
Local-Based Semantic Navigation on a Networked
Representation of Information
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Abstract

The size and complexity of actual networked systems hinders the access to a global knowledge of their structure. This fact
pushes the problem of navigation to suboptimal solutions, one of them being the extraction of a coherent map of the
topology on which navigation takes place. In this paper, we present a Markov chain based algorithm to tag networked
terms according only to their topological features. The resulting tagging is used to compute similarity between terms,
providing a map of the networked information. This map supports local-based navigation techniques driven by similarity.
We compare the efficiency of the resulting paths according to their length compared to that of the shortest path.
Additionally we claim that the path steps towards the destination are semantically coherent. To illustrate the algorithm
performance we provide some results from the Simple English Wikipedia, which amounts to several thousand of pages. The
simplest greedy strategy yields over an 80% of average success rate. Furthermore, the resulting content-coherent paths
most often have a cost between one- and threefold compared to shortest-path lengths.
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Introduction

Efficient network navigation is a challenging puzzle that has

many sides to it. From a practical point of view, successful

navigation is important for example in human mobility [1,2] or

social networks [3], but also on the Internet, regarding content-

sharing applications and search engines [4], or packet routing at

the Autonomous Systems level [5]. On more theoretical grounds it

has inspired research on navigability, or the minimum features

a structure must exhibit to guarantee efficient navigation on it

[6,7]. It also poses an algorithmic problem which reduces to the

design of heuristics handling a certain amount of knowledge about

the underlying topology. The problem even exhibits a sociopsy-

chological dimension, as the seminal work by Milgram [8,9]

illustrates. Of course, the situation in which the nodes of a network

have at hand a coherent view of the global topology trivially

renders optimal navigation –the target can always be achieved with

the smallest amount of hops. But most often this is not the case. Any

other scenario will yield a suboptimal outcome, depending on the

ability of the heuristics and the quality of the map.

A map is a more or less cogent representation retaining

information from the network on which navigation takes place.

Many works in the literature focus on algorithmic design,

assuming that some kind of map –‘‘a reference frame’’– is already

available to the navigator. Then, knowing that ‘‘I must move

eastwards’’ entails I have a notion of where the East lies [1]. In

a different fashion, knowing that I should move to a better

connected street (autonomous system, airport, etc.) entails that I

have a certain notion of the topology around me [10,11]. The

success of Milgram’s letter-passing experiment relies on a mixture

of the previous two cases –a cognitive ability encoding both spatial

representation and the knowledge of the agent’s surrounding social

network. On the other hand, only a few works approach

navigation facing the problem of building a map from scratch.

The work by Boguñá and collaborators relies on different

geometric embeddings from which hidden space metrics emerge

and allow for greedy, decentralized navigation [2,5]. Similarly,

Erola et al. [12,13] capitalize on the properties of Singular Value

Decomposition to obtain a multidimensional projection of

a connectivity matrix [14], which can ultimately be used as

a guiding map.

In this work we confront the building of a map in a different

manner. We rely on the intuition that the way to attain a reliable

representation of a structure is to (randomly) walk it. Random

walks have been largely exploited in the complex network

literature as a fundamental dynamic process [15] which has
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proved useful to tackle the issue of community detection [16,17] or

as a way to approach search and transport problems [18], to

mention just a few. Our proposal amounts to exploring the

network using random walks, and compares pairs of nodes

according to their relative view of the whole network according to

the paths emerging from the diffusion of walkers. The algorithm

performing such a task is called Random Inheritance Model (RIM)

[19]. RIM stems out of the family of ‘‘spreading activation’’

algorithms which were put forward in the field of Cognitive

Science as early as the 1960 s [20–22]. ‘‘Spreading activation’’

may well be seen as the mechanism upon which semantics emerge,

thus RIM –or, in general, the random dynamics behind it– can be

regarded as a general tool to extract a detailed ‘‘reference frame’’

for navigators. The key idea is that nodes that observe the same

perspective of the rest of the network are similar to each other. In

the case of words we show that this similarity indicates that they

are semantically related.

