
This document is published in:

Expert Systems with Applications, (2012), 39 (12), 10656–10673.
DOI: http://dx.doi.org/10.1016/j.eswa.2012.02.170

© 2012 Elsevier Ltd

http://dx.doi.org/10.1016/j.eswa.2012.02.170

Methodological design and comparative evaluation of a MAS providing AmI
Verónica Venturini, Javier Carbo, José Manuel Molina
Carlos III University of Madrid, Av. De la Universidad Carlos III, 28270 Colmenarejo, Madrid, Spain

E-mail addresses: veronica.venturini@uc3m.es (V. Venturini), javier.carbo@ uc3m.es (J. Carbo), josemanuel.molina@uc3m.es (J.M. Molina).
ntellig
os to d
tributio
ed in v
tween

nteract
ext Aw
Abstract: Researches on Ambient I
this work, we review several scenari
for heterogeneous domain. Our con
services) using agents that can be us
apply a hybridizing methodology be
Context Aware System using agent i
different MAS architectures for Cont
Keywords: Multi-agent, Context Aware, U

service-locating services and other more
works with forward and backward chaining
biquitous Computing, Ambient intelligence, Location

ent and Ubiquitous Computing using wireless technologies have increased in the last years. In
efine a multi-agent architecture that sup-port the information needs of these new technologies,
n con-sists of designing in a methodological way a Context Aware System (involving location
ery different domains. We describe all the steps followed in the design of the agent system. We
 GAIA and AUML. Additionally we pro-pose a way to compare different agent architectures for
ions. So, in this paper, we describe the assignment of weight values to agents interaction in two
are problems solving different scenarios inspired in FIPA standard negotia-tion protocols.
1. Introduction

Ambient Intelligent (AmI) refers to a world where the intelli-
gence is into any object around us (Wright, Gutwirth, Friedewald,
Vildjiounaite, & Punie, 2008). Effectively, applications of AmI have
arisen in different domains such as social environments (Kjeldskov
& Paay, 2005), education (Gu, Shi, Xu, & Chen, 2005), cultural
(Bombara, Cali, & Santoro, 2003), tourist (Paganelli, Bianchi, &
Giuli, 2006), and health care (Corchado, Bajo, de Paz, & Tapia,
2008). In them, computers monitor our movements, activities,
routines and behaviors to predict what want to do in a particular
time. This information that characterizes a situation involving
objects, persons and places is often called ‘‘context’’ (Dey, Abowd,
& Salber, 2001).

AmI is supposed to be achieved through the use of systems that
use context to provide services adapted to the situation defined by
the context. In Context Aware Systems, user current situation
involves user position. For its acquisition, location services play a
relevant role in these systems.

Different platforms of context services provisions were pro-
posed in the last years. Context Toolkit (Dey et al., 2001) is a simple
widgets-based application, which works using attribute-value
pairs and has a context aggregator that allow add context informa-
tion as location or sound level. Other context platform is SoCAM
(Gu, Pung, & Zhang, 2004), that is a distribute middleware that uses
ontologies to model the context, and its architecture is composed
by context providers, context interpreters, context database,
services; this platform
 rules engine.
Other relevant context platforms are Hydrogen (Hofer, Schwinger,
Pichler, Leohartsberger, & Altmann, 2003), Cortex (Sorensen et al.,
2004) and Citron (Yamabe, Takagi, & Nakajima, 2005).

An interesting approach to implement Context Aware Systems
is the use of agent technology, since AmI is an ideal workspace
for agents because autonomous distributed and proactive agent
nature (Wooldridge & Jennings, 1995).

Several Context Aware Systems adopted this agent-based
approach to AmI. For instance CoBRa (Chen, Finin, & Joshi, 2003) is
an agent-based architecture that works with a context broker
agent, who maintains a context model for the community. Despite
the use of agents, its centralized view does not provide an appro-
priate solution for AmI applications. Other previous uses of agents
in AmI are domain-specific: ALZ-MAS for health care (Glaser, 1997;
Moreno, Valls, & Viejo, 2003) for searching a taxi in the city; ASK-IT
by Spanoudakis and Moraitis (2006) for assisting users in tourism
activities. In other hand, there is some generic multi-agent archi-
tecture such as Open Agent Architecture (OAA), which was one of
the first generic architecture proposed in Martin, Cheyer, and
Moran (1995). It works with a set of agents as facilitator, applica-
tion, meta-agent and user interface agent. Client agents, surpris-
ingly, are considered external agents that operate through a
facilitator agent. The main drawback of OAA is then the lack of
interest over client preferences. Finally, CONSORTS agent architec-
ture (Nakashima, 2007) was built taking into account the spatial–
temporal reasoning agent, services agent and personal agent. But,
in our point of view, it lacks of a specific agent to analyze user
profile in relation with the services that providers offer.

We proposed a similar architecture to those previous works in
Fuentes, Sánchez, Carbó, and Molina (2007) that involved three
kinds of agents: Central, User and Provider. But it is still another
centralized approach to the problem, in this paper we intend to
overcome this limitation with a truly distributed processing and
responsibilities. We also intend to include a specific agent for
analyzing user profiles.

Our contribution consists of designing in a methodological way
a Context Aware System (involving location services) using agents
that can be used in very different domains. We describe all the
steps followed in the design of the agent system, including an
ontology reusing properties and concepts of similar projects such
as Fuentes, Carbó, and Molina (2006).

In spite of the diversity of the already existing agent-inspired
methodologies (SIGMA Tiba & Capretz, 2006, INGENIAS Pavón &
Gómez-Sanz, 2003, CoMoMAS Glaser, 1997, GAIA Wooldridge, Jen-
nings, & Kinny, 2000 and Agent UML (AUML) Huget et al., 2002), we
concluded that the more specific to Agent Development is GAIA.
But on the other hand it does not allow to go in the imple-
mentation way in a direct form, and also GAIA diagrams lack of
relationships among them.

We apply an hybridizing methodology between GAIA and
AUML. Specifically we follow Huhns (Huhns, 2004) view of AUML
as a methodology instead of considering AUML just as a modeling
language. Additionally, Agent UML (AUML) is the proposed lan-
guage being accepted as part of FIPA-99 standard (Bauer, Muller, &
Odell, 2001).

We combine both using AUML agent and interaction models,
and we employ the role and services models that GAIA provides.
AUML Agent model summarizes and relates all the models used
in AUML methodology but without details, while AUML interaction
model (with GAIA support) allows the system implementation eas-
ier for the developer.

Finally evaluating these complex systems is very problematic
due to the distributed nature of agents and the diversity of scenar-
ios that Context Aware Systems address. Additionally we propose a
way to compare different agent architectures for Context Aware
System. It considers agent interactions as the most important char-
acteristic of agent systems (Wooldridge & Ciancarini, 2001). So, in
this paper, we describe the assignment of weight values to agents
interaction in two different MAS architectures for Context Aware
problems solving different scenarios.

