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Mathematics of evolution
José A. Cuesta

A mathematician is a blind man in a dark room
looking for a black cat which isn’t there.

Charles Darwin

It is somehow strange to read an article on Darwin and evo-
lution in a mathematical journal. Both are always associated,
obviously, with biology. However, evolutionary theory, like
every other theory deserving that name, admits quantitative
formulations of many of its aspects. Darwin himself, not very
skilled in mathematics but nevertheless an educated scientist,
acknowledged that “every new body of discovery is mathe-
matical in form, because there is no other guidance we can
have”. For Darwin, mathematicians were people with a sixth
sense that allowed them to “see” in places of the mind where
everybody else is “blind”. Hence his quotation at the begin-
ning of this article which, funny as it may seem, expresses
Darwin’s admiration for mathematicians.1

Darwin’s great contribution, the theory of evolution by
natural selection [3], received a fundamental input when the
laws of inheritance, discovered by Gregor Mendel in 1865
[15] and rediscovered by de Vries, Correns and von Tscher-
mak in 1900, were incorporated into the theory. From that mo-
ment on, and in a way that later became known as population
genetics, a group of mathematicians, amongst whom Fisher,
Haldane, Wright and later Kimura are prominent examples,
laid the foundations of the mathematical theory of evolution.
Nowadays, this theory has a status of its own within the field
of applied mathematics, and it has developed and diversified,
allowing us to understand the subtle mechanisms that evolu-
tion operates with, not just in biology but in many other disci-
plines sharing similar principles, like linguistics, economics,
sociology and computer science.

Last year we celebrated Darwin’s bicentennial as well as
the sesquicentennial of the publication of The Origin of Species,
and these anniversaries provide an appropriate excuse to re-
vise evolutionary theory from a mathematical point of view.
This is the goal of this article. It should be clarified at this
point that mathematical contributions to evolutionary theory
are so many and so diverse that only a few of them can be
sampled here. Besides, the divulgatory aim of this article dis-
courages any attempt at deeply reviewing them, so the inter-
ested reader is referred to the excellent texts on the matter that
are referenced in this article [5, 7, 16]. Another clarification
is also needed. There are two kinds of reproductive mecha-
nisms in living beings: asexual, by which an organism can
replicate by itself alone, and sexual, by which the intervention
of more than one organism (almost always two) is necessary
for reproduction. The former is typical (but not exclusive) of
simple organisms, like viruses, and is the subject matter of
most mathematical models; the latter implies combining ge-
netic material coming from at least two parents, which leads
to particular complications that are also the subject matter of
more elaborate models. This article will almost exclusively

deal with asexual reproduction (which is already complicated
enough), although sexual reproduction will occasionally be
mentioned at specific points.

1 Fundamental mechanisms of evolution

Upon reflection of what is necessary, at an abstract level, for
an evolutionary process to occur, no matter what the con-
text is, one realizes that the necessary condition is the con-
currence of three fundamental mechanisms: replication, the
mechanism by which entities can create copies of themselves;
mutation, the mechanism that generates small variationswithin
those copies; and selection, the mechanism by which the “best”
copies are able to eliminate all the others generation after gen-
eration. Let us consider these three mechanisms one by one.

Replication

A typical bacteria divides every 20 minutes, generating two
copies of itself; 20 minutes later there will be four bacteria;
after one hour there will be eight. . . Bacterial population in
a generation nt is related to that of the previous generation
by the simple equation nt = 2nt−1, whose solution, assum-
ing n0 = 1, is nt = 2t. A replicative process like this one
leads to exponential growth. It was Malthus who first pro-
posed this law of growth in his book An Essay on the Prin-
ciple of Population [13]. According to this law, assuming a
situation in which generations are intertwined, if a population
n(t) reproduces at a constant replication rate per individual r,
i.e. ṅ = rn, then n(t) = n(0)ert. This is Malthus’ model for
human population growth and the continuum version of the
bacterial reproduction law that we have just obtained.

Malthus was one of the most important influences on Dar-
win’s thoughts because of what has been referred to as “Mal-
thusian catastrophe”. It can be illustrated with the example
of bacteria. According to the law we have obtained, after only

Figure 1. A photograph of Charles Darwin, circa 1871, by Oscar Gustave
Rejlander (1813–1875). Source: Wikimedia Commons.
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two days (144 divisions) we will have 2144 ≈ 2 × 1043 bac-
teria. More precisely, if the bacterial diameter is ∼ 1 μm and
the bacterial density is that of water (1 g cm−3) then 2 × 1043
bacteria have a mass of approximately 2 × 1028 kg, i.e. about
3000 times the mass of the Earth! Obviously such a growth
cannot be sustained and should drive most individuals to ex-
tinction. In fact, the lack of resources can be effectively added
to Malthus’ law by replacing the constant replication rate per
individual with a decreasing function of the population that
vanishes at the point where the population reaches its sustain-
ability limit. In its simplest form this leads to the logistic law

ṅ = r
�
1 −

n
K

�
n, (1)

whose solution

n(t) =
Kn0ert

K + n0(ert − 1)
, lim

t→∞
n(t) = K (2)

is a curve that increases monotonically in time (when n0 < K)
up to a saturation value K, referred to as the “carrying ca-
pacity” of the environment. Therefore we can consider that
populations undergoing such a growth process reach an equi-
librium with their environment that keeps the population con-
stant.2 In practice, the population will f uctuate around that
value due to stochastic effects that the kind of laws we are
considering simply neglect.

Selection
In a situation where resources are scarce, as we have just de-
scribed, individuals struggle to obtain them, survive and re-
produce. Competition with like individuals yields the satura-
tion predicted by the logistic law but when there are individ-
uals of different types (species), their differences, no matter
how small, play a crucial role in deciding who survives and
who perishes. The key evolutionary parameter here is fi ness,
def ned as the mean number of adults that an individual yields
in the next generation. In case of Malthusian populations, f t-
ness is measured by the parameter r. If logistic, the f tness,
f = r(1 − n/K), will depend on the total population. In the
general case, f will be a function of the total population.

