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Abstract

This paper looks directly at the impact of firms’ age and (process) innovations on productivity 
growth. A model that specifies productivity growth as an unknown function of these variables is 
devised and estimated using semiparametric methods. Results show that firms enter the market 
experiencing high productivity growth and that above-average growth rates tend to last for many 
years, but also that productivity growth of surviving firms converges. Process innovations at some 
point then lead to extra productivity growth, which also tends to persist somewhat attenuated for a 
number of years.

JEL classification: D24; L6; O3
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1. Introduction

There is a vast amount of literature about the impact of technological activities on

productivity, including an important tradition of empirical estimations of this effect using 
firm-level data (see Griliches, 1995, for a survey and Griliches, 2000, for example, for an 
updated assessment2). The standard form of these exercises has been the construction of a
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stock of knowledge capital, starting from R&D investment data, and its introduction as an 
additional input into the firms’ production function. However, as Griliches (1979) already 
pointed out in his pioneering work, the relationship between productivity and the 
(constrained) weighted average of R&D expenditures embodies in a simplified way two 
very different and presumably complex processes: the production of innovations starting 
from R&D activities and the incorporation of these innovations to production.

The knowledge capital construction and specification imply a number of important 
constraints on the form of these processes (see Klette, 1996, for a discussion and the 
relaxation of a number of these constraints). This provides an important reason for looking 
more closely at every one of these processes. Moreover, recently, data on the innovative 
output of R&D activities have become increasingly available, opening the possibility of 
these types of analyses. For example, Crepon et al. (1998) constitute an interesting 
departure from the traditional modelling using innovation data.

This paper carries out an investigation focussed on the relationships between the

introduction of innovations and the growth of productivity. It looks directly at the effects

of innovation on total factor productivity growth, using (unbalanced) panel data on the age

of more than 2300 Spanish manufacturing firms and their process innovations brought in

during the period 1990–1998. The investigation is mainly intended to examine whether

innovations really induce growth, the life span and time pattern of these productivity

effects and the presumed heterogeneity associated with different frequencies of innova-

tions. To answer these questions, it seems the effects of firm age must also be disentangled

(in some sense, the first radical process innovation takes place with entry into a market).

Conclusions contribute evidence on the effects of firms’ innovative activity and have

interesting implications for their modelling.

Productivity growth is measured by means of the (cost shares-based3) Solow residual,

corrected for (possible) nonconstant returns to scale. To address the presumably highly

nonlinear relationships between productivity growth, age and process innovation, we

devise a specific semiparametric model. A central piece of this model is the flexible

estimation of the expectation of productivity growth conditional on age and innovations,

while controls enter linearly. The main advantage of this modelling is that we avoid

imposing any a priori functional form constraint on the impact of the key variables of age

and innovation. Estimation can then be claimed to be fully robust, in the sense of being

free of specification bias, in the involved relationships. This seems a particularly

appropriate way to learn about a subject on which there is little evidence and for which

we can hardly guess the specific form of the relationships.

Estimates show that firms enter the market experiencing high productivity growth, and

that above-average growth rates tend to last, although progressively weakened, for many

years. The estimates also point out that productivity growth of surviving firms converges

to different values according to activities and, on average, to almost 1.5% annually.

Process innovations at some point then lead to some extra productivity growth, which

tends to persist, although somewhat attenuated, for a number of years. If the introduction

of process innovations then stops, however, innovation appears to be associated with an

end to all productivity growth in the following years.
3 The cost shares-based Solow residual is robust to the presence of market power. See, e.g., Hall (1990).
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The rest of the paper is organised as follows. Section 2 is devoted to establishing the

framework of measurement of productivity and Section 3 to estimating the impact of age

and innovation. Section 4 deals with the data and variables and Section 5 presents the

empirical results. Section 6 comments on implications and concludes. Appendix A

describes the sample and gives the definition of the variables employed.
2. Measuring productivity growth

In this section, we describe the theoretical framework which relates productivity growth

to firms’ age and innovations and we derive the econometric model to estimate this

relationship. Assume that firms in population are characterised by production functions of

the type

Yit ¼ AiðtÞFiðKit; Lit;MitÞ

where Y denotes output,K is capital, L represents labour andM stands for materials. Fi are the

(presumably specific) production relationships that link produced output to conventional

inputs, and the factor Ai(t) represents the level of efficiency reached by firm i. The way this

factor enters the equation implies Hicks neutrality of productivity increases, and notation

emphasises the idiosyncrasy and time dependence of the efficiency level. It can be

interpreted, for example, as an unspecified form for the role of the traditional technological

or knowledge capital variable used in the exercises aimed at measuring the productivity

effects of technological activities. But it can also be understood simply as a completely

unspecified efficiency level evolving over time.

We assume that total differentiation of production relationships yields the population

equation

yit ¼ aiðtÞ þ eK;itkit þ e
L;it lit þ e;itmit þ uit ð1Þ

where the small letters employed to represent outputs and inputs denote logarithmic

differences, the e’s stand for the respective input elasticities, the term ai(t) stands for the

proportional change dAi/Ai or productivity growth and uit stands for a disturbance which

we assume to have zero mean conditional on the included variables. We also assume that

our available sample constitutes a random sample from this population.