The structure of this paper is the following: Section 2 gives an
explanation about problem definition; Section 3 includes the mul-
ti-agent system methodological design; Section 4 shows the agent
architecture finally proposed; Section 5 shows the comparative
evaluation of two agent approaches to Context Aware System and it
concludes in Section 6.
The above is a description that could be applied to any domain,
such as fairground, shopping mall, tourist environment. All these
heterogeneous domains are very rich in context information,
which allows a context-based services provision.

Fig. 1. Conference context scenario.
2. Problem definition

We assume a generic context-based scenario that includes users
requiring satisfaction of their needs, and providers solving these
needs. Providers intend to offer services according user prefer-
ences. In this generic scenario location services are relevant since
services are provided according user’s position. For example, if
we are in technology fairground domain, a provider could be the
Nokia stand, and the provided services could be: give cell phone
information, fix cell phone and sell accessories.

A common activity that we can observe in this scenario is that
users are continuously in interaction with their pairs. In our model
we want to take into account the other users’ influence in user
decisions, for instance, through recommendations. In fact, recom-
mendations play a key role in order to obtain customized services
according to user current situation. For example, users might want
to obtain personal recommendations about the places they are cur-
rently walking (historic buildings, shopping, etc.).

This customization is implemented using acquired user profiles.
In this sense, we intend to acquire in an unobstrusive way user
profiles by observing externally user’s actions in the system. This
is what we call public user profile in opposition to the private user
profile that is used internally by the user to make decisions.

Finally, we also intend to address the possibility of users form-
ing coalitions when they have shared interests. Then they would
run an activity together or share information inside the coalition.

Summarizing, the relevant concepts of the generic scenario we
are intending to model are: a location service, user to user recom-
mendations, unobtrusive acquisition of public user profiles and
coalition formation. The idea is to design and build an architecture
that includes all the features mentioned before using agent
technology.

To illustrate the situation, let us suppose the case of the confer-
ence context (Bravo, Hervás, Nava, Chavira, & Sanz, 2005) shown in
Fig. 1. A user called John arrives at the conference site and goes at
parking. He receives in his GPS an alarm about empty place in the
parking. After that, he goes directly to reception. But as he had reg-
istered few days ago, he may receive personalized services directly
in his mobile device, after logging in. He then may look the list of
the incoming sessions in his mobile device without needing to take
a look on the RFID screen of the information point. He walks to de-
mo’s room. Although the demo has already started he can see in his
mobile device contextual information about the speaker (belong-
ing university group, related research and the complete demo
show). Since John is not interested in the subject, he decides to
leave. When he is located in the coffee room, he will be locatable
for anyone who wants to talk to him. Indeed, he receives some
messages in the cell phone from people that want to contact with
him by some reason and therefore several informal talks take place
without any compromising introductions. Among these messages
he receives a suggestion to join a group (coalition) visiting a place
in the city of particular interest this afternoon and a personal rec-
ommendation about an incoming talk. Therefore he accepts the
invitation to the group and runs away to the conference hall where
the interesting talk is going to take place in the next minutes.
When he arrives to session room, his mobile device warn him
about the presence of a colleague from his university, John is really
surprised. Fig. 1 shows this scenario.

3. Design of MAS with BDI agents

3.1. Agents paradigm and methodologies used

The context-aware multi-agent system that we intend to design
follows the BDI (Belief-Desire-Intentionl) paradigm by Rao Georg-
elf. BDI agents are built according to these three human reasoning-
inspired knowledge levels, supporting reactive and proactive
behavior. Beliefs stands for the knowledge that agents have about
the environment and other agents, desires represent the objectives
that each agent has, and finally, a set of intentions that could be
created/updated/given-up if the environment changed. The BDI
paradigm may then provide agent solutions facing a dynamic envi-
ronment with a degree of uncertainty.

AUML, as extension of UML, facilitates to introduce BDI in Agent
model. AUML is an attempt to move closely with the practical
issues regarding agent system design. AUML constitutes the
description language used to represent agent-specific concepts
(Bauer et al., 2001).

AUML extends UML with the following issues: a special orga-
nized agent class, the new concept of role, the new Agent Interac-
tion Protocol Diagram. But, how we explain in the introduction, we
just use agent and interaction models from AUML.

GAIA is a methodology for multi-agent system design, which
works in two phases: analysis and design. Analysis phase tries to
understand the system and its structure through the next steps:
(i) the organizational structure, (ii) the environment model, (iii)
the preliminary role model, (iv) the preliminary interaction model
and (v) organizational rules. On the other hand, design phase
works over analysis models in order to implement agents
(Wooldridge, Jennings, & Kinny, 2000). GAIA lacks of a requirement
phase, and therefore we replace it by uses cases diagrams of Agent
UML (AUML).

Particularly we follow the approach of Huhns (Huhns, 2004)
who proposes the following steps to build the agents for our archi-
tecture: Group and role assignment, Services description, Protocol
description, Event, Goals, plans and actions, Knowledge.

Particularly, the two last steps are included in agent diagram in
our design. In advance, we show step by step the analysis and
design of our multi-agent system.
3.2. GAIA agent role model of a context-aware system

The role model identifies the main roles for agents. Here a role
can be viewed as an abstract description of an entity’s expected
function (Garro, 2012). Each role has associated attributes: respon-
sibilities (a role is created in order to do something) and permis-
sions (relating to the type and the amount of resources that can
be exploited when carrying out the role).

According each agent model, we next detail each role-schema
using GAIA Model in Table 1.
3.3. AUML agents model of a context-aware system

Agents are defined through agent’s diagrams in the AUML
methodology. Since we consider our agents to be cognitive/deliber-
ative they were designed taking into account the following con-
cepts: roles, services that offer, protocol description, plans,
objectives, actions and knowledge (beliefs) (Huget et al., 2002).

Taking into account the agent roles described in the GAIA role
model, we now describe agent characteristics forming AUML agent
model (see Fig. 2) for the agents in the system: Locator, User
Manager, Broker, Provider and User.

Locator Agent plays the role of user identification and user loca-
tion inside the environment. To satisfy such desires, the locator
agent has to connect with Appear Platform (Sánchez-Pi, Fuentes,
Carbó, & Molina, 2007) that provides the location services. Also,
this locator agent has to reason over spatial–temporal data. If the
system required it, this agent would be a fusion data agent that
connects with multiple locators agents that would work in differ-
ent agent platforms. Its beliefs are: user position and the spatial–
temporal data. Table 2 shows the AUML diagram of Locator Agent.

User Manager Agent has the desire of registering/deregistering
each user agent that wants to run in the system. In order to accom-
plish such desire, it receives a request to register; it has then to
analyze the user agent situation before registering it in the system.
For instance, if the domain is about engineering conferences and a
nurse want to register, her register request should be rejected.