Suppose the population is made up of n different species
with fit ess fi, i = 1, . . . , n. By definition their respective
populations grow according to ṅi = fini. The total population
N =
�n
i=1 ni will thus grow as

Ṅ =
n�
i=1
ṅi =

n�
i=1

fini = Nφ, φ =

n�
i=1

fi xi, (3)

xi = ni/N being the fraction of the population corresponding
to species i and φ being the populationmean fi ness. The total
population is thus Malthusian with replication rate φ (remem-
ber that fi can depend on N). We can now obtain a growth law
for xi,

ẋi =
ṅi
N
− xi

Ṅ
N
= xi( fi − φ). (4)

This evolutionary law is commonly known as the replicator
equation [16] and not only describes the evolution of biolog-
ical systems but also plays a prominent role in game theory
[8]. The law followed by the population fractions is similar to
Malthus’ law, only that now the replication rate is measured
with respect to its mean over the population. This means that
the population fraction of a species will increase only if its

fitne s is above that mean and will otherwise decrease. We
can envisage here the principle of “survival of the f ttest”. In
fact, it is very easy to derive this principle from equation (3).
Let us assume that species k is fitte than the rest of them, i.e.
fk > fi ∀i � k. The evolution equation for xk can be rewritten
as

ẋk = xk
�
fk −

n�
i=1

fi xi
�
= xk

n�
i=1

( fk − fi)xi

= xk
n�

i�k, i=1
( fk − fi)xi, (5)

where we have used
�n
i=1 xi = 1. It follows from (5) that the

sum on the right side will be positive as long as there is at
least one species i � k with xi > 0, and in that case xk will
increase in time at the expense of the population fractions of
the remaining species. In other words,

lim
t→∞

xk(t) = 1, lim
t→∞

xi(t) = 0, ∀i � k, (6)

which expresses mathematically the principle of survival of
the f ttest.

In the case where the f tness is constant we have a result,
due to Fisher, referred to as the fundamental theorem of natu-
ral selection [5]. Its derivation amounts to computing

φ̇ =

n�
i=1

fi ẋi =
n�
i=1

fi xi( fi − φ) =
n�
i=1

xi( fi − φ)2

= σ2f ≥ 0. (7)
Put in a different way, the mean f tness never decreases in
time and its growth rate is the f tness variance over the pop-
ulation. Thus it will increase as long as there is variability in
the population and will do so by increasing the population of
the f ttest.

Mutation
Replication is not error-free. In general, replication errors lead
to non-viable individuals that cannot survive. These errors can
be accounted for by adjusting the replication rate. Occasion-
ally, however, a mutation can produce an offspring of a dif-
ferent and viable type. Thus mutation can be regarded as a
stochastic process by which individuals of species i produce
individuals of species j with a probability qi j (� 1). This
mechanism introduces variability in an otherwise homoge-
neous population. The replicator equation (3) must be mod-
if ed to account for this new process:

ẋi = xi
�
fi − fi

�
j�i
qi j +

�
j�i
f jq ji − φ

�
, (8)

where the f rst new term accounts for mutations transforming
individuals of species i into individuals of any other species
and the second one accounts for mutations transforming in-
dividuals of any other species into individuals of species i.
Defi ing qii = 1 −

�
j�i qi j (≥ 0) and introducing the stochas-

tic matrix Q = (qi j) (which we will refer to as the mutation
matrix), the equation above can be rewritten in vector form as

ẋ = xFQ − φx, (9)
where x = (x1, . . . , xn) and F = diag( f1, . . . , fn). This equa-
tion is termed the replicator-mutator equation [16]. The sto-
chastic character of Q can be expressed in matrix form as
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Q1T = 1T, where 1 = (1, . . . , 1). Because of this, as φ =
xF1T = xFQ1T, it follows immediately that x1T = 1 is a
constraint preserved by equation (9).

Since FQ is a non-negative matrix, Perron-Frobenius the-
ory [18] tells us that the rest points of the dynamical system
(9) are all given by the left-eigenvectors of matrix FQ corre-
sponding to its largest eigenvalue, all of whose components
are non-negative. Furthermore, if Q is irreducible then there
is only one such eigenvector. Every irreducible matrix has at
least one non-diagonal element in each row, so the equilib-
rium vector necessarily has more than one non-zero compo-
nent. Therefore, when all species can mutate, the equilibrium
population cannot be homogeneous. This is an interesting ob-
servation because it implies that φ is not at its maximum in
equilibrium, as it was when there were no mutations; there
is competition between selection, which pushes φ towards its
maximum value, and mutation, which tends to decrease it.
We can try to see what happens to the fundamental theorem
in this case. A similar reasoning to the one leading to equation
(7) yields

φ̇ = x(FQ − φI)21T. (10)
Despite its similarity to σ2f , the non-negativity of this term is
no longer guaranteed.

2 The problem of reversion

Despite Mendel publishing his work almost simultaneously
with Darwin, it seems that Darwin was never aware of its
existence. This put Darwin in serious trouble. Reading The
Origin of Species one realizes how Darwin stumbles once
and again over it: the inheritance theory in sexually repro-
ducing species that was accepted in his time (formulated by
Galton [2] in 1875) led to the phenomenon of reversion. Ac-
cording to this theory, every progenitor contributes f fty-f fty
to a given trait, e.g. height. We can then formulate a simple
stochastic law for the quantitative value of the trait of an off-
spring given those of its parents: Xn+1 = 1

2 (X
(1)
n + X

(2)
n ) + Zn,

where X(1)n and X(2)
n are two stochastic variables, identically

distributed according to Pn(x) = Pr(Xn ≤ x), representing the
parents’ traits in generation n, and where Zn is a noise, which
we will assume to be normally distributed N(0, σ) for all n. If
Fn(q) =

� ∞
−∞ e

iqx dPn(x) denotes the characteristic function of
distribution Pn then Fn+1(q) = Fn(q/2)2e−σ

2q2/2. The solution
to this equation is

log Fn(q) = 2n log F0(2−nq) −
σ2

2
q2

n−1�
k=0

2−k (11)

and therefore
lim
n→∞

Fn(q) = eqF
�
0(0)−σ

2q2 . (12)

Since −iF�0(0) = μ, the mean value of the initial distribution
P0(x), we conclude that Pn(x) approaches the normal distri-
bution N(μ,

√
2σ) as n → ∞. So, regardless of the initial

distribution (provided it has a fi ite mean), the distribution
of the trait approaches a normal distribution with the same
mean value as the initial distribution. This means that, even
if the latter was bimodal, in the end all the population ends
up being of homogeneous type (up to some noise). The diffi-
culty this poses to Darwin’s theory is to suppress the variabil-
ity introduced by mutations. This is the reason why Darwin

often resorted to the argument that mutant populations must
remain isolated for quite some time in order for a new species
to emerge.