An estimable model can be obtained in the following way. On the one hand, in order to

investigate productivity growth characteristics, we specify the term ai(t), without loss of

generality, as the sum of a firm and time idiosyncratic term and an unknown function

(common to all firms) of the vector of the key variables z whose role we want to assess:

ai(t)=ait+a(zit). On the other hand, cost minimisation implies that input elasticities equal

the products of scale elasticity and cost shares. Then, using s to denote cost shares and

assuming common scale elasticity c across firms, we can write:

yit ¼ ait þ aðzitÞ þ cðsK;itkit þ s
L;it lit þ sM;itmitÞ þ uit

Rearranging terms, this expression can be easily transformed into an equation that

links the observable (cost shares-based) Solow residual, a correction for the scale
3



elasticity effect on productivity and the terms accounting for productivity growth. The

model is

hit ¼ ðc � 1Þvit þ ait þ aðzitÞ þ uit ð2Þ

where h represents the Solow residual, (c�1) is a parameter to be estimated involving

scale elasticity c and v stands for the weighted sum of input variations.

Let us comment and further develop specification (2). Firstly, the weighted input sum

term is a correction for the productivity effects of variations in the scale of operation.

While this term should become irrelevant under constant returns to scale, in practice, short-

run input movements turn out to be associated to somewhat decreasing returns (probably

due to the short-run fixity of some misspecified production aspects). Hence, its inclusion is

important.

Secondly, the ait term must be specified to account for any variation in productivity 
growth across firms which should be controlled for when studying the relationship of 
productivity growth with the variables z (in our case, age and innovation). We will specify 
it as a linear function of control variables. In particular, the empirical exercise performed 
here includes the variations in the firms’ capacity utilisation (see Delgado et al., 1998), 
dummy variables to account for some sources of discrete changes in firms’ efficiency 
levels (mergers, acquisitions, scissions) and time dummies as a way to pick up the 
influence of ‘‘macroeconomic’’ factors common to all firms (e.g., manufacturing cycle). In 
addition, the presumably high heterogeneity among activities makes it convenient to 
include sets of activity and firms’ size dummies in order to control for any systematic 
differences in productivity growth.

Thirdly, we want the unknown function to represent average growth (i.e., includes the 
constant term of the regression). Consequently, we are going to specify the time, activity 
and firms’ size dummies as picking-up differences from this average (constraining them to 
add up to zero; see Suits, 1984).

The linear nature of the controls makes it possible to write Eq. (2) in the slightly more

compact form:

hit ¼ xitb þ aðzitÞ þ uit ð3Þ

where x=(variable for scale correction, capacity utilisation, merger or acquisition dummy,

scission dummy, time dummies, size dummies and industry dummies) and a(�) is the

unknown function aimed at picking up the presumably highly nonlinear relationships

between productivity growth, firms’ age and innovations. The next section is devoted to

the specification and estimation of these relationships.
3. Estimating the impact of age and innovation

We specify age as the argument of a first component a*(s) of the unknown function

a(�).The impact of age can be guessed to be highly nonlinear and the variable age can take

a relatively high number of values (we consider ages up to 40 years in the market; see

Section 4 and Appendix A for details). In principle, several possibilities arise to estimate
4
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this unknown function, even the estimation of the age effects by a system of dummies. We 
prefer, however, a ‘‘smoothing’’ estimator because of the high number of values and the 
likely low ‘‘volatility’’ of the age effect4. We use the kernel-based semiparametric 
estimator5 analysed by Robinson (1988) and Speckman (1988) and applied, for example, 
in Stock (1989). Because s and u are uncorrelated, from Eq. (3), we have

hit � EðhitAsitÞ ¼ ½xit � EðxitAsitÞ�b þ uit ð4Þ

and the semiparametric estimator of b is the ordinary least squares estimator (OLS) after

replacing the conditional expectation functions by a nonparametric estimate. We use the

kernel regression Nadaraya–Watson estimator6. Once the b parameters have been

estimated, we can form the nonparametric regression model

hit � xitb̂ ¼ a*ðsitÞ þ eit

where the unknown function is estimated again applying the Nadaraya–Watson estimato

(see Pagan and Ullah, 1999)7. This procedure makes it easy to estimate the variance of th
function estimate and hence the computation of the confidence intervals8. This is
important for inference because as firms’ numbers become lower (or productivity growth 
more disperse) at some ages, the variance of the estimator becomes higher.

We use a normal kernel and all kernel estimates proved to be very sensible using

the smoothing parameter9 h=n�1/5. Asymptotic variance of the estimated expectation is

V ðâ*Þ ¼ 1
nh

r2ðxÞ
f ðxÞ

R
KðsÞ2ds, where K(�) is the kernel density function, h is the smoothing

parameter or bandwidth, n is the number of observations, r2 and f(x) are the variance

and density associated with each x and s=(xi�x)/h. We estimate this variance using

mKðsÞ2ds ¼ 0:2821 , estimating r2 by r̂2 ¼
P

iê
2
i KðsiÞ=

P
iKðsiÞ , and employing the

Rosenblatt–Parzen kernel estimator of f (x).

Let us finally comment on an important property of this estimate. The estimated

function constitutes an expectation conditional on surviving. As disappearance from the

sample (by death or attrition) is likely to be correlated with low productivity growth, older

(surviving) firms are likely to show better-than-average productivity growth.
4 A dummies estimator, using a set of nonoverlapped dummies, would be equivalent to the semiparametric

estimator based on the nonsmoothing estimation which merely averages the y values corresponding to each x 
value. To see this, notice that the coefficients on the set of dummies will simply be the averages of the 
corresponding y values after deducing the value of the controls (using the suitable previously estimated 
parameter). Delgado and Mora (1995) show the consistency of the nonsmoothing estimator and argue on the 
relative behaviour of the asymptotically equivalent nonsmoothing and kernel estimators with base on a series of 
Monte Carlo experiments.