Other activity or objective of the user manager agent is to up-
date shared user profiles. User manager is in charge of managing
the public profile of the user. Additionally, it has to manage the
coalitions over shared interests. For example, if several user agents
are interested in buying the last book of the Lord of the Rings, this
user manager agent could group them to jointly request a better
price from the provider. Other example is when people want to
go to the same place; the user management agent could evaluate
the minimal way for each one, and it could fix a meeting point. Ta-
ble 3 shows the AUML diagram of User Manager Agent.

Broker Agent is the responsible of managing services, discover-
ing and filtering providers. Also, it has to make the matching be-
tween user profile and the services that provider agent offers. It
receives user agent position and according to the coordinates and
zone where user agent is, the broker will filter out what provider
agents are close. After that, the broker agent warns provider agent
about a potential client. The beliefs of broker agent includes pro-
vider context information Services and provider agent’s location.
Its intentions are related to filtering providers’ goal and applying
matching goal. Table 4 shows the AUML diagram of Broker Agent.

Provider agents offer services to users and they negotiate with
them. Their beliefs include their own contextual information and
information about broker agent and the other providers that share
their knowledge. One of the goals of provider agents is to offer
services according to the user preferences, with this intention
broker agent matches public user profiles with services offered
by providers. The other goal of Provider agents is to achieve agree-
ments with users through a negotiation process. The plans of these
agents consist of dialogs with users to reach such goals. Table 5
shows the AUML diagram of Provider Agent.

Finally, Users agents can negotiate with providers, to reach
agreements, and it can make recommendations to other users or
propose forming coalitions with them. The user agent would begin
requiring services or information.

After that, user agent would receive multiple responses from
different agents (providers and users), and it would have to decide
with whom it should start the negotiation process. User Agent is
responsible to manage the private (internal) user profile, and it
could improve its decisions according to the recommendations re-
ceived. Its beliefs include the own profile information (public and
private user profiles). Its plans are: to negotiate and reach agree-
ments with providers, to dialog with users (for reputation, recom-
mendation or form groups) and to manage profile (updating the
own profile – learning preferences – and sharing information with
other users). Table 6 shows the AUML diagram of User Agent.

3.4. Services model

The services model in Gaia methodology tries to identify the
functions (services) associated with each agent role and to specific
the main properties of these services (Garro, 2012). We must to
identify inputs, outputs, pre and post-conditions of each service.
This model is detailed bellow role by role.

Table 1
Gaia role model for a context-aware multi-agent system.

Role Schema: User Manager (UM)

Description
This role is responsible for registering users, as well as improving their public profiles

Protocols and Activities

Receive-registry-profile, agree-registry, register-user, deregister-user, receive-user-sequence, improve-user-profile

Permissions
Reads user_profile, sequence Changes user_registry, user_profile

Responsibilities
Liveness:

UM = (Receive-registry-profile � Agree-registry � (Register-userjDeregister-user))nj(Receive-user-sequence � Improve-user-profile)n

Safety: it is necessary to guarantee that no intruders get into the system

Role Schema: Location Manager (LM)

Description
This role is responsible for locating and identifying users

Protocols and Activities

Check-user-location, identify-user

Permissions
Reads user_location

Responsibilities
Liveness:

LM = (Check-user-location � Identify-user)n

Safety: it is necessary to ensure the connection with the location system

Role Schema: Services Manager (SM)

Description
This role carries out the matching between services offered by providers and user profile

Protocols and Activities

Match-services-profiles

Permissions
Reads provider_service, user_profile Changes matching_result

Responsibilities
Liveness:

SM = (Match-services-profiles)n

Safety: it is necessary the provider_service and user_profile would be available to apply the matching

Role Schema: Provider Discover (PD)

Description
This role obtains close providers and communicates with them to warn them about the presence of a user

Protocols and Activities

Filter-provider, warn-provider

Permissions
Reads matching_result Changes communication_information

Responsibilities
Liveness:

PD = (Filter-provider �Warn-provider)n

Safety: if there is a success matching result, it is possible to communicate with the provider

Role Schema: Service Provider (SD)

Description
This role is responsible for informing about services and reaching agreements with users after negotiation

Protocols and Activities
Offer-service, request-negotiation, agree-negotiation, exchange-information

Permissions
Reads agree-negotiation, information_exchange Changes services_offered

Responsibilities
Liveness:
SD = (Offer-service)nj(Request-negotiation � Agree-negotiation � Exchange-information)n � (Offer-service)
Safety: it is necessary to negotiate first for reaching an agreement and exchanging information

(continued on next page)

Role Schema: Profile Manager (PM)

Description
This role is responsible for updating internal user profiles and it offers the possibility of sending a shared part to central agent

Protocols and Activities:

Update-internal-profile, send-shared-profile-registry

Permissions
Reads user_profile, recommend_information
Changes user_profile

Responsibilities
Liveness:

PM = (Update-internal-profile)nj(send-shared-profile-registry)n

Safety: it is necessary to receive external information, like recommendations to improve or update internal profile

Role Schema: Negotiate Role (NR)

Description
This role let agents negotiate and, according to this, receive new services or improved services

Protocols and Activities
Consult-information, receive-services, ask-for-agreements, receive-request-negotiation, exchange-information

Permissions
Reads negotiate_information
Changes services

Responsibilities
Liveness:
NR = (Consult-information)nj(Ask-for-agreements � Receive-Request-negotiations � (Exchange-information)n � Receive-services)n

Safety: there is a negotiation phase for reaching agreements and receiving new services

Role Schema: Recommend Role (RR)

Description
This role offers the possibility to recommend information between users, and to decide who to trust for sharing opinions

Protocols and Activities

Recommend, ask-for-recommendations, decide-to-trust, receive-recommendation

Permissions
Reads recommendations
Changes opinion_to_others, user_profile

Responsibilities
Liveness:

UM = (decide-to-trust � Recommend)nj(Ask-for-Recommendations � Receive-recommendation)n

Safety: it is necessary to assist in the search information process of the user

Role Schema: Coalition Manager (CM)

Description
This role allows to solve the coalitions formation problem between users

Protocols and Activities

Receive-user-request, send-shared-information, group-formation

Permissions
Reads user requests

Responsibilities
Liveness:

CM = (Receive-user-request � Send-shared-information � Group-formation)n

Safety: it is necessary to manage coalitions between users

Role Schema: Trust Manager (TM)

Description
This role is responsible of managing all kind of negotiation between user agents such as: recommendation information, reputation assessments, and trust relationships

Protocols and Activities
Search-activities/places-to-recommend,Management-reputation-mechanisms

Permissions
Reads user requests

Responsibilities
Liveness:
TM = (Search-activities/places-to-recommend �Management-reputation-mechanisms)n

Safety: it is necessary to establish trust relationships between users in the system
First role is locator manager role that takes care of check user
location and identify users services as it is shown in Table 7.
The User Manager role is related with the following services,
showed in the corresponding table: request registry profile, agree

Fig. 2. AUML agent diagram.