3 Mendel, or the “quantum” theory of
inheritance

Mendel’s crucial contribution was to discover that traits are
transmitted in “quanta” of inheritance (what we nowadays
call genes) that do not admit gradations.3 Traits such as height,
which seem to violate this principle, are but complex traits
resulting from the combined effect of several simple traits,
all of which are “quantum” (either they are present or ab-
sent). Every sexed individual carries two of those quanta per
trait, one from its father and another from its mother, and in
its turn transmits one of them (at random) to each of its off-
spring.

Consider a trait (e.g. the red colour of a rose) determined
by a variant (an allele in genetic parlance) A of the corre-
sponding gene. Suppose that this allele has a muted variant a,
which does not produce colour. According to Galton’s inher-
itance model, hybrid descendants should show a pink colour
grading, generation after generation, until its eventual return
to the original red colour. According to Mendel’s laws, if the
parent generation is made of p A-alleles and q a-alleles, if
mating is random and if the population is sufficiently large
then there will be p2 AA-individuals, 2pq Aa-individuals and
q2 aa-individuals in the next generation. Furthermore, the dis-
tribution will remain stable in successive generations. This
result is known in genetics as the Hardy-Weinberg law [5].
It implies that there is no reversion to the wild type: pure aa
mutants remain in the population, generation after generation,
in a ratio which depends on the initial amount of mutants.
Mendelian genetics therefore is responsible for the mainte-
nance of the variability in the populations introduced by mu-
tations.

4 The fourth element: genetic drift

In section 1, we mentioned that replication, selection and mu-
tation form the basic triad of evolutionary dynamics. Although
strictly speaking this is true, there is a fourth ingredient that
is unnecessary in principle and yet becomes crucial in un-
derstanding the mechanisms of adaptation and speciation un-
dergone by evolving entities: genetic drift. All the previous
discussion presumes that evolving populations are inf nitely
large; hence the deterministic dynamics we have introduced
so far and the validity of principles like the Hardy-Weinberg
law. But when it comes to f nite populations some noise ap-
pears due to the statistical sampling inherent to replicative
processes. This noise is what we refer to as genetic drift.
Its effects can be dramatic in small populations; that is why
it becomes crucial when populations traverse an evolution-
ary “bottleneck”, i.e. a situation in which the population gets
strongly reduced, because of epidemics, climate change, geo-
graphical isolation, etc.

There are two basic mathematical models of genetic drift:
Fisher-Wright and Moran [5]. Both assume a constant pop-
ulation, limited by the carrying capacity of the environment.
The f rst one describes situations in which every generation
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replaces the previous one (such as in stational plants); the sec-
ond one describes the case in which generations can overlap.

Fisher-Wright model
Assume that we deal with a population of N individuals and
focus on a particular trait (e.g. the red colour of a rose again).
Suppose that this character is determined by the presence of
an allele A, of which there is a mutant a producing a differ-
ent colour (e.g. white). Assume further that the population
reproduces asexually (i.e. A begets A and a begets a) and
that mutations A → a occur with probability μ and muta-
tions a → A occur with probability ν. If initially there are
k A-individuals and there is no selective difference between
both alleles (both have the same fit ess) then the probability
that an individual in the next generation is of type A will be
ψk = (k/N)(1− μ)+ (1− k/N)ν. Imagine that every individual
yields a large number of offspring to a pool and that we ran-
domly extract N individuals from that pool to form the next
generation. If Xt ∈ {0, 1, . . . ,N} is a random variable describ-
ing the number of A-alleles in generation t then the Fisher-
Wright model is defi ed as a Markov chain with transition
probability

Pk j = Pr(Xt+1 = j | Xt = k) =
�
N
j

�
ψ
j
k(1 − ψk)

N− j. (13)

The chain is ergodic for all 0 < μ, ν < 1 because Pk j > 0
∀k, j ∈ {0, 1, . . . ,N}, thus there is a unique stationary proba-
bility distribution w = (w0,w1, . . . ,wN) that can be obtained
as the solution to the equation w = wP [10, 18]. There is no
analytic expression for w except for a very particular case:
μ+ ν = 1 (of no biological interest because mutation rates are
too large). In this case ψk = ν = 1 − μ and

(wP) j =
�
N
j

�
ν j(1 − ν)N− j (14)

for every w, so the right side of the previous equation de-
scribes the stationary distribution.

What can be calculated in general is the mean value of
w. To obtain it let us denote X∞ = limt→∞ Xt and defin the
vector ξ = (0, 1, . . . ,N). We can then write E(X∞) = wξT =
wPξT. Now,

(PξT)k =
N�
j=0

j
�
N
j

�
ψ
j
k(1 − ψk)

N− j = Nψk

= k(1 − μ) + (N − k)ν, (15)
so E(X∞) = (1 − μ)E(X∞) + [N − E(X∞)]ν; hence E(X∞) =
Nν/(μ + ν). By a similar, albeit more tedious, procedure we
can obtain the varianceσ2 = N2μν/[(μ+ν)2(1+2Nμ+2Nν)]+
�, where � contains terms of smaller order (for instance, if
μ, ν = O(N−1) then � = O(N)).

