services involves filling a given number of concept attributes
belonging to the airport Ontology. The number of involved attributes is highly variable
(from the simplest services such as register and finger to the most complex ones in the
commercial zone). They are:

– register: flight number (required), passenger name (optional), passenger nationality
(optional) checkin zone (required)

– customs: anything to declare (required), value of declared objects (optional), na-
tionality (optional)

13

– checkin: size of baggage (required), weight of baggage (optional), flight num-
ber (required), window/aisle (optional), preferred row (optional), food special (op-
tional), finger number (required)

– offices: flight plan (required), accreditation (required), weather conditions (optional)
– finger: special needs (optional)
– magazines: type (optional), language (optional), price (required), name (required)
– restaurants: food (optional) drink (required) price (required)
– spa: type (required) length (optional) price (required)
– shop: product (required) price (required)

Table 1. Initial setup of services in the Airport scenario

Service Service # Room Room # Max Attributes x Service Min Attr. x Serv.
Register 1 Airport 1 4 2
Customs 2 Customs 2 3 1

Magazines 3 Commercial 3 4 2
Restaurant 4 Commercial 3 2

Spa 5 Commercial 3 3 2
Shop 6 Commercial 3 2 2
Office 7 Office 4 3 2

Checkin 8 Checkin 5 7 3
Finger 9 Finger 6 1 0

Table 1 shows the initial setup of these services: room where they are located, and
range of attributes per service.

Table 2. Possible paths followed by users

Role Step1 Step2 Step3 Step 4
Outgoing Services 1 8 3,4,5,6 9

Rooms 1 5 3 6
Ingoing Services 1 2 3,4,5,6

Rooms 1 2 3
Pilot Services 1 8 7 3,4,5,6

Rooms 1 5 4 3

Also services potentially required by users depend on their roles: Pilots, outgoing
passengers, ingoing passengers. Therefore they will follow different paths through se-
quential steps where user may require one or more services. These paths are shown
in Table 2. Each service of these paths involves a cycle of the 14 execution phases of
our context aware system as we defined it previously. As we also mentioned in Section
4.1, several types of messages were distinguished. Now we proceed to associate adhoc
numerical values to these message types:

14

– request: 2 (a change of state, a reaction produced)
– inform: 1 (no change of state)
– present: 1.5 (1 or 2 change of state)

Additionally we have to give specific values to the labels: maximum, medium and min-
imum. We consider weights of 1, 1.5 and 2 respectively. And we can then conclude the
final weight of each phase as it is shown in Table 3, where nas stands for the number
of attributes involved in the corresponding agent interaction since it is not a constant
value, it is different for each service s (see Table 1).

Table 3. Final weights of agents interactions

Phase Message type Internal processing Attributes Relevance Attributes involved Final weight
1 0 0 0 0 0
2 0 0 0 0 0
3 1.5 0 1.5 4 1.5 + 1.5*4
4 2 1 1.5 4 2+1+1.5*4
5 1 0 1.5 2*s 1+1.5*2*s
6 0 2 0 0 2
7 2 0 1.5 2 2+1.5*2
8 1 1 1.5 Service Overlapping 1+1+1.5*Service Overlapping
9 2 0 1.5 2 2+1.5*2

10 2 0 2 nas 2+2*nas
11 1 2 2 nas 1+2+2*nas

12 0 0 0 0 0
13 1 1 2 nas 1+1+2*nas
14 1 1.5 2 %overlappingLog 1+1.5+2*%overlappingLog*nas

If we consider that our Airport domain has no overlapping services, and that the
number of services per room is one but in commercial zone, where it is 4, then we
will have the total weights for every step involved in these 14 phases. In Table 4 we
can observe the associated weights according to the total number of concept attributes
included in the agent interactions corresponding to the 14 phases (m= 3*s + 1.5*Ser-
vice Overlapping + 2*%overlappingLog*nas + 6*nas)), in function of the interest of
the particular user in each possible commercial service (s). In our case if we asume that
Service Overlapping=0 and %overlappingLog=1, then m will be 3*s+8*nas.

Table 4. Weights associated to steps followed by users

Role Step1 Step2 Step3 Step 4
Outgoing Services 1 8 3,4,5,6 9

Rooms 1 5 3 6
Weights 29+m 29+m i(29+m) 29+m

Ingoing Services 1 2 3,4,5,6
Rooms 1 2 3
Weights 29+m 29+m i(29+m)

Pilot Services 1 8 7 3,4,5,6
Rooms 1 5 4 3
Weights 29+m 29+m 29+m i(29+m)

15

In order to simulate the interactions involved in this scenario we use montecarlo
method to draw some conclusions. Therefore we consider as random variables: the
role of a user (a 5% of pilots, and a 47.5% of outgoing and ingoing passagers), the
interesting commercial services (for a user) and the final number of attributes involved
for each service (which can be less than the maximum and more than the minimum
since we have required attributes and optional attributes). Table 5) shows the chosen
random distributions for these variables.