5 The kernel nonparametric estimator could obviously be replaced, with likely close results, by a 
nonparametric spline smoothing or even by a ‘‘series’’ expansion estimator (see, for example, Pagan and Ullah,
1999).

6 See, for example, Wand and Jones (1995) or Pagan and Ullah (1999).
7 The function could be alternatively recovered from the equality â*(s)=Ê(hitjsit)�Ê(xitjsit)b̂.
8 Variance will have an additional component coming from the substitution of the estimated parameters b̂ for

the true parameters b, but this component can be shown to be asymptotically unimportant.
9 Estimates show a low sensitivity to the band width choice, but we use the slightly modified value of

h=1.2n�1/5 for the industry regressions.
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The next questions to answer are whether process innovations introduced by firms

induce extra productivity growth, with what intensity and for how much time. This implies

the estimation of the effects of process innovations the year the innovation is introduced and

the years to follow. To estimate these effects, it seems natural to complete the specification

of the a(�) function by adding to a*(s) the innovation impacts on productivity growth (at

any point of life)10. Calling as the successive impacts of an innovation, from moment 0

(introduction) to T (the last considered lag), we have in whole aðzÞ ¼ a*ðsÞ þ
PT

s¼0 as .
Given the time length of our sample, which allows us to specify only a limited number of

lagged effects, we estimate them using a system of dummies11.

This completion of the a(�) function can be estimated simply by also including in

estimating Eq. (4) a system of dummies (each one minus its expected value given age)

aimed at picking up the contemporaneous and delayed effects of innovations without any a

priori constraint. Notice that, with this specification, the estimated effects will measure the

productivity growth impact of innovation as the extra (or less) growth with respect to the

average growth for noninnovating firms (after taking into account all the growth

heterogeneity allowed by the control variables).

Among the different equivalent ways of specifying the impacts
PT

s¼0 as, we choose the
use of the system of dummies defined by the expression for the impacts a0dit þ

PT
s¼0 dstesit,

where the artificial variables in the set (d,te1,te2,. . .teT) respectively indicate that an

innovation has been introduced and the time elapsed since then. These variables are defined

as follows:

dit ¼
1 if the firm brings in an innovation at time k and 0 V t � kVT

0 otherwise

8<
:

tesit ¼
1 if dit ¼ 1 and t � k ¼ s for s e½1; T �

0 otherwise

8<
:

Estimates of as are given by â0 and by âs=â0�ŷs when s takes the values from 1 to T.

Let us briefly comment in turn on some properties of this estimate. Firstly, in applying

it, we must face the problem of left censoring. For firms which were born during the

sample period, we can observe every innovation carried out until the final year of the

sample, but for firms with a history previous to the initial year of the sample (or the firm’s

particular entering year in a few cases), we cannot determine the time elapsed since the last

innovation, or even if there was such innovation at any point in time. Hence, there is a set

of data points before the first innovation is observed for which, strictly speaking, we have

no reliable value to attribute to our set of dummies. However, this set of data points is

likely to include mostly observations of really noninnovating firms (the bulk of the firms

for which we have not yet observed any innovation by the final year of the sample), or
10 Hence, we are implicitly employing an additive model.
11 In this case, we choose the use of a dummies estimator, which can be seen as an equivalent procedure to

the employment of a nonsmoothing estimator (see the previous discussion).
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scarcely innovating firms, after which a long period of time has elapsed when we observe

the first innovation. We will experiment alternatively by dropping these observations from

the sample and attributing to them an ‘‘absence of innovation’’ value.

Secondly, delays between innovations constitute a sample with a special type of

selectivity problem. Firms’ available time observations reach a maximum at the years

covered by the sample (in our case, 9 years). Hence, again for censoring reasons, the

probability of observing each delay value between innovations is lower the longer the

delay is and zero for the length of the sample. Our dummy method of estimating the

conditional expectation of productivity growth for each time elapsed is statistically robust

to this sort of selectivity, although the estimates must be attributed a lower precision the

higher the value of the time elapsed.
4. Data and variables

Estimations are carried out with an unbalanced panel data sample of more than 2300

firms surveyed during the period 1990–199812. Details are provided in Appendix A. This

sample is approximately representative of manufacturing, and hence inferences can be

considered globally valid for the manufacturing population. Firms with fewer than 200

workers were sampled randomly by industry and size strata, retaining 5%, while firms

with more than 200 workers were all requested to participate, and the positive answers

represented more or less a self-selected 60%. The statistical methods applied here are

robust to this type of sample mixture. In addition, the coefficients obtained for the size

dummies confirm that very little or nothing linked to size remains to be explained.

To preserve representation, samples of newly created firms were added to the initial

sample every subsequent year. At the same time, there are exits from the sample, coming

from both death and attrition. The two motives can be distinguished and attrition was

maintained to sensible limits. All the exercises performed here use all observations with

complete data, independently of the available firm time observations. Hence, the sample

includes, approximately in population proportions, surviving, entrant and exiting firms and

experiences some decay over time due to attrition.

The available information allows us to compute the cost-based Solow residual,

construct the control variables and fix the age of the firm according to the number of

years it has been active in the marketplace, establishing a maximum category of 40 years

or more (see Appendix A for details).