The most interesting case to be considered is that in which
there is only genetic drift (μ = ν = 0, thus ψk = k/N). The
Markov chain is not ergodic anymore because it has two ab-
sorbing states: k = N (all individuals are of type A) and k = 0
(all individuals are of type a). This means that, regardless of
the initial population and in spite of the lack of selective fac-
tors, eventually one type invades the whole population. The
interesting magnitude now is the probability π j = Pr(X∞ =
N | X0 = j) that the population ends up being of type A given
that there were initially j individuals of that type. Denoting

π = (π0, π1, . . . , πN), it can be shown that πT = PπT and that
π0 = 0 and πN = 1. However, the simplest way to fi d π
is by showing that this Markov chain is a martingale, i.e. that
E(Xt | Xt−1) = Xt−1 (the proof is simple: it is the mean value of
a binomial distribution). This means that E(X∞) = j. But this
mean value can also be obtained as E(X∞) = Nπ j + 0(1− π j),
whereby π j = j/N. An interesting by-product of this result
is the probability that a single mutant invades the population:
π1 = 1/N. This probability is small in large populations but
non-negligible during evolutionary bottlenecks, so the f xa-
tion of a new allele is something that surely has occurredmore
than once in the past.

Moran model
The Moran model is more interesting from a theoretical point
of view because it is more amenable to analytic treatment
than the Fisher-Wright model. It describes the same situation:
a population of N individuals, k of which are A-alleles and
(N − k) a-alleles. The difference is that now individuals re-
produce at a constant rate in time τ. The offspring will be
a mutant with the same probabilities μ and ν as the Fisher-
Wright model. After the reproduction event the newborn will
replace a random individual of the population (even its par-
ent!) chosen with uniform probability. The Markov process is
specifie by the conditional probabilities

Pr(X(t + dt) = j | X(t) = k) = τTk j dt, ∀ j � k, (16)
where X(t) represents the population of A individuals at time
t. Themagnitude of interest in this stationary process is Pi j(t) =
Pr(X(t + s) = j | X(s) = i), the solution to either the equation
resulting from multiplying (16) by Pik(t) and summing for
0 ≤ k ≤ N

Ṗi j(t) = τ
N�
k=0

[Pik(t)Tk j − Pi j(t)T jk], (17)

or the equation resulting from multiplying (16) by Pjl(t) and
summing for 0 ≤ j ≤ N (with an appropriate change of in-
dices),

Ṗi j(t) = τ
N�
k=0

[TikPk j(t) − TikPi j(t)]. (18)

In both cases the initial condition is, of course, Pi j(0) = δi j.
Equations (17) and (18) are, respectively, the forward and
backward forms of the master equation of the process.

In any inf nitesimal time interval (t, t + dt) there can be at
most one reproduction event in aMoran process, so if the state
at time t is k, at time t+ dt it can be k, k+ 1 or k− 1. Denoting
τTk k+1 = λk and τTk k−1 = μk, equation (17) becomes the
forward Kolmogorov equation

Ṗi j(t) = μ j+1Pi j+1(t) − (μ j + λ j)Pi j(t) + λ j−1Pi j−1(t),
0 ≤ j ≤ N, (19)

and equation (18) the backward Kolmogorov equation

Ṗi j(t) = λiPi+1 j(t) − (μi + λi)Pi j(t) + μiPi−1 j(t),
0 ≤ j ≤ N, (20)

where Pi−1(t) = P−1i(t) = PiN+1(t) = PN+1 i(t) = μ0 = λN =
0. This kind of Markov process is referred to as a birth-death
process [10]. For the Moran model λk = τψk(1 − k/N) (the
probability that an A-allele is created and replaces an a-allele)
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and μk = τ(1 − ψk)k/N (the probability that an a-allele is
created and replaces an A-allele), with ψk as in the Fisher-
Wright model.

In the steady state wj = limt→∞ Pi j(t) can be obtained by
setting Ṗi j(t) = 0 in (19), which yields μ j+1wj+1 − λ jw j =

μ jw j − λ j−1wj−1 for all 1 < j < N. For j = 0 we have
μ1w1 − λ0w0 = 0, thus μ jw j − λ j−1wj−1 = 0, a simple dif-
ference equation whose solution is

wj = w0
λ0λ1 · · ·λ j−1
μ1μ2 · · ·μ j

, 0 < j ≤ N, (21)

or alternatively

wj = wN
μ j+1μ j+2 · · ·μN
λ jλ j+1 · · ·λN−1

, 0 ≤ j < N. (22)

The values w0 or wN are determined through the normaliza-
tion
�N
j=0 wj = 1.

For the Moran model with mutations a closed expression
for w can be obtained in the limit N → ∞, k → ∞ with
k/N = x ∈ [0, 1], Nμ→ γ and Nν→ κ [10]. For that we write
λ j = A(N− j) j[1+a/ j] and μ j = A(N− j) j[1+b/(N− j)], where
A = τ(1−μ−ν)/N2, a = Nν/(1−μ−ν) and b = Nμ/(1−μ−ν).
Then,

wk =
w0Na

k(N − k)[1 + b/(N − k)]

k−1�
j=1

1 + a/ j
1 + b/(N − j)

. (23)

Now, using the Taylor expansion for log(1+x), the asymptotic
behaviour

�k
j=1 j−1 ∼ log k when k → ∞ and the fact that�∞

j=1 j−p < ∞ for all integers p > 1,
k−1�
j=1

log
�
1 +

a
j

�
∼ log(ka) + c,

k−1�
j=1

log
�
1 +

b
N − j

�
∼ log

�
Nb

(N − k)b

�
+ d

(24)

when k → ∞, for certain constants c and d. Therefore (con-
sidering that in this limit b/(N − k)→ 0),

wk ∼ Ckκ−1
�
1 − k

N

�γ−1
, (25)

C being a normalization constant. In this limit

N�
k=0

wk = CNκ
N�
k=0

1
N

�
k
N

�κ−1 �
1 −

k
N

�γ−1

∼ CNκ
� 1

0
xκ−1(1 − x)γ−1 dx, (26)

therefore the stationary probability distribution wk ∼ xκ−1(1−
x)γ−1 dx/B(κ, γ) has the shape of a beta distribution with pa-
rameters κ and γ.

