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The emergence and promotion of cooperation are two of the main issues in evolutionary game theory, as
cooperation is amenable to exploitation by defectors, which take advantage of cooperative individuals at no
cost, dooming them to extinction. It has been recently shown that the existence of purely destructive agents
(termed jokers) acting on the common enterprises (public goods games) can induce stable limit cycles among
cooperation, defection, and destruction when infinite populations are considered. These cycles allow for time
lapses in which cooperators represent a relevant fraction of the population, providing a mechanism for the
emergence of cooperative states in nature and human societies. Here we study analytically and through agent-based
simulations the dynamics generated by jokers in finite populations for several selection rules. Cycles appear in
all cases studied, thus showing that the joker dynamics generically yields a robust cyclic behavior not restricted
to infinite populations. We also compute the average time in which the population consists mostly of just one
strategy and compare the results with numerical simulations.
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I. INTRODUCTION

Cooperation is necessary for the appearance of complex
structures and higher order selection units from individual be-
haviors. In this way, cooperation between unicellular life forms
gave rise to multicellular organisms, cooperative animals form
communities, and cooperation between humans gives rise to
the complex societies we live in [1]. Thus, it is very important
to understand the conditions that allow cooperation to thrive
and evolve in nature and society. However, cooperative
behaviors are not stable, as they are easily invaded by selfish
individuals, who benefit from the interactions with cooperative
ones but avoid paying the costs attached to cooperation. The
selfish individuals, called defectors, have a higher fitness—a
measure of reproductive success—than cooperators in any
well-mixed population and therefore will spread under the
action of natural selection, leading to the extinction of the
cooperative behavior [2] and to populations where nobody
benefits from altruistic acts (the “tragedy of the commons” [3]).

In recent decades the study of the public goods (PG) game,
a mathematical metaphor of a common enterprise in which
cooperative individuals invest—pay a cost—and share the
benefits with all the players involved in the game, has led to
the discovery of some mechanisms that allow cooperation to
thrive, such as introducing reputation [4], diversity in number
and size of groups [5], linking group size and payoffs [6], and
the inclusion of spatial structure and conditional behaviors
[7–9]. Furthermore, it has been proven that the introduction
of some behavioral types in well-mixed population, such as
punishers [10,11] or individuals which do not participate in
the PG and instead receive a fixed benefit (the so-called
loners) [12], may promote cooperation. However, the only
behavioral type found so far that allows for the emergence
of stable cycles in the presence of mutations is the so-called

joker strategy [13]. Jokers do not take part of the benefits
produced by the PG game and instead provoke damage to the
common enterprise, thus affecting every individual involved in
it. Surprisingly, the effect of these indiscriminate destructive
agents on the dynamics is the induction of robust evolutionary
stable limit cycles of cooperation, defection, and destruction.
Cyclic dynamics can also be found when loners are involved.
However, jokers induce cycles that are dynamically different
from those found with loners [12], because the latter are
neutrally stable (i.e., have no fixed amplitudes) and disappear
in the presence of mutations or structural noise.

The inclusion of destructive agents in the PG game is
motivated by the observation that, in nature and society,
the appearance of a risk, such as that created by common
enemies, predators, or simply dangerous situations, may
induce cooperation among the victims [14,15].

In a previous work [13], the stability of the evolutionary
cycles induced by jokers was proven for infinite populations
through the analysis of the replicator-mutator equation. Here,
we extend the study to finite populations and analyze the
dynamics for different updating methods [16],that is, different
selection dynamics for the population, in order to analyze
if robust cycles are also found. The conclusion we reach
from this study is that the robust cycles obtained using
the replicator-mutator equation are not just restricted to this
particular dynamics but are a generic feature of the joker
model.

The paper is organized as follows. In Sec. II we explain
the PG game and review the dynamics in infinite populations.
Section III provides the stochastic equations describing the
evolutionary dynamics for finite populations. In Sec. IV we
analyze the joker dynamics in finite populations using different
selection dynamics in order to check the existence of cycles.
Section V is devoted to conclusions.
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II. EVOLUTIONARY CYCLES INDUCED BY JOKERS
IN PUBLIC GOOD GAMES

In each PG game a number n of individuals is randomly
chosen from the entire population. Each cooperative individual
contributes to the common enterprise at a cost c to itself, which
yields a benefit b = rc (r > 1) equally distributed between all
players; defectors get a free share of the public good at no cost,
thus obtaining a higher benefit than cooperators; jokers do not
participate in the benefits, and each one provokes a damage
−d < 0 to be shared by all individuals engaged in the PG
game. Note that the cost paid by cooperating (C) players can
be set to c = 1 without loss of generality: All other payoffs
are given in units of c.

Let us call 0 � m � n the number of cooperative par-
ticipants, 0 � j � n the number of jokers, n − m − j � 0
the number of defectors, and S = n − j the number of
nonjokers (i.e., the number of individuals involved in the PG
game and that potentially benefit from the PG). Then the
payoff of a defector will be �D(m,j ) = (rm − dj )/S and
that of a cooperator �C = �D − 1; as previously stated, in
each interacting group defectors will always do better than
cooperators. Jokers’ payoffs are always 0.