Table 2
Locator Agent AUML Diagram.

Locator Agent

Roles
– Location Manager

Services
– Check-user-location
– Identify-user

Beliefs
– Location of Users Agents
– Spatial–Temporal ontological data

Desires
– Locate and identify users agents

Intentions
– User position through location services

Table 3
User Manager Agent AUML Diagram.

User Manager Agent

Roles
– User Manager
– Coalition Manager
– Search Process

Services
– Request-Registry-profile: User Manager
– Agree-registry: User Manager
– Register-user: User Manager
– Deregister-user: User Manager
– Receive-user-sequence: User Manager
– Improve-Profile: User Manager
– Update-internal-profile: User Manager
– Send-shared-profile-registry: User Manager
– Form-user-agents-groups: Coalition Manager

Beliefs
– Public information of user profile.

Desires
– Register/Deregister users
– Improve User Shared Profile
– Form user groups

Intentions
– Register users plan
– Manage user profile
– Manage coalition formation plan
– Plan of recommendation or reputation actions

Table 4
Broker Agent AUML Diagram.

Broker Agent

Roles
– Services Manager
– Provider Discover

Services
– Match-Services-Profile: Services Manager
– Filter-Provider: Provider Discover
– Warn-Provider: Provider Discover
– Search-information: Services Manager

Beliefs
– Identification of User Agents
– Location of Provider Agents

Desires
– Detect Users
– Filter providers

Intentions
– Provider warning plan

Table 5
Provider Agent AUML Diagram.

Provider Agent

Roles
– Service Provider

Services
– Offer personalized services – Request negotiation
– Agree negotiation – Exchange information

Beliefs
– His own contextual information
– Contextual information of Broker Agent and of others Providers Agents

with shared knowledge

Desires
– Communicate services
– Reach a compromise with clients

Intentions
– Offer services to users
– Negotiate with users for reaching agreements

Table 6
User Agent AUML Diagram.

User Agent

Roles
– Recommendation Role
– Negotiation Role
– Profile Manager

Services
– Make recommendations to others users: Recommend role
– Ask for recommendations: Recommend role
– Receive recommendations: Recommend role
– Decide to trust: Recommend role
– Consult information: Negotiation Role
– Receive services: Negotiation Role
– Ask for agreements: Negotiation Role
– Receive request negotiations: Negotiation Role
– Exchange information: Internal Profile Manager

Beliefs
– User profile information (private and public)

Desires
– Negotiation between users and providers
– Recommendation between users
– Trust in other agents
– Manage internal profile

Intentions
– Negotiation Plan
– Dialogue between users
– Manage Profile Plan
registry, register and deregister users, and improve user profile as
Table 8 shows.

The service that is in relation with Services Manager is the
match between user profile and the services that a provider offers
(see Table 9).

Provider Discover role is responsible of filtering providers
according user preferences and warning providers about user pres-
ence (as it is shown in Table 10).

Table 7
Services of locator manager role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Locator Manager (LM)
Check-user-location User location User Location checked Users connected Users located
Identify-user User location checked User Identification Users located Users identified

Table 8
Services of user manager role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: User Manager (UM)
Request-

Registry-
profile

User send a request message Request for registry and user
profile sent

User is in wireless network Central Agent receive
request from user

Agree-registry Request for registry and user profile Agree message and registry
done

User send a request message User Registered or not

Register-user Proposed registry Request-ted registry Locate and identify users User registered
Deregister-user Proposed deregister or user out of the

wireless network
Request deregister or user
disconnected

User registered or connected to the
wireless network

User deregister-red

Receive-user-
sequence

External Information Improved profile Receive information from sensors etc. The profile is improved

Improve-Profile Information about user behavior Improved profile Receive information about user
behavior

The profile is improved

Table 9
Services of services manager role using GAIA.

Service Inputs Outputs Pre-
Condition

Post-Condition

Service Schema: Services Manager (SM)
Match-services-

profiles
User profile known by central and provider
information and location

Matching between user profile and provider
information and location

User
registered

The result of the
matching

Table 10
Services of provider discover role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Provider Discover (PD)
Filter-provider Result of matching Closer provider The result of matching is valid Provider filtered by location and information
Warn-provider Filtered Provider Provider received alert message Obtain closer provider Provider informs closer users

Table 11
Services of Service Provider Role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Service Provider (SP)
Offer-service Provider alerted to inform Services offered according to location and user

profiles
Closer provider
warning

User receive services about his
preferences

Request-
negotiation

Provider request negotiation to
user

Process of negotiation is requested – User accepts or rejects the request
message

Agree-negotiation Request message for
negotiation

Agree message for negotiation or nothing Request message Negotiation Process initiated

Exchange-
information

Agree message for negotiation Information for exchange between provider
and user

Agree message Negotiation process finished
Service Provider role entails the next services: to offer services
to users, to request and to agree negotiation with them, and to ex-
change information as it is shown in Table 11.

Next in Table 12, we represent the services that are related with
Recommend Role. These are: asking for recommendations and
receiving them, recommending users, deciding to trust.

Profile Manager role is responsible of updating internal profile
and sending shared profile registry as it is shown in Table 13.
Negotiate role is in charge of the next services: consulting
information about a offer received, receiving personalized ser-
vices, asking for agreements, receiving request negotiation and
exchanging information to finish the process negotiation (see Table
14).

Coalition Manager has to handle with receiving user request,
sending share information and forming groups services (see
Table 15).

Table 12
Services of recommend role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Recommend Role (RR)
Recommend-users Proposed of

recommendation
Accept recommendation or
refusal

– Recommendation succeed or failure

Ask-for-
Recommendations

Need of recommendation Request recommendations – User agent receive recommendations or
not

Receive-
recommendations

Request recommendations Recommendations received Asked for
recommendations

Recommendations received by user agent

Decide-to-trust – Decision to trust – Share opinions with other agents

Table 13
Services of profile manager role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Profile Manager (PM)
Update-internal-profile Other users

recommendations
Profile updated Received other users

recommendations
The profile is
updated

Send-shared-profile-
registry

Need of registry Send request message and profile to central
agent

Users are connected to wireless
network

User registered

Table 14
Services of negotiate role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Negotiate Role (NR)
Consult-

information
Propose of negotiation Agreement or disagree-ment – Agreement reached or failure

Receive-
services

Request for services or
result of matching is valid

Services received Matching done by central agent and
provider is warned for offer services

Users obtain customized services and
information

Ask-for-
agreements

Need of agree-ments with
other agent.