When there are no mutations (μ = ν = 0 and ψk = k/N),
λ0 = μN = 0. Then (21) and (22) lead, respectively, to the
two vectors w = (1, 0, . . . , 0) and w = (0, . . . , 0, 1), thus ex-
pressing the fact that, with probability 1, the system ends up
absorbed either in state k = 0 or in state k = N. The magni-
tude that characterizes this absorption is πk = limt→∞ PkN(t),
i.e. the probability that if the process starts with k A-alleles it
ends up with N A-alleles. The equation for π can be obtained
by setting Ṗi j(t) = 0 in (20). The resulting equation can be
written as λk(πk+1 − πk) = μk(πk − πk−1), where 0 < k < N.

Taking into account that π0 = 0, this equation implies that
πk − πk−1 = qk−1π1, for all 0 < k ≤ N, where

q0 = 1, qk =
μ1μ2 · · ·μk
λ1λ2 · · ·λk

. (27)

Thus πk = π1
�k−1
j=0 q j for all 0 < k ≤ N and π1 follows from

the condition πN = 1. The shape of πk for the Moran process
is very simple because μ j = λ j for all 0 ≤ j ≤ N. Therefore
πk = k/N, just as in the Fisher-Wright process.

Karlin and McGregor proved [9] that the solution to (20)
can be expressed in the form

Pi j(t) =
wj

w0

� ∞
0
e−xtRi(x)Rj(x) dϕ(x), (28)

wherewj is given by (21), Rj(x) is the (f nite, because λN = 0)
system of polynomials def ned by the three-term recurrence

− xR j(x) = λ jR j+1(x) − (λ j + μ j)Rj(x) + μ jR j−1(x),
0 ≤ j < N, (29)

with R−1(x) = 0 and R0(x) = 1, and ϕ(x) is a unique mea-
sure with unit mass and with increments in N + 1 points, with
respect to which the family of polynomials is orthogonal.

And a bonus of the Moran model is that it permits the
inclusion of selection. If fA and fa denote the f tness of the
two alleles, the probability that, given a reproduction event,
the individual that reproduces is of type xwill be proportional
to fx. This yields a new expression for ψk, namely

ψk =
k fA(1 − μ) + (N − k) faν

k fA + (N − k) fa
. (30)

Similar arguments to those employed, in the limit of large
populations and small mutations, to f nd the stationary distri-
bution in the absence of selection now lead to

wk ∼ (N log r−1)κ/rxκ/r−1rNx dx/Γ(κ/r) if r < 1
and

wk ∼ (N log r)γr(1 − x)γr−1rN(x−1) dx/Γ(γr) if r > 1,
where r = fA/ fa is the f tness of the A-alleles relative to that
of the a-alleles.

In the absence of mutations μ j/λ j = r−1, thus πk = (1 −
r−k)/(1−r−N). Therefore, the f xation probabilities of a mutant
allele (ρA = π1 or ρa = 1 − πN−1) become

ρA =
1 − r−1

1 − r−N
, ρa =

1 − r
1 − rN

. (31)

As expected, if r > 1 then the probability to fi a mutant
A-allele increases and the probability to fi a mutant a-allele
decreases, and vice versa if r < 1.

Diffusion approximation
In the limit N → ∞, i, j → ∞ with i/N → y, j/N → x, if
NPi j(t) → f (x, t | y, 0), λ j − μ j → m(x) and λ j + μ j → s(x)
then equations (19) and (20) become, respectively,

∂

∂t
f (x, t | y, 0) = −

∂

∂x
�
m(x) f (x, t | y, 0)

�

+
1
2N
∂2

∂x2
�
s(x) f (x, t | y, 0)

�
, (32)

∂

∂t
f (x, t | y, 0) = −m(y) ∂

∂y
f (x, t | y, 0)

+
s(y)
2N
∂2

∂y2
f (x, t | y, 0). (33)
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In both cases the initial condition is f (x, 0 | y, 0) = δ(x − y).
These are two diffusion equations that describe the Moran
process in this special regime. Notice that the diffusion term
is proportional to N−1, which means that the deterministic ap-
proximation is valid when populations are large. Thus, the
f niteness of real populations adds a “noise” to the determin-
istic behaviour.

The diffusion approximation can also be obtained starting
from the Fisher-Wright process. The result is similar but the
time-scale is N times faster than in the Moran process. This
approximation allows calculations that cannot be achieved for
the discrete processes, and it can be easily generalized to sit-
uations in which there are multiple alleles or individuals have
more than just one gene. Exploring all its possibilities would
lead us too far from the scope of this article, so the interested
reader is urged to consult the extensive literature on this topic
(see, e.g. Refs. [1, 5, 11]).

5 The role of genetic drift in evolution

Genetic drift is present in the f rst studies on population genet-
ics as an additional mechanism that accounts for the “noise”
that small populations introduce in evolutionary dynamics.
This noise acquires a special relevance in those times in which
species go through evolutionary bottlenecks. However, the
breakthroughs achieved in the f eld of molecular biology have
put forward the very relevant role that this mechanism plays
even in ordinary situations, so much so that we are at the on-
set of a change of paradigm: neutral evolution by pure genetic
drift seems to be not only the most common way in which
life forms evolve but also the mechanism that de facto allows
them to adapt and speciate. Therefore genetic drift is one of
the keys to the origin of species.

But in order to investigate the true implications of neutral
evolution we f rst need to take a small walk through biology.

Biology is built on sequences and networks
At its most fundamental level, life is written in a DNAmolecule
consisting of a long sequence of four kinds of bases: adenine
(A), thymine (T), guanine (G) and cytosine (C). We could say
that this sequence of bases is a coding of all information on
the building of a cell, and eventually of a life being.4

DNA is made of introns (pieces of the chain that do not
code for proteins) and exons (the coding elements). In the
fi st stages of transcription DNA transfers its information into
RNA molecules (replacing thymine with a new base: uracil,
U) in which exons get isolated through a splicing mechanism
of the chain and are combined to form genes. These genes
are the true pieces of code that translate into proteins in the
cell rhybosomes (kind of reading-translating “machines”). At
this level the DNA chains that build up chromosomes can be
regarded as sequences of genes.