In summary, we have

�D(m,j ) = rm − dj

S
, 0 � m � S − 1 � n − 1,

�C(m,j ) = rm − dj

S
− 1, 1 � m � S � n, (1)

�J(m,j ) = 0, 0 � S � n − 1.

A simple invasion analysis [13] shows that the PG thus
defined determines a tragedy of the commons [3] for r <

rmax = n(M − 1)/(M − n), where M is the population size.
For infinite populations, the latter condition reduces to r < n,
as usual in PG games. Therefore, a mixed population of
cooperators and defectors with r < rmax will end up composed
of defectors only. The interesting question is then if jokers
may prevent the extinction of cooperators and under which

conditions. In Ref. [13], it was shown that in the region of
interest, namely, 1 < r < rmax, d > 0, the system exhibits
(a) joker-cooperator bistability for 1 + d/(M − 1) < r <

1 + (n − 1)d, (b) joker dominance for r < 1 + d/(M − 1),
and, most importantly, (c) a rock-paper-scissor (RPS) cyclic
dominance of the three strategies for

r > 1 + (n − 1)d. (2)

This condition expresses the fact that a single cooperator gets
a positive payoff in spite of the damage inflicted by n − 1
jokers, which allows cooperators to thrive in the damaging
environment that represents a population of jokers and re-
establish a cooperative environment. In Ref. [13], we analyzed
just one dynamics, namely the replicator-mutation dynamics,
and showed that it produces stable (robust) limit cycles
C→D→J→C when mutations are rare, and stable coexistence
for high mutation rates (Fig. 1). In the following we analyze
the dynamics of PG with jokers in finite populations under
different update rules, check the appearance of cycles, and
calculate the average time spent in each homogeneous state in
order to decide which dynamics better promotes the survival
of cooperation.

III. STOCHASTIC DYNAMICS IN FINITE POPULATIONS

The deterministic evolution represented by the replicator-
mutator equation is an idealization of the system behavior in
the limit of infinite populations. To get deeper insight into the
model we need to address the question of what happens when
populations have a finite size M . To begin we need to describe
the microscopic dynamics in more detail. Hauert et al. [11]
have proposed a protocol in which random selections of n

players are gathered together to play the game. After receiving
their corresponding payoffs the group dissolves and a new one
is sampled. This sampling is made a sufficient number of times
so that on average each player receives a payoff proportional
to the mean payoff she can obtain given the composition of
the population.

FIG. 1. (Color online) Cycles induced by jokers in infinite populations. The simplexes describe the replicator-mutator dynamics for
a population of cooperators, defectors, and jokers with parameter values satisfying n > r > 1 + d(n − 1), for which a rock-paper-scissor
dynamics is expected. For small mutation rates, the only equilibrium is a repeller [white dot in panels (a) and (b)], and trajectories end up in a
stable limit cycle of decreasing amplitude with increasing μ (black line); when mutations reach a critical value μc, the system undergoes a Hopf
bifurcation and a stable mixed equilibrium appears [black dot in panel (c)]. Thus the presence of jokers induces periodic bursts of cooperation
for low mutation rates and stable coexistence for high μ. Parameters: n = 5, r = 3, d = 0.4, and μ is (a) 0.001, (b) 0.005, or (c) 0.05. (Images
generated using a modified version of the DYNAMO package [17]).
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Suppose there are m cooperators, j jokers, and M − m − j

defectors in the population. The probability that the sampling
of n individuals contains k cooperators, l jokers, and n − k − l

defectors is given by the extended hypergeometric distribution

p(k,l|n,m,j,M) =
(
m

k

)(
j

l

)(
M−m−j

n−k−l

)
(
M

n

) . (3)

The average payoff of strategy X within this population,
PX(m,j ), is obtained by averaging formulas (1) with this
probability distribution. This is done in Appendix A, where
explicit expressions for PC(m,j ) and PD(m,j ) are obtained—
obviously PJ(m,j ) = 0 irrespective of the population compo-
sition.

Once payoffs are obtained evolution proceeds by imitation.
Different payoff-dependent updating rules have been proposed
in the literature [16]. All of them describe a process of birth
and death defined by the transition probability T (m′,j ′|m,j )
from a population with composition (m,j ) to another one with
composition (m′,j ′) within the set

Nm,j = {(m,j ),(m ± 1,j ),(m,j ± 1),

(m + 1,j − 1),(m − 1,j + 1)}. (4)

If now �(m,j ; t) denotes the probability that the population
has a composition given by (m,j ) at time t , then this probability
evolves according to

�(m,j ; t + 1) =
∑

(m′,j ′)∈Nm,j

T (m,j |m′,j ′)�(m′,j ′; t). (5)

It is implicitly assumed that �(m,j ; t) = 0 for all t if the
pair (m,j ) is outside the set P ≡ {(m,j ) ∈ Z2 : m,j � 0, m +
j � M}.