A process innovation is assumed to occur when the firm answers positively to the

(innovation) question of whether it has introduced some significant modification of the

productive process (affecting machines, organisation or both) along the year. The question

appears in the questionnaire along with all the other R&D and innovation-related questions

(e.g., product innovation) and is clearly separated from other sections on technology

adoption and usage. Hence, it is likely to pick up rather precisely what firms consider
12 The survey was sponsored by the Ministry of Industry, under the name ‘‘Encuesta sobre Estrategias

Empresariales’’ (ESEE), and carried out at the Programa de Investigaciones Económicas of the Fundación

Empresa Pública.
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major innovative changes in their productive process and the frequency of these changes13.

In fact, some of our results suggest that firms tend not to report changes which are already

generalised in the market as innovative productive modifications.

The sample average relative frequency of process innovation is about 1/3 (34%). This 
implies that we expect a firm to introduce a process innovation every 3 years (see Table 
A.1). However, the sample also has a high proportion of firms which never innovate 
(about 42%) and a small proportion which innovate every year they are in the sample 
(15%). These values constitute two modes, and proportions of intermediate relative 
frequencies are slightly decreasing. The sample average relative frequency of innovation 
of the strictly uncensored sample (all the noninnovation-datable observations dropped) is, 
as expected, higher: about 1/2 (52%). The probability of introducing process innovations 
varies greatly by activities, sizes, and over firm ages. Huergo and Jaumandreu (in press) 
estimate this probability, showing how small size per se tends to reduce the probability of 
innovation, but also how entrant firms tend to present the highest probability of 
innovation. The oldest firms tend to present a somewhat lower probability, although 
some firms from intermediate to old ages present a high probability, which may be 
attributed to selection. Exiting firms are clearly associated to lower levels of preexit 
innovations14.
5. Empirical results

This section presents the empirical exercise. Firstly, we report the results of estimating

the age and the age/innovation models using the whole sample and the strictly non-

censored sample. Then, we briefly comment on the results of estimating the age model by

industries, using a disaggregation of manufacturing in 10 industries.

Table 1A reports the results of the estimations with the whole sample. The first 
estimate reports the results of a fully parametric estimation of the age model, where age 
enters the equation linearly. The second and third estimates report the results of 
semiparametric estimations of the age and age/innovation models. The third estimate 
adds to the function of age the set of dummies designed to account for the effects of 
innovation and their persistence over time. The fourth column reports the same estimate 
as the third, but applied to the strictly noncensored sample (68% of the previous data 
points). Table 1B reports the dummies’ coefficients for the semiparametric estimate with 
the whole sample of the age/innovation effects model (third estimate; but, in fact, dummy 
coefficients remain fairly stable across estimates), and panels a–c of Fig. 1 depict the 
functions obtained in the semiparametric estimates, plotting the value of productivity 
growth as a function of firm age.

Controls turn out to give repeatedly robust and sensible results, which, in addition to

their own interest, stress the validity of the framework employed. Firstly, the average
13 Notice that an advantage of this type of output measure is that it avoids the well-known reporting problems

associated with the coexistence of formal and informal innovative activities.
14 All this agrees well with the standard findings on industry dynamics related to innovation; see, for 

example, Audretsch (1995).
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Table 1A

Results from the estimation of models h=xb+a*(s)+u and h=xb+a*(s)+a0d+Sdstes+u (age and age/innovation

effects models)

Dependent variable: (cost-based) Solow residuala

Explanatory Coefficients and t-ratiosb

variables
Age effects

(parametric

estimate)

Age effects

(semiparametric

estimate)

Age and innovation

effects (semiparametric

estimate)

Age and innovation

effects (semiparametric

estimate; uncensored

sample)

Scale correction �0.236 (�15.6) �0.237 (�15.6) �0.238 (�15.7) �0.226 (�12.8)

Capacity utilisation 0.092 (7.6) 0.092 (7.6) 0.091 (7.5) 0.107 (7.1)

Merger 0.054 (4.4) 0.055 (4.4) 0.043 (3.0)

Scission �0.071 (�2.8) �0.072 (�2.8) �0.079 (�3.0)

Time, size, industry

dummiesc
Included Included

0.055 (4.4)
�0.071 (�2.8)

See Table 1B (cont.) Included

Constant

Age

0.030 (8.8)
�0.0003 (�2.2) Fig. 1, panel a Fig. 1, panel b Fig. 1, panel c

Process innovation

dummy

0.015 (4.3) 0.0003 (0.0)

Time elapsed 1 year �0.008 (�1.4) �0.007 (�1.2)

Time elapsed 2 years �0.006 (�1.0) �0.005 (�0.9)

Time elapsed 3 years �0.007 (�1.1) �0.008 (�1.1)

Time elapsed 4 years �0.025 (�2.9) �0.025 (�2.9)

Time elapsed 5 years �0.019 (�1.7) �0.021 (�1.8)

Time elapsed 6 years �0.037 (�2.1) �0.037 (�2.2)

Sigma squared 0.026 0.025 0.025 0.022

No. of firms 2356 2356 2356 1750

No. of observations 10,735 10,735 10,735 7293

a Sample period: 1991–1998.
b t-ratios computed using (unbalanced panel) robust standard error formulas.
c Eight time dummies, 6 size dummies and 18 industry dummies, with coefficients of each set constrained to

add zero (Suits method).
elasticity of scale, estimated through the coefficient of the scale correction, is about 0.76.