Request for reaching an
agree-ment

– Agreement accepted or rejected

Receive-
request-
negotiation

User agent ask for agree-
ment to provider

Process of negotia-tion
requested

User Agent have request to reach an
agreement

Negotiation process is open (or not) for
exchanging required information

Exchange-
information

Request for negotia-tion Information for exchange
between provider and user

Ask for agreements and request for
negotiation

Negotiation process finished

Table 15
Services of coalition manager role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Coalition Manager (CM)
Receive-user-request User agent

requests
Searching user with similar
needs

– Other user are warn to make agreements

Send-shared-
information

Users profile
updates

– Some user profile change Coalition Manager update knowledge about public user
profile

Group-formation – A new user group Users with similar
interests

Users group start negotiation process with provider agent
To finish with service model, the services related with Trust
Manager role are the next ones: searching activities/places to rec-
ommend and managing the reputations mechanisms as Table 16
shows.
3.5. Interaction model

The building of AUML Interaction Protocol Diagrams make eas-
ier and it is closer to the system implementation in relation with
GAIA interaction model. We choose AUML Interaction Diagrams
to analyze our agent interaction. In the next figures, we can see
these interaction diagrams for our context-aware system, detailing
communication protocols and identifying agent roles.
3.5.1. Registering users
Initially, when a user wants to use the system, he has to request

creating an account in the system. This is followed by the registra-
tion of user agent after filtering which user is going to use the sys-
tem. It is a simple communication where the user agent (using
internal profile manager role) requests a registration to the user
management agent (with user management role). Fig. 3 shows this
protocol for registering users.
3.5.2. Warning provider
This protocol is based in warn provider role of the broker agent.

Broker Agent knows about all possible services in the environment
and the providers’ position. After locator agent returns the user

Table 16
Services of trust manager role using GAIA.

Service Inputs Outputs Pre-Condition Post-Condition

Service Schema: Trust Manager (TM)
Search-activities-places-to-

recommend
User agent ask for
recommendation

Recommendation
information

Trust Manager has reputation values User agent receive
recommendations or not

Management-reputation-
mechanisms

Receive updated user
profile

– Check if activity or place which is
valorizing exist

Reputation values are updated

Fig. 3. AUML interaction diagram for register user service.

Fig. 5. AUML Interaction Diagram for Offer and Negotiation Process.
position to the user agent, it finally gives the position to Broker
Agent. The broker agent may filter all providers that are close to
user agent. Then it has to match user agent position and available
service providers. Fig. 4 shows the protocol for warning providers.

3.5.3. Negotiation process
After provider was warned about user presence, a negotiation

process could be started. The provider sends an offer to a user.
When the user agent receives the offer he could reject it, accept
Fig. 4. AUML Interaction Diagram
 for Warn Provider Service.

Fig. 6. Ask for Recommendations AUML Interaction Diagram.

Fig. 7. AUML Interaction Diagram for Recommend service.
it or make an additional question about the offer. In the last step
the provider agent is who rejects the agreement, replies user ques-
tions or accepts it. Fig. 5 shows the corresponding negotiation
protocol.

3.5.4. Ask for recommendations
Sometimes a user agent may be interested in asking about rec-

ommendations. User agent sends a request to User Management
Agent, who searches the corresponding information and responses
with it. User agent could be satisfied and finish the process or, in
other case, it could ask about a reputation value (assessment of
the recommendation). Finally, the user agent could finish the pro-
cess or it could start a recommendation process to other users.
Fig. 6 shows the protocol for asking for recommendations.

3.5.5. Recommending
Once services are provided, user agents could proactively (de)

recommend such services to other user agents (user agent 2). If
such recommendation took place, user agent 2 could request addi-
tional information. Fig. 7 shows the protocol for recommending
services.

3.5.6. Updating user profile
User agent may ask User Manager Agent for updating its own

public profile. This is for example, when it consumed a given ser-
vice or changed dynamically some personal preferences. User
agent informs about the particular updating. Then, user Manage-
ment agent could accept or reject the change according to its be-
liefs. Fig. 8 shows the protocol for updating user profiles.

3.5.7. Exchanging information
Provider agent may send information about its services or prod-

ucts to user agents with the goal to capture user interest. Fig. 9
shows the protocol for exchanging information.

3.5.8. Coalition formation problem
In some cases, agents might benefit from being aware of shared

interests of other agents in the system (Merida Campos & Will-
mott, 2007). Agents have to explore a search space of agent group
combinations in order to solve a problem in a coordinated manner,
or to improve their outcomes by creating alliances. In AmI applica-
tion this is a common problem. For example, user agents 1, 2 and 3
ask to the user manager agent about a shared issue. The user man-
ager agent takes a decision and it informs about the shared issue to
the user agents.

In other case, user agents 1, 2 and 3 send a request to user man-
ager agent about which other agents are interested in a given issue.

Fig. 8. Update and send share profile Interaction Diagram.

Fig. 9. AUML Interaction Diagram for Exchange Information.
User manager agent searches all agents with the same interest on
that issue and, then, it sends the corresponding response to each
agent.

Fig. 10 shows the protocol for coalition formation.

3.5.9. Deciding to trust
Since we cannot control the internal reasoning of each agent in

the system, because they are autonomous, there is some risk if we
trust everyone. This problem can be limited including a trust
model to filter out interesting agents. In this way, agents have to
include a model of other agents that allows them to decide if they
can or cannot trust another agent. The trust decision process often
uses the concept of reputation as the key factor a trust decision.
Several agent reputation models have been proposed (Brandão,
Vercouter, Casare, Sichman, & May, 2007).

In Fig. 11, user agent asks to user manager agent about reputa-
tion values of a third agent. It returns a valuation of this third party
that the first user want to know if could trust according to the
knowledge of the user management agent. This interaction imple-
ments a centralized trust of model since the user management
agent is supposed to be applying universally accepted objective
criteria. We plan to complement this centralized observation of
the agents’ behavior with a distributed trust model where agents
communicate directly their subjective valuations (based on their
own observations).

3.6. Collaboration diagram

Collaboration Diagrams representing instances of agent instead
of agent roles. Following Odell’s proposal (Odell, Van Dyke Parunak,
& Bauer, 2000), we design a collaboration diagram where only
interaction agents without roles are showed. This diagram al-lows
us to obtain the finally schema of multi-agent system archi-tecture.
It is showed in Fig. 12: Each rectangle of the figure is an agent. The
sequence of interactions is numbered on the collabora-tion
diagram. Dot line represents the role playing by each user at the
interaction moment.

4. MAS architecture

The proposed architecture is composed by the following agents:
Providers, Users, Brokers, Locator and User Management. Fig. 13
shows an overview of this architecture.

In first instance, each user has to register into User Management
Agent. User agent has to identify with the locator agent who re-
turns the current position. Locator agent, depending on the system,
could be a fusion data agent, in the case that the system would
work with different location technology like wireless, wimax or
ultrawideband. Locator agent is the one who reasons over spa-
tial–temporal data. The user agent is going to request different
services according to the user position. For these purposes, it has

Fig. 10. AUML Interaction for Coalition Management.