If we introduce matrix T, with elements T (m,j ; m′,j ′)
[(m,j ) is the “row index” and (m′,j ′) the “column index”]
defined as

T (m,j ; m′,j ′) =
{

T (m,j |m′,j ′) if (m′,j ′) ∈ Nm,j ,
0 otherwise, (6)

and vectors �(t), with elements �(m,j ; t) [where (m,j ),
(m′,j ′) ∈ P], then Eq. (5) can be cast in matrix notation simply
as

�(t + 1) = T�(t). (7)

A. Stationary state

If the process undergoes mutations, then matrixT is ergodic
and Eq. (7) has a unique stationary state, π , which is obtained
by solving the linear system

π = Tπ . (8)

In the absence of mutations, though, there are three absorbing
states corresponding to the three homogeneous populations.
A homogeneous population remains invariant because the
imitation process cannot change its composition. We denote
these vectors eC, eD, and eJ, the index denoting the strategy
of the homogeneous population. Clearly eC(m,j ) = δm,Mδj,0,
eD(m,j ) = δm,0δj,0, and eJ(m,j ) = δm,0δj,M .

B. Infinitel small mutation rate

After every imitation attempt (whether successful or not),
individuals can randomly mutate their strategy. With proba-
bility 2μ the actor of the imitation event changes its current
strategy into one of the other two equally likely. Parameter
μ is referred to as the mutation ratio. In this section we are
concerned with mutation rates μ � 1.

In the the limit μ → 0+ the stationary probability distribu-
tion must be a linear combination of the stationary vectors of
the process without mutations, so in principle, taking the limit

lim
μ→0+

π =
∑

X=C,D,J

αX eX (9)

should provide the coefficients αX of this linear combination,
but this limit cannot be obtained directly from Eq. (8). There is
an alternative though. It has been proven [18] that the μ → 0+
limit of this process is equivalent to another process with three
states, C, D, and J, in which the transition probability between
X and Y is equal to the probability that a single mutant
of type Y invades an otherwise homogeneous population
of X individuals, thus transforming it into a homogeneous
population of Y individuals. Intuitively, this is tantamount
to saying that mutations are so rare that the ultimate fate
of a mutant is decided before the next mutation occurs. The
stationary vector in this space,

α = (αC,αD,αJ), (10)

provides the values of the coefficients αX in Eq. (9). Note that
coefficients αX add up to one, since they provide the probability
for the system to be in each of the homogeneous states.

Following [11], let ρYX denote the probability that a single
Y mutant takes over the population made of the mutant and
M − 1 individuals of type X. Then the transition probability
of going from state X to a different state Y in the three-state
Markov chain defined above will be rYX = ρYXμ. Introducing
R = (rYX) so that the elements in each column add up to one
(this fixes the diagonal of the matrix), we can rewrite this
matrix as R = I+ μQ, where

Q =
⎛
⎝−ρDC − ρJC ρCD ρCJ

ρDC −ρCD − ρJD ρDJ

ρJC ρJD −ρCJ − ρDJ

⎞
⎠. (11)

Vector α is then the solution of the linear system Qα = 0. A
little bit of algebra leads to the result

αC = (ρCDρCJ + ρCDρDJ + ρCJρJD)/A, (12)

αD = (ρDCρDJ + ρDCρCJ + ρDJρJC)/A, (13)

αJ = (ρJCρJD + ρJCρCD + ρJDρDC)/A, (14)

with A chosen so as to fulfill∑
X=C,D,J

αX = 1. (15)

C. Finite mutation rates

If the mutation rate is not zero, the Markov chain is ergodic
and the stationary state can be obtained by solving numerically
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Eq. (8). This is accomplished with better accuracy by splitting

T = T0 + T1, (16)

π =
∑

X=C,D,J

αX eX + π1, (17)

withT0 the transition matrix in the absence of mutations—that
is, with transitions describing only the imitation process. Then
π1 is the solution of the linear system

(I− T)π1 =
∑

X=C,D,J

αX T1eX. (18)

D. Imitation rules

In order to specify the transition matrix T we need to
describe the imitation process. Of the many different rules
applied in the literature [16] we have chosen the three most
commonly employed: unconditional imitation, proportional
update, and a Moran process. In all cases the corresponding
matrix T is obtained in Appendix B.

Under unconditional imitation two players are chosen at
random among the population, one as the focal player and the
other one as the model to imitate. The focal player compares
both payoffs and changes her strategy to that of the model if
the latter has a higher payoff. In this case, the strategy with the
highest fitness never changes except by mutation, which is the
only source of stochasticity in this rule.

Appendix C discusses the value α for this update rule. There
are two possibilities:

(1) r > 1 + (n − 1)d . In this cases all three homogeneous
states are equally likely [cf. Eq. (C2)].

(2) r < 1 + (n − 1)d . In this cases J is the only absorbing
state of the process [cf. Eq. (C4)].