Secondly, firms’ utilisation of capacity is important in explaining variations in productivity

growth [10 percentage points of increase (decrease) in the utilisation of capacity imply

nearly 1 percentage point of increase (decrease) in productivity growth]. Thirdly, mergers

or acquisitions and scissions turn out to have a significant impact on productivity growth

(the year following the fact). On average, this impact is positive for mergers or acquisitions

and negative and stronger for scissions.

Let us briefly comment on the time, size and industry dummy coefficients. Recall that

given the method used to specify these sets of dummy variables, dummy coefficients must

be interpreted as giving percentage deviations from average growth.

Firstly, time dummies show how the industrial cycle determined a sharp average

productivity decrease which reached bottom in 1993 and intense increases the following

two recovering years. Secondly, interestingly enough, firm size dummies are not signifi-

cant, which points to the absence of firm size patterns in the heterogeneity remaining to be

explained beyond the model. This means that, with the determinants explicitly embodied,
9



Table 1B

Dummy coefficients of semiparametric estimate of the age and innovation effects modela

Dummies Coefficient t-ratio

Time dummies

91 �0.002 (�0.4)

92 �0.006 (�1.3)

93 �0.028 (�5.9)

94 0.012 (2.8)

95 0.022 (5.5)

96 0.000 (0.0)

97 �0.009 (�2.4)

98 0.011 (3.2)

Size dummies (no. of workers)

Less than 20 0.001 (0.2)

From 21 to 50 0.002 (0.8)

From 51 to 100 �0.003 (�0.7)

From 101 to 200 0.002 (0.7)

From 201 to 500 �0.001 (�0.3)

More than 500 �0.001 (�0.4)

Industry dummies

Ferrous and nonferrous metals 0.016 (2.2)

Nonmetallic minerals �0.004 (�0.9)

Chemical products 0.020 (4.6)

Metal products �0.004 (�1.0)

Industrial and agricultural mach. 0.001 (0.3)

Office and data processing m. 0.011 (0.9)

Electrical and electronic goods 0.008 (2.0)

Vehicles, cars and motors 0.018 (3.4)

Other transport equipment �0.032 (�2.3)

Meat and preserved meat �0.001 (�0.2)

Food and tobacco �0.012 (�3.3)

Beverages �0.005 (�0.9)

Textiles and clothing �0.001 (�0.3)

Leather and shoes �0.005 (�0.8)

Timber and furniture �0.015 (�2.7)

Paper and printing products �0.003 (�0.7)

Rubber and plastic products 0.016 (3.2)

Other manufacturing products �0.009 (�1.3)

a Third estimate in main panel.
we can account for all the differences in productivity growth apparently linked to size that

emerge so often in empirical exercises. Thirdly, up to 1/3 of industries tend to show

significant differences with respect to average productivity growth.

Let us comment on the central results. The second estimate shows a clear relationship 
between productivity growth and age (see Table 1A and Fig 1, panel a). Entrant firms 
present high productivity growth (beginning at about 5%) and, although decreasing as time 
goes by, average growth tends to be higher than average until firms reach about 8 years in 
the market. At this age, growth tends to stabilise by about 2% (the wandering of the curve 
is consistent with a higher variance as age becomes higher, but shows no clear trend). That
10



Fig. 1. The a*(s) function. Values of the function a*(s) (productivity growth), estimated with semiparametric

techniques, against age. Upper and lower 95% confidence bands.
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is, productivity growth clearly tends to a ‘‘normal’’ rate, presumably different according to

activities (recall the industry dummy effects), to which surviving firms converge after a

number of years of rapid productivity growth. Recall that the estimation is conditional on

observed lives, and the result consequently suggests that closing firms are the ones that fail

to reach this ‘‘normal’’ rate.

Notice that the linear parametric estimate, reported as the first estimate, is clearly

unable to approach properly the evidence contributed by the semiparametric estimate.

Average productivity growth is evaluated at 3% (something more or less in the middle of

the early growths), and age appears to reduce this rate by about 0.3% after 10 years and

0.6% after 20. The radical nonlinearity of the relationship is missed15.

The third and fourth estimates introduce the set of dummies aimed at picking up the 
effects of innovation. The third estimate (Table 1A and Fig. 1, panel b) uses the whole 
sample. Introduction of innovation leaves the estimate almost unchanged, mainly affecting 
the constant implicit in the age function (notice that shape changes are minimal). The 
convergence value is now situated at almost 1.5%. At the same time, innovation shows a 
clear contemporaneous impact on productivity growth by about another 1.5%. Positive 
impacts seem to persist for 3 more years with a lower average value of 0.7% (estimated, 
however, with a high variance).

Positive impacts, however, also seem to be followed by 3 more years in which, if other

innovation is not introduced, firm productivity growth is surprisingly reduced below

average growth (by about 1.2% a year, which implies virtually no growth). It must be

noticed that only a few firms among the firms which innovate will show such a time delay

before introducing a new innovation (remember that innovators introduce on average an

innovation in more than half of the years). But, for these firms, everything happens as if

product innovation had moved future productivity growth ahead by 3 or 4 years.