Fig. 11. Deciding to Trust AUML Interaction Diagram.
to communicate with Broker agent. This agent is the one who
matches user’s preferences and provider’s services when both are
in the same zone/area. Broker agent is also responsible of manag-
ing services and finding providers.

Once provider agent was warned about user preferences with a
specific public profile, the negotiation process could be started.
This process could be quite simple: a user request a product, to
aim this goal, the user could ask about product’s price. But this
negotiation could be also about services themselves. Also, the
provider could send offers without personalization (avoiding the
matching process of broker agents), as the case of an user agent
looking for general information.

An user agent can communicate with other user agents directly
to negotiate or to ask about recommendations. Management user
agent plays the main role in this operation. For example, if the de-
sign of the system included reputation information, User Manage-
ment agent would then assume the role of matching users. In other
case, it would be directly the user agent who proactively spreaded

Fig. 12. Collaboration Diagram of AUML Methodology.

Fig. 13. Context-aware multi-agent system architecture for heterogeneous domain.
recommendations. Additionally, Management User agent could
handle the agent coalitions over shared interests in a particular
issue.

The framework is designed for a generic domain to support all
activities that could be possible in the environment: trust models,
negotiation, localization, profile management.

User Management, Broker and Location agents are intended to
be running in one or different servers. Each provider agent may
also be running over a different server. Finally, users agents are ex-
pected to be executed on mobile devices.

According to description of the problem of Section 2, we can ob-
serve how the architecture can be easily adapted to conference do-
main. Initially, locator agent establishes the current user position
in the parking area. When he moves into the building, locator agent
detects his position in the registration sector. At this moment, User
Manager Agent asks user agent for registration. User agent sends
then his current position in conference rooms or poster sessions
to Broker agent. It therefore matches user profile of the listener
and the information that each speaker will dictate. Next, user
Agent receives messages of provider agent from session room
one. Locator agent detects that user moves to coffee zone. User
agent receives his position again. User manager agent knows about
the situation and warns the other user agents about its presence.
Some other user agents may then recommend talks, users, etc. A
few minutes later, such user agent moves to the common area
and receives a message in the mobile device from poster provider
agent. Then, information about research line and other papers are
showed in the mobile device. That it is possible because the user
agent has sent his position to broker agent again, and it imple-
mented a new matching. An user agent sends then a request to
poster provider agent, and it starts a negotiation process about a
possible joint publication/project. In the same form, the task of
each agent could be adapted to any context. The use of a generic
ontology facilitates such adaptation.

Fig. 14. MAS1 (Centralized architecture).
The implementation of the system was developed with Jade for
agents whom runnings over servers while with Jade-Leap (Moreno
et al., 2003) for user agents running in mobile devices. We also
built an ontology for agent’s communication with Protégé Tool.
Fig. 15. Sent Messages Number.

Fig. 16. Dutch Action Process for MAS1 and MAS2.
5. Evaluation

5.1. Experimentation

We intend to evaluate our proposal through a pair-comparison
of how they carry out several standard negotiation Protocols de-
fined by FIPA.

We compare the agent-based centralized architecture exposed
in Fuentes et al. (2007) (noted in advance as MAS1) with the archi-
tecture proposed in present work (MAS2).

In our evaluation both architectures include client agents
receiving services offered by providers while brokers facilitate
the matching between them. Both of them also use the same ontol-
ogy (published in Fuentes et al. (2006)). The main differences be-
tween them are:

� The architecture of MAS1 (Fig. 14) has been largely tested in
realistic scenarios and has generated several publications
(Fuentes, Sanchez-Pi, Carbo, & Molina, 2006) involves three
types of agents: Central Agent, Provider agents (one per each
interest point) and User agents (one per user). Central Agent
is in charge of locating users and matching user profile with
the profile of each provider in the same zone/area. Then, the
central agent warns a particular provider agent about the pres-
ence of a potentially interested user. Next, the negotiation pro-
cess between Clients and Providers starts.
� On the other hand in our proposal a Locator Agent localizes and

identifies User agents, while the Broker Agent matches the pub-
lic User Profile with the services offered by Provider agents
when User Agent requested Broker Agent to do it.

The protocols used to evaluate both architectures are first a set
of them inspired in those defined by FIPA specifications: Product’s
Offer, Contract Net and Dutch Auction protocols, and later a
reputation scenario defined adhoc by us was simulated to test
the versatility of our architecture for recommendation services.

Table 17
Weight assigned for each type of message in negotiating protocols depending on their importance.

Type of message Offer a product Contract net protocol Dutch auction

Number of messages Weight Results Number of messages Weight Results Number of messages Weight Results

MAS 1
Inform 2 0.75 0.75 1 0.75 0.75 1 0.75 0.75
Propose 1 1 0 2 0.5 1 132.80 1 132.8
Accept 1 0.5 0 1 1 1 1 0.5 0.5
CFP 0 0 0 1 0.5 0.5 66.40 1 66.4
Request 1 0.75 0.75 0 0 0 0 0 0
Query If 0 0.5 0.5 0 0 0 0 0 0
Reject Proposal 0 0.5 0 2 1 2 0 0.5 0

MAS 2
Inform 1 0.75 0.75 1 0.75 0.75 1 0.75 0.75
Propose 0 1 0 2 0.5 1 130.16 1 130.16
Accept 0 0.5 0 1 1 1 1 0.5 0.5
CFP 0 0 0 1 0.5 0.5 65.08 1 65.08
Request 1 0.75 0.75 0 0 0 0 0 0
Query If 1 0.5 0.5 0 0 0 0 0 0
Reject Proposal 0 0.5 0 2 1 2 0 0.5 0

Fig. 17. Weighted exchanged messages in MAS1 simulations.

Fig. 18. Weighted exchanged messages in MAS2 simulations.

Table 18
Weight assigned corresponding to performatives.

Type of message Pertinent Weight

Inform Yes 1
Propose No 0
Accept No 0
CFP Yes 0
Request Yes 0.75
Query If No 0
Reject Proposal No 0
Both architectures addressed equal conditions: same initial
parameters and situation, same hardware and same procedure.

5.2. Evaluation method

Evaluating Agent Architectures is a complex task, and a few
evaluation methods have been defined until now (Davidsson,
Johansson, & Svahnberg, 2006, 2008). It is worth to mention that
none of these evaluation methods cover all the aspects in the archi-
tecture evaluation. The purpose of our evaluation is to apply the
evaluation method of Joumaa, Demazeau, and Vincent (2008) that
allows us to compare architectures from the communicative point
of view. This method suggested an evaluation based on the weight
of the information brought by messages.

5.3. Evaluating FIPA negotiation protocols with MAS1 and MAS2

Fig. 15 just presents the total amount of exchanged messages
between agents for both architectures MAS1 and MAS2 when Prod-
uct’s Offer, Contract Net negotiation and Dutch Auction were
executed.

