
This document is published in: 

Economics Letters, 2006  90 3  348-355
DOI: http://dx.doi.org/10.1016/j.econlet.2005.08.028

© 2005 Elsevier B.V. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.econlet.2005.08.028


Temptation, self-control, and competitive nonlinear pricing

Susanna Esteban a,T, Eiichi Miyagawa b

a Department of Economics, Pennsylvania State University, University Park, PA 16802, United States
b Department of Economics, Columbia University, New York, NY 10027, United States
Abstract

Standard pricing theories consider consumers without temptation. With temptation and costly self-control,
consumers dislike choice sets with tempting alternatives. We study firms’ strategy against such consumers, using
Gul–Pesendorfer preferences and a game where firms compete by offering menus.
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1. Introduction

The standard theories of optimal pricing by firms are based on the assumption that consumers are free
from temptation. On the other hand, temptation is undoubtedly an important feature of consumers’

behavior, and there is a recent theoretical advance that allows us to study consumption decisions with
temptation. In a recent paper, Gul and Pesendorfer (2001) axiomatically derived a class of preferences
under which consumers are subject to temptation and incur psychological costs if they exercise self-
control. We use Gul and Pesendorfer’s formulation to study firms’ optimal pricing when consumers are
subject to temptation. Unlike consumers with standard preferences, consumers with Gul–Pesendorfer
preferences may dislike a larger choice set if it contains tempting and undesirable choices, since
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consumers may succumb to temptation and even if they resist it, they incur psychological costs in the

process.

In the Gul–Pesendorfer formulation, each consumer has two utility functions, one representing

preferences that she would like to commit to, and the other one representing her temptation. The

consumer’s actual choice is determined as a compromise between the two utility functions, and the

compromising process captures the exercise of self-control. The psychological cost of self-control is

determined endogenously as the forgone utility of temptation: the difference between the maximum

temptation utility and the temptation utility of the actual choice. Consumers correctly foresee the

outcome of their self-control. If a consumer expects that the self-control process will be too painful or

little self-control will be exercised, she may choose to stay away from the purchasing opportunity.

If consumers behave in this way, what are the implications for the firms’ optimal strategies? To answer
this question, we study the standard framework of nonlinear pricing due to Mussa and Rosen (1978) and
Maskin and Riley (1984) and consider the case where a set of firms compete.1 Since consumers have a 
preference for small, less tempting menus, firms may want to offer multiple menus and separate
consumers into them via self-selection. Thus we study a game in which firms can offer a set of menus.

We characterize the Nash equilibria of the game. An interesting feature of the equilibrium is that even

though the market is extremely competitive, the equilibrium outcome is generally not efficient in the

following sense: once a consumer chooses her most preferred menu, she and the firm can find a Pareto

improving alternative outside the menu. The Pareto improving alternative (good price pair) is not offered

in equilibrium since it is not desirable for the consumer’s commitment utility and if offered, the

consumer would stay away from the menu. We also show that, in contrast with the standard model, the

equilibrium involves pooling of consumers. Consumers with non-trivially different preferences choose

the same menu and the same item from the menu.

The last section of the paper lists a few more properties of the equilibria.

Our companion papers (Esteban et al., 2003; Esteban and Miyagawa, 2004) study the same framework

and consider the case of monopoly. The former considers the case where the monopolist is restricted to
offering one menu, while the latter considers the case where the firm can offer any number of menus.
2. Menus

There is a set of goods indexed by their quality level (or quantity) qaRþ. The good q=0 represents

bnothing.Q Consumers are interested in buying at most one unit of one good. An offer is a pair

(q,t)aR
2
þ, which represents the option of buying one unit of good q for a price of t. A menu is a set of

offers MpR
2
þ such that (0,0)aM. The restriction (0,0)aM means that a consumer who buys nothing

pays nothing. We limit ourselves to menus that are compact sets.
3. Firms

There are nz2 firms and the set of firms is denoted N={1,2,. . .,n}. A firm can offer any number of

menus. As in standard theory, it is costless to create a menu. For example, a menu may be a cellphone
1
Economides (1985) and Mandy (1992) study similar games with standard preferences of consumers.
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plan, where q is the number of minutes of calls, or a weight-loss program plan, where q is the amount of

weight loss. For these examples, creating a menu does not involve any significant physical activities.