Proportional update is entirely similar to unconditional imi-
tation with the exception that imitation occurs with probability
proportional to the payoff difference between the model and
the focal players. For this reason the values of α for this rule
are the same as those for unconditional imitation.

In a Moran process a strategy is chosen to be imitated (or
reproduced) with a probability proportional to its population-
dependent fitness. The player who imitates (or is replaced by
the offspring of) this selected player is randomly chosen from
the rest of the population. The only drawback of this rule is
that fitnesses must be positive for it to make sense, so they
cannot be directly the payoffs of the game, because they can
take negative values. A standard mapping between payoff and
fitness is obtained by introducing the selection strength s [19].
This weights the contribution of the game to the total fitness
of the strategy as F = 1 − s + sP , with P the average payoff.
Bounding the value of s we can force F to be positive.

The Moran process thus described defines a birth-death
process with two absorbing states, and the corresponding
probabilities ρXY are obtained via standard formulas (see
Appendix C).

IV. RESULTS: ROBUSTNESS OF THE CYCLES USING
DIFFERENT SELECTION DYNAMICS

In this section we compare the results of agent-based
simulations with those obtained by solving the stationary
equation (8). Simulations implement the following stochastic
process. We start with a population of M individuals with equal
amounts of C, D, and J players.

(1) Assuming that every time step each individual plays
many rounds of the game with different, randomly gathered
groups of n players, the payoffs each obtains will be propor-
tional to the average payoffs, as calculated in Appendix A.

FIG. 2. (Color online) Time evolution of the frequencies of the three strategies in a population of M = 1000 (left) and M = 100 (right)
individuals playing a PG with jokers with different update rules: (a), (b) unconditional imitation; (c), (d) proportional update; and (e), (f) a
Moran process. The presence of jokers induces a cyclic behavior irrespective of the update rule and the population size, as long as the mutation
rate μ > 0. Black solid lines, cooperators; red dashed lines, defectors; and blue dotted lines, jokers. One period corresponds to one updating
event according to the evolutionary rule used. Parameters n = 5,r = 3,d = 0.4, μ = 0.001; in panels (a)–(d) s = 1 and in panels (e) and (f)
s = 0.38.
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Thus we assume that these expressions provide the payoffs
each individual gains every time step.

(2) These payoffs are used to update the population accord-
ing to the corresponding imitation rule. We implement the
three rules described in Sec. III D.

(3) With probability μ each newborn mutates to a different
strategy (any of the other two with equal probability).

A quite general result is that, irrespective of the population
size, at low mutation rates simulations show patterns of cyclic
invasions C→D→J→C (see Fig. 2). These patterns resemble
the limit cycles observed in the replicator dynamics, that is,
for infinite populations [13] (cf. Fig. 1).

Roughly speaking we can distinguish three regimes of
mutations. In the low-mutation regime, the system spends
most of the time in homogeneous states, and the dynamics
of the system is well described by the μ → 0 limit of the
stationary probability distribution π . This can be clearly seen
in Fig. 3. The dashed-dotted curves in Figs. 3(a), 3(c), and
3(e) represent the fraction of time spent in transients when a
homogeneous population is replaced by another one arisen

as the result of mutations. This fraction is very small for
μ � 10−5 to 10−4, depending on the imitation rule. For larger
mutation rates (10−5 to 10−4 � μ � 10−3 to 10−2) the system
spends as much time in homogeneous populations as in mixed
transient states. This is the regime displayed in Fig. 2, where
cycles are clearly defined even though for some imitation rules
(particularly so for proportional update) certain homogeneous
populations that are hardly ever reached [Fig. 2(b) shows
a burst of cooperators which never reach a fraction higher
than 80% of the population]. For even higher mutation rates
homogeneous populations are very rare and the behavior of
the system is very different, typically dominated by defectors
[see Figs. 3(b), 3(d), and 3(f)].

Unconditional imitation is practically a deterministic rule
in the low-mutation regime. For μ � 10−4 the population
is almost always in homogeneous states, having the three
strategies equal probability [see Figs. 2(a), 2(b), 3(a), and 3(b)].
Figure 4(a) shows this probability as a function of the joker’s
inflicted damage d. As long as d > 0 and r > 1 + (n − 1)d
we find each strategy equally likely. For r < 1 + (n − 1)d a