Stochastic data were used in the Dutch Auction simulations. For
this reason, we present in Fig. 16 several runs of this protocol with
the average value presented in Fig. 15.

Next, we consider all possible type of messages involved in
these protocols according to their performatives: Inform, Propose,
Accept-Proposal, Call-for-Proposal (CFP), Request, Query-If and Re-
ject-Proposal.

A value among ‘‘high’’ (1), ‘‘medium’’ (0.75), ‘‘low’’ (0.50) and
‘‘not pertinent’’ (0) has to assigned to each type of message
depending on the importance of messages in the simulation (Jou-
maa et al., 2008).

The assignment criteria of these weights we chose to each type
of message were: If the behavior tried to convince the user about
any service, then the maximum value would be assigned to CFP
or Propose message. Otherwise, if the interest in the negotiation
fell on the User Agent, the maximum value would be assigned over
final result of the operation, i. e., accept or reject messages. The fi-
nal weight values are shows in Table 17. These values were used to
compute the aggregated weight of each type of message in each
evaluated protocol (for MAS1 in Fig. 17 and for MAS2 in Fig. 18).

Table 19
Weights assigned for each type of message in recommendation protocols depending on their importance.

MAS 2 1 Reputation request to 4 users 2 Reputation request to 3 users

Type of message Number of messages Weight Results Number of messages Weight Results

Inform 4 1 4 6 1 6
Propose 0 0 0 0 0 0
Accept 0 0 0 0 0 0
CFP 0 0.5 0 0 0.5 0
Request 4 0.75 3 6 0.75 4.5
Query If 0 0 0 0 0 0
Reject Proposal 0 0 0 0 0 0

Fig. 19. User agent 1 asks about reputations of a provider.

Fig. 20. User agent 1 and 4 ask about reputations of a provider.

Then, from these data, it is inferred that the difference between
the two systems, when performing the comparison on the number
of messages sent is minimal. Therefore, MAS2 is valid alternative.
Additionally since our present proposal (noted as MAS2) corre-
sponds to an Asynchronous Distributed System in contrast to
MAS1 that it is an Asynchronous Centralized architecture (with
the corresponding desirable properties of robustness and scalabil-
ity of distributed over centralized systems). MAS2 may represent a
better alternative.
5.4. Evaluating an adhoc reputation scenario

To introduce this additional experimentation case, the interac-
tions over a trust model were evaluated. Assigning weights to this
reputation scenario opens the possibility of comparing other
context-aware systems including trust models with our agent
architecture.

For instance, once a potential client Thomas House receive a
notification about Arbys provider agent.

Thomas agent contacts other agents registered in the system.
He asks for recommendations about Arbys’ reputation. Each user
agent sent to Thomas a message with its own opinion over such
provider. Then Thomas would aggregate all opinions into an Arbys’
reputational image to decide about requesting the services and
negotiating it.

In order to assign weights to each type of messages, for recom-
mendation system the maximum value 1 was given to inform
message and the value 0.75 was for request message. It is shown
in Table 18. The other types of messages were not relevant for this
example.

In the case of MAS2, two cases are evaluated. One of them takes
one user agent only and five recommenders. The other covers two
users and four recommenders. Both request over a single provider
agent. Table 19 shows the amount of messages for each execution.

Figs. 19 and 20 show image captures of running simulations of
both recommendation cases.
6. Conclusions and further work

We have analyzed the principal characteristics from several
AmI scenarios and we have defined a generic framework to con-
text-aware and location-based multi-agent system. We have fo-
cused in agents’ architecture design, showing the methodological
steps followed. This model was built using GAIA and AUML meth-
odologies. The resulting architecture becomes flexible to any ser-
vice that could be included in AmI environment. Of particular
interest is the inclusion of a locator agent that would be a data fu-
sion agent if connections with several kind of location systems
were needed. And another innovative feature of our contribution
is that different mechanisms of reputation or recommendation
were included.

Finally evaluating these complex systems was addressed com-
paring our proposal with an already tested centralized agent-based
alternative architecture. We did it considering agent interactions
as the most important characteristic of agent systems (Wooldridge
& Ciancarini, 2001). So, in this paper, we described the assignment
of weight values to agents interaction in two different MAS
architectures for Context Aware problems facing FIPA standard
negotiation protocols: Product’s Offer, Contract Net and Dutch
Auction protocols.

Finally we also implemented this evaluation method to adhoc
recommendation scenarios to show the versatility of our architec-
ture and to facilitate future comparisons of this application of trust
models in context-aware systems.
Finally, we conclude that communication technologies are the
actual revolution which needs software advances. In this sense,
and in relationship with sensors and actuators in the environment,
ambient intelligence applications will be very soon assisting hu-
man in all activities: daily life, tourism, education, health care,
etc. We have contributed to such final goal with a generic agent
architecture that provides context-aware services, that was de-
signed following an hybridizing methodology between GAIA and
AUML. We also compared our architecture with an already pub-
lished alternative through an evaluation method based on the rel-
evance of exchanged messages, and we showed the applicability of
using trust models in such Context Aware Systems with two cases
of use.
References

Bauer, B., Muller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying
multiagent interaction. In P. Ciancarini & M. Wooldridge (Eds.), Agent-oriented
software engineering (pp. 91–103), LNCS 1957, Berlin: Springer-Verlag.

Bombara, M., Cali, D., Santoro, C. (2003). Kore: A multi-agent system to assist
museum visitors. In Workshop from objects to agents, Villasimius, (WOA 2003), CA,
Italy (pp. 175–178).

Brandão, A. A. F., Vercouter, L., Casare, S., & Sichman, J. Exchanging reputation values
among heterogeneous agent reputation models: An experience on ART testbed,
May 14–18, 2007, AAMAS’07, Honolulu, Hawai’i, USA.

Bravo, J., Hervás, R., Nava, S., Chavira, G., & Sanz, J. (2005). Display-based services
through identification: An approach in a conference context. In The ubiquitous
computing and ambient intelligence (UCAmI’05), CEDI’05. Granada, Spain.

Chen, H., Finin, T., & Joshi, A. (2003). An intelligent broker for context-aware
systems. In Adjunct proceedings of Ubicomp 2003 (pp. 183–184). UbiComp.

Corchado, J. M., Bajo, J., de Paz, Y., & Tapia, D. I. (2008). Intelligent environment for
monitoring Alzheimer patients agent technology for health care. Decision
Support Systems, 44(2).

Davidsson, P., Johansson, S., & Svahnberg, M. (2006). Characterization and
evaluation of multi-agent system architectural styles. In Software engineering
for multi-agent systems IV. Lecture notes in computer science. Springer-Verlag.

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and toolkit for
supporting the rapid prototyping of context-aware applications. Human–
Computer Interaction (HCI) Jorunal, 16(2-4), 97–166.

