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Abstract 
Dynamic interactions among stock return, Research and Development (R&D) expenses, patent applications based 
on R&D investment, and the propensity to patent are studied in this work for a panel of firms from the United 
States. The panel includes technologically similar firms, neck-to-neck, mostly from the drugs product-market 
sector. Firms’ propensity to patent is modeled by a dynamic latent-factor patent count data model that separates 
patented and non patented R&D. Patent innovation leader and follower firms are identified according to their 
knowledge stock. Significant and positive dynamic spillover effects are obtained among patent application leaders 
and followers. We observe that neck-to-neck firms in patent innovation activity produce an inverted-U relationship 
between market competition and innovation. Furthermore, firms’ propensity to patent is positively correlated with 
market competition and there is a positive feedback in both directions. Increasing the degree of competition in the 
market enhances innovation and patent applications, in order to help firms to appropriate part of the benefits of 
their R&D investments. On the other hand, firms by increasing their patent applications defend themselves from 
competitors, trying to improve their market share. However, due to the diffusion of knowledge through patent 
applications, knowledge spills over to competitors therefore, the degree of competition and innovation increases in 
the market. 
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1. Introduction

There are five usual main motives for firms to patent their inventions: protection from imita-

tion, blocking competitors, technological image and reputation, exchange potential in co-operations,

and internal firm Research & Development (R&D) performance indicator. Patents help in sustaining

competitive advantages by increasing production cost of competitors, by signaling better quality of

products, and by serving as barriers to entry.

There is empirical evidence showing that patents through time are becoming easier to get and are

more valuable to the firm due to increasing damage awards from infringers. Shapiro (2007) notes that

patents are playing an increasingly important, and shifting, role in the United States (US) economy:

“There is evidence that firms in a number of industries adjusted their strategies in the 1980s and early

1990s in response to changes in the patent system. They began seeking more patents, but not necessarily

because they were devoting more resources to R&D. The observed increase in R&D efficiency through

the 1990s could be due to increases in R&D differentiation, the increase in the number of research fields

and technologies, and the use of more sophisticated patent strategies due to increases in competitive

pressure through time.” (Shapiro, 2007, p. 5)

We use patent and firm-specific data of 4,476 US firms from several industries over the period 1979

to 2000. Firms are classified in technological groups according to technological proximity. We focus on

a cluster of 111 firms that are mainly from the drugs product-market sector. We identify the patent

innovation leaders and followers of the technological cluster according to their knowledge stock. The

objective of this work is to learn about dynamic interactions (spillovers) between patent innovation

leaders and followers, allowing for different propensity to patent for different firms.

We consider different dynamic measures of innovation activity that may capture patented R&D (i.e.,

publicly disclosed innovations) and non-patented R&D (i.e., not appropriated R&D or trade secrets).

Patented and non-patented R&D are separated by using a latent-factor patent count data model. In

this model, propensity to patent is driven by a common latent factor, representing the level of market

competition. We call this factor the ‘common competitive factor’. We study dynamic R&D spillovers

among patent innovation leaders and followers by Panel Vector Autoregression (PVAR) models. The

econometric models applied involve variables that are observed by firm managers who choose what

proportion of the firm’s R&D output to patent or keep secret, but the same variables are not included

in the data set available for the econometrician.
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As mentioned by Boldrin and Levine (2010): “We should protect not only the property rights of

the innovators but also the rights of those who have legitimately obtained a copy of the idea, directly

or indirectly, from the original innovator. The former encourages innovation; the later encourages the

diffusion, adoption and improvements of innovations” (Boldrin and Levine, 2010, p. 8). In this paper

we show that more competition increases the propensity to patent and the R&D investment to enhance

firm’s absorptive capacity, see Escribano et al. (2008), and therefore more innovation and more patents

are produced. This two-way transmission mechanism has an extra dynamic multiplier effect through

the spillovers between innovation leaders and followers.

In particular, we find positive dynamic spillover effects between patent innovation leaders and

followers, indicating that firms in the technological cluster are neck-to-neck in innovation activity. We

also find support for the well-known inverted-U relationship between market competition and innovation

of Aghion et al. (2005). Increases in market competition conditions within the technological cluster

are related with increases in the propensity to patent, and vice-versa (feed-back). This suggests that

pharmaceutical firms reacted to the increasing level of market competition by patenting a significantly

higher proportion of their innovation output after 1990, which at the same time increased the diffusion

of knowledge among competitors enhancing therefore innovation.

Remaining part of this work is structured as follows. First, we review the existing literature in

Section 2. Then, Section 3 presents the data set, technological clustering of firms, and definitions of

patent innovation leaders and followers. Section 4 describes the econometric models and summarizes

empirical findings. Finally, Section 5 concludes.

2. Literature review

2.1. Firm value and innovation activity

During recent decades, innovations protected by patents have played a key role in business strategies.

This fact motivated several studies about the determinants of patents, and the impact of patents on

innovation, firm value and competitive advantage.

Griliches (1981) constructs a stock of knowledge variable from lagged R&D expenses and the number

of patents. He finds a significant positive relationship between market value, R&D expenditure, and

number of patents for a panel of large US firms. Lev and Sougiannis (1996) estimate the inter-temporal

relation between R&D capital and stock returns of public firms in the US, showing that R&D capital is

associated with subsequent stock returns; see also Lev et al. (2005). Blundell et al. (1999) examine the
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relationship between surprise innovations and firm performance by using a dynamic panel count data

specification and find a positive impact of innovation on market value of US firms. Chan et al. (2001)

show a positive relationship between R&D capital to market value variable and abnormal future stock

returns. Furthermore, they evidence a delayed association of R&D activity and future excess stock

returns, which could be due to a delayed reaction of the stock market or an inadequate adjustment

for risk (see Chambers et al., 2002). Hall et al. (2005) investigate the relationship between knowledge

stock and market value in the US during the period 1963 to 1995. Their results show that in addition

to patent counts, patent citations contain important information about stock market value.

2.2. Innovation leaders and followers

Technological improvements give innovator companies a competitive advantage. Nevertheless, the

non-rival nature of knowledge may create a business-stealing effect among competitors as innovator’s

effort decreases the cost of competitor firms’ subsequent innovations. Firms strategically decide to be

R&D leaders or followers. Companies that introduce innovative products are R&D leaders, while other

firms who mimic products of innovation leaders, are followers. There is a large literature of economics

and strategic management, which differentiates among firms by their R&D and patenting activity to

study the implications of a firm’s research intensity on its competitors’ market value and innovations.

Results in the existing literature suggest that R&D leaders have sustained future profitability.

Porter (1979, 1980, 1985) investigates the relationship between firms’ stock market value and R&D

by recognizing that R&D activities are different among companies. Caves and Porter (1977) introduce

a framework that explains intra-industry profit differentials based on precommitment to specialized

resources such as R&D. Gilbert and Newbery (1982) analyze a model where incremental innovations

are awarded to the firm that spends the most on R&D, and they show that the incumbent firm continues

to earn monopoly rents. On the other hand, Reinganum (1985) shows that incumbent firms have less

incentives to invest in innovation: even though incumbents make more profits in the short-term, entrants

are more profitable in the long-term and they overtake incumbents in the long run. Jaffe (1986) finds

evidence of knowledge spillovers by using various indicators of R&D activity. He evidences that firms

whose research is in a sector where there is high research intensity, obtain more patents per dollar of

R&D, higher accounting profits to R&D, and higher market value to R&D than firms in a sector with low

R&D intensity. Caves and Ghemawat (1992) investigate the factors that sustain profit differences across

firms within an industry and find that differentiation-related strategies which include R&D, are more
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important than cost-related strategies. They find that differentiation related strategies are indicative

of research leadership in the product market by introducing new products, services, brands, etc., while

cost-related strategies include higher capacity and cost structure advantages. Jovanovic and MacDonald

(1994) point out that innovation and imitation tend to be substitutes. Though, benefits generated by

other firms’ R&D efforts depend on technological differences among firms and the absorptive capacity of

the imitator firm. Naturally, these factors create time lags in the adoption of technologies. For example,

Nabseth and Ray (1974), Mansfield et al. (1981), Rogers (1983), and Pakes and Schankerman (1984)

report that knowledge spills over gradually, in a dynamic fashion, to other firms. Aghion et al. (2005)

develop a model where competition discourages laggard firms from innovating but encourages neck-to-

neck firms to innovate. Due to the effect of competition on equilibrium industry structure, their model

generates an inverted-U shaped relationship between innovation and competition. They show that

the average technological distance between innovation leaders and innovation followers increases with

competition and the inverted-U is steeper when industries are more neck-to-neck. Lev et al. (2006)

differentiate between R&D leaders and followers and compare stock market valuation of R&D leaders

and followers. They show that R&D leaders earn significant future excess returns, while R&D followers

only earn average returns. Ciftci et al. (2011) find that R&D leaders obtain substantial risk-adjusted

returns during the first four to five future years. However, these excess returns converge to those of

R&D followers afterwards.

3. Data

The data set includes 4,476 US firms from several manufacturing and service industries of the US

economy over the period 1979 to 2000; T = 22 years. These firms published more than 500,000 patents

during the sample period. We created the data set based on the recommendations of Hall et al. (2001).

Data have been collected from several sources. Patent data have been obtained from the Na-

tional Bureau of Economic Research US Patent Citations Data File and MicroPatents Co. The patent

database includes the US Patent and Trademark Office (USPTO) patent number, application date,

publication date, USPTO patent number of cited patents, three-digit US technological class, and as-

signee name (company name if the patent was assigned to a firm) for each patent. Furthermore, annual

stock returns, collected from the Center for Research on Stock Prices, have been downloaded from the

Wharton Research Data Service. Additional company specific information has been obtained from the

Standard & Poor’s Compustat data files. The firm data set includes book value of equity, stock market
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value, Standard Industry Classification (SIC) code, and R&D expenditure for all firms. Firm-specific

accounting data are corrected for inflation by using the US consumer price index, collected from the US

Department of Labor, Bureau of Labor Statistics. In the remaining part of this section, we describe the

technological clustering procedure applied to US firms and present the definitions of patent innovation

leaders and followers.

3.1. Technological proximity

We perform a technology related grouping of all companies of the general US data set. Technology-

based grouping of firms is preferred to product-market based (for example SIC-based) grouping, as

under a technology-based grouping, the flows of knowledge are expected to be more important. Using

an incorrect grouping dilutes measurement of knowledge spillovers and makes it difficult to identify

competitors’ effects on firms’ innovation activities. Technological clusters of firms can be formed based

on the idea of firms’ technological proximity. In the past literature, researchers employed different

frameworks to capture technological proximity, which included patent-based, productivity-based and

alternative measures. Mohnen (1996), Cincera (2005), and Benner and Waldfogel (2008) review the

literature on technological proximity.

We use a patent-based proximity measure to classify firms in technologically similar groups. Tech-

nological clusters are formed as follows. To each firm, we assign technological categories using the

technological classification suggested by Hall et al. (2001). These authors create 36 technological sub-

categories from the patent technological classification of USPTO that contains about 400 technological

classes. We apply Ward’s (1963) linkage clustering to perform technological clustering, motivated by

Kuiper and Fisher (1975) and Jain et al. (1986). We use the angle distance measure to form techno-

logical clusters of firms, which is purely directional, therefore, it is not directly affected by the degree

of concentration of the firm’s research interests (Jaffe, 1986, p. 986). The technological clustering

procedure creates a technology related grouping of 16 clusters of the 4,476 US companies.

We focus on a cluster of N = 111 companies. Table 1 shows the product-market industries of

firms in the technological cluster according to two industry classifications. First, according to the

SIC, the technological cluster includes 87 firms from the SIC283 drugs sector. Second, the modified

SIC of Hall and Mairesse (1996) shows that 92 companies of the technological cluster are in the

pharmaceutical sector. Nevertheless, Table 1 presents that the technological cluster includes companies

from other product-market sectors as well. For example, it includes firms from the Grain mill products
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(SIC2040), Beverages (SIC2080), Paints (SIC2851), Plastics products (SIC3089), and Electromedical

and electrotherapeutic apparatus (SIC3845) industries.

Fig. 1a) shows the evolution of total patent application count and total patent application intensity,

estimated for all firms in the technological cluster over the period 1979 to 2000; see Section 3 for patent

application intensity estimation. The figure shows a significant growth of patent applications counts

over the sample period. The level of patent applications per year was about 600 patents in 1979, which

increased to about 1,300 patents in 2000.

[APPROXIMATE LOCATION OF TABLE 1; FIGURE 1]

3.2 Patent innovation leaders and followers

We define the permanent Innovation Leader (IL) firm, based on the absolute temporal dominance

observed in the evolution of the knowledge stock built up from the citations weighted annual patent

counts. The evolution of firm i’s knowledge stock is computed by
∑t

s=0 c̃f,isP̃is(1−δ)t−s for t = 1, . . . , T ,

where P̃is denotes the number of successful patent applications and c̃f,it is the number of citations

received from subsequent patents (i.e., forward citations) corrected for sample truncation bias. We

use c̃f,it to weight patent counts since Lanjouw and Schankerman (1999) and Hall et al. (2001) report

that the number of forward patent citations is an appropriate measure of patent quality. Nevertheless,

more recent patents in the end of the sample have less chance to receive citations from later patents

than earlier patents, creating a sample truncation bias for the forward citations count. We correct

for this bias by the fixed effects method suggested by Hall et al. (2001). Furthermore, motivated by

Hall (1993) and Hall et al. (2005), we use the δ = 15% annual depreciation rate to account for the

decreasing value of past knowledge.