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) Relative times spent in homogeneous as well as in transient states in a population of M = 100 individuals. For
practical purposes, a state is considered homogeneous if more than 95% of individuals belong to the same strategy. Symbols are the result of
agent-based simulations; lines are obtained from the solution of Eqs. (17) and (18). Results for cooperators are represented with (black) squares
and solid lines, those for defectors with (red) circles and dashed lines, and those for jokers with (blue) triangles and dotted lines. Panels (a), (c),
and (e) also show (with inverted triangles and dashed-dotted lines) the fraction of time spent in transient states. Panels (b), (d), and (f) show the
fractions of the time spent in each of the three homogeneous states relative to the total time spent in homogeneous states. Panels (a) and (b)
correspond to unconditional imitation, panels (c) and (d) to proportional update, and panels (e) and (f) to a Moran rule. We can see that high
mutation rates promote defection over the other two strategies. Parameters used are n = 5,r = 3,d = 0.4; selection strength is s = 1 in panels
(a)–(d) and s = 0.38 in panels (e) and (f).
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FIG. 4. (Color online) Evolution of a population of M = 100
individuals by unconditional imitation. (a) Fraction of time spent
in homogeneous populations of cooperators (black squares and solid
line), defectors (red circles and dashed line), and jokers (blue triangles
and dotted line), as a function of joker’s inflicted damage d. Symbols
correspond to an agent-based simulation and lines to the results
obtained from numerical computation of the stationary probability
distribution. (b) A realization made with d = 0 showing an invasion
of defectors by jokers through pure drift, and the subsequent burst of
cooperators and turnover by defectors. Parameters: n = 5,r = 3,s =
1, and μ = 5 × 10−5.

homogeneous population of jokers cannot be invaded because
this is the only absorbing state of the Markov chain for μ = 0.
For d = 0 jokers do not inflict damage. Then the system spends
most of the time in a homogeneous population of defectors.
However, random drift allows for occasional invasions by
jokers, who are subsequently wiped out by cooperators, who
in turn get replaced again by defectors. Figure 4(b) illustrates
a typical realization exhibiting one of these turnovers.

As of proportional update, its main difference with uncon-
ditional imitation is its being a truly probabilistic rule, in which
individuals only imitate higher payoffs with a certain proba-
bility. Although in the small-mutation regime this leads to the
same probability of mutual invasion of strategies as for un-
conditional imitation, the stochastic nature of this rule renders
much longer invasion times. This can be clearly appreciated in
Fig. 2. Another effect of stochasticity is that the time spent in
transient states is also longer, thus shrinking the low-mutation
regime by more than one order of magnitude [compare
Figs. 3(a) and 3(c)]. The effect is particularly notorious for
jokers, who take a long time to invade defectors, thus extending
the lifetime of defective populations. This effect is illustrated in
Fig. 5, which represents a typical realization of an agent-based
simulation.

The Moran process is the most random of the three
evolutionary dynamics because even strategies not performing
very well have a chance to get imitated. The effect is more
noticeable in smaller populations. This dynamics imposes an
upper limit to the selection strength s (see Sec. III D), and
the probabilities finding the population in each of the three

FIG. 5. (Color online) Realization of an agent-based simulation
of a population with M = 100 individuals evolving through propor-
tional update. Notation is as in Fig. 4. Parameters: n = 5,r = 3,d =
0.4,μ = 5 × 10−6, and s = 1.

homogeneous states depend on the parameters of the game and
on s in a nontrivial way (see Appendix C2). These probabilities
are represented in Fig. 6(a) as a function of s. The theoretical
predictions of Appendix C2 agree with the simulations. This
figure shows that cooperation is highly promoted for small
s(0.005 < s < 0.05). In this limit cooperative populations are
found with almost 50% probability. This probability decreases
down to around 25% for larger s. Figure 6(b) shows a typical
realization of this process, exhibiting a defining feature of this
process, namely the frequent failures of attempted invasions.

Whichever the update rule, when mutation rates are
not small the system is better characterized by providing
the stationary probability distribution π , as obtained from
Eq. (18). The results are plotted in Fig. 7 for all three

FIG. 6. (Color online) A population of M = 100 individuals
evolving through Moran update. (a) Comparison of the the relative
times in which the population is in a homogeneous state vs the
selection strength, s, for low mutation rates. Lines represent
the analytical estimates obtained in Appendix C2; symbols represent
the results from agent-based simulations. (b) Fractions of each
strategy as a function of time as obtained from a realization of an
agent-based simulation. Cooperators are represented with a black
solid line and squares, defectors with a red dashed line and circles,
and jokers with a blue dotted line and triangles. Parameters are
n = 5,r = 3,d = 0.4, and μ = 5 × 10−5. In panel (b) the selection
strength is s = 0.05.

026105-6



STABILITY AND ROBUSTNESS ANALYSIS OF . . . PHYSICAL REVIEW E 86, 026105 (2012)

(a) (b) (c)

U
nc
on
di
tio
na
li
m
ita
tio
n

0.001

C

D J

0.005

C

D J

0.05

10 8

10 6

10 4

10 2

100
DensityC

D J

(d) (e) (f)

Pr
op
or
tio
na
li
m
ita
tio
n 0.001

C

D J

0.005

C

D J

0.05

C

D J

(g) (h) (i)