The use of RIM to obtain an efficiently navigable map depends

on having an underlying networked structure. Because the map is,

furthermore, semantically sound, the easiest way to evidence it is

to work on a network involving language. A statistically robust way

to obtain a network of words is to build a co-occurrence graph

from text sources, see for example Ref. [23]. However, we

construct the semantic similarity map obtained from the complete

Simple English Wikipedia (SEW from now on), which can be

naturally modeled as a network and contains over 50,000 pages.

After building up the semantically sensitive map, we show its

potential proposing a local-based semantic navigation. Semantic

paths between pairs of words are obtained according to a Milgram-

like navigation: given an accurate map, the navigator just needs to

check who, in its own neighborhood, has a greater similarity to the

target, and move accordingly. To evaluate this navigation we

compare the efficiency of the resulting paths according to their

length compared to that of the shortest path. Secondarily, we

illustrate with examples the semantic coherence in the path steps

towards the destination. Imagine, for example, that we want to

find a path between two pages of SEW such as Norway Iowa and

Yuri Gagarin. The shortest-length path (which implies global

information of the connectivity) from source to target is: Norway

Iowa ? United States ? January 1 ? March 27 ? Yuri

Gagarin. Note that the resulting path is pretty uninformative by

itself. However, our approach produces Norway Iowa ? United

States ? History of the United States ? Moon ? Astronaut ?
Yuri Gagarin, a path comprising local information only. In the

latter navigation we learn that Yuri Gagarin was an astronaut, and

that the US were involved in the space race to achieve the first

human-trip to the Moon.

Our results, which are –as stated above– suboptimal, are

comparable to shortest paths and suggest the use of this navigation

technique to complement search in Web browsers, recommenda-

tion systems, and information discovery.

Methods

Building Up the Similarity Map
Given a networked representation of information, our aim in

this work is to derive a map that permits a coherent exploration of

the network through local navigation on it. To this end, we will

extract similarity relationships between nodes from the track of

a dynamical process displayed over the network. Recent works

have pointed out the ability of random walkers to explore the

topological structure of networks [15,24,25], and its relation with

cognitive abilities [26]. In addition, random walkers can serve as

a convenient tool to unveil categorical relationships out of the

network. This is due to the fact that random walkers are the

Figure 1. Success ratio (upper pannel) and length ratio (lower panel) of semantic paths reaching the destination as a function of the
weighting scheme a.
doi:10.1371/journal.pone.0043694.g001
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simplest dynamical processes capable of revealing local neighbor-

hoods of nodes in which walkers get persistently trapped, and these

groups are expected to retain significant meta-similitude relation-

ships. This fact, together with an inheritance mechanism aimed to

reinforce the similarities within local vicinities of nodes, constitute

the basis of the Random Inheritance Model [19].

RIM proceeds as follows. First, every node i in the network is

tagged with an initial, m-dimensional feature vector vi, m being

the size (number of nodes) of the network. This vector is initially

Figure 2. Proportion of successful paths, navigation attempts which reach the target as a function of their length cost compared to
shortest paths LH=LS.
doi:10.1371/journal.pone.0043694.g002

Figure 3. Success ratio of semantic paths reaching the destination (upper panel), and length ratio compared (lower panel) as
a function of target’s accessibility represented by its in-degree kini .
doi:10.1371/journal.pone.0043694.g003
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chosen such that its i-th entry is equal to one and the remaining

entries are zero, i.e., vectors are orthogonal in the canonical basis

to avoid any initial bias. The second step consists in launching

random walks of a fixed length n from every node in the network.