The firm with the highest knowledge stock in every year during the observation period is called

the permanent IL of the technological cluster. We define the dummy variable Dit(i = IL) taking the

value one if firm i is the permanent IL and zero otherwise. Other firms in the technological cluster are

assigned to the permanent Innovation Follower (IF) group. We define the dummy variable Dit(i ∈ IF)

taking the value one if firm i is in the permanent IF group and zero otherwise.

Table 2 shows the first 20 firms of the technological cluster, ranked according to (V4) mean knowl-

edge stock over the period 1979 to 2000. The table shows the average of the following variables

computed over the sample period: (V1) patent applications count, P̃it; (V2) forward citations received
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count, cf,it; (V3) forward citations received count corrected for sample truncation bias, c̃f,it; (V4)

knowledge stock,
∑t

s=0 c̃f,isP̃is(1 − δ)t−s; (V5) log R&D expenses, r̃it; (V6) log book value, zit; (V7)

log stock market value, mit; (V8) log R&D expenses to log sales, r̃it/sit; (V9) log R&D expenses to log

stock market value, r̃it/mit. For seven out of the nine variables considered, Merck & Co., Inc. (Merck,

henceforth) is the leader.

Table 3 presents the evolution of knowledge stock for eight firms with the highest mean (V4) over the

period 1979 to 2000. The table shows that the knowledge stock of Merck was permanently higher than

that of other firms in every year. These results support our conclusion that Merck is the permanent

IL of the technological cluster. In addition, Fig. 1b) shows the number of patent applications and

knowledge stock for the IL (Merck) and the cross-sectional mean knowledge stock of IF during the

period 1979 to 2000. This figure also supports the selection of Merck as the permanent IL since both

variables of Merck are above the mean knowledge stock and the mean number of patent applications of

IF in every year from 1979 until 2000. The companies not presented in Table 3 from the technological

cluster are assigned to the IF group.

In the R&D literature, different definitions of R&D leadership were also proposed. Lev et al. (2006)

measure R&D intensity by two proxies: R&D expenditure to sales and R&D expenditure to market

value. Furthermore, Chambers et al. (2002) and Ciftci et al. (2011) indicate R&D leadership by the

R&D capital to sales ratio. We consider the variables (V8) R&D to sales and (V9) R&D to market value

to check the robustness of the patent innovation leadership clustering procedure of our work with these

authors. The results of the rankings obtained for (V8) and (V9) are not consistent with the clustering

method of the present study, at least, due to the following reasons. First, the present work implements

a technology-based and not a product market-based industry classification as Chambers et al. (2002),

Lev et al. (2006), and Ciftci et al. (2011). Second, the contemporaneous and dynamic cross-correlation

between market value and (V8)-(V9) are negative (countercyclical), while the correlation coefficients

between market value and (V1)-(V4) are positive (procyclical), motivating the choice of variable (V4)

for the definition of innovation leadership.

In addition, we also classify firms according to their knowledge stock to Group of Leaders (GL) and

Group of Followers (GF). We form these groups based on the (V4) mean knowledge stock variable, using

Ward’s (1963) clustering method. We define the dummy variable Dit(i ∈ GL) taking the value one if

firm i is in the GL cluster and zero otherwise. Moreover, we define the dummy variable Dit(i ∈ GF)
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taking the value one if firm i is in the GF cluster and zero otherwise. The patent innovation leader group

is formed by the following eight companies: Merck; Eli Lilly; Abbott Laboratories; Warner-Lambert;

Pfizer; Bristol-Myers Squibb; American Home Products; Alza. See the mean knowledge stock and the

evolution of knowledge stock of these firms in Tables 2 and 3, respectively.

[APPROXIMATE LOCATION OF TABLES 2-3]

4. Econometric models and empirical results

4.1. Benchmark innovation and market value model

Innovation activity has a positive impact on the future cash flow and the current value of a company,

which motivates owners to promote innovative activity within their firm. As profits on R&D are usually

realized during several years in the future, current accounting-based net profit is a rather noisy measure

of R&D benefits. Pakes (1985) focuses on the dynamic relationships among firm’s number of successful

patent applications, R&D expenditures, and stock market value. Pakes concludes that events that lead

the market to reevaluate the firm are significantly correlated with unpredictable changes in both the

R&D and patents of the firm. This work avoids the problem of timing differential of R&D expenses and

the associated future cash flow to equity, since current stock prices are determined by a forward-looking

perspective of investors.

The benchmark model of our empirical analysis is Pakes (1985), who studies the stock market

valuation, log R&D expenditure, and log patent application count for a panel of 120 US firms over

the period 1968 to 1975. Pakes (1985) formulates the following system of three equations to measure

the dynamic and simultaneous interaction among stock return, qit; log R&D expenses, rit; log patent

application count, lnPit:




qit

rit

lnPit




=




εit + η1it

∑∞
τ=0 c2τ εit−τ

∑∞
τ=0 c3τ εit−τ +

∑∞
τ=0 b3τη3it−τ




(4.1)

where η1it ∼ N(0, σ2
1), εit ∼ N(0, σ2

2), and η3it ∼ N(0, σ2
3) are independent.

Equation (4.1) specifies contemporaneous and dynamic interactions among the endogenous variables

according to a restricted Vector Moving Average, VMA(∞) representation. Similar to Pakes (1985, p.

396), in each equation of the system (4.1), we include time effects and a dummy variable controlling
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for zero patent application count. Furthermore, in the models of Sections 4.3 and 4.4, we also include

in each equation the firm size measured by log book value of equity; extending Pakes (1985).

Pakes (1985) is consistent with the empirical results of Fama (1970) and LeRoy and Porter (1981),

since he uses the no arbitrage condition to model the one-period stock return as the sum of the excess

return and an uncorrelated error term. According to this condition, the noise term process does not

allow to make excess returns on the market for those investors who use publicly available information

and simple trading rules. An unexpected research-related event shifting the firm’s value motivates

managers to change the firm’s R&D program, and R&D expenses are determined by the weighted

sum of current and past excess stock returns, εit. Furthermore, patent applications are influenced by

current and past excess returns, εit, and also by current and past values of an i.i.d. adjustment factor

representing the propensity to patent, η3it (see Scherer, 1965a, 1965b).

Pakes (1985) assumes that εit = θqit + vit so that vit and qit are orthogonal. Then, Equation (4.1)

in VAR(∞) representation with contemporaneous relationships imposed can be written as

qit = εit + η1it

rit = c20θqit + ζ22(L)rit−1 + c20vit

lnPit = γ0rit + ζ32(L)rit−1 + ζ33(L) lnPit−1 + η3it

(4.2)

To obtain a VAR(1) in structural form, we assume that the coefficients in Equation (4.2) satisfy that

ζmτ = ζτ
m for m = 22, 32, 33. Then, (4.2) can be written in VAR(1) reduced form as




qit

rit

lnPit




=




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33







qit−1

rit−1

ln Pit−1




+




1 0 0

c20θ 1 0

c20θγ0 γ0 1







εit + η1it

c20vit

η3it




(4.3)

We can also write Equation (4.3) with a vector of standard normal i.i.d. error terms as follows:




qit

rit

lnPit




=




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33







qit−1

rit−1

ln Pit−1




+




σ̃1 0 0

σ̃12 σ̃2 0

γ0σ̃12 γ0σ̃2 σ3







e1it

e2it

e3it




(4.4)

where (e1it, e2it, e3it)′ ∼ N(03×1, I3). Furthermore, σ̃1, σ̃12, and σ̃2 can be expressed by the parameters
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of Equation (4.3). See Appendix A where Equation (4.4) is derived from Equation (4.3). Equation (4.4)

is the restricted VAR(1) formulation of Pakes (1985). The diagonal elements of the lower triangular

matrix are positive. Therefore, the Cholesky decomposition of the covariance matrix of errors is unique

and the covariance matrix of errors is positive definite.

Model 1.—We extend the benchmark model of Pakes (1985) to a restricted PVAR(1) model by

considering fixed effects, ai in Equation (4.4):




qit

rit

lnPit




=




aq,i

ar,i

aP,i




+




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33




︸ ︷︷ ︸
ζ




qit−1

rit−1

lnPit−1




+




σ̃1 0 0

σ̃12 σ̃2 0

γ0σ̃12 γ0σ̃2 σ3




︸ ︷︷ ︸
Ω




e1it

e2it

e3it




(4.5)

for i = 1, . . . , 111 firms and t = 1979, . . . , 2000. The spectral radius of ζ, ρ(ζ) is less than one.

We can also formulate Model 1 in a compact matrix notation. The endogenous variables of the

three-dimensional PVAR(1) model are Yit = (qit, rit, ln Pit)′. In the PVAR equation, fixed effects are

denoted by ai = (aq,i, ar,i, aP,i)′ and error terms are summarized by eit = (e1it, e2it, e3it)′. Then, Model

1 can be written as Yit = ai + ζYit−1 +Ωeit. The Impulse Response Function (IRF) matrix, Θj is given

by Θj = ζjΩ; see Appendix B.

Model 2.—The unrestricted PVAR(1) model with fixed effects is given by




qit

rit

lnPit




=




aq,i

ar,i

aP,i




+




ζ∗11 ζ∗12 ζ∗13

ζ∗21 ζ∗22 ζ∗23

ζ∗31 ζ∗32 ζ∗33




︸ ︷︷ ︸
ζ∗




qit−1

rit−1

ln Pit−1




+




σ∗1 0 0

σ∗12 σ∗2 0

σ∗13 σ∗23 σ∗3




︸ ︷︷ ︸
Ω∗




e1it

e2it

e3it




(4.6)

for i = 1, . . . , 111 firms and t = 1979, . . . , 2000, where σ∗1 > 0, σ∗2 > 0, σ∗3 > 0, and the spectral

radius of ζ∗, ρ(ζ∗) is less than one. We can formulate Model 2 in a compact matrix notation as

Yit = ai + ζ∗Yit−1 + Ω∗eit. The IRF matrix, Θj is given by Θj = (ζ∗)jΩ∗; see Appendix B.

Estimation results.—Models 1 and 2 are estimated by the Quasi Maximum Likelihood (QML)

method (see Hsiao et al. 2002). Table 4 presents the parameter estimates, QML standard errors, and

model diagnostic tests. Fig. 2 presents the off-diagonal elements of the IRF matrix until 30 leads.

We start with the model diagnostic results. The residual diagnostics part of Table 4 shows average p-
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values corresponding to: a) t test for H0 : E[eit] = 0 for i = 1, . . . , 111; b) χ2 test for H0 : Var[eit] = 1

for i = 1, . . . , 111; c) Ljung and Box (LB, 1978) test for H0 : {eit : t = 1, . . . , T} are uncorrelated

for i = 1, . . . , 111. The table shows that, on average, we are not able to reject H0 at the 10% level

of significance. According to Table 4, the spectral radius of ζ is less than one for both models, i.e.,

the PVAR(1) is covariance stationary. The likelihood based model selection metrics support Model 2,

compared to the nested alternative. The Likelihood Ratio (LR) test shows that Model 2 is superior

at any level of significance and the Akaike Information Criterion (AIC) also supports the more general

model.

The parameter estimates of the ζ matrix (Model 1) evidence significant Granger causality (Hamil-

ton, 1994) of log R&D expenses on log patent application count, since γ0ζ22 + ζ32 is significant. Fur-

thermore, the IRF analysis of Model 1 presented in Fig. 2 suggests positive dynamic impact of stock

return shocks on log R&D leads (Θ21) and also positive impact of stock return shocks on log log patent

application count leads (Θ31). These results are similar to the findings of Pakes (1985, pp. 403-404).

The estimates of ζ∗ (Model 2) show significant Granger causality of log R&D on stock return (ζ∗12),

stock return on log R&D (ζ∗21), and log R&D on log patent application count (ζ∗32). The IRF analysis

of Model 2 presented in Fig. 2 provides the following evidence. First, stock return shocks have pos-

itive effects both on log R&D (Θ21) and log patent application count (Θ31). These effects are more

significant for log R&D which are observed contemporaneously and for all lags. For log patent counts,

the positive effects start from the second leading year. Second, log R&D expenditure shocks have

significant positive impact on both stock return (Θ12) and log patent application count (Θ32) for all

leads.

The previous three-dimensional dynamic models are extended in the following sections. In Section

4.2., we propose a dynamic specification for the latent propensity to patent factor by using the latent-

factor patent count panel data model of Blazsek and Escribano (2010). Then, in Sections 4.3 and 4.4,

we extend Blazsek and Escribano (2012) and use four-dimensional dynamic models for stock return, qit;

log R&D expenses, rit; log patent application count, lnPit (i.e., log patented R&D); log non-patented

R&D, lnP×
it .