Another possible interpretation is that each menu represents an individual retail store. A firm can open

multiple stores, possibly under different brand names, that target different ranges of consumers. The

assumption that menus can be created costlessly captures an extreme form of competitive markets, and it

is useful as it allows us to focus on the multiplicity of menus that arises from consumers’ preferences.

Let C: RþYRþ be the cost function, where C(q) denotes the per-consumer cost of producing good q.

The cost function C is identical for all firms, strictly increasing, convex, and satisfies C(0)=0. For each

offer x= (q,t), let j(x)ut�C(q) denote the per-consumer profit generated by the offer.
4. Consumers

Let H be a finite set of consumer types. For each h aH, let f(h) N 0 denote the fraction of consumers 
of type h. The firms know f but not the type of each consumer. Consumers know the set of menus 
offered by each firm. Following Gul and Pesendorfer (2001), we assume that consumers have the
following utility function defined over menus:

Wh Mð Þu max
q;tð ÞaM

Uh q; tð Þ þ Vh q; tð Þ½ � � max
q;tð ÞaM

Vh q; tð Þ; ð1Þ

where Uh and Vh are functions from R
2
þ into R. The function Uh represents the preferences that the

consumer would like to commit to, while Vh represents her temptation. The offer that the consumer

actually chooses is one that maximizes Uh+Vh, which represents a compromise between her

commitment preferences and her temptation preferences. The relative power of each preference ranking

in determining the consumer’s choice depends on the relative scale of Uh and Vh. For instance,

increasing the relative scale of Uh (e.g., by multiplying it by a constant number aN1) increases the

consumer’s bwillpower.Q Let BOh(M) denote the set of offers that maximize Uh+Vh:

BOh Mð Þ ¼ Argmax
xaM

Uh xð Þ þ Vh xð Þ½ �: ð2Þ

The solutions to the second maximization in Eq. (1) represent the most tempting offers. Thus, if the

consumer chooses x̂ a BOh(M), the difference

max
xaM

Vh xð Þ � Vh x̂xð Þ ð3Þ

is the forgone utility of Vh. In terms of temptation preferences, the consumer wants to maximize Vh but

ends up with x̂ after self-control. Therefore, the difference in Eq. (3) can be interpreted as the consumer’s

disutility from self-control and is called the self-control cost. With this terminology, the consumer’s

overall utility equals Uh(x̂) minus the self-control cost. Because of the self-control cost, consumers have

an incentive to avoid menus that contain tempting offers.

A critical feature of the consumers’ behavior is that consumers choose an offer in two stages. A

consumer first chooses a menu M and then an offer xaM. When she chooses a menu, she maximizes

Wh(M). When she chooses an offer fromM, she maximizes Uh(x)+Vh(x). The first stage is called the ex-

ante stage, and the second stage is called the ex-post stage. Similarly, Wh(M) is called the ex-ante utility,

and Uh(x)+Vh(x) is called the ex-post utility.
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We assume that Uh and Vh are continuous, strictly increasing in q, strictly decreasing in t, strictly

quasi-concave,2 and satisfy Uh(0,0)=Vh(0,0)=0. We also assume that for all h,

max
qz0

Uh q;C qð Þð Þ and max
qz0

Vh q;C qð Þð Þ ð4Þ

have strictly positive solutions.
5. Game

We consider a normal-form game in which each firm can choose any number of menus. Formally,

each firm i chooses a finite set of indexes Sip{1,2,. . .,} and a list of menus (Mi
s)saSi

.

Given the firms’ strategies, the set of all menus offered by the firms is M={Mi
s:iaN and saSi}. Let

BMh(M) be the set of menus MaM such that

Wh Mð Þz0; ð5Þ

Wh Mð ÞzWh M Vð Þ for all M VaM; ð6Þ
where Eq. (5) is the ex-ante individual rationality condition and Eq. (6) is the ex-ante incentive

compatibility condition. For consumers h, all menus in BMh(M) are equally good and hence we assume

that the consumers choose each of these menus with equal probability. Upon choosing a menu, the most

preferred offers in the menu for the consumer may not be unique. In this case, the consumer chooses one

that is most profitable for the firm. If multiple such offers exist, which one is chosen is immaterial.