M
or
an

0.001

C

D J

0.005

C

D J

0.05

C

D J

FIG. 7. (Color online) Density plots for the probability of finding the system in each population state as obtained by solving numerically
Eq. (8). The first row corresponds to unconditional imitation, the second row to proportional imitation, and the third row to a Moran process. In
each case mutations increase left to right. In all three cases low mutation rates (μ) yield high probabilities near the boundaries of the simplexes,
especially near the corners, corresponding to cyclic transitions between homogeneous states. Increasing μ increases the probability of finding
the system near homogeneous defective populations. For high μ an attractive point appears close to the D corner, which goes away from it
upon increasing μ. Parameters are n = 5,r = 3, and d = 0.4; the selection strength is s = 1 in the first and second rows and s = 0.38 in the
third. Mutation rates have been chosen as in Fig. 1 and appear near each simplex. Densities are plotted using a logarithmic scale.

imitation rules and different mutation rates μ. For low and
intermediate values of μ the higher probabilities are found
near the border of the simplexes, consistent with the cyclic
behavior of the system. However, for high μ the probability

peaks around a point. This point is interior for the most
stochastic rules but corresponds to a defective population
for unconditional imitation. The simplexes are obtained for
the same parameter values as used in Fig. 1, so a direct
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comparison with the results of the replicator dynamics can be
made.

V. DISCUSSION AND CONCLUSIONS

In this paper we have proven that the existence of jokers
(i.e., individuals whose purely destructive behavior is directed
against the common enterprises represented by PG games)
allows for the emergence of robust evolutionary cycles in
finite populations regardless of the updating method chosen.
Together with a previous report [13] on the existence of limit
cycles for infinite populations evolving via a replicator-mutator
dynamics, our present results show that limit cycles are a
generic feature of the dynamics generated by destructive
agents, not restricted to a particular selection dynamics. In
fact, this is a dynamical feature that makes this model different
from other three-player games such as that of loners [12],
for which cycles are structurally unstable and their existence
strongly depends on the absence of mutations and other kinds
of perturbations.

In a recent paper [20] Mobilia has shown that there
are three possible outcomes of the replicator equation for
rock-paper-scissors games [2], namely (a) orbits are attracted
toward an asymptotically stable mixed equilibrium, (b) orbits
cycle around a neutrally stable mixed equilibrium, and (c)
orbits go away from an unstable mixed equilibrium and
approach the heteroclinic orbit defined by the border of the
simplex (the case of the joker game). Adding mutations in
the three strategies merges cases (a) and (b), both of which
yield a mixed equilibrium. Oscillations disappear in these two
cases. The loners game belongs to class (b). In contrast, the
joker case analyzed in this paper belongs to class (c), with
mutations generating an attractive, stable limit cycle. In this
case the dynamics oscillates among the three strategies with
well-defined and robust oscillations. We are not aware of any
other game in which the inclusion of a simple behavioral
type (jokers do not need memory, have no special recognition
abilities, and do not rely on any reputation generated along the
game) leads to cycles which are robust to perturbations and
have a well-defined period and amplitude irrespective of the
initial fractions of players.

We have expanded here these results and have proven that
the oscillatory dynamics occurs not only for infinite (or very
large) populations evolving under a replicator dynamics but
also in the case of finite populations and for different update
rules. We have analyzed unconditional imitation, proportional
update, and a Moran process. In all cases the system exhibits
finite time lapses in which most of the population is composed
of cooperative individuals, finding that the Moran process for
low (but not extremely low) selection pressures is the most
favorable to cooperation—as the system spends 50% of the
time in cooperative states. Under unconditional imitation the
system spends one third of the time in cooperative states,
whereas the more stochastic nature of proportional update
favors defection due to the slower invasion of jokers, and thus
the system stays longer in defective states—especially so for
high mutation rates.

Let us note that if the damage d inflicted by jokers is zero,
jokers are not able to overcome defectors and oscillations are
suppressed. The system ends up in a steady population where

cooperation becomes extinguished, both with and without
mutations [13]. Indeed, this case is identical to the loner model
when the benefit obtained by loners is also zero, a situation in
which both jokers and loners become simply nonparticipants
in the game with the only effect of reducing the effective
number of players [12,13]. We have shown here that for finite
populations and d = 0 random drift allows for bursts in which
the system spends some time in fully cooperative states, but
that the happening probability of such events is very low.

The existence of damaging agents, which are able to
destroy the defective populations and lead to a state without
cooperators and defectors, gives cooperators the chance to
rebuild cooperative enterprises and thus promotes cooperation.
This result, as well as modifications of the model presented
here, might be interesting in the study of human evolution,
where examples of destructive periods can be found along
history as a result of revolutions or wars. It has been
suggested that these destructive periods take place whenever
a society reaches a point where the public goods fall below
a certain threshold [21]. The joker game shares this feature.
Modifications of the model presented here may thus help not
only explain how cooperation in animals arises whenever there
is a risk or they face a predator but also provide insights into
the evolutionary cycles observed in human society.
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APPENDIX A: AVERAGE PAYOFFS IN A
FINITE POPULATION

Let us denote by PX(m,l) the average payoff that a player of
type X receives when the population is made of m cooperators,
j jokers, and M − m − j defectors. This average payoff is
calculated by averaging the corresponding payoff (1) with the
probability distribution (3). For defectors this implies

PD(m,j ) =
∑
k,l�0
k+l<n

rk − dl

n − l
p(k,l|n − 1,m,j,M − 1). (A1)

To perform this average it will prove convenient to factorize
the probability distribution as the product of two standard
hypergeometric distributions, that is,

p(k,l|n,m,j,M) = p(l|n,j,M)p(k|n − l,m,M − j ), (A2)

where

p(l|n,j,M) =
(
j

l

)(
M−j

n−l

)
(
M

n

) . (A3)
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The first term in Eq. (A2) is the probability of selecting l jokers
out of the population, and the second term is the conditional
probability of subsequently selecting k cooperators, given that
we have already selected the l jokers.