[APPROXIMATE LOCATION OF TABLE 4; FIGURE 2]

12



4.2. Patented and non-patented R&D investments

We model the conditional distribution of patent application count, P̃it, by the Poisson distribution

with patent intensity parameter, λit = P̃ o
itP̃

∗
it (see Hausman et al. 1984). In this model, P̃ o

it is a function

of total R&D investment and P̃ ∗
it ∈ (0, 1) captures propensity to patent. P̃ ∗

it represents the percentage of

the total R&D investment submitted to the patent office. P̃ ∗
it adjusts total R&D investment for trade

secrecy instead of revealing R&D information by patents (e.g., Kahn, 1962; Machlup, 1962) or the

firm’s absorptive capacity of rents from R&D (e.g., Scherer, 1965b; Arora et al., 2008). If P̃ ∗
it ' 1, then

λit ' P̃ o
it and the total R&D investment is submitted for patents. However, in general, λit = P̃ o

itP̃
∗
it,

i.e., only part of the total R&D investment is submitted to patents. The higher the P̃ ∗
it is, the higher

the firm’s absorptive capacity is or the lower portion of innovation productivity is kept secret; see

Escribano et al. (2009).

The conditional probability mass function of P̃it is

f(P̃it|Ft) =
exp(−P̃ o

itP̃
∗
it)(P̃

o
itP̃

∗
it)

P̃it

P̃it!
(4.7)

for i = 1, . . . , 111 firms and t = 1, . . . , 22; from 1979 to 2000. The conditional expectation of patent

application count is given by the patent intensity parameter, E(P̃it|Ft) = λit. The conditioning set in

the latent-factor count data model is

Ft =
[
(P̃i1, r̃i1, ci1, di1, l

∗
1), . . . , (P̃it−1, r̃it−1, cit−1, dit−1, l

∗
t−1), (r̃it, cit, dit, l

∗
t ) : i = 1, . . . , N

]
(4.8)

where r̃it denotes log R&D expenditure; cit is the number of backward patent citations to other firms’

past patents in the technological cluster (technologically related firms); dit is the number of backward

patent citations to other firms’ past patents not in the technological cluster (not technologically related

firms); l∗t is a latent factor that drives propensity to patent in the technological cluster.

The log total R&D investment function is specified as

ln P̃ o
it = µ0 + γ1t + γ2tr̃it + γ3r̃

2
it + γ4zit + γ5P̃i1+

∑q
k=0 βkr̃it−k +

∑q
k=0 ωkcit−kr̃it +

∑q
k=0 φkdit−kr̃it +

∑p
k=1 κk ln P̃ o

it−k

(4.9)

where µ0 is the constant parameter, γ1 and γ2 control for linear time trend; γ3 captures non-linearities
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in log R&D expenditure; γ4 measures the impact of firm size (log book value); γ5 controls for initial

conditions; βk captures distributed lags of log R&D expenses; ωk and φk control for the interaction of

distributed lags of intra-industry and inter-industry backward citations, respectively, and current log

R&D expenses; κk controls for AR dynamics. The same specification is used by Blazsek and Escribano

(2010).

The propensity to patent component is specified according to the Probit model as P̃ ∗
it = Φ(µi+σil

∗
t ),

where Φ is the cumulative distribution function (c.d.f.) of the standard normal distribution; µi is firm-

specific fixed effect; σi ∈ R is a firm-specific scaling parameter for the latent factor since competition

in the market affects firms differently; l∗t is an underlying common factor for propensity to patent in

the technological cluster. This common latent factor represents the level of market competition in the

technological cluster. We call l∗t the common competitive factor. The latent factor is specified as

l∗t = µ∗l∗t−1 + ut with ut ∼ N(0, 1) i.i.d. (4.10)

where |µ∗| < 1 measures the average persistence of market competition in the technological cluster.

The constant term in this equation is restricted to zero and the dynamic parameter µ∗ is assumed to

be the same for all firms since these are determined by common knowledge on market competition.

Moreover, these restrictions also help parameter identification. We extend the specification of Pakes

(1985) since the propensity to patent series for firm i, {P̃ ∗
it : t = 1, . . . , T} are serially correlated and are

driven by the common competitive factor of the technological cluster. Nevertheless, P̃ ∗
it is firm specific

due to the level parameter µi and the scaling parameter σi.

We estimate the latent-factor patent count data model by the simulated QML method, applying

the Efficient Importance Sampling (EIS) technique of Richard and Zhang (2007); see Appendix C.

See applications of this method in Liesenfeld and Richard (2003), Bauwens and Hautsch (2006), and

Blazsek and Escribano (2010).

The parameter estimates and QML standard errors are presented in Table 5. This table shows

that the common competitive factor is covariance stationary with dynamic parameter µ∗ = 0.91. Fig.

1a) presents the evolution of total patent application counts,
∑111

i=1 P̃it and total patent application

intensity,
∑111

i=1 λit for the technological cluster over the period 1979 to 2000. The figure evidences

that the latent-factor patent count data model fits well to the patent application count time series
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for most years. The only exceptions are 1995 and 1996 when there are significant differences between

observed patent counts and fitted patent intensity estimates. These outliers, partly, may be due to

the implementation of the General Agreement on Tariffs and Trade on 8 June 1995, which influenced

effective pharmaceutical patent life (see Grabowski and Vernon, 2000).

We compute the filtered estimates of the common competitive factor by estimating E[l∗t |Fo
t ] for all

t. In this expectation, we condition on the following observable information set:

Fo
t =

[
(P̃i1, r̃i1, ci1, di1), . . . , (P̃it−1, r̃it−1, cit−1, dit−1), (r̃it, cit, dit) : i = 1, . . . , N

]
(4.11)

The estimation of E[l∗t |Fo
t ] involves the proportion of two high dimensional integrals, each evaluated by

the EIS technique; see Appendix D. Evolution of this factor is presented in Fig. 1c), showing E[l∗t |Fo
t ]

over the period 1979 to 2000. Fig. 1c) shows that the common competitive factor decreases until 1990

and jumps to a higher level afterwards. Fig. 1d) presents the evolution of mean percentage of total

R&D submitted to the patent office, P̃ ∗
it over the period 1979 to 2000. The figure shows that during

the 1990s, the percentage of patent applications increased from about 7.2% to above 10%. In the years

1996 and 1997, we see outliers for this variable and afterwards the level seems to stabilize above 10%.

Fig. 3 presents first and second order polynomial regression results about the determinants of

propensity to patent in the technological cluster. The figure shows fitted values of (1/22)
∑22

t=1 ln P̃ ∗
it

for i = 1, . . . , 111 firms, regressed on the variables (V1), (V2), (V5), and (V7) over the period 1979

to 2000. The figure exhibits the estimates of the regression model fitted to mean ln P̃ ∗
it and the

corresponding R-squared values to inform about the explanatory power of each variable. The first

panel shows an inverted-U relationship for the log mean patent application count (V1) and mean log

propensity to patent. For most firms in the technological cluster, a higher patent application count is

associated with a higher propensity to patent level. Nevertheless, for some firms with high number of

patent applications, we see that propensity to patent is relatively low. The second panel shows a linear

increasing relation between log mean citations received count (V2) and mean log propensity to patent.

Similar to the first panel, we can see that some firms with high number of citations received from

subsequent patents, exhibit relatively low propensity to patent. The third panel shows an inverted-U

relationship for mean log R&D expenses (V5) and mean log propensity to patent. For most firms

in the technological cluster, higher R&D expenses are associated with higher propensity to patent.
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Nevertheless, some firms that exhibit high R&D expenditure values have relatively low propensity to

patent level. The last panel shows a positive linear relation between mean log stock market value and

log propensity to patent. We can see that a high level of propensity to patent is significantly associated

with high firm value.

We use the estimates of P̃ o
it and P̃ ∗

it in the extended PVAR models presented in the following section,

to capture the simultaneous and dynamic effects among stock return, log R&D expenses, log patented

R&D intensity, and log non-patented R&D intensity. Non-patented R&D intensity is approximated by

the estimates of P̃ o
it(1− P̃ ∗

it).

[APPROXIMATE LOCATION OF TABLE 5; FIGURE 3]

4.3. Extended innovation and market value model

We extend the three-dimensional innovation and market values Models 1 and 2, by proposing four-

dimensional dynamic models for stock return, qit; log R&D expenses, rit; log patent application count,

ln Pit (i.e., patented R&D); log non-patented R&D, lnP×
it .

We start with a Pakes (1985) like restricted VAR(∞) specification (structural form) of a system of

four equations, extending Equation (4.2), as follows:

qit = εit + η1it

rit = c20θqit + ζ22(L)rit−1 + c20vit

lnPit = γ0rit + ζ32(L)rit−1 + ζ33(L) lnPit−1 + ζ34(L) lnP×
it−1 + η3it

lnP×
it = δ0rit + φ0 lnPit + ζ42(L)rit−1 + ζ43(L) lnPit−1 + ζ44(L) lnP×

it−1 + η4it

(4.12)

where η1it ∼ N(0, σ2
1), εit ∼ N(0, σ2

2), η3it ∼ N(0, σ2
3), and η4it ∼ N(0, σ2

4) are independent. Suppose

that εit = θqit + vit so that vit and qit are orthogonal. To obtain a VAR(1) in structural form, we

assume that the coefficients in Equation (4.12) satisfy that ζmτ = ζτ
m for m = 22, 32, 33, 34, 42, 43, 44.

Then, (4.12) can be written in VAR(1) reduced form as




qit

rit

lnPit

lnP×
it




=




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44







qit−1

rit−1

ln Pit−1

ln P×
it−1




+

16



+




1 0 0 0

c20θ 1 0 0

c20θγ0 γ0 1 0

c20θδ0 + c20θγ0φ0 δ0 + γ0φ0 φ0 1







εit + η1it

c20vit

η3it

η4it




(4.13)

We can also write (4.13) with a vector of standard normal i.i.d. error terms as follows:




qit

rit

lnPit

lnP×
it




=




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44







qit−1

rit−1

ln Pit−1

ln P×
it−1




+

+




σ̃1 0 0 0

σ̃12 σ̃2 0 0

γ0σ̃12 γ0σ̃2 σ3 0

(δ0 + γ0φ0)σ̃12 (δ0 + γ0φ0)σ̃2 φ0σ3 σ4







e1it

e2it

e3it

e4it




(4.14)

where (e1it, e2it, e3it, e4it)′ ∼ N(04×1, I4). Moreover, σ̃1, σ̃12, and σ̃2 can be expressed by the parameters

of Equation (4.13). See Appendix A where Equation (4.14) is derived from Equation (4.13). The

diagonal elements of the lower triangular matrix are positive. Therefore, the Cholesky decomposition

of the covariance matrix of errors is unique and the covariance matrix of errors is positive definite.

Model 3.—We extend the model of Equation (4.14) to a restricted PVAR(1) model by considering

fixed effects, ai as follows:




qit

rit

lnPit

lnP×
it




=




aq,i

ar,i

aP,i

a×,i




+




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44




︸ ︷︷ ︸
ζ




qit−1

rit−1

lnPit−1

lnP×
it−1




+

17



+




σ̃1 0 0 0

σ̃12 σ̃2 0 0

γ0σ̃12 γ0σ̃2 σ3 0

(δ0 + γ0φ0)σ̃12 (δ0 + γ0φ0)σ̃2 φ0σ3 σ4




︸ ︷︷ ︸
Ω




e1it

e2it

e3it

e4it




(4.15)

for i = 1, . . . , 111 firms and t = 1979, . . . , 2000. The spectral radius of ζ, ρ(ζ) is less than one.

We can formulate Model 3 in a compact matrix notation. The endogenous variables of the four-

dimensional PVAR(1) model are Yit = (qit, rit, ln Pit, lnP×
it )′. In the PVAR equation, fixed effects are

denoted by ai = (aq,i, ar,i, aP,i, a×,i)′ and error terms are summarized by eit = (e1it, e2it, e3it, e4it)′. The

Model 3 can be written as Yit = ai + ζYit−1 + Ωeit. The IRF matrix, Θj is given by Θj = ζjΩ; see

Appendix B.

Model 4.—The unrestricted PVAR(1) model with fixed effects is given by




qit

rit

ln Pit

ln P×
it




=




aq,i

ar,i

aP,i

a×,i




+




ζ∗11 ζ∗12 ζ∗13 ζ∗14

ζ∗21 ζ∗22 ζ∗23 ζ∗24

ζ∗31 ζ∗32 ζ∗33 ζ∗34

ζ∗41 ζ∗42 ζ∗43 ζ∗44




︸ ︷︷ ︸
ζ∗




qit−1

rit−1

ln Pit−1

ln P×
it−1




+




σ∗1 0 0 0

σ∗12 σ∗2 0 0

σ∗13 σ∗23 σ∗3 0

σ∗14 σ∗24 σ∗34 σ∗4




︸ ︷︷ ︸
Ω∗




e1it

e2it

e3it

e4it




(4.16)

for i = 1, . . . , 111 firms and t = 1979, . . . , 2000, where σ∗1 > 0, σ∗2 > 0, σ∗3 > 0, σ∗4 > 0, and the

spectral radius of ζ∗, ρ(ζ∗) is less than one. We can formulate Model 4 in a compact matrix notation

as Yit = ai + ζ∗Yit−1 + Ω∗eit. The IRF matrix, Θj is given by Θj = (ζ∗)jΩ∗; see Appendix B.

Estimation results.—Models 3 and 4 are estimated by the QML method. Table 6 presents the

parameter estimates, QML standard errors, and model diagnostic tests for both models. Figs 4 and

5 present the off-diagonal elements of the IRF matrix until 30 leads for Models 3 and 4, respectively.

According to the residual diagnostic tests, on average, we are not able to reject model specification

assumptions at the 10% level of significance. Both the LR test and the AIC metric suggest better

performance for the more general Model 4. We find that both Models 3 and 4 are covariance stationary.