RNA gets transcribed into proteins by translating codons
(sequences of three consecutive base pairs) into amino acids.
This translation forms a universal code5 known as genetic
code. Transcription produces a new kind of sequence – pro-
teins, this time made of 20 different types of amino acid. As a
consequence of the interaction between amino acids, proteins
get folded into three-dimensional structures, sometimes rigid
and sometimes includingmobile elements, just as if they were

a sort of small machines. This three-dimensional structure de-
termines its function insofar as a change of its conformation
can make the protein lose its biological function or acquire a
new one. The set of proteins of a cell (its proteome) forms a
complex network; proteins interact with each other and with
genes in very varied ways, activating or inhibiting the pro-
duction of other proteins, catalyzing reactions, etc. The result
forms a metabolic and regulatory network of interactions, a
kind of protein ecosystem, whose result is cell activity.

We can still go up the scale and consider multicellular or-
ganisms as a new complex network of different types of cells
that interact with each other. And in their turn, these organ-
isms (animals, plants, etc.) entangle their life activity, com-
peting for resources, eating each other, cooperating, etc., to
give rise to the top biological scale: ecosystems.

All these biological organizations – sequences or networks
– share a common property: they are made of a well-def ned
set of elements whose modif cation in any way (by changes,
eliminations or additions) can induce drastic changes in the
whole organization. At the most basic level – DNA chains –
these modif cations are commonly known as mutations. Mu-
tations can be just replacements of one base by another, or
addition or removal of some bases, or more drastic changes
like inversions of whole pieces of the DNA sequence, duplica-
tions, etc. Drastic mutations are normally lethal: the resulting
organism is not viable anymore (imagine, for instance, the ef-
fect of removing a single base if we take into account that pro-
tein transcription occurs through codon reading). Nonetheless
many other mutations can be innocuous, and some of them
can even give rise to viable modif cations; the genetic code
contains 64 different codons that only codify for 20 amino
acids – plus a stop sequence; the redundancy is such that there
are some amino acids that are coded by up to six different
codons. This implies that there will be many base substitu-
tions that have no effect whatsoever on the transcription into
proteins. They are therefore innocuous.

Regarding proteins, we have already mentioned that they
can fold into three-dimensional (tertiary) structures because
of amino acid interactions, and these structures determine their
functions. It turns out that most amino acids of the chain have
little or no infl ence in the tertiary structure because the fold-
ing is determined by a small set of them, placed at strategic
positions. Substituting one of these key amino acids will mod-
ify the tertiary structure, hence the protein function. How-
ever, substituting any of the other amino acids will either not
change the tertiary structure or change it only slightly, so little
that the protein maintains its function. This means that even
mutations that lead to amino acid substitutions may have no
biological effect, enormously enhancing the redundancy al-
ready existing in the genetic code.

Also, it often happens that adding, eliminating or replac-
ing a protein in the metabolic and regulatory network of a
cell has little inf uence on the global dynamics of the system.
Thus, even at this level some changes are innocuous, hence
not subject to selection. And not just at this level – a similar
thing happens at the ecological level with the species form-
ing an ecosystem. In summary, many changes can occur at all
scales of a biosystem producing little or no effect at all. Se-
lection is thus blind to these changes. But, which fraction of
the set of possible changes do they represent?
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Most evolution is neutral
In 1968, Kimura surprised the scientif c community with the
idea that most genome mutations are neutral [12]. His argu-
ment goes as follows. Comparative studies of some proteins
lead to the conclusion that chains 100 amino acids long un-
dergo one substitution every 28 million years. The length of
DNA chains in the two chromosome sets of mammals is about
4 × 109 base pairs. Every three base pairs code for one amino
acid and, due to the existing redundancy, only 80% of base
pair substitutions lead to an amino acid substitution. There-
fore there are 16 million substitutions in the whole genome
every 28 million years, i.e. almost one substitution every 2
years! Kimura’s conclusion is that organisms can only afford
such a mutational load provided the great majority of muta-
tions are neutral.

Recent studies on RNA molecules reach similar conclu-
sions [6]. RNA molecules fold as a result of the interaction
between the bases forming their sequences. This folding can
be regarded as the molecule phenotype because it determines
the function of these chains. Thus natural selection acts di-
rectly on it being blind to the actual sequences. The number
of different sequences folding into the same structure is huge.
This implies, once more, that a large number of mutations
in the chain leave the phenotype intact, thus avoiding selec-
tion.

Neutrality seems the rule rather than the exception, at least
at the molecular level. The consequences of this fact are far
reaching but to see how much, we need to introduce a new
concept: adaptive landscapes, and resort again to mathemat-
ics.

6 Adaptive landscapes

Perhaps Sewall Wright’s most relevant contribution to evo-
lutionary theory is his metaphor of adaptive landscape [19].
From a formal viewpoint, an adaptive landscape is a mapping
f : X → R, where X denotes a conf guration space equipped
with some notion of adjacency, proximity, distance or acces-
sibility, and whose image is the f tness associated to a partic-
ular conf guration in X. This structure, together with the fact
that the set of all adaptive landscapes forms the vector space
R|X|, allows the development of a rich theory of combinato-
rial landscapes that covers not only the adaptive landscapes
of biology but also the energy landscapes of physics or the
combinatorial optimization problems arising in computer sci-
ence [17].

aBCD

ABCd

ABcD

AbCD

ABcd

AbCd

AbcD

aBCd

aBcD

abCD

abcD

Abcd

aBcd

abCd

ABCDabcd

Figure 2. Graph for a sequence of length 4 and 2 alleles per locus

In our particular case, X is made of the set of underly-
ing sequences or networks. When talking about sequences we
will generically use loci to refer to particular genetic traits and
alleles to describe the different variants of that trait. Depend-
ing on the context, by allele we may refer to bases (DNA),
amino acids (proteins) or genes (chromosomes). Therefore,
for a DNA chain of length L, X = {A, T, C, G}L, for a pro-
tein of the same length, X = {Phe, Leu, Ile,. . . , Gly}L and for
a chromosomeX = {A1, . . . , Ana } × {B1, . . . , Bnb} × · · · , where
letters represent the different alleles of a given locus. OnXwe
can introduce Hamming distance, dH(x, y), which represents
the number of different loci of sequences x, y ∈ X.