A useful identity of the hypergeometric distribution—a
consequence of the properties of the binomial coefficients—is

k p(k|n,m,M) = nm

M
p(k − 1|n − 1,m − 1,M − 1). (A4)

Substituting factorization Eq. (A2) into Eq. (A1) and making
use of this identity we readily obtain

PD(m,j ) = rm

M − j − 1

n−1∑
l=0

n − l − 1

n − l
p(l|n − 1,j,M − 1)

− d

n−1∑
l=0

l

n − l
p(l|n − 1,j,M − 1). (A5)

A new identity, namely

p(l|n − 1,j,M − 1)

n − l
= M

n(M − j )
p(l|n,j,M), (A6)

allows us to do the sum

n−1∑
l=0

p(l|n − 1,j,M − 1)

n − l
= M[1 − p(n|n,j,M)]

n(M − j )
. (A7)

It proves convenient to introduce the function

�(n,j,M) ≡ j

M − j

[
1 − (j − 1) . . . (j − n + 1)

(M − 1) . . . (M − n + 1)

]
,

(A8)

in terms of which

1 − p(n|n,j,M) = 1 − j (j − 1) . . . (j − n + 1)

M(M − 1) . . . (M − n + 1)

= M − j

M
[1 + �(n,j,M)] . (A9)

This allows us to write

n−1∑
l=0

p(l|n − 1,j,M − 1)

n − l
= 1 + �(n,j,M)

n
, (A10)

and using this in Eq. (A5) obtain

PD(m,j ) = rm[n − 1 − �(n,j,M)]

n(M − j − 1)
− d �(n,j,M). (A11)

As for the average payoff of a cooperator,

PC(m,j ) = −1 +
∑
k,l�0
k+l<n

r(k + 1) − dl

n − l

×p(k,l|n − 1,m − 1,j,M − 1)

= r

n−1∑
l=0

p(l|n − 1,j,M − 1)

n − l
− 1 + PD(m − 1,j )

= r

n
[1 + �(n,j,M)] − 1 + PD(m − 1,j ). (A12)

Therefore

PC(m,j ) = r

n

(
1 + (n − 1)(m − 1)

M − j − 1

)
− 1

+
[

r

n

(
1 − m − 1

M − j − 1

)
− d

]
�(n,j,M).

(A13)

Finally, PJ(n,j ) = 0 because jokers get zero regardless of
the composition of the population.

APPENDIX B: CALCULATION OF THE
TRANSITION MATRICES

Transition probabilities T (m,j |m′,j ′) are obtained accord-
ing to the specified update rule. We calculate those corre-
sponding to the rules used in this work, but before we proceed
let us introduce some notation. We write Tε1,ε2 ≡ T (m,j |m +
ε1,j + ε2), where ε1,ε2 ∈ {−1,0,1}. Also by ωXY

ε1,ε2
we denote

the probability that a player of type Y is chosen to be replaced
by a player of type X when the population is made of
m + ε1 cooperators, j + ε2 jokers, and M − m − j − ε1 − ε2

defectors. Whether the Y player is finally replaced by an X
one depends on mutations, thus

T1,0 = ωDC
1,0 (1 − 2μ) + (

ωJC
1,0 + ωCC

1,0

)
μ,

T1,−1 = ωJC
1,−1(1 − 2μ) + (

ωDC
1,−1 + ωCC

1,−1

)
μ,

T−1,0 = ωCD
−1,0(1 − 2μ) + (

ωJD
−1,0 + ωDD

−1,0

)
μ,

(B1)
T0,−1 = ωJD

0,−1(1 − 2μ) + (
ωCD

0,−1 + ωDD
0,−1

)
μ,

T−1,1 = ωCJ
−1,1(1 − 2μ) + (

ωDJ
−1,1 + ωJJ

−1,1

)
μ,

T0,1 = ωDJ
0,1(1 − 2μ) + (

ωCJ
0,1 + ωJJ

0,1

)
μ.

In all cases there are two possibilities for a Y individual to
become an X one, either a pair XY is selected, the update
takes place, and no mutation occurs, or another pair ZY is
selected (with Z �= X) but a mutation changes Z into X.

Finally, the probability that no change of strategy occurs
T0,0 = T (m,j |m,j ) is obtained as

T0,0 = 1 − (1 − μ)
∑
X�=Y

ωXY
0,0 − 2μ

∑
X

ωXX
0,0 , (B2)

where the subscript 0,0 refers to a population made of m

cooperators, j jokers, and M − m − j defectors.
Notice that the expansion (16) readily follows from expres-

sions (B1) and (B2).