The IFR figures of Models 3 and 4 show the same effects among qit, rit and lnPit, as Models 1 and

2; see Figs 2, 4 and 5. Therefore, we focus on the IRFs involving non-patented R&D, lnP×
it . Both Figs
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4 and 5 show that stock return (Θ41), log R&D expenses (Θ42), and log patent count (Θ43) shocks

have positive impact on non-patented R&D. These positive effects can be seen more clearly in the IRFs

of Model 4; for Model 3 they are not always significant. Furthermore, Fig. 5 (Model 4) shows that

the effects of non-patented R&D shocks on other variables (Θ14, Θ24, and Θ34) are not significant,

although, the average IRF is positive.

The four-dimensional dynamic models presented are further extended in the following section. We

consider different interaction effects for patent innovation leaders and followers in the technological

cluster. This way, we measure the simultaneous and dynamic interaction among patent innovation

leaders and followers of stock return, qit; log R&D expenses, rit; log patent application count, lnPit;

log non-patented R&D, lnP×
it .

[APPROXIMATE LOCATION OF TABLE 6; FIGURES 4-5]

4.4. Extended model for patent innovation leaders and followers

We extend Models 3 and 4 by considering different contemporaneous and dynamic effects for patent

innovation leaders and followers in the technological cluster. Models 5 and 6 use the IL and IF, while

Models 7 and 8 use the GL and GF clusters. Models 5 and 7 are the Pakes (1985) like restricted PVAR

models; extending Model 3. Models 6 and 8 are unrestricted PVAR models; extending Model 4.

We formulate Models 6 to 8 in a compact matrix notation. The endogenous variables of the four-

dimensional PVAR(1) model are Yit = (qit, rit, ln Pit, lnP×
it )′. In the PVAR equation, fixed effects are

denoted by ai = (aq,i, ar,i, aP,i, a×,i)′ and error terms are summarized by eit = (e1it, e2it, e3it, e4it)′.

Model 5.—Model 5 is formulated as follows:

Yit = ai + ζYit−1 + ζILYIL,t−1Dit(i ∈ IF) + ζIF

(∑

k∈IF

Ykt−1

)
Dit(i = IL) + Ωeit (4.17)

The structure of ζIL and ζIF is the same as that of the restricted ζ matrix; see Model 3. The spectral

radius of ζ is less than one. Ω is a lower triangular matrix with positive diagonal elements. Appendix

B shows that the IRF matrix, Θj is Θj = ζjΩ and the matrices of dynamic interaction multipliers are

Γj(IL → IF) = (effects of YIL,t−j on Yit for i ∈ IF) = ζjζIL for j = 0, 1, 2, . . . ,∞ (4.18)

Γj(IF → IL) = (effects of Yk,t−j on YIL,t for k ∈ IF) = ζjζIF for j = 0, 1, 2, . . . ,∞ (4.19)
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Model 6.—Model 6 is formulated as follows:

Yit = ai + ζ∗Yit−1 + ζ∗ILYIL,t−1Dit(i ∈ IF) + ζ∗IF

(∑

k∈IF

Ykt−1

)
Dit(i = IL) + Ω∗eit (4.20)

where ζ∗IL and ζ∗IF are unrestricted as ζ∗; see Model 4. The spectral radius of ζ∗ is less than one. Ω∗

is a lower triangular matrix with positive diagonal elements. Appendix B shows that the IRF matrix,

Θj is Θj = (ζ∗)jΩ∗ and the matrices of dynamic interaction multipliers are

Γj(IL → IF) = (effects of YIL,t−j on Yit for i ∈ IF) = (ζ∗)jζ∗IL for j = 0, 1, 2, . . . ,∞ (4.21)

Γj(IF → IL) = (effects of Yk,t−j on YIL,t for k ∈ IF) = (ζ∗)jζ∗IF for j = 0, 1, 2, . . . ,∞ (4.22)

Model 7.—Model 7 is formulated as follows:

Yit = ai + ζYit−1 + ζGLYGL,t−1Dit(i ∈ GF) + ζGF

( ∑

k∈GF

Ykt−1

)
Dit(i = GL) + Ωeit (4.23)

The structure of ζGL and ζGF is the same as that of the restricted ζ matrix; see Model 3. The spectral

radius of ζ is less than one. Ω is a lower triangular matrix with positive diagonal elements. Appendix

B shows that the IRF matrix, Θj is Θj = ζjΩ and the matrices of dynamic interaction multipliers are

Γj(GL → GF) = (effects of YGL,t−j on Yit for i ∈ GF) = ζjζGL for j = 0, 1, 2, . . . ,∞ (4.24)

Γj(GF → GL) = (effects of Yk,t−j on YGL,t for k ∈ GF) = ζjζGF for j = 0, 1, 2, . . . ,∞ (4.25)

Model 8.—Model 8 is formulated as follows:

Yit = ai + ζ∗Yit−1 + ζ∗GLYGL,t−1Dit(i ∈ GF) + ζ∗GF

( ∑

k∈GF

Ykt−1

)
Dit(i = GL) + Ω∗eit (4.26)

where ζ∗GL and ζ∗GF are unrestricted as ζ∗; see Model 4. The spectral radius of ζ∗ is less than one. Ω∗

is a lower triangular matrix with positive diagonal elements. Appendix B shows that the IRF matrix,
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Θj is Θj = (ζ∗)jΩ∗ and the matrices of dynamic interaction multipliers are

Γj(GL → GF) = (effects of YGL,t−j on Yit for i ∈ GF) = (ζ∗)jζ∗GL for j = 0, 1, 2, . . . ,∞ (4.27)

Γj(GF → GL) = (effects of Yk,t−j on YGL,t for k ∈ GF) = (ζ∗)jζ∗GF for j = 0, 1, 2, . . . ,∞ (4.28)

Estimation results.—Models 5-8 are estimated by the QML method. Tables 7-10 present the pa-

rameter estimates, QML standard errors, and model diagnostic tests for Models 5-8, respectively. Figs

6, 9, 12, and 15 present the off-diagonal elements of the IRF matrix until 30 leads for Models 5-8,

respectively. Figs 7-8, 10-11, 13-14, and 16-17 present the matrices of dynamic interaction multipliers

until 30 leads for Models 5-8, respectively.

According to the residual diagnostic tests presented in Tables 7-10, on average, we are not able to

reject model specification assumptions at the 10% level of significance. Both the LR test and the AIC

metric suggest better performance for the unrestricted Models 6 and 8, compared to Models 5 and

7, respectively. We find that all models are covariance stationary. The IRFs of the extended models

presented in Figs 6, 9, 12, and 15 show similar dynamic effects to the IRFs of Models 3 and 4. In the

remaining part of this section, we focus on the dynamic effects among patent innovation leaders and

followers for Models 6 and 8, supported by the likelihood-based model selection metrics.

Fig. 10 (Model 6) shows the dynamic interaction multipliers measuring spillovers from the IL

(Merck) to IF companies, providing the following results. First, we see positive spillover effects of all

IL variables on IF stock return, starting from the first and second leads; see Γ11, Γ12, Γ13, and Γ14.

The highest spillover effects are associated with patented and non-patented R&D variables of the IL on

the stock market valuation of IF firms. We can also see that IL R&D expenses have contemporaneous

negative effect on IF stock return, however, this effect changes to positive from the first lead; see Γ12.

Second, we see significant positive dynamic effects of IL non-patented R&D on IF log R&D expenses

(Γ24) and IF non-patented R&D activity (Γ44). For both variables, Fig. 10 shows a clear spillover

pattern over several years. Third, Γ34 shows that IL non-patented R&D has negative contemporaneous

effect on IF patent applications, however, from the first lead this effect changes to positive for all

subsequent years. Fourth, we observe positive dynamic effects of IL log R&D expenses on IF non-

patented R&D; see Γ42. These findings suggest positive dynamic R&D spillovers from the IL (Merck)
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to IF firms for future year. For stock market and patent count we observe negative contemporaneous

effects which change sign for all leading years. Moreover, the results also evidence that IF firms are

more influenced by the non-patented R&D of Merck than by its patented R&D activity, emphasizing

the importance of measuring non-patented R&D activity.

Fig. 11 (Model 6) exhibits the dynamic interaction multipliers capturing the spillovers from IF

firms to Merck, providing the next findings. The results show evidence of positive dynamic effects over

future years. First, we see positive effects of all IF variables on Merck stock return, starting from the

first and second lead. The highest positive effects are observed from the non-patented R&D of followers;

see Γ11, Γ12, Γ13, and Γ14. Second, we find that both patented R&D and non-patented R&D of Merck

are influenced positively by all IF variables, starting from the third lead. These results indicate positive

R&D spillovers from IF firms to the IL and also show the importance on non-patented R&D activity.

Furthermore, the dynamic multiplier estimates reported in Figs 16 and 17 (Model 8), which measure

spillovers between GL and GF firms of the technological cluster, are similar to the dynamic multipliers

of Model 6. This suggests that the spillover effects identified between Merck and its followers are robust

for different clustering procedure of patent innovation leaders and followers.

Comparing the effects reported in Figs 10 and 11, we can see positive spillovers between IL and IF

in both directions. We discuss these results in the context of the competition and innovation model of

Aghion et al. (2005). We assess the level of competition by computing the following measure:

COt = 1− 1
111

111∑

i=1

LIit = 1− 1
111

111∑

i=1

operating profitit − financial costsit

salesit
(4.29)

where LIit is the Lerner Index or price cost margin; see Nickell (1996) and Aghion et al. (2005). High

values of this competition measure indicate competitive industry, while low values indicate market

power. COt is an alternative observable measure of market competition to our latent common com-

petitive factor, l∗t . The framework of Aghion et al. (2005) provides the following discussion of our

results.

First, Fig. 18a) presents that market competition, in general, increases in the technological clus-

ter over the period 1979 to 2000. Aghion et al. (2005) conclude that increasing market competition

discourages laggard firms to innovate while encourages neck-to-neck firms to innovate. The positive

dynamic spillover effects estimated in both directions in the drugs industry indicate that, in the tech-
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nological cluster analyzed, firms are neck-to-neck in innovation activity. The estimation results show

that Merck has rapid contemporaneous impact on followers, and for the IFs it takes about three years

to influence Merck. This finding is consistent with Nasbeth and Ray (1974), Mansfield et al. (1981),

Rogers (1983), Pakes and Schankerman (1984), and Jovanovic and MacDonald (1994), who report that

innovation spills over gradually to competitors.

Second, Figs 18b) to 18d) present the inverted-U relationship between competition, COt and three

measures of innovation: total R&D investment, P̃ o
it; patented R&D, P̃it; non-patented R&D, P̃ o

it(1−P̃ ∗
it).

This result is very similar to Aghion et al. (2005). The figure shows that the maximum level of

innovation is achieved at the 95%−97% level of competition, which is equivalent to an average 3%−5%

price cost margin in the drugs industry.

Third, Fig 18e) presents the estimates of the common competitive factor, l∗t and market competition,

COt. The figure shows the least squares estimates of the linear regression model, suggesting positive

relationship between the common competitive factor and the observable market competition metric.

This provides support for the interpretation of l∗t as level of market competition. The least squares

estimates also suggest that the common competitive factor, l∗t in the technological cluster is driven by

the level of market competition.

Finally, Figs 1c) and 18a) present that the common competitive factor and the level of market

competition jump simultaneously in 1990. This suggests that drugs firms reacted to the increasing

level of market competition by patenting a significantly higher proportion of their innovation output

after 1990. This finding supports Shapiro (2007).

[APPROXIMATE LOCATION OF TABLES 7-8; FIGURES 6-18]

5. Summary and conclusions

We study dynamic interactions between patent innovation leaders and patent innovation followers

in a technological cluster, by allowing for different propensity to patent for different firms. We use

patent and firm-specific data of 4,476 companies from several manufacturing and service industries

of the US economy for the period 1979 to 2000. Firms of the data set are classified into different

technological clusters, where each group includes technologically similar firms. We study a specific

cluster of 111 firms that are mostly from the drugs product-market sector. In the technological cluster

analyzed, the permanent IL, permanent IF, GL, and GF in patent innovation activity are identified.

23



We extend the approach of Pakes (1985) by considering different dynamic measures of innovation

activity that may capture patented R&D (i.e., publicly disclosed innovations) and non-patented R&D

(i.e., not appropriated R&D or trade secrets). Patented and non-patented R&D is separated by using

the latent-factor patent count data model, which estimates different propensity to patent for each firm.

In the patent count data model, propensity to patent is driven by a latent common competitive factor,

representing the level of market competition. Given the estimates of patented and non-patented R&D,

we study dynamic R&D spillovers among patent innovation leaders and followers by PVAR models.

The PVAR estimates support the findings of Pakes (1985) about dynamic effects among stock

return, R&D expenses, and patent application counts of U.S. firms. The extended PVAR models

evidence that non-patented R&D is an important dynamic determinant of both patented and non-

patented R&D activity in the cluster of technologically similar firms. We find positive spillover effects

between patent innovation leaders and followers of the technological cluster in both directions. We also

find that the level of competition has increased over the period 1979 to 2000. The positive spillover

effects indicate that firms are neck-to-neck in innovation activity in the drugs industry. We also evidence

an inverted-U relationship between competition and innovation in the drugs technological cluster.