The inheritance mechanism modifies features depending on the

exploration of the network performed by the walker. Let

Si~fs1,s2,:::,sng be the set of nodes visited by a walker starting

from i. Then the new feature vector v0i is computed by averaging

the feature vectors over the set of visited nodes,

v0i~
1

n

X

s[Si

vs, i~1, . . . ,m: ð1Þ

This way nodes ‘inherit’ the features of all nodes visited along

the path. Note that final values are computed after completion of

the inheritance for every node (synchronous update of the feature

vectors). Finally a map, under the form of a similarity matrix

T~(tij), is obtained. This matrix contains weighted values for

each pair of nodes, which result from projecting all pairs of

updated vectors (cosine similarity),

tij~cos(vi,vj)~
vi:vj

EviEEvjE
, ð2Þ

where v:w~
Pm

j~1 vjwj stands for the Euclidean dot product and

EvE~
ffiffiffiffiffiffi
v:v

p
is its associated norm.

The similarity matrix can be calculated in terms of the transition

probability matrix P of the random walk used to explore the

network. The i-th row of matrix P~(pij) specifies the probability

pij for the walker to jump from i to any of its neighbors j. If the

underlying network is weighted, setting up the transition

Table 1. Comparison between semantic navigation and shortest path for a sample of source and target pairs of words.

Semantic Navigation Shortest Path Semantic Navigation Shortest Path

Microsoft_Access Microsoft_Access Pandora Pandora

Computer_program Database Jar Wine

Application Leaf Leyden_jar United_States

Human_body Biology Capacitor Electronics

Biology Evolutionary_biology Inductor Electrical_circuit

Evolutionary_biology Electrical_circuit

Norway_Iowa Norway_Iowa Wii_Sports Wii_Sports

United_States United_States Tennis Wii

U_States_History January_1 England 2006

Moon March_27 Protestantism Good_Friday

Astronaut Yuri_Gagarin Paul_the_Apostle Judas_Iscariot

Yuri_Gagarin Judas_Iscariot

Gerardus_Mercator Gerardus_Mercator Oxfam Oxfam

Atlas Atlas United_Kingdom Canada

Google_Maps Rome United_States July_1

Satellite NASA Computer Windows_2000

Sputnik Space_Race Operating_system Novell

U.S.S.R. Linux OpenSuSE

Cold_War SuSE

Space_Race OpenSuSE

Electricity Electricity Liza_Minnelli Liza_Minnelli

Oil Metal United_States June_24

Maize Zinc Forest July_1

Grain Cereal Rainforest Evolution

Oat Cheerios Bird Genetic_drift

Cereal Evolution

Cheerios Genetic_drift

Space_Race Space_Race Taco_Bell Taco_Bell

United_States 1957 United_States June_9

Computer 1960 s U_States_History December_21

Operating_system UNIX Roaring_Twenties F_Scott_Fitzgerald

UNIX F_Scott_Fitzgerald The_Great_Gatsby

The_Great_Gatsby

In some cases the shortest path led to degenerated chains (one of which is shown here).
doi:10.1371/journal.pone.0043694.t001
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probability matrix amounts to normalizing the weights so that the

out-strength of any node i (i.e., the sum of weights for all directed

links connecting i with its neighbors) is equal to 1. If the network is

unweighted, all connections of any node are equally relevant. In

this case, a common proposal in the field of complex networks

amounts to weighting links according to the importance (in terms

of degree) of the nodes they connect [27]. For undirected

networks, normalized weights take the form

pij~
(kikj)

a

P
p[C i

(kikp)
a ~

kajP
p[C i

kap
, ð3Þ

ki being the degree of node i, C i the set of i‘s neighbors, and a
a tuning parameter to give more or less importance to the local

connectivity of nodes. We refer the reader to the following

subsection for details on how these ideas can be extended to set up

the weights of directed networks like SEW. Note that the

normalizing factor in the denominator transforms the matrix of

weights into a stochastic matrix P, which in turn allows us to

describe the algorithm in terms of a Markov chain.