Formally, let BOh* (M) be an offer x*a BOh(M) such that j(x*)zj(x) for all xaBOh(M).

We can now define firms’ payoffs. Given a strategy profile (Si, (Mi
s)saSi

)iaN and the associated set of

menus M, firm i’s payoff is

pi Mð Þ ¼
X

saSi

X

haHs:t:
Ms

i
aBMh Mð Þ

t h; sð Þ � C q h; sð Þð Þ½ � f hð Þ
jBMh Mð Þj ; ð7Þ

where, for all (h,s)aH	Si such that Mi
saBMh (M), (q(h,s), t(h,s))=BOh*(Mi

s). In words,

Mi
saBMh(M) is a most preferred menu for consumers h, so some of these consumers choose the

menu. Since there exist |BMh(M)| menus that are equally optimal for the consumers, only a

fraction 1 / |BMh(M)| of them choose Mi
s . Those who choose Mi

s choose the offer

(q(h,s),t(h,s))=BOh*(Mi
s) and generate profits t(h,s)�C(q(h,s)) per consumer.
6. Equilibria

We characterize the Nash equilibria of the game defined above. Let (Si,((Mi
s)saSi

)iaN be a Nash

equilibrium and M be the associated set of menus. Let pi denote firm i’s profit at the equilibrium. Since

not offering any menu is an option, piz0.
2 As usual, if C is strictly convex, we can allow for weak quasi-concavity of Uh and Vh.
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Lemma 1. All firms earn zero profits: pi =0 for all i.

Proof. Let j be a firm with the lowest profit and suppose the firm offers a replica of all the existing

menus of all the firms. Since half of the consumers switch to the newly offered menus, firm j earns

[pj +
P

iaNpi] /2. Since this should not exceed pj, we have
P

k pjpk =0. 5

Lemma 2. Any offer that a consumer actually chooses generates zero profit: For all iaN, all saSi,

and all haH, if Mi
saBMh(M), then P(BOh*(Mi

s))=0.

Proof. If P(BOh*(Mi
s))N0, firm i gains by replacing all its menus with one that offers BOh*(Mi

s) only

(i.e.,{BOh*(Mi
s),(0,0)}). Indeed, since the new menu is at least as good as Mi

s for consumers h, the menu

is chosen by some consumers, and hence the firm earns positive profits, which is the desired

contradiction. 5

To characterize the optimal menu, let xh* for h each be an offer that maximizes

Hh xð ÞuUh xð Þ þ Vh xð Þ �max 0;Vh xð Þf g ð8Þ
subject to j(x)V0. Since Uh and Vh are strictly quasi-concave, so is Eq. (8). Thus xh* is unique for each

h, if it exists. By Assumption Eq. (4), xh* exists and Hh(xh*)N0.

The offer xh* can be found as follows. Let xh
U be the solution to

max
x

Uh xð Þ s:t: P xð Þ ¼ 0: ð9Þ

If Vh(xh
U)z0, then xh*=xh

U. Otherwise, let xh
U+V be the solution to

max
x

Uh xð Þ þ Vh xð Þ s:t: P xð Þ ¼ 0: ð10Þ

If Vh(xh
U+V)V0, then xh*=xh

U+V. Otherwise, xh* is the unique non-zero offer defined by

Vh xhT
� �

¼ 0 and P xhT
� �

¼ 0: ð11Þ

Here is an alternative procedure to identify xh*. Let qh
U, qh

U+V, and qh
V be the solution to

maxqFh(q,C(q)) for Fa{U,U+V,V}, respectively. If qh
Ubqh

U+Vbqh
V, then qh*=qh

U. If qh
Vbqh

U+V, then

qu*=median {qh
U+V,qh

U,q̂h},where q̂h p 0 is defined by Vh(q̂h,C(q̂h))=0. Once qh* is identified, th* is given

by th*=C(qh*).