Fuentes, V., Carbó, J., & Molina, J. M. (2006). Heterogeneous domain ontology for
location based information system in a multi-agent framework. In E. Corchado,
H. Yin, V. Botti, & C. Fyfe (Eds.), Intelligent data engineering and automated
learning, 20–23 Setember, 2006, IDEAL 2006, Burgos, Spain. Lecture notes in
computer science (Vol. 4224, pp. 1199–1206). Springer-Verlag.

Fuentes, V., Sanchez-Pi, N., Carbo, J., & Molina, J. M. (2006). Reputation in user
profiling for a contextaware multiagent system. 4th European workshop on
multi-agent systems (EUMAS’06), Portugal: Lisbon.

Fuentes, V., Sánchez, N., Carbó, J., & Molina, J. M. (2007). Generic context-aware BDI
multi-agent framework with GAIA methodology. In International workshop on
agent-based ubiquitous computing, international joint conference on autonomous
agents and multi-agent systems, May 14–18, 2007 (AAMAS 2007). Hawai, USA.

Garro, A. (2012). Modeling-notation source: GAIA, version 03-03-12 17:25EST.
Document author – Alfredo Garro. <http://www.fipa.org/>.

N. Glaser. The CoMoMAS Approach: From Conceptual Models to Executable Code.
In: Modeling Autonomous Agents in Multi-Agent Worlds (MAAMAW), Ronneby
(Sweden), 1997.

Gu, H., Shi, Y., Xu, G., & Chen, Y. (2005). A core model supporting location-aware
computing in smart classroom. International Journal of Computer Science and
Network Security., 6(3), 161–168.

Gu, T., Pung, H. K., & Zhang, D. Q. (2004). A middleware for building context-aware
mobile services. IEEE vehicular technology conference (VTC – Spring 2004) (Vol. 5,
pp. 2656–2660). IEEE Computer Society.

Hofer, T., Schwinger, W., Pichler, M., Leohartsberger, G., & Altmann, J. (2003).
Context-awareness on mobile devices – The hydrogen approach. In Proceedings
of the 36th Hawaii international conference on system sciences (HICSS’03). IEEE
Computer Society.

Huget, M. P. (2002). Agent UML class diagrams revisited. In Proceedings of agent
technology and software engineering. Erfurt, Germany, 2002. United Kingdom:
Agent ART Group, University of Liverpool.

Huhns, M. N. (2004). Agent UML notation for multiagent system design. IEEE
Internet Computing, 63–71.

Joumaa, H., Demazeau, Y., & Vincent, J. (2008). Evaluation of multi-agent systems:
The case of interaction. In Proceedings of the 3rd international conference on
information and communication technologies: From theory to applications, April
2008, Damascus, Syria. IEEE Computer Society Publisher.

Kjeldskov, J., & Paay, J. (2005). Just-for-us: A context-aware mobile information system
facilitating sociality. Mobile HCI 2005, Salzburg, Austria.

Martin, D. L., Cheyer, A. J., & Moran, D. B. (1995). The open agent architecture: A
framework for building distributed software systems. In Proceedings of the first
international conference on multi-agent systems (ICMAS-95), USA.

Merida Campos, C., & Willmott, S. (2007). Exploring social networks in request for
proposal dynamic coalition formation problems. 5th international central and
eastern European conference on multi-agent systems (CEEMAS) (pp. 143–152).

Moreno, A., Valls, A., & Viejo, A. (2003). Using JADE-LEAP to implement agents in
mobile devices. TILAB ‘‘EXP in search of innovation, 2003, Italy. <http://
jade.tilab.com/papers-exp.htm>.

Nakashima, H. (2007). Cyber assist project for ambient intelligence. In J. C. Augusto
& D. Shapiro, (Eds.), Advances in ambient intelligence (Vol. 164, pp. 1–20).

Odell, J., Van Dyke Parunak, H., & Bauer, B. (2000). Extending UML for agents. In G.
Wagner, Y. Lesperance, & E. Yu (Eds.), Proc. of the agent-oriented information
systems workshop at the 17th national conference on artificial intelligence (pp. 3–
17), Austin, TX.

Paganelli, F., Bianchi, G., & Giuli, D. (2006). A context model for context-aware
system design towards the ambient intelligence vision: Experiences in the
eTourism domain. In Procedding of 9th ERCIM workshop ‘‘user interfaces for all’’,
Königswinter (Bonn), Germany, 27–28 September, 2006. Florencia, Italia:
Departamento de Electrónica y Telecomunicaciones, Universidad de Florencia
(pp. 173–191).

Pavón, J., & Gómez-Sanz, J. (2003). Agent oriented software engineering with
INGENIAS. In V. Marik, J. M. üller, & M. Pechoucek (Eds.), Multi-agent systems and
applications II, 3rd international central and Eastern European conference on multi-
agent systems (CEEMAS’2003). LNAI (pp. 394–403). Springer-Verlag.

Sánchez-Pi, N., Fuentes, V., Carbó, J., & Molina, J. M. (2007). Knowledge-based
system to define context in commercial applications. In Proceedings of the 8th
ACIS international conference on software engineering, artificial intelligence,
networking and parallel/distributed computing, July 30 – August 1, 2007, SNPD
2007 (pp. 694–699). Qingdao, China.

Sorensen, C., Wu, M., Sivaharan, T., Blair, G. S., Okanda, P., Friday, A., et al. (2004). A
context-aware middleware for applications in mobile ad hoc environments. In
Proceedings of the 2nd workshop on middlerware for pervasive and ad hoc
computing (pp. 107–110). New York: ACM.

Spanoudakis, N. I., & Moraitis, P. (2006). Agent based architecture in an ambient
intelligence context. In Proceedings of the 4th European workshop multi-agent
systems (EUMAS’06) (pp. 163–174).

Tiba, F. K., & Capretz, A. M. An overview of the analysis and design of SIGMA:
Supervisory intelligent multi-agent system architecture. In Information and
communication technologies, 24–28 April, 2006, ICTTA’06 (Vol. 2). Canada:
University of Western Ontario.

Wooldridge, M., & Ciancarini, P. (2001). Agent oriented software engineering: The
state of the art. In First international workshop on agent-oriented software
engineering. Springer.

Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures, and
languages. In M. Wooldridge & N. R. Jennings (Eds.), Intelligent agents
(pp. 1–22). Springer-Verlag.

Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3,
285–312.

Wooldridge, M., Jennings, N. J., & Kinny, D. (2000). The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), 285–312.

Wright, D., Gutwirth, S., Friedewald, M., Vildjiounaite, E., & Punie, Y. (2008).
Safeguards in a World of AmI, 2008, 10th ed. Springer (p. 291).

Yamabe, T., Takagi, A., & Nakajima, T. (2005). Citron: A context information
adquisition framework for personal device. In Proceedings of the 11th
international conference on embedded and real-time computing systems and
applications (RTCSA’05) (pp. 489–495). IEEE Computer Society.