The entry (Pr)ij of the r-th power of P has a very important

meaning for our purposes. It stands for the probability of hitting

node j, starting from i, in exactly r steps. In practice, this means

that if we perform random walks of length r, after averaging over

many realizations the frequency of visiting node j (starting from i)
will be (Pr)ij . According to Eq. (1), the inheritance process yields,

in this scenario, feature vectors that are simply the rows of the

matrix

Q~
1

n

Xn

r~1

Pr: ð4Þ

Similarity between nodes is calculated as the cosine [cf. Eq. (2)]

of the angle between each pair of row vectors of matrix Q. Thus,

the similarity matrix T is now ready to be used for navigational

purposes over the original network.

The question remains, however, as to how many steps of the

random walk should we take, i.e., which should be the value of n.

To solve this point, it is important to remind that the random

exploration process is triggered to collect information about the

underlying topology. The walker should have at least the chance to

visit the whole network. This implies, in practice, that the process

is able to connect the two furthest nodes in the network, i.e. n must

be greater or equal to the diameter d of the network. This

diameter scales, in the case of scale-free complex networks as lnN
[7]. In our case-study network, the Simple English Wikipedia,

results for RIM are obtained using n~13 according to the

observed diameter of the network.

RIM fits naturally in the family of path-based similarity

measures [28–4]. The distinctive feature of RIM is that two

nodes are similar if random walkers departing from them behave

similarly. The information of the navigation process is stored in

vectors, whose projections give a similarity measure between

nodes.

A Networked View of the Simple English Wikipedia
Our algorithm for navigation is a general-purpose method, as

long as data can be modeled as a network, nodes representing

meaningful entities (words, expressions, etc.) and links standing for

content-related relationships (‘‘is-a’’, ‘‘is-part-of’’, etc.). A perfect

example of these generality can be found in Wikipedia, where links

between articles stand for many types of relationships. For

instance, the Wiki entry for Andréy Markov in the English

Wikipedia has links to Russia (place of birth), Mathematics (the

most general framework of his contributions), many people he

interacted with, etc. For this reason we have chosen the complete

Figure 4. Similarity to target (Thermodynamic_State) vs. similarity to source (Seminar). Semantic navigation (red trajectory) behaves
similarly to shortest path (green trajectory): there are only two degenerated shortest paths and one of them coincides with the semantic path. This
example shows that semantic navigation efficiency can be optimal in some cases, because the number of jumps equals to that of shortest path
navigation. Conversely, shortest paths sometimes can (accidentally) yield coherent paths in terms of meaning. The remaining similarity pairs with the
rest of the network are depicted as a scatter plot.
doi:10.1371/journal.pone.0043694.g004
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Simple English Wikipedia (SEW) to test our proposal. In practice,

we build the SEW network by linking a pair of nodes (i,j) if i –an

entry in SEW– contains an internal link to j.

The SEW database presented here corresponds to the dump of

March 27, 2011. We only consider meaningful internal links, i.e.,

we filter out redirects and disregard any external links. Links to

other Wikipedia resources –images, edition information, etc.– are

disregarded as well [35]. After that pre-processing, the resulting

network is formed by 68,558 articles (nodes), but not all of them

are accessible, i.e., there exists a minority of articles which point to

other nodes but are never pointed at. Given that our measures will

be systematically compared to shortest paths, we ensure the

existence of such paths by extracting the strongly connected giant

component, which comprises 54,526 nodes and 2,313,665 directed

links.

Pages in SEW have an average number of out-going

connections SkT~42:4, which means that the network is very

sparse. In fact, the density of out-going connections is four orders

of magnitude smaller than the linkage density expected for a fully

connected network without self-loops and with the same number

of nodes. This topology exhibits a rich local structure, with

a clustering coefficient C~0:29, and despite its large size the

average shortest path length is L~4:43. The most distant articles

in SEW lie at a distance of only d~13 (diameter). In conclusion,

SEW fits properly in the well-known concept of ‘‘small-world’’

network [36]. Furthermore, it exhibits a long-tailed in-degree

distribution, which implies the existence of hubs –nodes which are

richly connected [37].