The structure of X is determined by the allowed transi-
tions between its sequences, which we will refer to generi-
cally as mutations. We will speak about point mutations to re-
fer to changes at a given locus of the chain, i.e. substitutions
of a base pair in a DNA chain, of an amino acid in a protein
or of a different allele in a chromosome. If all mutations are
of this type we can build the graph G = {X,L}, where the
set of links L is made of all pairs of sequences x, y ∈ X with
dH(x, y) = 1 (Figure 2 illustrates the case for L = 4 and two
alleles per locus).We can also consider mutations that amount
to adding or eliminating a given locus of the sequence. If XL
denotes the set of sequences of length L thenX =

�
L XL, and

the graph will contain links between sequences of different
length.

The probability that a mutation of those def ning G oc-
curs need not be uniform. The general way of describing the
evolution of a given sequence is by introducing a transition
probability matrix T whose element Txy is the probability to
mutate from one sequence x ∈ X to another y ∈ X. The ze-
ros of the adjacency matrix of the graph G are also the zeros
of matrix T . The evolution of the sequence is therefore the
randomwalk acrossX described by the Markov process asso-
ciated to T .

But we began this section talking about a metaphor. And
indeed, beyond the formal description andmathematical treat-
ment of adaptive landscapes, it is the mental picture they pro-
vide that leads our intuitions. As a matter of fact, in the devel-
opment of population genetics there are three metaphors that
have been widely used: Fisher’s Fujiyama landscape,Wright’s
rugged landscape and Kimura’s f at landscape. Let us exam-
ine these three models in more detail.

Fujiyama landscape: quasispecies and the error
catastrophe
Fisher imagined that species were in a situation of optimal
adaptation to their environment.Hence each species should sit
at one of the many tops of the adaptive landscape. According
to this picture, a sequence would be maximally adapted and
as sequences get away from it in Hamming distance, their f t-
ness should decrease. Fisher did not have in mind sequences
when he elaborated this metaphor because molecular biol-
ogy was in its early stages. It was Eigen [4] who used it to
elaborate his theory of quasispecies and discover the error
catastrophe. If the Markov process define on the set of se-
quences X is ergodic, there will be a stationary probability
distribution.When the landscape is of Fujiyama type, this dis-
tribution will be localized around the optimally adapted (or
master) sequence. In spite of this being the most probable se-
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quence, close to it (i.e. a few mutations away) there will be a
“cloud” of less adapted sequences coexisting with the master
sequence. Quasispecies is the term that Eigen introduced to
describe this ensemble of sequences.

In order to study the behaviour of a quasispecies more
closely we will resort to equation (9). For simplicity we shall
assume that sequences have f nite length L � 1, that there
are just two alleles per locus, that the master sequence has
fit ess f1 = f > 1 and that all other sequences have f tness
f2 = · · · = f2L = 1. We shall also assume that the probability
that a point mutation occurs is μ � 1, independent of the
sequence. Let x1 = x denote the population fraction of the
master sequence; thus x2+ · · ·+ x2L = 1− x and φ = f x+1− x.
Equation (9) then becomes

ẋ = x
�
f (1 − μ)L − 1 − ( f − 1)x

�
+ O(μ). (34)

The term O(μ) accounts for the transitions from the L near-
est neighbour sequences of the master sequence that revert
to the master sequence. Neglecting these terms and approxi-
mating (1 − μ)L ≈ e−Lμ we can see that if f e−Lμ > 1 then x
asymptotically approaches x∗ = (e−Lμ f − 1)/( f − 1), whereas
if f e−Lμ < 1 the bracket in equation (34) becomes negative
and therefore x = O(μ). The threshold μerr = log f /L def nes
the error catastrophe. When μ < μerr the quasispecies is well-
def ned because themaster sequence is the most probable one.
However, when μ > μerr the identity of this master sequence
gets lost in the cloud of mutants and the quasispecies disap-
pears as such.

Experimental studies performed in the ’90s seem to con-
f rm [16] that indeed the length of the genome of different
species – ranging from virus to Homo sapiens – and the muta-
tion rate per base are related as μL ≤ O(1). Hence an increase
in the mutation rate is a mechanism that this theory puts for-
ward to f ght viral infections. We will come back to this point
later.

Rugged landscape
Although locally the adaptive landscape can be well described
by the Fujiyama model, Wright visualized it as a rugged land-
scape, full of high peaks separated by deep valleys. The rea-
son is that mutations that change the sequence minimally may
induce large variations in the f tness of individuals. In addi-
tion, there exists the well known phenomenon of epistasis,
according to which some genes interact, either constructively
or destructively, amplifying these large variations in response
to small changes in the sequences.

According to the rugged landscapemetaphor, species evolve
by climbing peaks and sitting on the summits. Different peaks
correspond to different species with different f tnesses. This
picture seems to f t well with our idea of evolution by nat-
ural selection. However, it has a serious drawback: species
that are at a summit can only move to a higher one by going
through an unf t valley. In the most favourable case this valley
will consist of a single intermediate state. Formula (31) tells
us that if a population is small, it is not impossible that an
unf t allele replaces a f tter one. Nevertheless, the probability
that this happens is very small, i.e. adaptation times should
be very large. And this is only the most favourable case. The
high speed of adaptation to rapidly changing environments

that viruses exhibit seriously challenges this model. What is
then wrong in our picture of adaptive landscapes?