According to the inverted-U relation, the maximum level of innovation is achieved at the 95%− 97%

level of competition, which is equivalent to an average 3%−5% price cost margin in the drugs industry.

Finally, the results evidence that market competition is a possible driver of the common latent factor

affecting firms’ propensity to patent. This suggests that firms have patented a higher proportion of

their innovation output due to the increasing level of competition in the technological cluster during

the 1990s.
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Appendix A

Deriving Equation (4.4)

We derive Equation (4.4) from Equation (4.3) as follows. Equation (4.3) is




qit

rit

lnPit




=




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33







qit−1

rit−1

ln Pit−1




+




1 0 0

c20θ 1 0

c20θγ0 γ0 1







εit + η1it

c20vit

η3it




(A.1)

The first and second error terms are not orthogonal in this system since εit = θqit +vit. First, we derive

the covariance matrix of the errors in (A.1). The covariance between the first and second errors is

Cov(εit + η1it, c20vit) = Cov(θqit + vit + η1it, c20vit) = c20Var(vit) (A.2)

where second equality uses that η1it, qit, and vit are orthogonal. We express vit as

vit = εit − θqit = εit − θ(εit + η1it) = (1− θ)εit − θη1it (A.3)

Taking the variance of this equation, we have

Var(vit) = (1− θ)2Var(εit) + θ2Var(η1it) = θ2σ2
1 + (1− θ)2σ2

2 (A.4)

Therefore,

Cov(εit + η1it, c20vit) = c20[θ2σ2
1 + (1− θ)2σ2

2] (A.5)

Then, the distribution of errors in (A.1) is




εit + η1it

c20vit

η3it



∼ N







0

0

0




,




σ2
1 + σ2

2 c20[θ2σ2
1 + (1− θ)2σ2

2] 0

c20[θ2σ2
1 + (1− θ)2σ2

2] c2
20[θ

2σ2
1 + (1− θ)2σ2

2] 0

0 0 σ2
3







(A.6)
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We introduce the following notation:




σ2
1 + σ2

2 c20[θ2σ2
1 + (1− θ)2σ2

2] 0

c20[θ2σ2
1 + (1− θ)2σ2

2] c2
20[θ

2σ2
1 + (1− θ)2σ2

2] 0

0 0 σ2
3



≡




σ̇2
1 σ̇12 0

σ̇12 σ̇2
2 0

0 0 σ2
3




(A.7)

The Cholesky matrix of the error covariance matrix is




σ̇2
1 σ̇12 0

σ̇12 σ̇2
2 0

0 0 σ2
3




1/2

=




σ̇1 0 0

σ̇12
σ̇1

√
σ̇2

2 − σ̇2
12

σ̇2
1

0

0 0 σ3




(A.8)

Using this Cholesky matrix, we rewrite Equation (A.1) to make the error vector orthogonal:




qit

rit

lnPit




=




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33







qit−1

rit−1

ln Pit−1




+

+




σ̇1 0 0

c20θσ̇1 + σ̇12
σ̇1

√
σ̇2

2 − σ̇2
12

σ̇2
1

0

γ0

(
c20θσ̇1 + σ̇12

σ̇1

)
γ0

√
σ̇2

2 − σ̇2
12

σ̇2
1

σ3







e1it

e2it

e3it




(A.9)

where (e1it, e2it, e3it)′ ∼ N(03×1, I3). We simplify the notation in Equation (A.9) by defining new

parameters:




qit

rit

lnPit




=




0 0 0

0 ζ22 0

0 γ0ζ22 + ζ32 ζ33







qit−1

rit−1

ln Pit−1




+




σ̃1 0 0

σ̃12 σ̃2 0

γ0σ̃12 γ0σ̃2 σ3







e1it

e2it

e3it




(A.10)

where σ̃1, σ̃12, and σ̃2 can be expressed by the original parameters based on Equations (A.7) and (A.9).

Deriving Equation (4.14)
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We derive Equation (4.14) from Equation (4.13) as follows. Equation (4.13) is




qit

rit

lnPit

lnP×
it




=




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44







qit−1

rit−1

ln Pit−1

ln P×
it−1




+

+




1 0 0 0

c20θ 1 0 0

c20θγ0 γ0 1 0

c20θδ0 + c20θγ0φ0 δ0 + γ0φ0 φ0 1







εit + η1it

c20vit

η3it

η4it




(A.11)

The first and second error terms are not orthogonal in this system since εit = θqit + vit. We derive the

distribution of errors according to (A.2)-(A.6) and obtain




εit + η1it

c20vit

η3it

η4it



∼ N







0

0

0

0




,




σ2
1 + σ2

2 c20[θ2σ2
1 + (1− θ)2σ2

2] 0 0

c20[θ2σ2
1 + (1− θ)2σ2

2] c2
20[θ

2σ2
1 + (1− θ)2σ2

2] 0 0

0 0 σ2
3 0

0 0 0 σ2
4







(A.12)

We introduce the following notation:




σ2
1 + σ2

2 c20[θ2σ2
1 + (1− θ)2σ2

2] 0 0

c20[θ2σ2
1 + (1− θ)2σ2

2] c2
20[θ

2σ2
1 + (1− θ)2σ2

2] 0 0

0 0 σ2
3 0

0 0 0 σ2
4



≡




σ̇2
1 σ̇12 0 0

σ̇12 σ̇2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4




(A.13)

The Cholesky matrix of the error covariance matrix is




σ̇2
1 σ̇12 0 0

σ̇12 σ̇2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4




1/2

=




σ̇1 0 0 0

σ̇12
σ̇1

√
σ̇2

2 − σ̇2
12

σ̇2
1

0 0

0 0 σ3 0

0 0 0 σ4




(A.14)
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Using this Cholesky matrix, we rewrite Equation (A.11) to make the error vector orthogonal:




qit

rit

lnPit

lnP×
it




=




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44







qit−1

rit−1

ln Pit−1

ln P×
it−1




+

+




σ̇1 0 0 0

c20θσ̇1 + σ̇12
σ̇1

√
σ̇2

2 − σ̇2
12

σ̇2
1

0 0

γ0

(
c20θσ̇1 + σ̇12

σ̇1

)
γ0

√
σ̇2

2 − σ̇2
12

σ̇2
1

σ3 0

(δ0 + γ0φ0)
(
c20θσ̇1 + σ̇12

σ̇1

)
(δ0 + γ0φ0)

√
σ̇2

2 − σ̇2
12

σ̇2
1

φ0σ3 σ4







e1it

e2it

e3it

e4it




(A.15)

where (e1it, e2it, e3it, e4it)′ ∼ N(04×1, I4). We simplify the notation in Equation (A.15) by defining new

parameters:




qit

rit

lnPit

lnP×
it




=




0 0 0 0

0 ζ22 0 0

0 γ0ζ22 + ζ32 ζ33 ζ34

0 (δ0 + γ0φ0)ζ22 + φ0ζ32 + ζ42 φ0ζ33 + ζ43 ζ44







qit−1

rit−1

ln Pit−1

ln P×
it−1




+

+




σ̃1 0 0 0

σ̃12 σ̃2 0 0

γ0σ̃12 γ0σ̃2 σ3 0

(δ0 + γ0φ0)σ̃12 (δ0 + γ0φ0)σ̃2 φ0σ3 σ4







e1it

e2it

e3it

e4it




(A.16)

where σ̃1, σ̃12, and σ̃2 can be expressed by the original parameters based on Equations (A.13) and

(A.15).

Appendix B

Models 1-4
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We use the following general notation for Models 1 to 4:

Yit = ai + ζYit−1 + Ωeit (B.1)

where Yit is a K × 1 vector of the endogenous variables; ai is a K × 1 vector of fixed effects; Ω is a

lower triangular matrix with positive elements in its diagonal; eit ∼ N(0K×1, IK) is the vector of error

terms. We rewrite (B.1) as

(IK − ζL)Yit = ai + Ωeit (B.2)

Yit = (IK − ζL)−1ai + (IK − ζL)−1Ωeit (B.3)

Yit =
∞∑

j=0

ζjai +
∞∑

j=0

ζjΩeit−j (B.4)

By taking derivatives, we get the IRF matrices

Θj =
∂Yit+j

∂eit
= ζjΩ for j = 0, 1, 2, . . . ,∞ (B.5)

Models 5-6

We use the following general notation for Models 5 and 6:

Yit = ai + ζYit−1 + ζILYIL,t−1Dit(i ∈ IF) + ζIF

(∑

k∈IF

Yk,t−1

)
Dit(i = IL) + Ωeit (B.6)

where Yit is a 4× 1 vector of the endogenous variables; ai is a 4× 1 vector of fixed effects; Ω is a lower

triangular matrix with positive elements in its diagonal; eit ∼ N(04×1, I4) is the vector of error terms.

We rewrite (B.6) as

Yit = (I4 − ζL)−1ai + (I4 − ζL)−1ζILYIL,t−1D(i ∈ IF)+

+(I4 − ζL)−1

(∑

k∈IF

ζIFYk,t−1

)
D(i = IL) + (I4 − ζL)−1Ωeit (B.7)

Yit =
∞∑

j=0

ζjai +




∞∑

j=0

ζjζILYIL,t−1−j


D(i ∈ IF)+
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+




∞∑

j=0

∑

k∈IF

ζjζIFYk,t−1−j


D(i = IL) +

∞∑

j=0

ζjΩeit−j (B.8)

By taking derivatives, we get the IRF matrices

Θj = ζjΩ for j = 0, 1, 2, . . . ,∞ (B.9)

and the dynamic interaction multiplier matrices

Γj(IL → IF) = (effects of YIL,t−j on Yit for i ∈ IF) = ζjζIL for j = 0, 1, 2, . . . ,∞ (B.10)

Γj(IF → IL) = (effects of Yk,t−j on YIL,t for k ∈ IF) = ζjζIF for j = 0, 1, 2, . . . ,∞ (B.11)

Models 7-8

We use the following matrix notation for Models 7 and 8:

Yit = ai + ζYit−1 + ζGLYGL,t−1Dit(i ∈ GF) + ζGF

( ∑

k∈GF

Yk,t−1

)
Dit(i = GL) + Ωeit (B.12)

where Yit is a 4× 1 vector of the endogenous variables; ai is a 4× 1 vector of fixed effects; Ω is a lower

triangular matrix with positive elements in its diagonal; eit ∼ N(04×1, I4) is the vector of error terms.

We rewrite (B.12) as

Yit = (I4 − ζL)−1ai + (I4 − ζL)−1ζGLYGL,t−1D(i ∈ GF)+

+(I4 − ζL)−1

( ∑

k∈GF

ζGFYk,t−1

)
D(i = GL) + (I4 − ζL)−1Ωeit (B.13)

Yit =
∞∑

j=0

ζjai +




∞∑

j=0

ζjζGLYGL,t−1−j


D(i ∈ GF)+

+




∞∑

j=0

∑

k∈GF

ζjζGFYk,t−1−j


D(i = GL) +

∞∑

j=0

ζjΩeit−j (B.14)
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By taking derivatives, we get the IRF matrices

Θj = ζjΩ for j = 0, 1, 2, . . . ,∞ (B.15)

and the dynamic interaction multiplier matrices

Γj(GL → GF) = (effects of YGL,t−j on Yit for i ∈ GF) = ζjζGL for j = 0, 1, 2, . . . ,∞ (B.16)

Γj(GF → GL) = (effects of Yk,t−j on YGL,t for k ∈ GF) = ζjζGF for j = 0, 1, 2, . . . ,∞ (B.17)

Appendix C

The Poisson-type patent count data model involving the common competitive latent factor is es-

timated by the simulated QML method (Gouriéroux and Monfort, 1991). The likelihood function is

evaluated by using the EIS technique of Richard and Zhang (2007).