Proposition 1. For any Nash equilibrium and any type h, (a) the ex-ante utility of consumers of type h is

Hh(xh*); (b) all consumers of type h choose xh*; and (c) at least two firms offer menus M such that

Wh(M)=Hh(xh*). Conversely, (d) a strategy profile is a Nash equilibrium if the set of menus is

M={{xh*,(0,0)}:haH} and, for each type h, there exist at least two firms that offer {xh*,(0,0)}.

Proof. To prove the first statement, fix h. To prove (a), let Mi
saBMh(M) and xh=BOh* (Mi

s). 5

Then

Wh Ms
i

� �
¼ Uh xhð Þ þ Vh xhð Þ � max

yaMs
i

Vh yð ÞVUh xhð Þ þ Vh xhð Þ �max 0;Vh xhð Þf gVHh xhT
� �

: ð12Þ

Suppose, by contradiction, that Wh(Mi
s)bHh(xh*). Then there exists an offer x̂ such that

Wh(Mi
s)bHu(x̂) and P(x̂)N0. Thus any firm can earn positive profits by replacing all of its menus

with {x̂(0,0)}.

To prove (b), note that by (a), the inequalities in Eq. (12) hold with equality, which implies xh=xh*.
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To prove (c), suppose that only one firm, say j, offers a menu that gives type h an ex-ante utility of

Hh(xu*). Thus, for all menus M offered by the other firms, Wh(M)bHh(xh*). Then there exists an offer x̂

such that P(x̂)N0 and Hh(x̂)NWh(M) for all MaM. Firm j can then gain by replacing all its menus

with {x̂(0,0)}.

To prove (d), consider a strategy profile in the statement and suppose, by contradiction, that firm i has

a better response. Since each of the menus is offered by at least two firms, even if firm i deviates, each

type h can choose {xu*,(0,0)} and guarantee an ex-ante utility of Hh(xh*). Thus if firm i can deviate

profitably, there exist a menu M, a type h, and an offer xaBOh(M) such that P(x)N0 and

Wh(M)zHu(xu*). Since xaBOh(M), we obtain Wh(M)VHh(x) and hence Hh(x)zHh(xh*), which is a

desired contradiction with P(x)N0.
7. Properties of equilibria

7.1. Ex-ante efficiency

The equilibrium outcome is ex-ante efficient if there exists no menu M that makes consumers of some

type better off and generates higher profits for the firm: formally, there exists no menu-type-offer triple

(M, h, x) such that xaBOh(M), P(x)z0(=P(xh*)), and Wh(M)zHh(xh*) with at least one inequality

holding strictly. To see that the equilibrium outcome is ex-ante efficient, suppose, to the contrary, that

there exists a triple (M, h, x) that satisfies the above condition. Then

Hh xTh
� �

VWh Mð ÞVHh xð Þ: ð13Þ

Therefore, P(x)=0 and both inequalities in Eq. (13) hold with equality, which is a contradiction.

7.2. Ex-post efficiency

The equilibrium outcome is ex-post efficient if there exists no offer x that makes consumers of some

type h better off in the ex-post stage (after the consumers have chosen their menus) and generates higher

profits to the firm: formally, there exists no type-offer pair (h,x) such that P(x)z0 and

Uh(x)+Vh(x)zUh(xh*)+Vh(xh*) with at least one inequality holding strictly. If such an offer x exists

and the firm appends it to the menu chosen by the consumer, the consumer in the ex-post stage finds x at

least as good as any offer in the menu.3 Since xh*p xh
U+V is possible, the equilibrium outcome is generally

not ex-post efficient. The firm does not want to include the ex-post Pareto improving offer in the menu

since the offer is not desirable when evaluated with the consumer’s commitment utility and if it is listed

in the menu, the consumer will not choose the menu.

7.3. Pooling

The equilibrium outcome exhibits pooling if consumers of different types choose the same

menu and the same offer: there exist a pair of distinct types {h,hV} and a menu MaM such that
3
This is based on a particular interpretation of the utility functions of Gul and Pesendorfer (2001): given a menu, the

consumer prefers an offer that gives a higher value of U +V.
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MaBMh(M)\BMhV(M) and xh*= xhV* . The following example shows that pooling is possible in a non-

trivial sense. There are two types of consumers, A and B, and their utility functions are

UA q; tð Þ ¼ 6
ffiffiffi
q

p � t; VA q; tð Þ ¼ 3 2
ffiffiffi
q

p � t
� �

; and UBðq; tÞ ¼ VB q; tð Þ ¼ 4
ffiffiffi
q

p � t: ð14Þ

There are two firms and the cost function is C(q)=q. Then xA*=xB*=(4,4). A Nash equilibrium is where

each firm offers a single menu M={(4,4),(0,0)}.