Table 5. Random variables in the Airport Scenario

Variable Probability Distribution From To Values
Role Uniform 0 1 Pilot (> 0.95), Outgoing (< 0.475), Ingoing (other cases)

Interest in Magazines Uniform 0 1 False, True
Interest in Restaurants Uniform 0 1 False, True

Interest in Spa Uniform 0 1 False, True
Interest in Shop Uniform 0 1 False, True

Attributes Register Uniform 2 4
Attributes Customs Uniform 1 3

Attributes Magazines Uniform 2 4
Attributes Restaurants Uniform 2 3

Attributes Spa Uniform 2 3
Attributes Shop Fixed 2 2
Attributes Office Uniform 2 3

Attributes Checkin Uniform 3 7
Attributes Finger Uniform 0 1

From the results showed in tables 6, 7, 8, and 9 we can observe the average, stan-
dard deviation and the confidence interval at 95% of agent interactions by outgoing
passengers, ingoing passengers, pilots and total users respectively.

Table 6. Evaluation results of Agent interactions for 1000 Outgoing passengers

Variable Value
Average 289,75

Standard Deviation 64,10
Confidence Interval at 95% (285,78-293,72)

Min 144
Max 444

Estimation error 0,0316

Table 7. Evaluation results of Agent Interactions for 1000 Ingoing passengers

Variable Value
Average 229,38

Standard Deviation 63,68
Confidence Interval at 95% (225,44-233,33)

Min 88
Max 372

Estimation error 0,0316

16

Table 8. Evaluation results of Agent Interactions for 100 Pilots

Variable Value
Average 294,58

Standard Deviation 59,41
Confidence Interval at 95% (282,93-306,22)

Min 176
Max 452

Estimation error 0,1

Table 9. Evaluation results of Agent interactions for 2100 Users

Variable Value
Average 261,24

Standard Deviation 70,54
Confidence Interval at 95% (258,22-264,25)

Min 88
Max 452

Estimation error 0,0218

Although these results just represent an estimation, we can conclude some statements
about the relative weights of interactions from different kind of agents have inside this
Context-Aware System. Particularly in our simulation we can observe how pilots pro-
duce slightly more overhead of Agent interactions than Outgoing Passengers, while
Ingoing Passengers are clearly the most efficient agents in terms of Agent interactions.
This information could be for instance used to improve scalability, estimating the max-
imum number of allowed agents in a system by each type. An alternative use could be
redesigning the ontology and protocols of the system to avoid possible future bottle-
necks.

Additionally, we could compare in a fair way other agent architectures in the same
domain and scenario (for instance a more centralized system, or a system without con-
versational agents) using these interaction-based evaluation. This is the main intention
of this research contribution. We have shown with this particular simulation how the
evaluation method proposed can be applied. Although ad hoc valuations were needed,
and although the chosen domain is not very complex (number of services per room,
existence of overlapping services, etc.), we think it can be universally applied to any
domain.

6 Conclusions

Evaluations of MAS can not be addressed in the same way evaluation is understood
for other software systems where the concept of large corpus data, the establishment
of ground truth and the metrics of precision and recall are used. Evaluation for au-
tonomous systems like agents needs to be conducted to compare architecture alterna-
tives. Normally, besides the simulation techniques, real-world evaluation is conducted

17

as field studies and relies on collecting data from observation about the usability of
the software in the context of use. But there is a need of assessing performance of the
software agents and measure the interaction between them.

Evaluating the interactions in Agent Systems allows to compare alternative agent ar-
chitectures and protocols between them. In this paper, we have described a proposal of
evaluation of Multi-Agent Systems (MAS) based on their agents interactions. This ap-
proach based on the weight of the exchanged messages by the agents opens a new way
to compare and evaluate the efficiency of different systems, architectures, or agents. We
have also applied it to an Agent-based Context-Aware System, assigning evaluation val-
ues according to it to show how a final valuation can be obtained. Finally, our approach
to the Airport domain allows us to experience the problems of giving values to such
weights and of defining testing scenarios to their last consequences. Addressing both
problems let us justify valuation criterion for weight assignments that are obviously
ad hoc. As future work we would aim to include more experimentation on different
domains with this evaluation technique.

Acknowledgments. Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT
TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255, and
DPS2008-07029-C02-02.