The conditional density of l∗t is given by

f∗(l∗t |l∗t−1) =
1√
2π

exp
[
−(l∗t − µ∗l∗t−1)

2

2

]
(C.1)

The likelihood of a realization (P̃ , L∗) ≡ (P̃it, l
∗
t : t = 1, . . . , T ; i = 1, . . . , N) is

N∏

i=1

T∏

t=1

f(P̃it|Ft)f∗(l∗t |l∗t−1) =
N∏

i=1

T∏

t=1

{
exp(−P̃ o

itP̃
∗
it)(P̃

o
itP̃

∗
it)

P̃it

P̃it!
1√
2π

exp
[
−(l∗t − µ∗l∗t−1)

2

2

]}
(C.2)

The likelihood of patent counts is obtained by integrating out all latent variables from (C.2):

L(P̃ |Fe; θ) =
∫

RT

N∏

i=1

T∏

t=1

exp(−λit)λP̃it
it

P̃it!
1√
2π

exp
[
−(l∗t − µ∗l∗t−1)

2

2

]
dL∗ (C.3)

where θ denotes the vector of parameters of the model and

Fe = {r̃it, cit, dit for i = 1, . . . , N ; t = 1, . . . , T} (C.4)

is the information set generated by the exogenous variables. We represent the likelihood of patent
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counts with the following compact notation:

L(P̃ |Fe; θ) =
∫

RT

N∏

i=1

T∏

t=1

g(P̃it, l
∗
t |Ft; θ)dL∗ (C.5)

where g is the joint density of (P̃it, l
∗
t ). We introduce the auxiliary sampler, m and include it in the

likelihood function, as follows:

L(P̃ |Fe; θ, θ∗) =
∫

RT

N∏

i=1

T∏

t=1

g(P̃it, l
∗
t |Ft; θ)

m(l∗t |l∗t−1; θ
∗
t )
×m(l∗t |l∗t−1; θ

∗
t )dL∗ (C.6)

where θ∗ = (θ∗1, . . . , θ
∗
T ) denotes the parameters of the auxiliary sampler. The parameters of the

auxiliary sampler are different in each period, however, the functional form of the sampler is constant

over time. The importance Monte Carlo estimate of L(P̃ |Fe; θ, θ∗) for given θ∗ is

L̂R(P̃ |Fe; θ, θ∗) =
1
R

R∑

r=1

N∏

i=1

T∏

t=1

g(P̃it, l
∗
tr|Ft; θ)

m(l∗tr|l∗t−1r; θ
∗
t )

(C.7)

where {l∗tr : t = 1, . . . , T} denotes the r-th trajectory of i.i.d. draws from m. Richard and Zhang (2007)

suggest defining the auxiliary sampler, m with its density kernel, k:

k(l∗t , l
∗
t−1; θ

∗
t ) = m(l∗t |l∗t−1; θ

∗
t )χ(l∗t−1; θ

∗
t ) (C.8)

where

χ(l∗t−1; θ
∗
t ) =

∫

R
k(l∗t , l

∗
t−1; θ

∗
t )dl∗t (C.9)

denotes the integrating constant associated to k. Richard and Zhang (2007) suggest choosing k as a

kernel of the normal distribution. Moreover, we include f∗ into the auxiliary sampler, m; as suggested

by Bauwens and Hautsch (2006). The normal density kernel is given by

k(l∗t , l
∗
t−1; θ

∗
t ) = exp

[
θ∗1tl

∗
t + θ∗2t(l

∗
t )

2
]× exp

[
−(l∗t − µ∗l∗t−1)

2

2

]
(C.10)

where θ∗t = (θ∗1t, θ
∗
2t) determines the conditional mean and variance of the auxiliary sampler for period
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t. The conditional mean, µt and conditional variance, π2
t of the normal auxiliary sampler, m are

µt = π2
t (θ

∗
1t + µ∗l∗t−1) (C.11)

π2
t =

1
1− 2θ∗2t

(C.12)

A trajectory of {l∗t : t = 1, . . . , T} can be generated from the auxiliary sampler, as follows:

l∗t = µt + πtηt (C.13)

where ηt ∼ N(0, 1) are i.i.d. common random numbers. Richard and Zhang (2007) suggest using

the same set of random numbers (i.e., common random numbers) for every iteration of the maximum

likelihood procedure. In the EIS method, the parameters of the auxiliary sampler minimize the variance

of the Monte Carlo estimator of the likelihood function:

θ∗ = arg min
θ∗

Var
[
L̂R(P̃ |Fe; θ, θ∗)

]
= arg min

θ∗
Var

[
1
R

R∑

r=1

N∏

i=1

T∏

t=1

g(P̃it, l
∗
tr|Ft; θ)

m(l∗tr|l∗t−1r; θ
∗
t )

]
(C.14)

This variance is minimized by choosing such values for θ∗t for which there is a good fit between g and

m. To achieve this, Richard and Zhang (2007) suggest solving the minimization problem of (C.14) by

estimating a recursive sequence of Ordinary Least Squares (OLS) problems, each of the following form:

ln g(P̃it, l
∗
tr|Ft; θ) + lnχ(l∗t ; θ̂

∗
t+1) = θ∗0t + θ∗1tl

∗
tr + θ∗2t(l

∗
tr)

2 + utr with r = 1, . . . , R (C.15)

for t = T, . . . , 1, χ(l∗T , θ̂∗T+1) = 1 and θ̂∗t+1 is the OLS estimate of θ∗t+1. These regressions are run

backwards, from T to 1 and the sample size of each regression is equal to the number of trajectories

drawn, R. In our estimation, we choose R = 50.

The right side of Equation (C.15) includes the log kernel of the auxiliary sampler. Normal dis-

tribution is used for the auxiliary sampler since the log kernel of the normal distribution is a second

order polynomial, therefore, its parameters can be estimated by OLS. The EIS technique involves the

estimation of a large number of auxiliary sampler parameters over the maximum likelihood iterations.

Therefore, it is essential to estimate these parameters very fast to make the EIS procedure feasible.

The OLS estimation provides the auxiliary sampler parameter estimates rapidly, making the EIS based
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QML estimation feasible in practice.

We can summarize the EIS method as follows:

• Step 1: We draw R = 50 trajectories {l∗tr}T
t=1 from the distribution N(µ∗l∗t−1r, 1).

• Step 2: For each t = T, . . . , 1, we estimate by OLS (C.15) to get the parameters of m.

• Step 3: We draw R = 50 trajectories {l∗tr}T
t=1 from the auxiliary samplers.

• We iterate Steps 2 and 3 five times.

• Step 4: We estimate the value of the likelihood function according to (C.7).

With these steps, the likelihood maximization procedure shows proper convergence to the optimum

and we can compute the QML standard errors by the sandwich estimator without numerical problems.

Appendix D

To approximate the value of the common competitive factor, l∗t , we compute its filtered estimates,

E[l∗t |Fo
t ], conditioning on the observable information set

Fo
t =

[
(P̃i1, r̃i1, ci1, di1), . . . , (P̃it−1, r̃it−1, cit−1, dit−1), (r̃it, cit, dit) : i = 1, . . . , N

]
(D.1)

The conditional expectation of l∗t is

E[l∗t |Fo
t ] =

∫

R
l∗t h(l∗t |Fo

t )dl∗t (D.2)

where h denotes the conditional density of l∗t . We introduce P̃t = (P̃is : i = 1, . . . , N ; s = 1, . . . , t) and

L∗t = (l∗s : s = 1, . . . , t). We compute h as follows:

h(l∗t |Fo
t ) =

ġ(P̃t−1, l
∗
t |Fo

t )
f(P̃t−1|Fo

t )
= (D.3)

=

∫
Rt−1 g̃(P̃t−1, l

∗
t , L

∗
t−1|Fo

t )dL∗t−1∫
Rt−1 g̈(P̃t−1, L∗t−1|Fo

t )dL∗t−1

=

=

∫
Rt−1 g̈(P̃t−1, L

∗
t−1|Fo

t )f∗(l∗t |P̃t−1, L
∗
t−1,Fo

t )dL∗t−1∫
Rt−1 g̈(P̃t−1, L∗t−1|Fo

t )dL∗t−1

=

34



=

∫
Rt−1 f∗(l∗t |l∗t−1)g̈(P̃t−1, L

∗
t−1|Fo

t )dL∗t−1∫
Rt−1 g̈(P̃t−1, L∗t−1|Fo

t )dL∗t−1

where ġ, f , g̃, g̈, and f∗ are conditional density functions of the corresponding random variables or

vectors. Substituting Equation (D.3) into (D.2), and using the fact that the denominator in (D.3) is

not a function of l∗t , we obtain that

E[l∗t |Fo
t ] =

∫
Rt l∗t f∗(l∗t |l∗t−1)g̈(P̃t−1, L

∗
t−1|Fo

t )dL∗t∫
Rt−1 g̈(P̃t−1, L∗t−1|Fo

t )dL∗t−1

(D.4)

where the joint density, g̈ is given by

g̈(Pt−1, L
∗
t−1|Fo

t ) =
N∏

i=1

t−1∏

s=1

exp(−λis)λP̃is
is

P̃is!
1√
2π

exp
[
−(l∗s − µ∗l∗s−1)

2

2

]
(D.5)

The high-dimensional integrals in Equation (D.4) are estimated by the EIS technique.
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Table 1
Product market based industry classification in the technological cluster.

SIC industry name SIC K HM industry name K

Pharmaceutical preparations 2834 47 Pharmaceuticals 92
Biological products (no diagnostic substances) 2836 31 Non-manufacturing 10
In vitro and in vivo diagnostic substances 2835 7 Computers and inst. 4
Perfumes, cosmetics and other toilet preparations 2844 3 Chemicals 2
Surgical and medical instruments, and apparatus 3841 3 Food 2
Medicinal chemicals and botanical products 2833 2 Rubber and plastics 1
Wholesale-drugs, proprietaries and druggists’ sundries 5122 2
Services-medical laboratories 8071 2
Grain mill products 2040 1
Beverages 2080 1
Chemicals and allied products 2800 1
Soap, detergents, cleaning preparations, perfumes, cosmetics 2840 1
Paints, varnishes, lacquers, enamels and allied prods 2851 1
Agricultural chemicals 2870 1
Plastics products, NEC 3089 1
Electromedical and electrotherapeutic apparatus 3845 1
Wholesale-medical, dental and hospital equipment, and supplies 5047 1
Fire, marine and casualty insurance 6331 1
Services-hospitals 8060 1
Services-engineering, accounting, research, management 8700 1
Services-commercial physical and biological research 8731 1
Non-operating establishments 9995 1

Total number of firms 111 111

Notes: Standard Industry Classification (SIC). Number of firms (K). Hall and Mairesse (HM, 1996) classification.
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Table 2
Patent innovations leadership classification of firms.

Firm name (SIC) Cluster (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) (V9)

1. Merck (2834) IL GL 217.6 1367.5 136.7 147232.4 12.39 8.47 13.20 0.82 1.16
2. Eli Lilly (2834) IF GL 116.0 613.6 58.6 43645.5 12.21 8.15 12.69 0.83 1.17
3. Abbott Lab. (2834) IF GL 97.5 720.8 73.9 40954.3 11.89 7.91 12.67 0.80 1.13
4. Warner-Lambert (2834) IF GL 81.7 656.2 61.3 31542.0 10.64 7.23 10.55 0.75 1.29
5. Pfizer (2834) IF GL 103.0 553.2 49.1 23373.0 12.21 8.32 12.79 0.81 1.16
6. Bristol-Myers (2834) IF GL 69.7 307.4 34.2 11509.1 12.11 8.27 12.95 0.80 1.14
7. Am. Home Prod. (2834) IF GL 52.8 330.7 30.7 8396.9 10.82 8.05 11.38 0.72 1.25
8. Alza (2834) IF GL 35.5 547.6 40.9 7683.0 8.24 5.28 9.92 0.78 1.01
9. Mallinckrodt (2835) IF GF 23.5 181.9 16.9 2007.8 9.25 6.92 9.82 0.68 1.11
10. Pharmacia & U. (2834) IF GF 21.4 45.9 8.5 1922.6 10.96 7.45 10.34 0.79 1.34
11. Church & Dwight (2840) IF GF 12.3 83.4 9.9 1537.8 7.96 5.10 9.74 0.66 0.89
12. NeoRx (2835) IF GF 6.5 68.4 7.8 500.5 7.25 4.12 7.92 1.07 0.96
13. Alliance Pharma. (2834) IF GF 4.2 69.9 6.9 369.8 7.42 4.33 8.83 1.06 0.87
14. Xoma (2836) IF GF 6.9 48.7 5.0 329.6 8.11 4.21 8.84 1.15 0.96
15. Enzon (2836) IF GF 4.2 47.1 6.0 235.9 6.95 4.13 8.79 1.08 0.83
16. Guilford Pharma. (2834) IF GF 3.5 23.0 4.9 216.5 6.75 4.20 6.98 0.98 1.01
17. Sugen (2836) IF GF 4.4 23.8 4.0 216.2 6.50 4.02 6.42 0.95 1.05
18. Inhale Therap. (2834) IF GF 2.5 31.3 7.0 169.3 6.33 4.17 7.15 0.92 0.97
19. Corvas (2836) IF GF 3.5 16.3 2.1 122.5 6.58 4.07 7.00 1.00 1.00
20. Molecular Bios. (2835) IF GF 2.0 57.5 4.8 90.5 6.97 4.23 7.97 1.02 0.93

Notes: Standard Industry Classification (SIC); Innovation Leader (IL); Innovation Follower (IF); Group of Leaders (GL);
Group of Followers (GF). The table presents nine variables for 20 out of the 111 firms of the technological cluster analyzed
for the period 1979 to 2000. The following variables are presented:
(V1) mean patent applications count, (1/T )

∑T
t=1 P̃it

(V2) mean forward citations received count, (1/T )
∑T

t=1 cf,it

(V3) mean forward citations received count corrected for sample truncation bias, (1/T )
∑T

t=1 c̃f,it

(V4) mean knowledge stock, (1/T )
∑T

t=1

∑t
s=0 c̃f,isP̃is(1− δ)t−s

(V5) mean ln R&D expenses, (1/T )
∑T

t=1 r̃it

(V6) mean ln book value, (1/T )
∑T

t=1 zit

(V7) mean ln stock market value, (1/T )
∑T

t=1 mit

(V8) mean ln R&D expenses to log sales, (1/T )
∑T

t=1 r̃it/sit

(V9) mean ln R&D expenses to log stock market value, (1/T )
∑T

t=1 r̃it/mit

39



Table 3
Evolution of the knowledge stock for firms in the group of patent innovation leaders.

Merck Eli Lilly Abbott Warner- Pfizer Bristol- American Alza
Year Lab. Lambert Myers Home P.