Links in this networked view of SEW are unweighted. However,

RIM demands that link strengths must be normalized. Given this

situation, one may define the transition probability matrix P~(pij)

as pij~1=kouti for all j[C i (i.e., for all of its neighbors), kouti being

the number of hyperlinks that a SEW document contains (its out-

degree). However, this implies that a random walker will move

from a node to any of its neighbors with equal probability, which is

at odds with the evidence that not every piece of information is

equally important. We use here the approach presented in Eq. (3)

that can be easily extended to directed networks,

pij~
(kouti kinj )

a

P
p[C i

(kouti kinp )
a ~

(kinj )
a

P
p[Ci

(kinp )
a , ð5Þ

where kinj is the number of Wikipedia articles pointing at article j

(its in-degree). Note that this framework generalizes the simplest

scheme (uniform transition probabilities), which is recovered in the

case a~0. In the case of aw0, the walker will prefer visiting nodes

of large degree. Negative values of a will bias the random walker

towards nodes with lower connectivity.

The kind of biased random walks that we use in this

contribution can be regarded as a local approximation of optimal

random walks [38]. Maximal-entropy rate random walkers are

defined by transition probabilities such that the walkers are

maximally dispersing in the graph, exploring every possible path

with equal probability. On correlated networks, maximal-entropy

random walks can be obtained by considering a random walk

whose motion is biased as a power of the target node degree, as in

our case. Therefore the choice of biased random walkers ensures

an efficient exploration of the network. A similar (and comple-

mentary) approach to the one followed here would consider biased

walks as unbiased ones on weighted graphs, where dynamical

flows are embedded into link weights [39].

Results

We have implemented and tested our approach on the SEW

data. The analysis we have developed tries to reveal the validity of

Figure 5. Similarity to target (Carlsberg) vs. similarity to source (Sega_Game_Gear). In this example, our semantic path (red) is comprised
by 8 jumps whereas shortest paths (green) involve 6 steps (13-fold degenerated). However, a slight efficiency loss can be compensated by a truly
coherent path. Observe how the shortest path decreases its similarity to the target at some intermediate points. At these points, shortest paths
navigate through hubs (like September_7 or 1999) which exhibit shallow similarities with source and target, but help to reach the target in a small
number of steps. The remaining similarity pairs with the rest of nodes are depicted as a scatter plot.
doi:10.1371/journal.pone.0043694.g005
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the approach to complement any web search engine, recommen-

dation system or information discovery technique. We restrict

ourselves to make use only of local information on the similarity

map. Although our method is completely general, we will focus on

the semantic aspects of navigation over networks since our case-

study dataset involves language. The advantages of having

a semantically-coherent path of words become apparent in the

design of efficient recommendation systems, web tagging methods

and information retrieval algorithms.

Navigation
The navigation method we propose is strictly guided by the

underlying map of similarity relationships obtained from RIM.

The defining aspects of the navigation algorithm are its being

deterministic, using a greedy strategy and being self-avoiding. It is

deterministic in the sense that the navigation process will either

reach its target or it will fail. When the process gets stuck, that

navigation trial aborts. Greediness means that the algorithm

always seeks the best option to jump to, i.e. starting from the

source node, the search process jumps to the node in its

neighborhood with highest similarity to the target. Note that the

algorithm yields a non-monotonic approach to the target, because

it is possible that the next-hop node has a lower similarity to the

target than the current one. Self-avoidance helps the process not to

get trapped into endless cycles.

A suitable semantically-sensitive path must reach a compromise

between the richness of the information it provides and the length

cost it represents. Too long semantic paths become inefficient.

Moreover, a local-based algorithm, i.e., one that relies only in

Figure 6. (a) Probability density of similarities between consecutive nodes along all semantic (black circles) and shortest paths (red
squares). Semantic paths exhibit a peak around 0:7, whereas the mode of the distribution for shortest paths is peaked around 0:2. This fact shows
that similarity between consecutive jumps from source to target along semantic paths is smooth, whereas similarity can change abruptly along
shortest paths. (b) Cumulative probability of similarities between consecutive nodes. Note that the distribution for semantic paths lays below the
shortest paths’ one. Dotted lines mark the 0:05 and 0:95 probability levels.
doi:10.1371/journal.pone.0043694.g006
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information from its nearest neighbors, may fail to accomplish

every possible path in a network.