References

1. Abowd, G., Atkeson, C., Bobick, A., Essa, I., MacIntyre, B., Mynatt, E., Starner, T.: Living
laboratories: the future computing environments group at the Georgia Institute of Technol-
ogy. In: Proc. of CHI 2000 Extended Abstracts on Human Factors in Computing Systems,
pp. 215–216 (2000)

2. Barton, J., Vijayaraghavan, V.: UBIWISE, A Ubiquitous Wireless Infrastructure Simulation
Environment. HP LABS (2002)

3. Bylund, M., Espinoza, F.: Testing and demonstrating context-aware services with quake iii
arena. Communications of the ACM 45(1) (2002)

4. Carroll, J., Olson, J., Anderson, N.: Mental models in human-computer interaction: Research
issues about what the user of software knows. National Academies (1987)

5. Davidsson, P., Johansson, S., Svahnberg, M.: Characterization and Evaluation of Multi-agent
System Architectural Styles. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T.,
Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914, pp. 179–188. Springer, Heidelberg
(2006)

6. Dey, A., Mankof, J., Abowd, G., Carter, S.: Distributed mediation of ambiguous context
in aware environments. In: Proc. of the 15th Annual ACM Symposium on User Interface
Software and Technology, pp. 121–130 (2002)

7. Gaspar, G.: Communication and belief changes in a society of agents: Towards a formal
model of autonomous agent. In: Descentralized A. I. 2, pp. 245–255. Elsevier Science, Am-
sterdam (1991)

8. Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development methodology:
Processes, models and diagrams. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 63–74. ACM Press (2002)

9. Gruber, T.: The role of common ontology in achieving sharable, reusable knowledge bases.
In: 2nd International Conference on Principles of Knowledge Representation and Reasoning,
Cambridge, USA, pp. 601–602 (April 1991)

18

10. Huebscher, M., McCann, J.: Simulation model for self-adaptive applications in pervasive
computing. In: Proc. of 15th International Workshop on Database and Expert Systems Ap-
plications, pp. 694–698 (2004)

11. Jang, S., Ko, E., Woo, W.: Unified user-centric context: Who, where, when, what, how
and why. Personalized Context Modeling and Management for UbiComp Applications 149
(2005)

12. Joumaa, H., Demazeau, Y., Vincent, J.: Evaluation of multi-agent systems: The case of inter-
action. In: 3rd International Conference on Information and Communication Technologies:
From Theory to Applications, pp. 1–6. IEEE (2008)

13. Kerttula, M., Tokkonen, T.: The total user experience-how to make it positive in future wire-
less systems and services. In: Proc. of WWRF Annual Workshop (2001)

14. Lyytinen, K., Yoo, Y., Varshney, U., Ackerman, M., Davis, G., Avital, M., Robey, D., Sawyer,
S., Sorensen, C.: Surfing the next wave: design and implementation challenges of ubiquitous
computing environments. Communications of the Association for Information Systems, 697–
716 (2004)

15. Mylopoulos, J., Kolp, M., Giorgini, P.: Agent-oriented software development. In: Vlahavas,
I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 3–17. Springer,
Heidelberg (2002)

16. Nazari Shirehjini, A.A., Klar, F.: 3DSim: rapid prototyping ambient intelligence. In: Proc. of
the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-
Aware Services: Usages and Technologies, pp. 303–307 (2005)

17. Norman, D.: The psychology of everyday things. Basic Books (1988)
18. Oh, Y., Lee, S., Woo, W.: User-centric integration of contexts for a unified context-aware

application model. In: Proc. of Joint sOc-EUSAI Conference (2005)
19. Sánchez-Pi, N., Fuentes, V., Carbó, J., Molina, J.M.: Knowledge-based system to define con-

text in commercial applications. In: Proc. of the 8th ACIS Conference SNPD 2007, Tsingtao,
China, pp. 694–699 (2007)

20. Schmidt, A.: Ubiquitous Computing- Computing in Context. Ph.D. thesis (November 2002)
21. Scholtz, J.: Ubiquitous computing goes mobile. ACM SIGMOBILE Mobile Computing and

Communications Review 5(3), 32–38 (2001)
22. Scholtz, J., Consolvo, S.: Toward a framework for evaluating ubiquitous computing applica-

tions. IEEE Pervasive Computing 3(2) (2004)
23. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspective.

Autonomous Robots 8(3), 345–383 (2000)
24. Weiser, M.: The computer of the 21st century. Scientific American 265(3), 66–75 (1991)
25. Wooldridge, M.J., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the Art.

In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 1–28. Springer,
Heidelberg (2001)

26. Yamazaki, T.: Ubiquitous home: real-life testbed for home context-aware service. In: Proc. of
First International Conference on Testbeds and Research Infrastructures for the Development
of Networks and Communities, Tridentcom 2005, pp. 54–59 (2005)

19