1979 31,215 4,269 4,467 571 4,804 778 1,087 1,049
1980 51,807 13,245 6,246 1,411 6,131 1,237 2,269 2,805
1981 65,132 21,253 6,629 3,498 7,800 1,679 3,108 3,014
1982 73,959 21,034 7,164 4,159 8,658 1,739 3,135 3,681
1983 79,546 22,916 7,026 8,318 9,752 2,061 3,422 3,815
1984 83,616 25,138 6,928 16,406 11,298 2,521 3,433 4,806
1985 89,006 25,415 6,517 30,040 16,978 3,292 3,961 5,523
1986 97,238 23,248 7,754 43,104 18,579 3,694 5,771 6,628
1987 110,944 20,924 9,491 46,594 20,046 4,022 7,457 7,599
1988 108,461 19,228 12,499 50,251 24,377 4,988 7,516 9,036
1989 115,519 18,659 22,947 51,266 24,662 5,125 8,781 8,867
1990 136,414 18,617 28,476 52,747 29,798 6,483 8,892 9,472
1991 168,611 18,200 41,039 48,972 29,716 6,086 12,374 10,247
1992 204,970 20,146 50,468 44,339 31,188 8,039 13,667 11,131
1993 201,721 33,182 59,326 43,195 29,225 13,129 12,963 10,693
1994 213,937 46,093 70,367 41,515 31,009 15,414 14,425 10,754
1995 224,626 125,948 103,236 42,818 31,387 22,760 14,590 11,092
1996 233,309 112,243 100,738 37,540 29,102 26,825 13,133 9,837
1997 246,212 108,158 100,803 34,863 31,735 28,880 11,966 10,861
1998 248,862 98,847 91,705 33,734 30,075 30,646 10,735 10,660
1999 235,728 86,997 83,547 31,169 42,459 32,501 10,286 9,403
2000 218,279 76,439 73,621 27,414 45,426 31,301 11,762 8,054
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Table 4
Parameter estimates and model diagnostics for Models 1 and 2.

Model 1 Model 2

ζ matrix Residuals diagnostics ζ matrix Residuals diagnostics
γ0 0.05∗(0.032) t test p-value ζ∗11 −0.06∗∗(0.029) t test p-value

Mean e1it 1.00 ζ∗12 0.05∗∗∗(0.016) Mean e1it 1.00
Mean e2it 1.00 ζ∗13 −0.01(0.029) Mean e2it 1.00
Mean e3it 1.00 ζ∗21 0.09∗∗∗(0.018) Mean e3it 1.00

ζ22 0.78∗∗∗(0.032) χ2 test p-value ζ∗22 0.77∗∗∗(0.032) χ2 test p-value
Var e1it 0.12 ζ∗23 0.02(0.025) Var e1it 0.12
Var e2it 0.18 ζ∗31 −0.01(0.033) Var e2it 0.17

ζ32 0.05(0.032) Var e3it 0.13 ζ∗32 0.09∗∗∗(0.023) Var e3it 0.12
ζ33 0.23∗∗∗(0.045) LB test p-value ζ∗33 0.23∗∗∗(0.045) LB test p-value
ρ(Z) 0.777 LB e1it 0.50 ρ(Z) 0.780 LB e1it 0.52
Cholesky matrix, Ω LB e2it 0.49 Cholesky matrix, Ω LB e2it 0.50
σ̃1 0.63∗∗∗(0.067) LB e3it 0.33 σ∗1 0.62∗∗∗(0.067) LB e3it 0.33
σ̃2 0.57∗∗∗(0.036) Model diagnostics σ∗2 0.57∗∗∗(0.036) Model diagnostics
σ3 0.74∗∗∗(0.025) LL −7151 σ∗3 0.74∗∗∗(0.025) LL −7132
σ̃12 0.03∗∗∗(0.011) LR 37.85 σ∗12 0.04∗∗∗(0.011)

LR p-value 0.000 σ∗13 −0.01(0.019)
AIC 15002 σ∗23 0.03∗(0.019) AIC 14978

Notes: Model 1 is Yit = ai + ζYit−1 + Ωeit with Yit = (qit, rit, ln Pit)
′; Model 2 is Yit = ai + ζ∗Yit−1 + Ω∗eit with

Yit = (qit, rit, ln Pit)
′. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion (AIC).

ρ(ζ) denotes the spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1% levels,
respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1, . . . , N for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for
H0 : {eit : t = 1, . . . , T} are uncorrelated. The LB test is performed for 5 lags.
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Table 5
Parameter estimates of the latent-factor patent count data model.

µ0 0.50∗∗∗(0.090) β0 0.63∗∗∗(0.016) ω0 0.00∗∗(0.000) φ0 0.00(0.000)
γ1 t 0.14∗∗∗(0.002) β1 −0.04∗∗∗(0.009) ω1 0.00(0.000) φ1 0.00(0.000)
γ2 trit −0.01∗∗∗(0.001) β2 0.02∗∗∗(0.007) ω2 0.00(0.000) φ2 0.00(0.000)
γ3 r2

it −0.04∗∗∗(0.003) β3 −0.03∗∗∗(0.004) ω3 0.00(0.001) φ3 0.00(0.000)
γ4 zit 0.01∗∗∗(0.001) β4 −0.03∗∗∗(0.002) ω4 0.00(0.001) φ4 0.00(0.000)

γ5 P̃i1 0.05∗∗∗(0.001) β5 0.03∗∗∗(0.005) ω5 0.00(0.001) φ5 0.00(0.001)
κ1 0.00(0.000) β6 −0.01∗∗∗(0.002) ω6 0.00(0.004) φ6 0.00(0.001)
µ∗ 0.91∗∗∗(0.007) β7 −0.01∗∗∗(0.002) ω7 0.00(0.005) φ7 0.00(0.004)

β8 −0.01∗∗∗(0.002) ω8 0.01(0.005) φ8 0.00(0.007)
β9 −0.01(0.006) ω9 0.00(0.006) φ9 0.00(0.007)
β10 0.02∗∗∗(0.008) ω10 0.01(0.007) φ10 −0.01(0.013)

Notes: The latent-factor patent count data model for patent count intensity is λit = P̃ o
itP̃

∗
it where ln P̃ o

it = µ0 + γ1t +
γ2tr̃it +γ3r̃

2
it +γ4zit +γ5P̃i1 +

∑10
k=0 βkr̃it−k +

∑10
k=0 ωkcit−kr̃it +

∑10
k=0 φkdit−kr̃it +κ1 ln P̃ o

it−1 and ln P̃ ∗it = ln Φ(µi +σil
∗
t ).

We do not report the estimates of µi and σi. *, **, and *** denote parameter significance at the 10%, 5%, and 1% levels,
respectively. QML standard errors are reported in parentheses.
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Table 6
Parameter estimates and model diagnostics for Models 3 and 4.

Model 3 Model 4

ζ matrix Residuals diagnostics ζ matrix Residuals diagnostics
γ0 0.06∗(0.032) t test p-value ζ∗11 −0.06∗∗(0.029) t test p-value
δ0 0.25∗∗∗(0.034) Mean e1it 1.00 ζ∗12 0.04∗∗∗(0.015) Mean e1it 1.00
φ0 0.01∗∗(0.005) Mean e2it 1.00 ζ∗13 −0.01(0.030) Mean e2it 1.00

Mean e3it 1.00 ζ∗14 0.00(0.016) Mean e3it 1.00
Mean e4it 1.00 ζ∗21 0.09∗∗∗(0.018) Mean e4it 1.00

ζ22 0.77∗∗∗(0.033) χ2 test p-value ζ∗22 0.77∗∗∗(0.039) χ2 test p-value
Var e1it 0.12 ζ∗23 0.02(0.025) Var e1it 0.12
Var e2it 0.18 ζ∗24 −0.01(0.120) Var e2it 0.17
Var e3it 0.13 ζ∗31 −0.01(0.034) Var e3it 0.12

ζ32 0.05(0.033) Var e4it 0.10 ζ∗32 0.09∗∗∗(0.024) Var e4it 0.10
ζ33 0.23∗∗∗(0.045) LB test p-value ζ∗33 0.23∗∗∗(0.045) LB test p-value
ζ34 0.02(0.024) LB e1it 0.50 ζ∗34 0.02(0.028) LB e1it 0.51

LB e2it 0.48 ζ∗41 0.03∗∗∗(0.008) LB e2it 0.49
ζ42 −0.19∗∗∗(0.032) LB e3it 0.34 ζ∗42 0.00(0.016) LB e3it 0.34
ζ43 0.01(0.008) LB e4it 0.10 ζ∗43 0.01(0.011) LB e4it 0.14
ζ44 0.32∗∗∗(0.072) Model diagnostics ζ∗44 0.31∗∗∗(0.085) Model diagnostics
ρ(Z) 0.774 LL −6976 ρ(Z) 0.778 LL −6956
Cholesky matrix, Ω LR 39.66 Cholesky matrix, Ω
σ̃1 0.63∗∗∗(0.000) LR p-value 0.000 σ∗1 0.62∗∗∗(0.067)
σ̃2 0.58∗∗∗(0.000) AIC 14894 σ∗2 0.57∗∗∗(0.036) AIC 14876
σ3 0.74∗∗∗(0.000) σ∗3 0.74∗∗∗(0.025)
σ4 0.23∗∗∗(0.000) σ∗4 0.22∗∗∗(0.016)
σ̃12 0.03∗∗∗(0.002) σ∗12 0.04∗∗∗(0.011)

σ∗13 −0.01(0.019)
σ∗23 0.03∗(0.018)
σ∗14 0.01∗∗∗(0.005)
σ∗24 0.14∗∗∗(0.016)
σ∗34 0.01∗∗(0.004)

Notes: Model 3 is Yit = ai + ζYit−1 + Ωeit with Yit = (qit, rit, ln Pit, ln P×it )′; Model 4 is Yit = ai + ζ∗Yit−1 + Ω∗eit with
Yit = (qit, rit, ln Pit, ln P×it )′. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion
(AIC). ρ(ζ) denotes the spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1%
levels, respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1, . . . , N for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for
H0 : {eit : t = 1, . . . , T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 3
and 4; see Table 7.
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Table 7
Parameter estimates and model diagnostics for Model 5.

ζ matrix ζIL matrix Residuals diagnostics Model diagnostics
γ0 0.08∗∗(0.033) ζIL,22 0.27∗∗∗(0.062) t test p-value LL −6716
δ0 0.22∗∗∗(0.033) ζIL,32 −0.74∗∗∗(0.148) Mean e1it 1.00 LR 238.63
φ0 0.02∗∗∗(0.005) ζIL,33 0.28(0.222) Mean e2it 1.00 LR p-value 0.000
ζ22 0.78∗∗∗(0.029) ζIL,34 −0.42∗(0.223) Mean e3it 1.00 AIC 14402
ζ32 0.04(0.033) ζIL,42 0.16∗∗∗(0.044) Mean e4it 1.00
ζ33 0.17∗∗∗(0.047) ζIL,43 −0.10(0.087) χ2 test p-value
ζ34 0.05∗∗(0.026) ζIL,44 0.17∗∗∗(0.046) Var e1it 0.16
ζ42 −0.18∗∗∗(0.035) ζIF matrix Var e2it 0.16
ζ43 0.02∗∗(0.009) ζIF,22 0.01∗∗∗(0.003) Var e3it 0.16
ζ44 0.39∗∗∗(0.071) ζIF,32 0.01(0.007) Var e4it 0.10
ρ(Z) 0.783 ζIF,33 −0.01∗∗∗(0.003) LB test p-value
Cholesky matrix, Ω ζIF,34 −0.04(0.022) LB e1it 0.50
σ̃1 0.63∗∗∗(0.067) ζIF,42 0.00(0.003) LB e2it 0.51
σ̃2 0.57∗∗∗(0.036) ζIF,43 0.00(0.004) LB e3it 0.35
σ3 0.72∗∗∗(0.024) ζIF,44 0.01(0.012) LB e4it 0.22
σ4 0.21∗∗∗(0.014)
σ̃12 0.03∗∗∗(0.012)

Notes: Model 5 is Yit = ai + ζYit−1 + ζILYIL,t−1Dit(i ∈ IF) + ζIF

∑
k∈IF Ykt−1 Dit(i = IL) + Ωeit with Yit =

(qit, rit, ln Pit, ln P×
it )′. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion

(AIC). ρ(ζ) denotes the spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1%
levels, respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1, . . . , N for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for
H0 : {eit : t = 1, . . . , T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 5
and 6; see Table 8.
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Table 8
Parameter estimates and model diagnostics for Model 6.