7.4. Upward temptation

Let us say that consumers of type h exhibit upward temptation if qh
U bqh

U.4 That is, temptation

increases the marginal valuation for quality (or quantity). For these consumers, xh*=xh
U, and hence the

outcome is efficient for the U utility. Note also that for these consumers, the equilibrium outcome is

independent of their V utility function. That is, upward temptation does not affect the consumers’

equilibrium purchasing choice.

7.5. Downward temptation

Consumers of type h exhibit downward temptation if qh
Vbqh

U. That is, the marginal valuation is lower

under temptation. For weight-loss programs, for instance, temptation lowers the marginal value of

weight loss. For consumers with downward temptation, xh* may differ from xh
U, and hence the outcome

is generally not efficient with respect to the commitment utility. This occurs because the consumers may

be tempted to buy nothing: Vh(0,0)NVh(xh
U) is possible. If the inequality holds and the consumers’ ex-

post choice is xh
U, their ex-ante utility is at most

Uh xUh
� �

þ Vh xUh
� �

�max 0;Vh xUh
� �� �

¼ Uh xUh
� �

þ Vh xUh
� �

:

Since xh
U does not maximize Uh+Vh on the P=0 curve, there exists an offer x̂ such that the menu

{x̂(0,0)} gives the consumers a higher ex-ante utility and generates higher profits, in contradiction with

equilibrium. Intuitively, the problem is the consumers’ inability to commit to buy.

The same problem also causes some consumers to incur positive self-control costs in equilibrium

even if all the equilibrium menus contain a single non-zero offer. Specifically, this occurs for consumers

with downward temptation such that Vh(xh
U+V)b0. Since xh*= xh

U+V, the self-control cost is

Vh(0,0)�Vh(xh
U+V)N0.

For consumers with downward temptation, the equilibrium outcome depends on both the U and V

functions. To see how the equilibrium outcome is affected by the V function, suppose that the V function

can be decomposed as

Vh xð Þ ¼ V̂V h xð Þ=w; ð15Þ
where wN0 is the index of willpower. Since w is independent of x, it has no effect on the ordinal

preferences of Vh , although it affects the ordinal preferences of Uh+Vh . For a larger w, the scale of Vh is

smaller and hence the influence of temptation on the actual choice is smaller. As wYl, the willpower

becomes infinitely strong in the sense that the maximizer of Uh+Vh converges to the maximizer of Uh.
4
This definition is clearly a short cut. For a more satisfactory definition, see Esteban et al. (2003) or Esteban and Miyagawa

(2004).
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The limit is the standard case with preferences given by Uh. It is easy to see that for any type, qh* is non-

decreasing in w. As the consumers’ willpower gets stronger, the quality of goods sold gets higher.
8. Participation fees

The above analysis is based on the assumption that (0,0) a M for all menus. This assumption is

violated if firms can charge bparticipation feesQ (membership fees, entry fees, etc), so that even

consumers who choose q=0 may have to pay a positive amount. If we remove the assumption (0,0)aM,

the equilibrium characterization is simplified considerably, as the following result shows. We omit the

proof since it is virtually the same as that of Proposition 1.5

Proposition 2. Suppose that firms can offer any compact subset of R2
þ as a menu. Then for any Nash

equilibrium and any type h, (a) the ex-ante utility level of consumers of type h is Uh(xh
U); (b) all

consumers of type h choose xh
U; and (c) at least two firms offer menus M such that

Wh(M)=Uh(xh
U).Conversely, (d) a strategy profile is a Nash equilibrium if the set of menus is

M={{xh
U}:haH}and, for each type h, there exist at least two firms that offer {xh

U}.

The equilibrium remains ex-post inefficient, but pooling does not arise (except in a trivial sense). The

equilibrium purchasing pattern is completely independent of the V utility functions, and the self-control

cost is zero for all consumers.
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