When the same specification is estimated employing the strictly noncensored sample,

the average values of the age function again move upwards (convergence value is now

located at about 2.8%) and contemporaneous innovation turns out to have no impact on

average rates, but the schedule of diminishing returns of innovations is estimated to be

virtually the same. The reasons for this result are the following. On the one hand, this

sample avoids wrongly attributing no-innovation values to data points which by their

nature cannot be established without further nonavailable information. But, on the other

hand, and by the same token, it constitutes a selected sample of entry, innovations and

close data points, at which the value of innovation is already picked up by the implicit

average productivity growth. Results with this subsample confirm for us, however, that the

possible bias in the whole sample cannot be too important, and that the innovation lags

schedule is reliable.

Then, estimate three offers a good picture of the average impact of innovation over the life

of firms. According to this picture, process innovation clearly accelerates productivity

growth during a number of years (1.5% the year of introduction of the innovation and a bit

less for 3 more years), but productivity growth of the innovating firm also tends to fall below

average and even fully stop the following years when new innovations are not introduced as
15 Once the shape of the function is known, one could obviously try to adjust a suitable parametric function if

needed.
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well. This suggests that there is a common pace of growth as production improvements

become ‘‘common knowledge’’ and are incorporated by every firm in the market, and that

innovating firms are basically the firms which make a successful effort to move forward

future productivity increases, creating the changes which will afterwards be generalised16.

Table 2 reports semiparametric estimates of the age model for a disaggregation of 
manufacturing in 10 sectors. The number of data points for each estimation is obviously 
much lower and hence variance is higher, but these estimates let us assess to some extent 
the degree of heterogeneity involved in the estimates for all manufacturing. The lack of 
statistical precision makes the industry semiparametric estimates of the age/innovation 
effects model of no use here (there are too few observations on each innovation lag) and 
they are not reported17.

Let us briefly comment on the results reported in Table 2. Control variables show quite 
plausible values. Returns to scale present values which range from 0.65 to 0.80, with the 
exception of the constant returns to scale case found for the transport equipment sector. 
Impacts of capacity utilisation on productivity growth range from a reasonable maximum 
with Transport equipment (6) to a minimum with the Food, drink and tobacco industry (7). 
At the same time, a simplified set of size dummies, which divides the samples according to 
the threshold of 200 workers, shows small coefficient values and not very much significance, 
and time dummies reveal some heterogeneity in sectors’ productivity evolution over time.

The estimated age functions, whose precision depends heavily on the number of 
observations, are more difficult to interpret (separating the effects of heterogeneity and 
higher variance). However, in Fig. 2, we depict four particularly significant estimates 
[corresponding to the sectors of Chemical products (3), Office and electrical machines (5), 
Food, drink and tobacco and (7) Textile, leather and shoes (8)]. The number of observations 
is always relatively big and/or productivity growth tends to show more intraindustry 
homogeneity than in other sectors. Interestingly enough, among these sectors, there are two 
that are technologically intensive and two in which more mature traditional technologies 
tend to dominate. Panels of Fig. 2 suggest that in every industry, there is a starting period of 
high relative productivity growth, corresponding to the initial years of a firm’s life, even if 
this productivity growth is very different and tends to decrease more or less steadily 
according to the sector (compare 3 and 5 to 7 and 8)18. The number of years of this initial 
period tends to be of 8 years. Then the results suggest that, judged by the observed growth 
in productivity, entrants reach maturity at around 8 years.

Some of the sectors seem to show a somewhat higher-than-average productivity growth

for the oldest firms. We attribute this to the importance of selection, which implies that
16 This interpretation gives a sensible explanation of why an occasional innovator, which do not innovate in

the sequel, would cease to experiment productivity growth: it is just the only one in the market which cannot

profit again from the improvement which has contributed.
17 Nevertheless, they have been computed and do not show remarkable novelties.
18 Given Fig. 2, it could be argued that a horizontal line can be drawn within the limits of the confidence 

bands and this would essentially mean that one cannot reject the hypothesis of no age effects. However, the 
hypothesis of no age effects, either for the whole expectation or part of it, should be contrasted by means of a test 
on the conditional function jointly implying the relevant estimated values. Here, the important thing is that the 
imprecisely estimated nonparametric part of the industry models does not contradict the main conclusions attained 
at the aggregate exercise.

13



Table 2

Industry semiparametric estimations of model h=xb+a*(s)+u

Dependent variable: (cost-based) Solow residuala

Explanatory Coefficients and t-ratiosb

variables
(1) Ferrous and

nonferrous metals

and metal

products

(2) Nonmetallic

minerals

(3) Chemical

products

(4) Industrial

and

agricultural

machinery

(5) Office and

data-processing

machines and

electrical goods

(6) Transport

equipment

(7) Food, drink

and tobacco

(8) Textile,

leather and

shoes

(9) Timber and

furniture

(10) Paper and

printing

products

Scale correction �0.215 (�5.7) �0.298 (�5.7) �0.205 (�4.0) �0.187 (�4.5) �0.205 (�3.7) �0.002 (0.0) �0.299 (�6.4) �0.328 (�10.9) �0.243 (�4.7) �0.349 (�5.9)

Capacity

utilisation

0.059 (2.4) 0.143 (2.8) 0.098 (3.5) 0.104 (1.7) 0.067 (1.3) 0.142 (3.1) 0.056 (2.7) 0.089 (2.8) 0.070 (2.0) 0.068 (1.7)

Merger �0.014 (�0.4) 0.049 (1.1) 0.067 (2.3) �0.062 (�2.2) 0.096 (2.5) �0.058 (�1.4) 0.071 (2.6) 0.061 (1.5) �0.108 (�5.1) 0.130 (2.1)