Holey landscape: neutral networks
Let us review the most extreme case of a rugged landscape:
the random landscape. In this case every sequence of X has a
random f tness, independent of the other sequences. In gen-
eral, rugged landscapes are not that extreme because there
is some degree of correlation between the f tness of neigh-
bouring sequences. However, beyond the correlation length,
f tness values become uncorrelated. The random landscape is
the extreme case in which the correlation length is smaller
than 1. Suppose now that the length of the sequences is large,
and that every locus can host A independent alleles. The de-
gree of graphGwill thus be g = (A−1)L and its size |X| = AL.
With L = 100 and A = 2 (a rather modest choice), g = 100
and |X| = 2100 ≈ 1030. To all purposes such a graph can be
locally approximated by a tree, the more so the larger the de-
gree (see Figure 3). Imagine an extreme assignment of f t-
ness: 1 if the sequence is viable and 0 if it is not. Let p be
the fraction of viable sequences. Evolution can only proceed
by jumping between consecutive viable nodes. According to
Figure 3, which illustrates what this landscape looks like lo-
cally in a particular graph, it becomes clear that if p is small,
the number of viable nodes a distance d apart from the initial
node is well approximated by a branching process where, ex-
cept for the f rst generation, the number of offspring (viable
nodes) is given by pk =

�
g−1
k

�
pk(1 − p)g−1−k, with an expected

value of (g−1)p. The theory of branching processes [10] tells
us that, with a f nite probability, the process never ends pro-
vided (g − 1)p > 1. Translated to our graphs this implies that
whenever p � 1/g (with g� 1) there is a connected subgraph
of viable nodes containing a f nite fraction of all nodes of G.
This kind of subgraph is called a neutral network [7].

If we consider a more general model in which P( f ) de-
scribes the probability density that a node f tness is between
f and f + d f , if

� f2
f1
P( f ) d f � 1/g then there will be a

quasineutral network whose node f tnesses will all lie in the
interval ( f1, f2). As g is usually very large (proportional to the
sequence length), the existence of neutral networks becomes

Figure 3. Local section of a conf guration graph with A = 2 and L = 8.
Black nodes are viable, whereas white nodes are not viable.
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the rule rather than the exception. Wright’s metaphor of a
landscape full of mountains and valleys becomes utterly inap-
propriate to describe the existence of these neutral networks
in rugged adaptive landscapes. A more appropriate metaphor
would be that of a f at landscape (á la Kimura) with holes.
Evolution moves sequences across this neutral network, trans-
forming them into completely different sequences without ever
decreasing their f tness. Undoubtedly, this mechanism dra-
matically speeds up not only adaptation of species to the en-
vironment but even speciation.

The fact that the f tness depends on phenotype and not
on genotype favours the appearance of neutral networks. This
is what is observed in RNA [6]. The properties of these net-
works have an enormous inf uence in evolutionary dynamics,
an inf uence that we are now only beginning to understand.
Just as an example, if we reconsider Eigen’s model under the
viewpoint of this new metaphor, we will realize that its main
hypothesis, namely that locally the landscape is Fujiyama, is
completely wrong. There is no such a thing as a master se-
quence. Instead there is a master network (or phenotype) that
contains a huge number of sequences. Accordingly, the prob-
ability that a mutation recovers the optimal fit ess is much
larger than what Eigen’s theory assumes because it can be re-
covered by hitting any of the sequences of the network, not
necessarily the initial one. When this probability is not negli-
gible the error catastrophe goes away [14].

7 Conclusion

This article tries to provide an overview of the contributions
of mathematics to evolutionary theory. From population ge-
netics to the theory of complex networks, going through the
theory of stochastic processes, many relevant results about
the evolutionary mechanisms driving life have been obtained
thanks to their mathematical descriptions. We still cannot say
that the theory of evolution is a fully mathematically formu-
lated scientifi theory, like Darwin would have liked it to be,
but it is unquestionable that we are getting closer and closer to
such an achievement. Nowadays we could say that the theo-
retical studies of evolutionary processes are at least as impor-
tant as the experimental ones and that, as the opening sentence
by Darwin states, it is those that shed light in the darkness.

Given the divulgatory nature of this article many interest-
ing topics have been left out. Some of them provide new in-
sights into evolutionary mechanisms and some illustrate fur-
ther contributions ofmathematics to evolutionary theory.Among
them we can mention the infi ite allele model [5], which is
currently employed in analysing evolutionary divergence of
DNA or protein sequences, or the coalescent process [5], which
is an interesting and practical backward formulation of ge-
netic drift. We have not mentioned the important contribu-
tions of game theory to evolution either. This theory is cur-
rently being used to deal with the problem of the evolutionary
emergence of cooperation [16]. Instead, the focus has been
on the subject of adaptive landscapes and neutral networks
because, in the author’s opinion, this is the area where a new
reformulation of the evolutionary paradigm can emerge in the
following years. Understanding evolution requires, against all
expectations, an understanding of the role of genetic drift on
neutral networks. And due to the complexity of this problem,

it is one of the topics in which mathematics can be our eyes in
the dark room that help us fin the black cat that is not there.
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Notes

1. Admiration not unrelated to Darwin’s care for his progeny: Sir
George Howard Darwin, the f fth of Darwin’s children, became
an astronomer and mathematician.

2. Human beings have so far not reached this equilibrium with the
environment because this environment is the whole planet. In
spite of that, the law provides a reasonable description of iso-
lated populations in low resource environments. The permanent
famine suffered by many African countries provides an illustra-
tion of what our situation will be when we reach that equilibrium
with the resources of the planet.

3. It is most remarkable that de Vries rediscovered Mendel’s laws
for the scientif c world in 1900, the same year that Planck pro-
posed the quantum hypothesis for the f rst time.

4. This classic dogma is not quite true because in cell division every
daughter cell inherits not only an exact copy of the parent cell’s
DNA but also half of its cytoplasm. This makes the two daughter
cells slightly different in composition and this difference induces
different gene expressions. This lies at the heart of cell differ-
entiation and becomes the core of what is currently known as
epigenetics.

5. In 1979 it was discovered that this code is not quite universal:
mitochondria, as well as some bacteria and yeasts, use codes that
differ slightly from the “universal” one.
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