ζ matrix ζIL matrix Residuals diagnostics
ζ∗
11 −0.07∗∗(0.033) ζ∗

IL,11 0.06(0.103) t test p-value
ζ∗
12 0.04(0.039) ζ∗

IL,12 −0.54∗∗∗(0.138) Mean e1it 1.00
ζ∗
13 −0.01(0.026) ζ∗

IL,13 −3.47(9.555) Mean e2it 1.00
ζ∗
14 0.00(0.133) ζ∗

IL,14 0.87∗∗∗(0.197) Mean e3it 1.00
ζ∗
21 0.08∗∗(0.036) ζ∗

IL,21 −0.12(0.092) Mean e4it 1.00
ζ∗
22 0.75∗∗∗(0.021) ζ∗

IL,22 0.05(0.141) χ2 test p-value
ζ∗
23 0.06∗∗(0.026) ζ∗

IL,23 −4.45(11.771) Var e1it 0.14
ζ∗
24 0.07∗(0.038) ζ∗

IL,24 1.12∗∗∗(0.193) Var e2it 0.17
ζ∗
31 0.02(0.029) ζ∗

IL,31 −0.17∗(0.100) Var e3it 0.17
ζ∗
32 0.09∗∗∗(0.035) ζ∗

IL,32 −0.10(0.100) Var e4it 0.10
ζ∗
33 0.19∗∗∗(0.019) ζ∗

IL,33 4.20(11.215) LB test p-value
ζ∗
34 0.07(0.111) ζ∗

IL,34 −0.77∗∗∗(0.195) LB e1it 0.50
ζ∗
41 0.02(0.018) ζ∗

IL,41 −0.05∗(0.032) LB e2it 0.49
ζ∗
42 −0.02∗∗(0.008) ζ∗

IL,42 0.22∗∗∗(0.056) LB e3it 0.33
ζ∗
43 0.04∗∗∗(0.012) ζ∗

IL,43 −1.32(3.376) LB e4it 0.25
ζ∗
44 0.41∗∗∗(0.012) ζ∗

IL,44 0.36∗∗∗(0.076) Model diagnostics
ρ(Z) 0.763 ζIF matrix LL −6597
Cholesky matrix, Ω ζ∗

IF,11 0.00(0.253) AIC 14221
σ∗

1 0.62∗∗∗(0.005) ζ∗
IF,12 −0.01(0.337)

σ∗
2 0.55∗∗∗(0.009) ζ∗

IF,13 0.00(0.140)
σ∗

3 0.72∗∗∗(0.012) ζ∗
IF,14 0.00(0.711)

σ∗
4 0.21∗∗∗(0.002) ζ∗

IF,21 0.00(0.959)
σ∗

12 0.02(0.028) ζ∗
IF,22 0.00(0.406)

σ∗
13 0.00(0.023) ζ∗

IF,23 0.00(0.252)
σ∗

23 0.06∗∗(0.026) ζ∗
IF,24 0.01(1.255)

σ∗
14 0.01(0.018) ζ∗

IF,31 0.00(1.180)
σ∗

24 0.13∗∗∗(0.006) ζ∗
IF,32 0.00(1.363)

σ∗
34 0.01(0.013) ζ∗

IF,33 0.00(1.523)
ζ∗
IF,34 0.01(2.708)

ζ∗
IF,41 0.00(0.307)

ζ∗
IF,42 0.00(0.104)

ζ∗
IF,43 0.00(0.044)

ζ∗
IF,44 0.01(0.339)

Notes: Model 6 is Yit = ai + ζ∗Yit−1 + ζ∗
ILYIL,t−1Dit(i ∈ IF) + ζ∗

IF

∑
k∈IF Ykt−1 Dit(i = IL) + Ω∗eit with Yit =

(qit, rit, ln Pit, ln P×
it )′. Ljung-Box (LB); Log Likelihood (LL); Akaike Information Criterion (AIC). ρ(ζ) denotes the

spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1% levels, respectively. QML
standard errors are reported in parentheses. For each error term, we report average of p-values computed over i = 1, . . . , N
for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for H0 : {eit : t = 1, . . . , T} are
uncorrelated. The LB test is performed for 5 lags.
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Table 9
Parameter estimates and model diagnostics for Model 7.

ζ matrix ζGL matrix Residuals diagnostics Model diagnostics
γ0 0.07(0.045) ζGL,22 0.01∗∗∗(0.005) t test p-value LL −6718
δ0 0.23∗∗∗(0.008) ζGL,32 −0.03∗∗∗(0.006) Mean e1it 1.00 LR 183.78
φ0 0.02(0.017) ζGL,33 0.10(0.151) Mean e2it 1.00 LR p-value 0.000
ζ22 0.77∗∗∗(0.021) ζGL,34 0.01(0.018) Mean e3it 1.00 AIC 14406
ζ32 0.06(0.046) ζGL,42 0.01∗∗∗(0.002) Mean e4it 1.00
ζ33 0.16∗∗∗(0.018) ζGL,43 −0.02(0.045) χ2 test p-value
ζ34 0.05(0.092) ζGL,44 0.00(0.004) Var e1it 0.16
ζ42 −0.19∗∗∗(0.008) ζGF matrix Var e2it 0.16
ζ43 0.02(0.013) ζGF,22 0.01∗(0.007) Var e3it 0.17
ζ44 0.39∗∗∗(0.005) ζGF,32 0.00(0.901) Var e4it 0.10
ρ(Z) 0.766 ζGF,33 0.01(0.783) LB test p-value
Cholesky matrix, Ω ζGF,34 0.01(3.419) LB e1it 0.50
σ̃1 0.63∗∗∗(0.004) ζGF,42 −0.01(0.046) LB e2it 0.50
σ̃2 0.57∗∗∗(0.008) ζGF,43 0.01(0.045) LB e3it 0.36
σ3 0.72∗∗∗(0.012) ζGF,44 0.04(0.124) LB e4it 0.20
σ4 0.21∗∗∗(0.002)
σ̃12 0.03(0.027)

Notes: Model 7 is Yit = ai + ζYit−1 + ζGLYGL,t−1Dit(i ∈ GF) + ζGF

∑
k∈GF Ykt−1 Dit(i = GL) + Ωeit with Yit =

(qit, rit, ln Pit, ln P×
it )′. Ljung-Box (LB); Log Likelihood (LL); Likelihood Ratio (LR); Akaike Information Criterion (AIC).

ρ(ζ) denotes the spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1% levels,
respectively. QML standard errors are reported in parentheses. For each error term, we report average of p-values
computed over i = 1, . . . , N for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for
H0 : {eit : t = 1, . . . , T} are uncorrelated. The LB test is performed for 5 lags. The LR test is performed for Models 7
and 8; see Table 10.
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Table 10
Parameter estimates and model diagnostics for Model 8.

ζ matrix ζGL matrix Residuals diagnostics
ζ∗
11 −0.05(0.032) ζ∗

GL,11 −0.02(0.012) t test p-value
ζ∗
12 0.05(0.039) ζ∗

GL,12 0.00(0.006) Mean e1it 1.00
ζ∗
13 −0.01(0.026) ζ∗

GL,13 −0.06(0.213) Mean e2it 1.00
ζ∗
14 0.00(0.128) ζ∗

GL,14 0.00(0.018) Mean e3it 1.00
ζ∗
21 0.10∗∗∗(0.035) ζ∗

GL,21 −0.02∗(0.013) Mean e4it 1.00
ζ∗
22 0.77∗∗∗(0.022) ζ∗

GL,22 −0.02∗∗∗(0.007) χ2 test p-value
ζ∗
23 0.04(0.026) ζ∗

GL,23 −0.92(1.323) Var e1it 0.15
ζ∗
24 0.07∗(0.038) ζ∗

GL,24 0.06∗∗∗(0.018) Var e2it 0.17
ζ∗
31 0.02(0.030) ζ∗

GL,31 −0.01(0.010) Var e3it 0.17
ζ∗
32 0.11∗∗∗(0.034) ζ∗

GL,32 −0.02∗∗∗(0.008) Var e4it 0.10
ζ∗
33 0.17∗∗∗(0.019) ζ∗

GL,33 0.34(0.534) LB test p-value
ζ∗
34 0.06(0.108) ζ∗

GL,34 0.00(0.022) LB e1it 0.52
ζ∗
41 0.02(0.019) ζ∗

GL,41 −0.01(0.005) LB e2it 0.50
ζ∗
42 −0.01(0.009) ζ∗

GL,42 0.01∗(0.004) LB e3it 0.34
ζ∗
43 0.03∗∗∗(0.013) ζ∗

GL,43 −0.19(0.275) LB e4it 0.22
ζ∗
44 0.41∗∗∗(0.013) ζ∗

GL,44 0.01∗∗(0.007) Model diagnostics
ρ(Z) 0.781 ζGF matrix LL −6626
Cholesky matrix, Ω ζ∗

GF,11 0.00(1.935) AIC 14280
σ∗

1 0.62∗∗∗(0.005) ζ∗
GF,12 0.00(0.528)

σ∗
2 0.55∗∗∗(0.008) ζ∗

GF,13 0.00(1.379)
σ∗

3 0.72∗∗∗(0.012) ζ∗
GF,14 0.00(4.218)

σ∗
4 0.21∗∗∗(0.002) ζ∗

GF,21 0.00(0.271)
σ∗

12 0.03(0.027) ζ∗
GF,22 −0.01(0.180)

σ∗
13 −0.01(0.023) ζ∗

GF,23 0.01(0.504)
σ∗

23 0.05∗(0.025) ζ∗
GF,24 0.05(1.474)

σ∗
14 0.01(0.017) ζ∗

GF,31 0.00(0.822)
σ∗

24 0.13∗∗∗(0.006) ζ∗
GF,32 0.00(0.456)

σ∗
34 0.01(0.013) ζ∗

GF,33 0.01(1.060)
ζ∗
GF,34 0.02(3.451)

ζ∗
GF,41 0.00(0.537)

ζ∗
GF,42 0.00(0.041)

ζ∗
GF,43 0.01(0.140)

ζ∗
GF,44 0.05(0.298)

Notes: Model 8 is Yit = ai + ζ∗Yit−1 + ζ∗
GLYGL,t−1Dit(i ∈ GF) + ζ∗

GF

∑
k∈GF Ykt−1 Dit(i = GL) + Ω∗eit with Yit =

(qit, rit, ln Pit, ln P×
it )′. Ljung-Box (LB); Log Likelihood (LL); Akaike Information Criterion (AIC). ρ(ζ) denotes the

spectral radius of ζ. *, **, and *** denote parameter significance at the 10%, 5%, and 1% levels, respectively. QML
standard errors are reported in parentheses. For each error term, we report average of p-values computed over i = 1, . . . , N
for the following tests: t test for H0 : E[eit] = 0; χ2 test for H0 : Var[eit] = 1; LB test for H0 : {eit : t = 1, . . . , T} are
uncorrelated. The LB test is performed for 5 lags.
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1a) Total patent application count and intensity 1b) Patent applications and knowledge stock per firm

1c) Estimates of the common competitive factor, l∗t 1d) Mean total R&D submitted for patents, P̃ ∗t

Fig. 1. Patent applications, patent intensity, and propensity to patent.
Notes: 1a) shows the evolution of

∑111
i=1 P̃it and

∑111
i=1 λit; 1b) shows patent application count and knowledge stock per

firm for IL and IF; 1c) shows the estimates of E[l∗t |Fo
t ] for all t; 1d) shows the evolution of (1/111)

∑111
i=1 P̃ ∗t , in percentage.
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Fig. 3. Determinants of propensity to patent.

Notes: The figure shows the fitted values of (1/22)
∑22

t=1 ln P̃ ∗it for i = 1, . . . , 111. First and second order polynomial

regressions are estimated by least squares. The definition of each explanatory variable is presented in Table 2.
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Model 4, Θ

Θ21(q → r) Θ31(q → ln P ) Θ41(q → ln P×)

Θ12(r → q) Θ32(r → ln P ) Θ42(r → ln P×)

Θ13(ln P → q) Θ23(ln P → r) Θ43(ln P → ln P×)

Θ14(ln P× → q) Θ24(ln P× → r) Θ34(ln P× → ln P )

Fig. 5. Impulse response function, Θj for Model 4 for j = 0, . . . , 30 leads.

Notes: Each figure shows Θj and the confidence band defined by Θj ± 2σ(Θj). The figure does not show the diagonal

elements of Θj .
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Model 6, Θ

Θ21(q → r) Θ31(q → ln P ) Θ41(q → ln P×)

Θ12(r → q) Θ32(r → ln P ) Θ42(r → ln P×)

Θ13(ln P → q) Θ23(ln P → r) Θ43(ln P → ln P×)

Θ14(ln P× → q) Θ24(ln P× → r) Θ34(ln P× → ln P )

Fig. 9. Impulse response function, Θj for Model 6 for j = 0, . . . , 30 leads.

Notes: Each figure shows Θj and the confidence band defined by Θj ± 2σ(Θj). The figure does not show the diagonal

elements of Θj .
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Model 8, Θ

Θ21(q → r) Θ31(q → ln P ) Θ41(q → ln P×)

Θ12(r → q) Θ32(r → ln P ) Θ42(r → ln P×)

Θ13(ln P → q) Θ23(ln P → r) Θ43(ln P → ln P×)

Θ14(ln P× → q) Θ24(ln P× → r) Θ34(ln P× → ln P )

Fig. 15. Impulse response function, Θj for Model 8 for j = 0, . . . , 30 leads.

Notes: Each figure shows Θj and the confidence band defined by Θj ± 2σ(Θj). The figure does not show the diagonal

elements of Θj .
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18a) Competition over the period 1979 to 2000 18b) Competition and total R&D investment

18c) Competition and patented R&D 18d) Competition and non-patented R&D

18e) Common competitive factor and competition

Fig. 18. Competition and innovation.
Notes: Competition is COt; total R&D investment is (1/111)

∑111
i=1 P̃ o

it; patented R&D is (1/111)
∑111

i=1 P̃it; non-patented

R&D is (1/111)
∑111

i=1 P̃ o
it(1−P̃ ∗it); common competitive factor is l∗t . Panels 18b) to 18d) present the fourth-order polynomial

regression least squares estimates of the dependent variable over the period t = 1979, . . . , 2000.
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