Scission �0.080 (�1.2) 0.038 (0.7) �0.176 (�3.3) �0.559 (�11.4) �0.050 (�0.9) �0.032 (�1.1) 0.062 (1.2) �0.251 (�1.7) �0.052 (�0.4) 0.029 (0.3)

Up to 200

workers

�0.003 (�0.9) �0.007 (�1.5) �0.004 (�1.3) �0.011 (�2.0) 0.000 (0.0) �0.001 (�0.3) 0.008 (2.1) �0.001 (�0.2) �0.016 (�2.2) 0.012 (1.9)

More than 200

workers

0.003 (0.9) 0.007 (1.5) 0.004 (1.3) 0.011 (2.0) 0.000 (0.0) 0.001 (0.3) �0.008 (�2.1) 0.001 (0.2) 0.016 (2.2) �0.012 (�1.9)

1991 �0.022 (�1.3) �0.012 (�0.6) 0.013 (1.0) 0.002 (0.1) 0.007 (0.5) �0.014 (�0.6) 0.004 (0.4) 0.012 (0.8) �0.022 (�0.9) �0.009 (�0.6)

1992 �0.006 (�0.5) �0.033 (�2.2) �0.004 (�0.4) �0.026 (�1.2) �0.013 (�0.8) 0.001 (0.1) �0.002 (�0.2) �0.001 (�0.1) 0.024 (1.0) 0.005 (0.3)

1993 �0.012 (�1.0) �0.044 (�2.6) �0.018 (�1.8) �0.025 (�1.1) �0.030 (�1.5) �0.029 (�1.1) 0.009 (1.1) �0.072 (�5.8) �0.044 (�2.2) �0.015 (�1.1)

1994 �0.003 (�0.3) 0.035 (2.1) 0.012 (1.2) �0.001 (0.0) 0.022 (1.5) 0.014 (0.7) �0.004 (�0.4) 0.056 (5.1) �0.032 (�1.7) �0.005 (�0.4)

1995 0.034 (2.8) 0.039 (2.2) 0.011 (1.2) 0.041 (2.1) 0.008 (0.6) 0.035 (1.5) 0.011 (1.5) 0.005 (0.4) 0.032 (2.2) 0.033 (2.8)

1996 �0.005 (�0.5) 0.012 (0.9) �0.004 (�0.3) 0.002 (0.1) 0.023 (1.8) 0.009 (0.7) �0.014 (�1.9) �0.004 (�0.4) 0.021 (1.2) �0.013 (�0.9)

1997 �0.006 (�0.6) �0.005 (�0.4) �0.031 (�3.0) �0.018 (�1.2) �0.019 (�1.5) 0.001 (0.0) 0.004 (0.5) �0.003 (�0.4) �0.024 (�1.3) 0.005 (0.4)

1998 0.021 (2.6) 0.008 (0.6) 0.021 (2.1) 0.025 (2.0) 0.002 (0.1) �0.018 (�1.6) �0.007 (�0.9) 0.009 (0.9) 0.045 (3.0) �0.002 (�0.2)

Sigma squared 0.024 0.025 0.029 0.032 0.025 0.031 0.019 0.029 0.031 0.021

No. of firms 325 153 305 141 219 156 356 361 157 183

No. of

observations

1321 752 1363 587 924 704 1795 1598 644 826

a Sample period: 1991–1998.
b t-ratios computed using (unbalanced panel) robust standard error formulas.

14



Fig. 2. The a*(s) function by industries. Values of the function a*(s) (productivity growth), estimated with

semiparametric techniques, against age. Upper and lower 95% confidence bands.
among the group of the oldest firms, the share of the surviving high performers increases,

which tends to displace the mean upwards. However, notice that these figures are depicted

without controlling for innovation (we have already pointed out that the oldest firms are

often also good innovators), and that the precision of the estimate is lower than in the

aggregate.
6. Implications and concluding remarks

This paper has looked directly at the productivity growth impact of process innovations

introduced by firms along their different ages. The main findings may be summarized as

follows. Newborn firms tend to show higher rates of productivity growth which, as time

goes by, tend to converge on average to common (activity-specific) growth rates. Process

innovation clearly induces, however, extra productivity growth at any point in this process.
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Extra growth tends to persist for a number of years, but it is followed by below-average

productivity growth, very close to a halt, if innovation then stops. Let us briefly develop

some interpretations and implications of these findings.

Firstly, how can average productivity growth of every firm, extra growth of innovators

and below-average growth of firms that cease for a long time to perform as innovators be

reconciled? Average growth is likely to be based on ingredients like incorporated

technological change, learning over time and the absorption of ‘‘spillovers.’’ We understand

by absorption of spillovers the incorporation of productive ideas and methods, flowing

more or less freely in the market, from the innovations and experience of others. These

incorporations are unlikely to be classified as innovations by firms because they have been

introduced years before in the market (and some of them are perhaps already partially

commercialised). The same technical ideas and methods would in this way play several

roles. In particular, they would be an important part of average productivity growth as well

as the reason for the leading productivity growth of their (early) introducers as innovations,

but they cannot definitely bring in new productivity growth to the introducers who have

remained at the initial point. Productivity of these firms will have, in the end, grown by

more or less the same amount as the productivity of any noninnovator. Our estimates then

suggest an industry full of these ‘‘dynamic’’ spillovers, in which process innovations are

generalised with some lag, bringing productivity growth to even the noninnovative firms.