1. Unconditional imitation

This rule prescribes that two players are selected at random
from the population and the strategy of the model player (X)
replaces that of the focal player (Y) if the latter has a lower
payoff. Accordingly, if X �= Y,

ωXY
ε1,ε2

= nX
ε1,ε2

nY
ε1,ε2

M(M − 1)



(
P X

ε1,ε2
− P Y

ε1,ε2

)
, (B3)

where 
(x) = 1 if x > 0 and 0 otherwise, and nX
ε1,ε2

denotes
the number of individuals of type X in the population (e.g.,
nC

1,0 = m + 1, nD
1,0 = M − j − m − 1, nJ

1,−1 = j − 1, nD
0,0
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= M − j − m, etc.). On the other hand, in order to account
for mutations we must define

ωXX
ε1,ε2

= nX
ε1,ε2

(
nX

ε1,ε2
− 1

)
M(M − 1)

. (B4)

2. Proportional update

Similarly to the previous rule,

ωXY
ε1,ε2

= nX
ε1,ε2

nY
ε1,ε2

M(M − 1)
�

(
P X

ε1,ε2
− P Y

ε1,ε2

)
, (B5)

where �(x) = x/� if x > 0 and 0 otherwise, � being a
constant ensuring that �(P X

ε1,ε2
− P Y

ε1,ε2
) � 1 (typically � is

chosen as the largest possible payoff difference). As in the
previous rule ωXX

ε1,ε2
is given by Eq. (B4).

3. Moran process

In this case payoffs are replaced by fitnesses F X
ε1,ε2

= 1 −
s + sP X

ε1,ε2
(see Sec. III D). Let us introduce the total fitness of

the population


ε1,ε2 ≡
∑

X

nX
ε1,ε2

F X
ε1,ε2

. (B6)

The Moran rule specifies that a player is chosen for repro-
duction proportional to its fitness and the offspring replaces
another randomly chosen individual from the rest of the
population. So if X �= Y,

ωXY
ε1,ε2

= nY
ε1,ε2

M − 1

nX
ε1,ε2

F X
ε1,ε2


ε1,ε2

, (B7)

and

ωXX
ε1,ε2

= nX
ε1,ε2

− 1

M − 1

nX
ε1,ε2

F X
ε1,ε2


ε1,ε2

, (B8)

APPENDIX C: STATIONARY PROBABILITIES IN THE
WEAKMUTATION LIMIT

We here calculate the elements of matrix Q, Eq. (11), in
order to evaluate the stationary probabilities αX.

1. Unconditional imitation and proportional update

According to the payoffs obtained in Appendix A:
(i) PD(m,0) > PC(m,0) for all 0 < m < M , so D always

invades C, but C never invades D.

(ii) PC(m,M − m) > PJ (m,M − m) for all 0 < m <

M , provided r > 1 + (n − 1)d (the rock-paper-scissors
condition), so under this assumption C always invades J, but J
never invades C.

(iii) PJ (0,j ) > PD(0,j ) for all 0 < j < M , so J always
invades D, but D never invades J.

Therefore

Q =
⎛
⎝−1 0 1

1 −1 0
0 1 −1

⎞
⎠. (C1)

This implies

αC = αD = αJ = 1
3 . (C2)

On the other hand, if r < 1 + (n − 1)d neither C invades J
nor vice versa, so in this case

Q =
⎛
⎝−1 0 0

1 −1 0
0 1 0

⎞
⎠, (C3)

which implies

αC = αD = 0, αJ = 1. (C4)

2. Moran process

The Moran process for a population with two strategies
defines a birth-death process with two absorbing states. The
details of the calculation of ρYX can be found in [11] and
follow standard formulas for this kind of processes [22].
Summarizing, if we denote PYX(m) the payoff received by
a type Y individual when the population is made of m Y
individuals and M − m X individuals, then

ρ−1
YX =

M−1∑
m=0

qm, ρXY = qM−1ρYX, (C5)

where q0 = 1 and

qm = qm−1
1 − s + sPXY(M − m)

1 − s + sPYX(m)
, 0 < m < M. (C6)

Payoffs PXY(m) and PYX(m) are obtained from the formulas
of Appendix A. The maximum value of the selection strength
s is given by

smax = 1

1 − min
XY,m

PXY(m)
. (C7)
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[11] C. Hauert, A. Traulsen, H. Brandt, M. A. Nowak, and

K. Sigmund, Science 316, 1905 (2007).
[12] C. Hauert, S. de Monte, J. Hofbauer, and K. Sigmund, Science

296, 1129 (2002).
[13] A. Arenas, J. Camacho, J. Cuesta, and R. Requejo, J. Theor.

Biol. 279, 113 (2011).
[14] K. L. Lavalli and W. F. Herrnkind, New Zealand J. Marine

Freshwater Res. 43, 15 (2009).
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