Given these constraints, we present in the first place results

concerning success and cost, regardless of content. The success

rate is defined simply as the fraction of successful chains (paths that

reach the target web page). The path cost is defined as LH=LS ,

where LH is the length of the path from the source to the target

obtained with the heuristic local semantic navigation; and LS is

the length of the path from the source to the target obtained using

the shortest path (global information). On the SEW network, we

selected 100 articles as targets and attempted to construct paths

between any possible source and these targets. This means that

over 5|106 paths have been attempted. For the sake of

completeness, the choice of target nodes has not been made at

random. On the contrary, we have measured for each node in the

network a centrality value (the coreness or k-core of each node [40]),

which classifies nodes as belonging to different levels or shells, from

the core to the periphery of the network. Examining this quantity

enables us to choose heterogeneous target nodes which belong to

distinctly connected parts of the topology. Since the k-core is

positively related to degree, choosing nodes with a wide range of k-

core ensures that they also exhibit heterogeneous total degree

ki~kini zkouti . Targets have been chosen so as to guarantee the

presence of both peripheral and core shells. Admittedly, other than

this topological classification, targets have been chosen arbitrarily.

Figure 1 depicts, for different weighting schemes (i.e. as

a function of a), both the global average success rate (upper

panel) and global average cost (lower panel). Remarkably,

a~{0:5 yields optimal results regarding both concepts, with

over an 80% of success rate and average LH=LS~3:53. Given the

simplicity of our navigation heuristics, our success rate should be

compared to that of Milgram’s experiment [9] and the routing

proposed by Boguña et al. [2], who reached success rates of

around 29% and 65%, respectively. It is worth mentioning that

optimal results are obtained for av0. We interpret this as the fact

that systematically favoring hubs (a§0) diminishes the capacity of

random walkers to explore local neighborhoods of sparsely

connected nodes, thus semantic relations can not reflect the rich

modular structure of the network. A negative a, instead, forces the

diffusive dynamics to remain trapped for some time in these

semantically rich substructures.

Admittedly, the retrieval of content-sensitive chains seems to

have a downside: the average cost of semantic paths triples that of

shortest paths. Nonetheless, it is worth noticing results in Figure 2.

In the figure we show, for different weighting schemes and within

successful source-target navigations, the proportion of paths at cost

1, 2 and so on. Note the logarithmic scale in the LH=LS axis.

Significantly, for the optimal case a~{0:5 (in black circles), over

a 75% of successful chains have LH=LSƒ2, the global average

being increased due to a minority of chains with large cost.

We now turn to which targets (out of the 100 preselected)

exhibit better behavior when it comes to navigating towards them.

As expected, Wikipedia articles with high accessibility (large kini )

are reachable from almost anywhere in the network. Figure 3

illustrates this conclusion very clearly, both regarding success rate

(upper panel) and cost (lower panel): nodes with kini §20 have

perfect behavior (100% success, LH=LS*1), with few exceptions.

This is true both for the optimal weighting scheme (black circles)

and for the unweighted case (red squares).

Table 1 samples some chains to compare performance between

shortest and similarity paths. For each pair of SEW pages, we first

list the path following our proposed heuristics, then the shortest

path. By visual inspection we observe that shortest paths frequently

yield conceptual gaps between contiguous words, whereas our

heuristic path provides a smooth trajectory in the semantic space,

jumping between concepts whose semantic similarity is apparent.

Figures 4 and 5 try to picture the navigational paths displayed

by both methods. The first figure (Thermodynamic_State ?
Seminar) is an example of optimal efficiency of our heuristic

navigation, since LH~LS . Additionally, successive steps in the

semantic path have closer similarities to the target word than

shortest-path steps. The second figure (Carlsberg ? Sega_Ga-

me_Gear) illustrates how a suboptimal heuristic navigation

Table 2. Word-pair semantic similarity measurement.