Secondly, entrant firms are likely to derive their high rates of productivity growth from a

mix, with unknown weights, of innovative processes and the course of learning. Notice that

our estimation does not say a word about efficiency levels, but only indicates that new firms’

productivity increases more rapidly. Then, in principle, we can attribute these productivity

improvements either to the potential of their completely new processes brought into the

market to jump away from the average efficiency levels or just the necessity to adapt quickly

to them. Evidence on low surviving rates of entrant firms seems to point to the importance of

the learning factor. But trying to disentangle the relative weight of these two effects seems a

relevant question which cannot be answered with the present model.

Thirdly, the impact of process innovation seems to spread beyond what can be picked

up by the simplest ‘‘knowledge capital’’ models. In these models, the perpetual inventory

method of capital stock construction implies time productivity growth effects proportional

to the contemporaneous net rates of R&D investment (investment over cumulated capital

minus depreciation). The obtained evidence departs from this model in several aspects.

The productivity growth impact takes place when a process innovation is introduced and it

is spread over a number of years. But ‘‘knowledge capital’’ models possess the interesting

feature of trying to weigh innovations by their value. This suggests the relevance of trying

to advance in the modelling of innovation-specific investment weights and their dynamic

effects.
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Appendix A. Data appendix

All employed variables come from the information furnished by firms to the ESEE 
survey (see footnote 2). The employed sample results from dropping the observations for 
which the data needed to perform the exercise are incomplete. Composition of the 
unbalanced panel sample in terms of time observations is shown in Table A.1. The table 
also reports the frequency with which firms introduce process innovations. The columns 
‘‘% of process innovations’’ are constructed by averaging across firms the relative 
frequencies or proportions of their time observations in which they report process 
innovations. The number of firms by size intervals are the following: up to 20 workers: 
712; 21–50 workers: 555; 51–100 workers: 179; 101–200 workers: 203; 201–500 
workers: 488; and more than 500 workers: 219. Fig. A.1 depicts the histogram of the 
variable age. Notice its bimodal character after grouping values at 40 years.

A.1. Detail on variables construction

Solow residual: Computed using the Tornqvist index h=y�sLl�sKk�sMm, where the

input measures are in log differences and the s weights for moment t are average cost

shares for years t and t�1. Output and intermediate consumption real changes are obtained

by deflating, respectively, (sales+inventory changes) and (raw materials and services

purchases+energy and fuel costs). The price indices used are Paasche-type firm individual

indices, constructed starting from the price changes on output and inputs reported by firms.

Labour input changes are the changes in total effective hours of work (normal hours+o-
Table A.1

Number of firms, time observations and frequency of process innovation

Time obs. Total sample Strictly uncensored sample

No. of

firms

No. of

observations

% of process

innovations

No. of

firms

No. of

observations

% of process

innovations

1 393 393 33.8 342 342 64.7

2 353 706 31.6 288 576 49.1

3 221 663 30.6 165 495 51.5

4 278 1112 31.1 197 788 48.5

5 159 795 37.9 169 845 48.1

6 180 1080 30.2 155 933 43.8

7 190 1330 35.3 155 1085 51.6

8 582 4656 38.2 279 2232 57.9

Total 2356 10,735 34.0 1750 7296 52.2
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Fig. A.1. The histogram of age.
vertime-lost hours), and capital variations are computed from a measure of the stock of

capital obtained starting from the firms’ investments in equipment goods. Cost and cost

shares are also computed using the labour cost per worker and a user cost of capital

calculated as the firm’s interest rate paid by long-run debt plus a sectoral estimate of

equipment depreciation minus the rate of change of a capital goods price index.

Capacity utilisation: yearly percentage of utilisation of installed capacity reported by

firms.

Merger/acquisition and scission variables: dummy variables that take the value 1 the

year in which a merger/acquisition or a scission has taken place. When two observed firms

merge, only the biggest is supposed to survive.

Size variables: dummy variables based on the average number of workers of the firm

during the year.

Industry variables: 18 industry dummy variables classification (see Table 1B) which 
constitutes an adaptation of a standard NACE classification, and the 10 industries 
classification aggregates the previous one (to have a significant number of firms in each 
industry) in the following way: 1=1+4, 2=2, 3=3+17, 4=5, 5=6+7, 6=8+9, 7=10+11+12, 
8=13+14, 9=15, 10=16. Firm numbers by industry appear in Table 2.

Age: computed from the difference between the current year and the constituent year

reported by the firm; when this difference is higher than 40 years, we change it to a unique

category of 40 or more years. This is the maximum life span with economic meaning in

Spanish manufacturing circa 1998. Higher ages reported by firms are probably important

in terms of prestige, but we assume that cannot have technological content. The unit

surveyed is the firm, not the plant or establishment, and some closely related firms answer

as a group. Constitution of groups and mergers implying major law changes including a

new constituent year introduces a small number of ambiguous ages that we have respected.

Ages distribution, given the character of the sample, is expected to be representative of the
18



ages distribution in manufacturing population. Quartiles of the ages distribution of firms in

the sample for 1991 are 7, 17 and 31 years.

Process innovations: a process innovation is assumed to have occurred when the firm

answers positively to the following request: ‘‘Please indicate if during the year 199
 your

firm introduced some significant modification of the productive process (process innova-

tion). If the answer is yes, please indicate the way: a) introduction of new machines; b)

introduction of new methods of organisation; c) both.’’
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