Word pair Human [43] a=0 a=20.5 a=0.5

car-automobile 3.92 1.000 1.000 1.000

gem-jewel 3.84 1.000 1.000 1.000

coast-shore 3.7 0.548 0.313 0.702

magician-wizard 3.5 0.369 0.103 0.577

food-fruit 3.08 0.656 0.249 0.833

bird-crane 2.97 0.728 0.291 0.911

brother-monk 2.82 0.369 0.354 0.572

cemetery-woodland 0.95 0.117 0.033 0.360

food-rooster 0.89 0.622 0.083 0.902

coast-hill 0.87 0.377 0.051 0.651

forest-graveyard 0.84 0.188 0.061 0.451

shore-woodland 0.63 0.270 0.085 0.572

monk-slave 0.55 0.447 0.128 0.750

coast-forest 0.42 0.451 0.208 0.683

chord-smile 0.13 0.114 0.020 0.432

glass-magician 0.11 0.199 0.035 0.501

noon-string 0.08 0.232 0.050 0.486

We used the subset of pairs provided in reference [43] (Human judgment
column), and reproduced for comparison purposes in reference [42], that are
found in the giant component of SEW. RIM cosine similarities are listed for three
different weighting schemes parameterized by a (see Eq. (5)).
doi:10.1371/journal.pone.0043694.t002

Table 3. Pearson’s correlation coefficients between similarity
ratings and the average ratings reported by Miller and Charles
[43] for the subset of pairs listed in Table 2.

Similarity method Correlation

Edge based 0.554

Node based 0.763

Combined distance 0.834

a= 0 0.736

a=20.5 0.727

a= 0.5 0.606

For the sake of comparison, we include the correlation coefficients obtained by
Jiang and Conrath [42] for the three similarity schemes (edge based, node
based and combined distance) studied in that reference. Note that these
schemes are based on word classifications provided, for example, by WordNet.
The node-based scheme evaluates the similarity between two concepts as the
maximum similarity score among all the classes that subsume simultaneously
both concepts. The edge-based distance approach estimates the distance
(edge length) between nodes which correspond to the concepts being
compared. The combined approach is derived from the edge-based notion by
adding information content (as in the node-based scheme) to edge weights.
doi:10.1371/journal.pone.0043694.t003
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attempt (LH=LS~4=3) is compensated by a coherent path in

terms of meaning. At some point, shortest paths move to

a ‘‘semantically unrelated’’ node which acts as a hub, providing

an efficient –though semantically poor– shortcut towards the

target.

In order to provide a quantitative measure of the degree of

smoothness that Table 1 and Figures 4 and 5 show, we have

calculated the histogram of similarities between all pairs of

consecutive words along paths and compared it with the same

histogram for shortest paths. Results are shown in Figure 6. We

have used 7,281 semantic paths between pairs of our preselected

words from a subset of 8,930 paths (notice that not every

navigation attempt is able to reach the target) to obtain the

corresponding histogram. On the other hand, there are up to

228,541 shortest paths for the same set of preselected pairs,

because most of them are strongly degenerated (average de-

generacy is 25:6). The probability distributions depicted in

Figure 6a exhibit global maxima at similarities around 0:2
(shortest paths) and around 0:7 (semantic paths). This confirms

quantitatively that similarities along semantic paths are smoother

than for shortest paths, in accordance with the abrupt changes

observed in the samples shown in Table 1 and Figures 4 and 5.

The maxima of semantic paths does not occur, however, at

similarities close to 1. Note that the similarity between consecutive

nodes should not necessarily be monotonically increasing, since

navigation chooses the most similar neighbor to the target from the

set of available ones, i.e., those not yet visited.

More formally, the cumulative distribution of the similarity

jumps in heuristic paths is systematically smaller than that of

shortest paths (see Figure 6b). This means that consecutive nodes

in heuristic paths are ‘‘statistically more similar’’ than those of

shortest paths –according to the well-known criterion of first-order

statistical dominance [41].

Performance of the Similarity Measure
We finally assess the semantic validity of the similarity map by

comparing our similarity measure with a benchmark in Natural

Language Processing. Jiang and Conrath [42] proposed a similarity

measure which was successfully confronted to a set of words whose

similarity, in its turn, was previously assessed by human judgment

by Miller and Charles [43]. Human similarity ratings were

tabulated for a set of 30 noun pairs, and later Jiang and Conrath

used that set of pairs to validate their similarity measure. Note that

this comparison is unfavorable to highlight our performance in

several ways: i) Jiang and Conrath similarity measure is based on

the taxonomy provided by WordNet [44], hence such a measure

already incorporates human knowledge in its definition, whereas

our source of information is purely topological and no taxonomies

are predefined, ii) the structure of WordNet is not even similar to

the connectivity in SEW, and iii) the number of words in WordNet

is approximately 20,000 words larger than SEW. Even in this hard

scenario, our approach shows to be competitive in semantic

content. In Table 2 we present the subset of words in the

intersection of SEW and the experiment by Miller and Charles

[43], and the corresponding similarity at different values of the

parameter a in the weight of links (c.f. Eq. (5)). The correlation

values between the similarity ratings and the mean human ratings

reported by Miller and Charles are listed in Table 3. Note that the

correlation obtained is only a 10% lower than that obtained by

Jiang and Conrath.

Discussion

In summary, we have proposed a general and extensive method

to construct a locally navigable map based on similarities of

networked data. We have adopted a complementary vision of

similarity between networked objects that emerges solely from its

relative position in a network. We developed the idea that nodes

that see the network the same way are themselves similar. The

process used to explore the network from any node is based on

random walkers that keep track of visits to other nodes. The view

that every node has of the entire network (i.e., the set of feature

vectors) is transformed into a map using the cosine projection. This

map is the underlying structure used for local semantic navigation,

based on searching for the neighbor that is more similar to the

target. Note that although we need global information of the

network to build up the similarity map, semantic navigation

proceeds locally. Previous works aimed to network exploration

have been inspired by similar ideas and are based solely on local

information [45].

In terms of efficiency, our algorithm’s bottleneck is the

calculation of the similarity matrix [see Eq. (2).] The computation

of feature vectors [matrix (4)] is not so demanding provided that

the original transition probability matrix P is sparse. The

computational cost of m feature vectors is of order O(‘m), ‘ being

the number of links and m the number of nodes of the network.

The computation of the similarity map involves m2 entries, each

one of them being a scalar product, which in its turn increases time

complexity by a factor of m. Consequently, the overall time

complexity of our method is O(m3).
For practical purposes, the similarities between nodes can be

calculated as navigation proceeds. We simply need to store all the

feature vectors and calculate, for node i, the cosine of each i‘s
neighbor with the target node. For large networks, both algorithms

(i.e. the derivation of the map and the navigation procedure) are

easily scalable and efficient using linear algebra parallel computa-

tions.

We have validated our approach confronting its outcome with

human ratings of similarity between words extracted from the

original, WordNet-based, reference of Jiang and Conrath [42].

Even in this disadvantageous scenario –WordNet is an annotated

taxonomy with explicit semantic relationship coding– our purely

topology-based algorithm provides correlations with human

semantic judgment comparable to Jiang and Conrath’s similarity

measures.

We have tested our algorithm’s performance in terms of path

lengths compared to shortest-path lengths. The results are

encouraging and the semantic smoothness of the paths, remark-

able. The similarity map proposed in this paper can be readily

employed to support many semantic and social web applications,

such as tagging and recommendation. Another straightforward

application of the local semantic navigation proposed here is to

enrich web search and navigation for knowledge exploration.

Finally, it is our guess that users would be more effective in

performing an exploration or learning task by following seman-

tically-coherent paths instead of shortest-length paths.
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